1
|
Ye LS, Mu HF, Wang BL. Advances in flavonoid bioactivity in chronic diseases and bioavailability: transporters and enzymes. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2025:1-29. [PMID: 40279202 DOI: 10.1080/10286020.2025.2493925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 04/09/2025] [Accepted: 04/10/2025] [Indexed: 04/27/2025]
Abstract
Flavonoids, abundant in the human diet, have been extensively studied for their therapeutic bioactivities. Recent research has made significantly advances in our understanding of the biological activities of flavonoids, demonstrating their therapeutic effects for various chronic diseases. However, the generally low bioavailability of flavonoids limits their effectiveness. Therefore, it is essential to explore the pharmacokinetics of flavonoids, paying particular attention to the roles of transporters and metabolizing enzymes. This paper reviews recent studies on the bioactivity of flavonoids, highlighting the importance of transporters and metabolic enzymes in their pharmacokinetics.
Collapse
Affiliation(s)
- Li-Sha Ye
- Department of Drug Metabolism, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing100050, China
| | - Hong-Fei Mu
- Department of Drug Metabolism, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing100050, China
| | - Bao-Lian Wang
- Department of Drug Metabolism, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing100050, China
| |
Collapse
|
2
|
Zhang Z, Wang R, Cai J, Li X, Feng X, Xu S, Jiang Z, Lin P, Huang Z, Xie Y. Baicalin alleviates lipid accumulation in adipocytes via inducing metabolic reprogramming and targeting Adenosine A1 receptor. Toxicon 2025; 258:108339. [PMID: 40188992 DOI: 10.1016/j.toxicon.2025.108339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 03/13/2025] [Accepted: 03/31/2025] [Indexed: 04/12/2025]
Abstract
Excessive lipid accumulation can lead to obesity, metabolic-associated fatty liver disease, and type 2 diabetes. However, there are currently few drugs that could effectively and safely inhibit the accumulation of intracellular lipids. In this study, we observed that baicalin significantly altered cellular respiration by reducing mitochondrial oxygen consumption while enhancing glycolytic flux, accompanied by increased phosphorylation of AMPK and ACC, suggesting an adaptation to altered energy availability. Baicalin effectively reduced lipid droplet formation and intracellular triglyceride levels in adipocytes, as marked by downregulating genes and proteins associated with lipid storage, including Cd36, Fabp4, and FASN. Transcriptomic analysis identified 2150 differentially expressed genes in baicalin-treated adipocytes, with significant enrichment in metabolic pathways such as glycolysis, gluconeogenesis, and lipid metabolism. Further analysis revealed that baicalin upregulated glycolytic and fatty acid β-oxidation (FAO) pathways while downregulating pyruvate dehydrogenase, inducing a shift toward glycolysis and FAO for energy production. Molecular docking analysis revealed that Adenosine A1 receptor (ADORA1) was the target of baicalin, which inhibited the maturation of sterol regulatory element binding protein 1 (SREBP1) and finally alleviated lipid deposition. These results demonstrate that baicalin induces metabolic reprogramming of adipocytes by inhibiting glucose aerobic metabolism while enhancing anaerobic glycolysis and FAO. Meanwhile, baicalin targets ADORA1, which subsequently influences the processing of SREBP1 and downregulates lipid biosynthesis, positioning baicalin as a potential therapeutic agent against obesity and related metabolic disorders.
Collapse
Affiliation(s)
- Zaikuan Zhang
- The Ministry of Education Key Laboratory of Laboratory Medical Diagnostics, The College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, PR China
| | - Runzhi Wang
- The School of Basic Medical Sciences, Harbin Medical University, Harbin, 150000, PR China
| | - Jin Cai
- The School of Basic Medical Sciences, Harbin Medical University, Harbin, 150000, PR China
| | - Xinyi Li
- The Ministry of Education Key Laboratory of Laboratory Medical Diagnostics, The College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, PR China
| | - Xiaosong Feng
- The Ministry of Education Key Laboratory of Laboratory Medical Diagnostics, The College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, PR China
| | - Shengming Xu
- The Ministry of Education Key Laboratory of Laboratory Medical Diagnostics, The College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, PR China
| | - Zhihong Jiang
- The Ministry of Education Key Laboratory of Laboratory Medical Diagnostics, The College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, PR China
| | - Peiyi Lin
- The Ministry of Education Key Laboratory of Laboratory Medical Diagnostics, The College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, PR China
| | - Zengyi Huang
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Medical University, Chongqing, 400016, PR China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Medical University, Chongqing, 400016, PR China; Children's Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, 400016, PR China.
