1
|
Christensen SL, Levy D. Meningeal brain borders and migraine headache genesis. Trends Neurosci 2024; 47:918-932. [PMID: 39304416 PMCID: PMC11563857 DOI: 10.1016/j.tins.2024.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/05/2024] [Accepted: 08/23/2024] [Indexed: 09/22/2024]
Abstract
Migraine is a highly prevalent and disabling pain disorder that affects >1 billion people worldwide. One central hypothesis points to the cranial meninges as a key site underlying migraine headache genesis through complex interplay between meningeal sensory nerves, blood vessels, and adjacent immune cells. How these interactions might generate migraine headaches remains incompletely understood and a subject of much debate. In this review we discuss clinical and preclinical evidence supporting the concept that meningeal sterile inflammation, involving neurovascular and neuroimmune interactions, underlies migraine headache genesis. We examine downstream signaling pathways implicated in the development of migraine pain in response to exogenous events such as infusing migraine-triggering chemical substances. We further discuss cortex-to-meninges signaling pathways that could underlie migraine pain in response to endogenous events, such as cortical spreading depolarization (CSD), and explore future directions for the field.
Collapse
Affiliation(s)
- Sarah Louise Christensen
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Department of Neurology, Danish Headache Center, Copenhagen University Hospital, Rigshospitalet, Glostrup, Denmark; Translational Research Centre, Copenhagen University Hospital, Rigshospitalet, Glostrup, Denmark
| | - Dan Levy
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Zhang J, Simoes R, Guo T, Cao YQ. Neuroimmune interactions in the development and chronification of migraine headache. Trends Neurosci 2024; 47:819-833. [PMID: 39271369 DOI: 10.1016/j.tins.2024.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/31/2024] [Accepted: 08/19/2024] [Indexed: 09/15/2024]
Abstract
Migraine is highly prevalent and debilitating. The persistent headaches in this condition are thought to arise from the activation and sensitization of the trigeminovascular pathway. Both clinical and animal model studies have suggested that neuroimmune interactions contribute to the pathophysiology of migraine headache. In this review, we first summarize the findings from human studies implicating the dysregulation of the immune system in migraine, including genetic analyses, measurement of circulatory factors, and neuroimaging data. We next discuss recent advances from rodent studies aimed at elucidating the neuroimmune interactions that manifest at various levels of the trigeminovascular pathway and lead to the recruitment of innate and adaptive immune cells as well as immunocompetent glial cells. These cells reciprocally modulate neuronal activity via multiple pro- and anti-inflammatory mediators, thereby regulating peripheral and central sensitization. Throughout the discussions, we highlight the potential clinical and translational implications of the findings.
Collapse
Affiliation(s)
- Jintao Zhang
- Department of Anesthesiology and Pain Center, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Roli Simoes
- Department of Anesthesiology and Pain Center, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Tingting Guo
- Department of Anesthesiology and Pain Center, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Yu-Qing Cao
- Department of Anesthesiology and Pain Center, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
3
|
Salvador AFM, Abduljawad N, Kipnis J. Meningeal Lymphatics in Central Nervous System Diseases. Annu Rev Neurosci 2024; 47:323-344. [PMID: 38648267 PMCID: PMC12051392 DOI: 10.1146/annurev-neuro-113023-103045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Since its recent discovery, the meningeal lymphatic system has reshaped our understanding of central nervous system (CNS) fluid exchange, waste clearance, immune cell trafficking, and immune privilege. Meningeal lymphatics have also been demonstrated to functionally modify the outcome of neurological disorders and their responses to treatment, including brain tumors, inflammatory diseases such as multiple sclerosis, CNS injuries, and neurodegenerative disorders such as Alzheimer's and Parkinson's diseases. In this review, we discuss recent evidence of the contribution of meningeal lymphatics to neurological diseases, as well as the available experimental methods for manipulating meningeal lymphatics in these conditions. Finally, we also provide a discussion of the pressing questions and challenges in utilizing meningeal lymphatics as a prime target for CNS therapeutic intervention and possibly drug delivery for brain disorders.