| | - Yajun Xie
- The Ministry of Education Key Laboratory of Laboratory Medical Diagnostics, The College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, PR China.
| |
Collapse
|
3
|
Brzęk P, Selewestruk P, Sadowska J, Gębczyński AK, Książek A, Kalinovich A, Nedergaard J, Konarzewski M. Divergent selection for basal metabolic rate in mice affects the abundance of UCP1 protein: implications for translational studies. J Physiol 2025; 603:319-336. [PMID: 39723882 DOI: 10.1113/jp286669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 12/04/2024] [Indexed: 12/28/2024] Open
Abstract
Low basal metabolic rate (BMR) is a risk factor for obesity, whereas elevation of non-shivering thermogenesis (NST) is a promising means to combat obesity. Because heat generated by NST covers thermogenic needs not fulfilled by BMR, one can expect the presence of a negative relationship between both parameters. Understanding of the mechanisms underlying this relationship is therefore important for interpretation of the results of translational experiments and the development of anti-obesity treatments. We studied two lines of laboratory mice divergently selected for high or low level of BMR, raised at 23°C and subsequently acclimated to different ambient temperatures (30, 23 and 4°C). Mice selected for low BMR accumulated more fat but simultaneously showed higher NST capacity and more uncoupling protein-1 (UCP1) in interscapular brown adipose tissue (iBAT), to compensate for their lower heat production through BMR. The between-line difference in UCP1 protein abundance was significant even in mice acclimated to 30°C when the level of UCP1 is very low. Differences in NST capacity between selected lines and acclimation temperatures were explained by UCP1 iBAT abundance. Our results reveal that BMR is inversely correlated with UCP1 protein abundance and NST, even after acclimation to thermoneutrality. Thus, low values of BMR can increase both obesity risk and the magnitude of NST, i.e. the process whose activation has been proposed to mitigate obesity risk. All these effects should be taken into account in the design and interpretation of translational studies on mice models of metabolic diseases. KEY POINTS: Basal metabolic rate (BMR) and non-shivering thermogenesis (NST) based on the activity of uncoupling protein-1 (UCP1) are two main sources of heat in laboratory mice. Both BMR and UCP1 can affect obesity risk in laboratory rodents and humans. Here we studied BMR, NST, and the abundance of UCP1 in laboratory mice selected divergently towards either high or low BMR. We showed that BMR is negatively correlated with UCP1 abundance and this effect is not removed even after acclimation to thermoneutrality. The pattern described reveals that BMR can affect not only obesity risk but also the magnitude of UCP1-mediated NST. Since activation of NST was proposed to mitigate obesity risk, variation in BMR should be taken into account in translational studies of mouse models of metabolic diseases.
Collapse
Affiliation(s)
- Paweł Brzęk
- Faculty of Biology, University of Białystok, Białystok, Poland
| | | | - Julita Sadowska
- Faculty of Biology, University of Białystok, Białystok, Poland
| | | | - Aneta Książek
- Faculty of Biology, University of Białystok, Białystok, Poland
| | - Anastasia Kalinovich
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Jan Nedergaard
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | | |
Collapse
|
4
|
Zhu Z, Yu M, Xu M, Ji X, Zong X, Zhang Z, Shang W, Zhang L, Fang P. Baicalin suppresses macrophage JNK-mediated adipose tissue inflammation to mitigate insulin resistance in obesity. JOURNAL OF ETHNOPHARMACOLOGY 2024; 332:118355. [PMID: 38762213 DOI: 10.1016/j.jep.2024.118355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/05/2024] [Accepted: 05/15/2024] [Indexed: 05/20/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Radix scutellariae (the root of Scutellaria baicalensis Georgi) is a traditional Chinese medicine (TCM) used to treat a wide range of inflammation-related diseases, such as obesity, diabetes, diabetic kidney disease, and COVID-19-associated inflammatory states in the lung and kidney. Baicalin is the major anti-inflammatory component of Radix scutellariae and has shown the potential to inhibit inflammation in metabolic disorders. In this study, we explored the ability and underlying mechanisms of baicalin to modulate the macrophage to mitigate insulin resistance in obesity. MATERIALS AND METHODS Obese mice were administered baicalin (50 mg/kg/day) intraperitoneally for 3 weeks. RAW264.7 and BMDM cells were stimulated with LPS and treated with baicalin for 24 h, while 3T3-L1 and primary white adipocytes were treated with the supernatants from baicalin-treated RAW264.7 cells for 24 h. RESULTS The results showed that baicalin significantly improved glucose and insulin tolerance as well as decreased fat and adipose tissue macrophage levels in obese mice. Besides, baicalin significantly reduced serum and adipose tissue IL-1β, TNF-α and IL-6 levels in obese mice, as well as suppressed LPS-induced IL-1β, TNF-α and IL-6 expression and release in macrophages. Furthermore, treatment with the supernatant from baicalin-treated RAW264.7 cells increased the levels of PGC-1α, SIRT1, p-IRS-1 and p-AKT in adipocytes. Moreover, baicalin treatment dramatically downregulated macrophage p-p38, p-JNK, and Ac-p65Lys310 levels while increasing SIRT1 both in vivo and in vitro. Importantly, JNK inhibitor SP600125 blocked most of the effects of baicalin on SIRT1, Ac-p65Lys310 and pro-inflammatory factors in macrophages. CONCLUSION Therefore, these results demonstrated for the first time that baicalin exerts its anti-inflammatory effects in obese adipose tissue macrophages mainly through suppressing JNK/SIRT1/p65 signaling. These findings amplified the mechanisms of baicalin and its potential to attenuate insulin resistance.
Collapse
Affiliation(s)
- Ziyue Zhu
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Mei Yu
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Mengfan Xu
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xin Ji
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, 225001, China
| | - Xicui Zong
- Hanlin College, Nanjing University of Chinese Medicine, Taizhou, 225300, China
| | - Zhenwen Zhang
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, 225001, China.
| | - Wenbin Shang
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Li Zhang
- Hanlin College, Nanjing University of Chinese Medicine, Taizhou, 225300, China.
| | - Penghua Fang
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
5
|
Li Y, Ye Z, Zhao Y, Xu B, Xue W, Wang Z, An R, Wang F, Wu R. Ling-gui-zhu-gan granules reduces obesity and ameliorates metabolic disorders by inducing white adipose tissue browning in obese mice. Front Physiol 2024; 15:1427722. [PMID: 39156823 PMCID: PMC11329929 DOI: 10.3389/fphys.2024.1427722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 07/17/2024] [Indexed: 08/20/2024] Open
Abstract
Background Ling-gui-zhu-gan (LGZG) formula has been demonstrated to effectively ameliorate the clinical symptoms of patients with obesity or metabolic syndrome. This study aimed to explore both the effect and the underlying mechanisms of LGZG against obesity. Methods Male C57BL/6N mice were randomized into four groups (n = 8): normal control (NC), obese (OB), metformin (Met), and LGZG. After 8 weeks of gavage administration, the pharmacological effects of LGZG on obesity and metabolism were investigated using biochemical parameters, histomorphological examination, and lipidomics techniques. Pivotal factors associated with white adipose tissue browning were evaluated using quantitative real-time polymerase chain reaction and western blotting. Results The results revealed that LGZG reduced the levels of obesity markers, including body weights, body fat mass and food intake in obese mice. Further evaluations highlighted that LGZG restored glucose homeostasis and significantly improved insulin sensitivity in obese mice. Importantly, LGZG could adjust serum lipid profiles and regulate the lipidomic spectrum of intestinal contents, with noticeable shifts in the levels of certain lipids, particularly diacylglycerols and monoacylglycerols. Histopathological examinations of LGZG-treated mice also revealed more favorable adipose tissue structures than their obese counterparts. Furthermore, we found that LGZG upregulated the expression of several key thermogenesis-related factors, such as UCP1, PRDM16, PGC-1α, PPARα, PPARγ, CTBP1, and CTBP2 in white adipose tissues. Conclusion Our findings position LGZG as a novel strategy for preventing obesity and improving metabolic health.