Collapse
Affiliation(s)
- Andrea Francesca M Salvador
- Brain Immunology and Glia (BIG) Center and Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA;
| | - Nora Abduljawad
- Neuroscience Graduate Program, Washington University School of Medicine, St. Louis, Missouri, USA
- Brain Immunology and Glia (BIG) Center and Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA;
| | - Jonathan Kipnis
- Neuroscience Graduate Program, Washington University School of Medicine, St. Louis, Missouri, USA
- Brain Immunology and Glia (BIG) Center and Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA;
| |
Collapse
|
4
|
Karan AA, Gerasimov KA, Spivak YS, Suleymanova EM, Vinogradova LV. Inflammatory response of leptomeninges to a single cortical spreading depolarization. J Headache Pain 2024; 25:113. [PMID: 39009958 PMCID: PMC11251126 DOI: 10.1186/s10194-024-01823-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 07/07/2024] [Indexed: 07/17/2024] Open
Abstract
BACKGROUND Neurogenic meningeal inflammation is regarded as a key driver of migraine headache. Multiple evidence show importance of inflammatory processes in the dura mater for pain generation but contribution of the leptomeninges is less clear. We assessed effects of cortical spreading depolarization (CSD), the pathophysiological mechanism of migraine aura, on expression of inflammatory mediators in the leptomeninges. METHODS A single CSD event was produced by a focal unilateral microdamage of the cortex in freely behaving rats. Three hours later intact cortical leptomeninges and parenchyma of ipsi-lesional (invaded by CSD) and sham-treated contra-lesional (unaffected by CSD) hemispheres were collected and mRNA levels of genes associated with inflammation (Il1b, Tnf, Ccl2; Cx3cl1, Zc3h12a) and endocannabinoid CB2 receptors (Cnr2) were measured using qPCR. RESULTS Three hours after a single unilateral CSD, most inflammatory factors changed their expression levels in the leptomeninges, mainly on the side of CSD. The meninges overlying affected cortex increased mRNA expression of all proinflammatory cytokines (Il1b, Tnf, Ccl2) and anti-inflammatory factors Zc3h12a and Cx3cl1. Upregulation of proinflammatory cytokines was found in both meninges and parenchyma while anti-inflammatory markers increased only meningeal expression. CONCLUSION A single CSD is sufficient to produce pronounced leptomeningeal inflammation that lasts for at least three hours and involves mostly meninges overlying the cortex affected by CSD. The prolonged post-CSD inflammation of the leptomeninges can contribute to mechanisms of headache generation following aura phase of migraine attack.
Collapse
Affiliation(s)
- Anna A Karan
- Department of Molecular Neurobiology, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Butlerova Street 5A, 117485, Moscow, Russia
| | - Konstantin A Gerasimov
- Department of Molecular Neurobiology, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Butlerova Street 5A, 117485, Moscow, Russia
- Pirogov Russian National Research Medical University, Ostrovityanova Street 1, 117997, Moscow, Russia
| | - Yulia S Spivak
- Department of Molecular Neurobiology, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Butlerova Street 5A, 117485, Moscow, Russia
| | - Elena M Suleymanova
- Department of Molecular Neurobiology, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Butlerova Street 5A, 117485, Moscow, Russia
| | - Lyudmila V Vinogradova
- Department of Molecular Neurobiology, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Butlerova Street 5A, 117485, Moscow, Russia.
| |
Collapse
|
5
|
Wen J, Tanaka M, Zhang Y. Inhibition of 2-AG hydrolysis alleviates posttraumatic headache attributed to mild traumatic brain injury. J Headache Pain 2024; 25:115. [PMID: 39014318 PMCID: PMC11253377 DOI: 10.1186/s10194-024-01817-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 06/20/2024] [Indexed: 07/18/2024] Open
Abstract
BACKGROUND Posttraumatic headache (PTH) is a common and debilitating symptom following repetitive mild traumatic brain injury (rmTBI), and it mainly resembles a migraine-like phenotype. While modulation of the endocannabinoid system (ECS) is effective in treating TBI and various types of pain including migraine, the role of augmentation of endocannabinoids in treating PTH has not been investigated. METHODS Repetitive mild TBI was induced in male C57BL/6J mice using the non-invasive close-head impact model of engineered rotational acceleration (CHIMERA). Periorbital allodynia was assessed using von Frey filaments and determined by the "Up-Down" method. Immunofluorescence staining was employed to investigate glial cell activation and calcitonin gene-related peptide (CGRP) expression in the trigeminal ganglion (TG) and trigeminal nucleus caudalis (TNC) of the rmTBI mice. Levels of 2-arachidonoyl glycerol (2-AG), anandamide (AEA), and arachidonic acid (AA) in the TG, medulla (including TNC), and periaqueductal gray (PAG) were measured by mass spectrometry. The therapeutic effect of endocannabinoid modulation on PTH was also assessed. RESULTS The rmTBI mice exhibited significantly increased cephalic pain hypersensitivity compared to the sham controls. MJN110, a potent and selective inhibitor of the 2-AG hydrolytic enzyme monoacylglycerol lipase (MAGL), dose-dependently attenuated periorbital allodynia in the rmTBI animals. Administration of CGRP at 0.01 mg/kg reinstated periorbital allodynia in the rmTBI animals on days 33 and 45 post-injury but had no effect in the sham and MJN110 treatment groups. Activation of glial cells along with increased production of CGRP in the TG and TNC at 7 and 14 days post-rmTBI were attenuated by MJN110 treatment. The anti-inflammatory and anti-nociceptive effects of MJN110 were partially mediated by cannabinoid receptor activation, and the pain-suppressive effect of MJN110 was completely blocked by co-administration of DO34, an inhibitor of 2-AG synthase. The levels of 2-AG in TG, TNC and PAG were decreased in TBI animals, significantly elevated and further reduced by the selective inhibitors of 2-AG hydrolytic and synthetic enzymes, respectively. CONCLUSION Enhancing endogenous levels of 2-AG appears to be an effective strategy for the treatment of PTH by attenuating pain initiation and transmission in the trigeminal pathway and facilitating descending pain inhibitory modulation.