Collapse
Affiliation(s)
- Yuxiu Li
- Department of Endocrinology, Guang’anmen Hospital South Campus, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zimengwei Ye
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yi Zhao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Bingrui Xu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Wanying Xue
- College of Integrative Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Zhufeng Wang
- Department of Endocrinology, Guang’anmen Hospital South Campus, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ran An
- Department of Endocrinology, Guang’anmen Hospital South Campus, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fan Wang
- Department of Endocrinology, Guang’anmen Hospital South Campus, China Academy of Chinese Medical Sciences, Beijing, China
| | - Rui Wu
- Department of Endocrinology, Guang’anmen Hospital South Campus, China Academy of Chinese Medical Sciences, Beijing, China
- Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
6
|
Reyad-Ul-Ferdous M, Gul I, Raheem MA, Pandey V, Qin P. Mitochondrial UCP1: Potential thermogenic mechanistic switch for the treatment of obesity and neurodegenerative diseases using natural and epigenetic drug candidates. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 130:155672. [PMID: 38810549 DOI: 10.1016/j.phymed.2024.155672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/28/2024] [Accepted: 04/21/2024] [Indexed: 05/31/2024]
Abstract
BACKGROUND Brown fat is known to provide non-shivering thermogenesis through mitochondrial uncoupling mediated by uncoupling protein 1 (UCP1). Non-shivering is not dependent on UCP2, UCP4, and BMCP1/UCP5 genes, which are distinct from UCP1 in a way that they are not constitutive uncouplers. Although they are susceptible to free fatty acid and free radical activation, their functioning has a significant impact on the performance of neurons. METHODOLOGY Using subject-specific keywords (Adipose tissue; Adipocytes; Mitochondria; Obesity; Thermogenesis; UCP's in Neurodegeneration; Alzheimer's disease; Parkinson's disease), research articles and reviews were retrieved from Web of Science, ScienceDirect, Google Scholar, and PubMed. This article includespublications published between 2018 and 2023. The drugs that upregulate UCP1 are included in the study while the drugs that do not impact UCP1 are were not included. RESULTS Neuronal UCPs have a direct impact on synaptic plasticity, neurodegenerative processes, and neurotransmission, by modulating calcium flux, mitochondrial biogenesis, local temperature, and free radical generation. Numerous significant advances in the study of neuronal UCPs and neuroprotection are still to be made. Identification of the tissue-dependent effects of UCPs is essential first. Pharmacologically targeting neuronal UCPs is a key strategy for preventing both neurodegenerative diseases and physiological aging. Given that UCP2 has activities that are tissue-specific, it will be essential to develop treatments without harmful side effects. The triggering of UCPs by CoQ, an essential cofactor, produces nigral mitochondrial uncoupling, reduces MPTP-induced toxicity, and may even decrease the course of Parkinson's disease, according to early indications. CONCLUSION Herein, we explore the potential of UCP1 as a therapeutic target for treating obesity, neurodegenerative diseases as well as a potential activator of both synthetic and natural drugs. A deeper knowledge of synaptic signaling and neurodegeneration may pave the way to new discoveries regarding the functioning and controlling of these genes.
Collapse
Affiliation(s)
- Md Reyad-Ul-Ferdous
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
| | - Ijaz Gul
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Muhammad Akmal Raheem
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Vijay Pandey
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Peiwu Qin
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| |
Collapse
|
7
|
Niu W, Feng Y, Peng M, Cai J. A narrative review on the mechanism of natural flavonoids in improving glucolipid metabolism disorders. Phytother Res 2024. [PMID: 38924256 DOI: 10.1002/ptr.8276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/29/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024]
Abstract
Glucolipid metabolism disorder (GLMD) is a complex chronic disease characterized by glucose and lipid metabolism disorders with a complex and diverse etiology and rapidly increasing incidence. Many studies have identified the role of flavonoids in ameliorating GLMD, with mechanisms related to peroxisome proliferator-activated receptors, nuclear factor kappa-B, AMP-activated protein kinase, nuclear factor (erythroid-derived 2)-like 2, glucose transporter type 4, and phosphatidylinositol-3-kinase/protein kinase B pathway. However, a comprehensive summary of the flavonoid effects on GLMD is lacking. This study reviewed the roles and mechanisms of natural flavonoids with different structures in the treatment of GLMD reported globally in the past 5 years and provides a reference for developing flavonoids as drugs for treating GLMD.
Collapse
Affiliation(s)
- Wenjing Niu
- Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Provincial TCM Key Laboratory for Metabolic Diseases, Guangzhou, China
| | - Yongshi Feng
- Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Provincial TCM Key Laboratory for Metabolic Diseases, Guangzhou, China
| | - Minwen Peng
- Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Provincial TCM Key Laboratory for Metabolic Diseases, Guangzhou, China
| | - Jinyan Cai
- Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Provincial TCM Key Laboratory for Metabolic Diseases, Guangzhou, China
| |
Collapse
|
8
|
Yang X, Zheng S, Wang X, Wang J, Ali Shah SB, Wang Y, Gao R, Xu Z. Advances in pharmacology, biosynthesis, and metabolic engineering of Scutellaria-specialized metabolites. Crit Rev Biotechnol 2024; 44:302-318. [PMID: 36581326 DOI: 10.1080/07388551.2022.2149386] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/11/2022] [Accepted: 11/02/2022] [Indexed: 12/31/2022]
Abstract
Scutellaria Linn., which belongs to the family Lamiaceae, is a commonly used medicinal plant for heat clearing and detoxification. In particular, the roots of S. baicalensis and the entire herb of S. barbata have been widely used in traditional medicine for thousands of years. The main active components of Scutellaria, including: baicalein, wogonin, norwogonin, scutellarein, and their glycosides have potential or existing drug usage. However, the wild resources of Scutellaria plants have been overexploited, and degenerated germplasm resources cannot fulfill the requirements of chemical extraction and clinical usage. Metabolic engineering and green production via microorganisms provide alternative strategies for greater efficiency in the production of natural products. Here, we review the progress of: pharmacological investigations, multi-omics, biosynthetic pathways, and metabolic engineering of various Scutellaria species and their active compounds. In addition, based on multi-omics data, we systematically analyze the phylogenetic relationships of Scutellaria and predict candidate transcription factors related to the regulation of active flavonoids. Finally, we propose the prospects of directed evolution of core enzymes and genome-assisted breeding to alleviate the shortage of plant resources of Scutellaria. This review provides important insights into the sustainable utilization and development of Scutellaria resources.
Collapse
Affiliation(s)
- Xinyi Yang
- Ministry of Education, Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Sihao Zheng
- China National Traditional Chinese Medicine Co., Ltd, Beijing, China
| | - Xiaotong Wang
- Ministry of Education, Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Jing Wang
- Ministry of Education, Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Syed Basit Ali Shah
- Ministry of Education, Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Yu Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ranran Gao
- The Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhichao Xu
- Ministry of Education, Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| |
Collapse
|
9
|
Ma C, Jian C, Guo L, Li W, Zhang C, Wang L, Yuan M, Zhang P, Dong J, He P, Shi L. Adipose Tissue Targeting Ultra-Small Hybrid Nanoparticles for Synergistic Photodynamic Therapy and Browning Induction in Obesity Treatment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308962. [PMID: 37949812 DOI: 10.1002/smll.202308962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 10/25/2023] [Indexed: 11/12/2023]
Abstract
Photodynamic therapy (PDT), as a means of locally and rapidly inducing adipocyte death via light illumination, in combination with adipose browning induction, a more gradual and widespread effect that could transform white adipose tissue into thermogenic adipose tissue, manifests a promising approach to combat obesity. Herein, adipose-targeting ultra-small hybrid nanoparticles (Pep-PPIX-Baic NPs) composed of an adipose-targeting peptide, Fe3+, a photosensitizer (protoporphyrin IX), and a browning agent (baicalin) are introduced. Pep-PPIX-Baic NPs have been designed to simultaneously enhance the photodynamic effect and induce browning. After intravenous injection in obese mice, the hybrid nanoparticles can specifically accumulate in white adipose tissues, especially those rich in blood supply, and drive adipose reduction owing to the synergy of the PDT effect and baicalin browning induction. Overall, Pep-PPIX-Baic NPs exhibited superior anti-obesity potential through PDT synergistic with adipose browning induction. The designed multifunctional adipose-targeting hybrid nanoparticles present a prospective nanoplatform for obesity treatment.
Collapse
Affiliation(s)
- Chuan Ma
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, 250012, China
| | - Chuanjiang Jian
- Department of Pharmacology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, China
| | - Lihao Guo
- Precision Research Center for Refractory Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201600, China
| | - Wenting Li
- Department of Pharmacology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, China
| | - Cai Zhang
- Department of Pharmacology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, China
| | - Li Wang
- Precision Research Center for Refractory Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201600, China
| | - Miaomiao Yuan
- Precision Research Center for Refractory Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201600, China
| | - Peng Zhang
- Department of Pharmacy, The Third Affiliated Hospital (The Affiliated Luohu Hospital) of Shenzhen University, 47 Youyi Road, Shenzhen, 518001, China
| | - Jinqiao Dong
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ping He
- Department of Pharmacology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, China
| | - Leilei Shi
- Precision Research Center for Refractory Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201600, China
| |
Collapse
|
10
|
Jagtap U, Paul A. UCP1 activation: Hottest target in the thermogenesis pathway to treat obesity using molecules of synthetic and natural origin. Drug Discov Today 2023; 28:103717. [PMID: 37467882 DOI: 10.1016/j.drudis.2023.103717] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/03/2023] [Accepted: 07/12/2023] [Indexed: 07/21/2023]
Abstract
Uncoupling protein 1 (UCP1) has been discovered as a possible target for obesity treatment because of its widespread distribution in the inner mitochondrial membrane of brown adipose tissue (BAT) and high energy expenditure capabilities to burn calories as heat. UCP1 is dormant and does not produce heat without activation as it is inhibited by purine nucleotides. However, activation of UCP1 via either direct interaction with the UCP1 protein, an increase in the expression of UCP1 genes or the physiological production of fatty acids can lead to a rise in the thermogenesis phenomenon. Hence, activation of UCP1 through small molecules of synthetic and natural origin can be considered as a promising strategy to mitigate obesity.
Collapse
Affiliation(s)
- Utkarsh Jagtap
- Laboratory of Natural Product Chemistry, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan 333031, India
| | - Atish Paul
- Laboratory of Natural Product Chemistry, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan 333031, India.
| |
Collapse
|
11
|
Jung UJ. Sarcopenic Obesity: Involvement of Oxidative Stress and Beneficial Role of Antioxidant Flavonoids. Antioxidants (Basel) 2023; 12:antiox12051063. [PMID: 37237929 DOI: 10.3390/antiox12051063] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/25/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
Sarcopenic obesity, which refers to concurrent sarcopenia and obesity, is characterized by decreased muscle mass, strength, and performance along with abnormally excessive fat mass. Sarcopenic obesity has received considerable attention as a major health threat in older people. However, it has recently become a health problem in the general population. Sarcopenic obesity is a major risk factor for metabolic syndrome and other complications such as osteoarthritis, osteoporosis, liver disease, lung disease, renal disease, mental disease and functional disability. The pathogenesis of sarcopenic obesity is multifactorial and complicated, and it is caused by insulin resistance, inflammation, hormonal changes, decreased physical activity, poor diet and aging. Oxidative stress is a core mechanism underlying sarcopenic obesity. Some evidence indicates a protective role of antioxidant flavonoids in sarcopenic obesity, although the precise mechanisms remain unclear. This review summarizes the general characteristics and pathophysiology of sarcopenic obesity and focuses on the role of oxidative stress in sarcopenic obesity. The potential benefits of flavonoids in sarcopenic obesity have also been discussed.
Collapse
Affiliation(s)
- Un Ju Jung
- Department of Food Science and Nutrition, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan 48513, Republic of Korea
| |
Collapse
|
12
|
Onikanni SA, Yang CY, Noriega L, Wang CH. U0126 Compound Triggers Thermogenic Differentiation in Preadipocytes via ERK-AMPK Signaling Axis. Int J Mol Sci 2023; 24:ijms24097987. [PMID: 37175694 PMCID: PMC10178890 DOI: 10.3390/ijms24097987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/20/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
In recent years, thermogenic differentiation and activation in brown and white adipose tissues have been regarded as one of the major innovative and promising strategies for the treatment and amelioration of obesity. However, the pharmacological approach towards this process has had limited and insufficient commitments, which presents a greater challenge for obesity treatment. This research evaluates the effects of U0126 compound on the activation of thermogenic differentiation during adipogenesis. The results show that U0126 pretreatment primes both white and brown preadipocytes to upregulate thermogenic and mitochondrial genes as well as enhance functions during the differentiation process. We establish that U0126-mediated thermogenic differentiation induction occurs partially via AMPK activation signaling. The findings of this research suggest U0126 as a promising alternative ligand in pursuit of a pharmacological option to increase thermogenic adipocyte formation and improve energy expenditure. Thus it could pave the way for the discovery of therapeutic drugs for the treatment of obesity and its related complications.
Collapse
Affiliation(s)
- Sunday Amos Onikanni
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung 406040, Taiwan
- Department of Chemical Sciences, Biochemistry Unit, Afe Babalola University, Ado-Ekiti 360101, Ekiti State, Nigeria
| | - Cheng-Ying Yang
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung 406040, Taiwan
| | - Lloyd Noriega
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung 406040, Taiwan
| | - Chih-Hao Wang
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung 406040, Taiwan
- Graduate Institute of Cell Biology, College of Life Sciences, China Medical University, Taichung 406040, Taiwan
| |
Collapse
|
13
|
Huang R, Wang B, He J, Zhang Z, Xie R, Li S, Li Q, Tian C, Tuo Y, Zheng R, Chen W, Xiang M. Lian-Qu formula treats metabolic syndrome via reducing fat synthesis, insulin resistance and inflammation. JOURNAL OF ETHNOPHARMACOLOGY 2023; 306:116060. [PMID: 36535333 DOI: 10.1016/j.jep.2022.116060] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/08/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Metabolic syndrome (MetS) is a pathological condition characterized by obesity, hyperglycemia, hypertension and hyperlipidemia that increases the risk of cardiovascular disease, type 2 diabetes and non-alcoholic fatty liver disease. The traditional Chinese medicine Lian-Qu formula (LQF) is modified from Xiaoxianxiong decoction, which has been used for coronary heart disease or metabolic disease in clinical for a long time. However, the pharmacological mechanism of LQF on MetS is unclear. AIM OF THE STUDY Here, we explored the actions of LQF on MetS via network pharmacology and validated the mechanism in the MetS mice. MATERIALS AND METHODS The chemical components of LQF were searched in the traditional Chinese medicine systems pharmacology database and the natural product activity & species source database. The related targets of MetS disease were gathered from genes cluster with literature profiles database. The protein-protein interaction network was constructed to obtain the key target genes. The Gene Ontology analysis and Kyoto Encyclopedia of Genes and Genomes pathway enrichment of the key targets were performed to predict the potential mechanisms of LQF action on MetS. And then, the high-fat diet-induced MetS mice were used to validate its therapeutic effect and molecular targets. Insulin tolerance test and oral glucose tolerance test were used to assess insulin sensitivity. Body weight and visceral fat index were measured to assess obesity. Liver metabolism was detected by H&E section, oil red O staining and untargeted lipid metabolomics experiments. Finally, the key targets of LQF action on MetS were verified by PCR and ELISA kits. RESULTS A total of 466 components in LQF were obtained, among which 71 were active. These components correspond to 74 targets associated with MetS. The predicted targets of LQF worked on MetS were AKT1, INSR, PPARs, FASN, LDLR, TNF, CRP, IL-6, IL-1β and so on. Furthermore, these targets were related to pathways in cellular response to lipid, inflammatory response, glucose transmembrane transport and insulin resistance. Finally, the animal experiments validated that LQF inhibited lipids accumulation by inhibiting the gene expression of FASN and increasing ADPN, and it relieved insulin resistance by increasing GLUT-4 expression. Moreover, LQF alleviated inflammation by reducing IL-6 and CRP levels. CONCLUSION LQF exerted anti-MetS effects through improving insulin sensitivity, ameliorating hyperlipidemia and obesity, reducing liver injury, and inhibiting inflammatory response.
Collapse
Affiliation(s)
- Rongrong Huang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Pharmacy, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Baotian Wang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jialuo He
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zijun Zhang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Xie
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Senlin Li
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qing Li
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cheng Tian
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yali Tuo
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Clinical Pharmacy, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ran Zheng
- National Engineering Research Center for Big Data Technology and System Services Computing Technology and System Lab, Cluster and Grid Computing Lab, School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan, China.
| | - Weihong Chen
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Ming Xiang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
14
|
Rutaecarpine Promotes Adipose Thermogenesis and Protects against HFD-Induced Obesity via AMPK/PGC-1α Pathway. Pharmaceuticals (Basel) 2022; 15:ph15040469. [PMID: 35455466 PMCID: PMC9027001 DOI: 10.3390/ph15040469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/29/2022] [Accepted: 04/07/2022] [Indexed: 02/05/2023] Open
Abstract
Pharmacological activation of adaptive thermogenesis to increase energy expenditure is considered to be a novel strategy for obesity. Peroxisome-proliferator-activated receptor γ co-activator-1α (PGC-1α), which serves as an inducible co-activator in energy expenditure, is highly expressed in brown adipose tissues (BAT). In this study, we found a PGC-1α transcriptional activator, natural compound rutaecarpine (Rut), which promoted brown adipocytes mitochondrial biogenesis and thermogenesis in vitro. Chronic Rut treatment reduced the body weight gain and mitigated insulin sensitivity through brown and beige adipocyte thermogenesis. Mechanistic study showed that Rut activated the energy metabolic pathway AMP-activated protein kinase (AMPK)/PGC-1α axis, and deficiency of AMPK abolished the beneficial metabolic phenotype of the Rut treatment in vitro and in vivo. In summary, a PGC-1α transcriptional activator Rut was found to activate brown and beige adipose thermogenesis to resist diet-induced obesity through AMPK pathway. Our findings serve as a further understanding of the natural compound in adipose tissue and provides a possible strategy to combat obesity and related metabolic disorders.
Collapse
|
15
|
Combined Phyllostachys pubescens and Scutellaria baicalensis Prevent High-Fat Diet-Induced Obesity via Upregulating Thermogenesis and Energy Expenditure by UCP1 in Male C57BL/6J Mice. Nutrients 2022; 14:nu14030446. [PMID: 35276805 PMCID: PMC8840647 DOI: 10.3390/nu14030446] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/17/2022] [Accepted: 01/17/2022] [Indexed: 02/01/2023] Open
Abstract
This study examined the anti-obesity effects of a Phyllostachys pubescens (leaf) and Scutellaria baicalensis root mixture (BS21), and its underlying mechanisms of action, in high-fat diet (HFD)-induced obese mice. Mice were fed a HFD with BS21 (100, 200, or 400 mg/kg) for 9 weeks. BS21 reduced body weight, white adipose tissue (WAT) and liver weights, liver lipid accumulation, and adipocyte size. Additionally, BS21 reduced serum concentrations of non-esterified fatty acid, triglyceride, glucose, lactate dehydrogenase, low-density lipoprotein cholesterol, total cholesterol, leptin, and insulin growth factor 1, but elevated the adiponectin concentrations. Furthermore, BS21 suppressed the mRNA levels of lipogenesis-related proteins, such as peroxisome proliferator–activated receptor (PPAR) γ, SREBP-1c, C/EBP-α, fatty acid synthase, and leptin, but increased the mRNA gene expression of lipolysis-related proteins, such as PPAR-α, uncoupling protein (UCP) 2, adiponectin, and CPT1b, in WAT. In addition, BS21 increased the cold-stimulated adaptive thermogenesis and UCP1 protein expression with AMPK activation in adipose tissue. Furthermore, BS21 increased the WAT and mRNA expression of energy metabolism-related proteins SIRT1, PGC-1α, and FNDC5/irisin in the quadriceps femoris muscle. These results suggest that BS21 exerts anti-obesity and antihyperlipidemic activities in HFD-induced obese mice by increasing the thermogenesis and energy expenditure, and regulating lipid metabolism. Therefore, BS21 could be useful for preventing and treating obesity and its related metabolic diseases.
Collapse
|
16
|
In vitro absorption and lipid-lowering activity of baicalin esters synthesized by whole-cell catalyzed esterification. Bioorg Chem 2022; 120:105628. [DOI: 10.1016/j.bioorg.2022.105628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 11/21/2022]
|