Collapse
Affiliation(s)
- Jie Wen
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA
| | - Mikiei Tanaka
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA
| | - Yumin Zhang
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA.
| |
Collapse
|
6
|
Vittorini MG, Sahin A, Trojan A, Yusifli S, Alashvili T, Bonifácio GV, Paposhvili K, Tischler V, Lampl C, Sacco S. The glymphatic system in migraine and other headaches. J Headache Pain 2024; 25:34. [PMID: 38462633 PMCID: PMC10926631 DOI: 10.1186/s10194-024-01741-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/01/2024] [Indexed: 03/12/2024] Open
Abstract
Glymphatic system is an emerging pathway of removing metabolic waste products and toxic solutes from the brain tissue. It is made of a network of perivascular spaces, filled in cerebrospinal and interstitial fluid, encompassing penetrating and pial vessels and communicating with the subarachnoid space. It is separated from vessels by the blood brain barrier and from brain tissue by the endfeet of the astrocytes rich in aquaporin 4, a membrane protein which controls the water flow along the perivascular space. Animal models and magnetic resonance (MR) studies allowed to characterize the glymphatic system function and determine how its impairment could lead to numerous neurological disorders (e.g. Alzheimer's disease, stroke, sleep disturbances, migraine, idiopathic normal pressure hydrocephalus). This review aims to summarize the role of the glymphatic system in the pathophysiology of migraine in order to provide new ways of approaching to this disease and to its therapy.
Collapse
Affiliation(s)
- Maria Grazia Vittorini
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Aysenur Sahin
- Faculty of Medicine-Acibadem Mehmet, Ali Aydinlar University, Istanbul, Turkey
| | - Antonin Trojan
- Department of Neurology, Strakonice Hospital, Strakonice, Czechia
| | - Sevil Yusifli
- Faculty of Medicine-Istanbul University, Istanbul, Turkey
| | - Tamta Alashvili
- Department of Internal Medicine, New Vision University Hospital, Tbilisi, Georgia
| | | | - Ketevan Paposhvili
- Department of Neurology, Tbilisi State Medical University, Tbilisi, Georgia
| | - Viktoria Tischler
- Department of Neurology, Konventhospital Barmherzige Brüder Linz, Linz, Austria
| | - Christian Lampl
- Department of Neurology, Konventhospital Barmherzige Brüder Linz, Linz, Austria.
| | - Simona Sacco
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| |
Collapse
|
7
|
Blaeser AS, Zhao J, Sugden AU, Carneiro-Nascimento S, Andermann ML, Levy D. Sensitization of meningeal afferents to locomotion-related meningeal deformations in a migraine model. eLife 2024; 12:RP91871. [PMID: 38329894 PMCID: PMC10942541 DOI: 10.7554/elife.91871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024] Open
Abstract
Migraine headache is hypothesized to involve the activation and sensitization of trigeminal sensory afferents that innervate the cranial meninges. To better understand migraine pathophysiology and improve clinical translation, we used two-photon calcium imaging via a closed cranial window in awake mice to investigate changes in the responses of meningeal afferent fibers using a preclinical model of migraine involving cortical spreading depolarization (CSD). A single CSD episode caused a seconds-long wave of calcium activation that propagated across afferents and along the length of individual afferents. Surprisingly, unlike previous studies in anesthetized animals with exposed meninges, only a very small afferent population was persistently activated in our awake mouse preparation, questioning the relevance of this neuronal response to the onset of migraine pain. In contrast, we identified a larger subset of meningeal afferents that developed augmented responses to acute three-dimensional meningeal deformations that occur in response to locomotion bouts. We observed increased responsiveness in a subset of afferents that were already somewhat sensitive to meningeal deformation before CSD. Furthermore, another subset of previously insensitive afferents also became sensitive to meningeal deformation following CSD. Our data provides new insights into the mechanisms underlying migraine, including the emergence of enhanced meningeal afferent responses to movement-related meningeal deformations as a potential neural substrate underlying the worsening of migraine headache during physical activity.
Collapse
Affiliation(s)
- Andrew S Blaeser
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical SchoolBostonUnited States
| | - Jun Zhao
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical SchoolBostonUnited States
| | - Arthur U Sugden
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical SchoolBostonUnited States
| | - Simone Carneiro-Nascimento
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical SchoolBostonUnited States
| | - Mark L Andermann
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical SchoolBostonUnited States
- Department of Neurobiology, Harvard Medical SchoolBostonUnited States
| | - Dan Levy
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical SchoolBostonUnited States
| |
Collapse
|
8
|
Marino A, Currado D, Altamura C, Vomero M, Berardicurti O, Corberi E, Kun L, Pilato A, Biaggi A, Genovali I, Bearzi P, Minerba M, Orlando A, Trunfio F, Quadrini M, Salvolini C, Di Corcia LP, Saracino F, Giacomelli R, Navarini L. Increased Prevalence of Headaches and Migraine in Patients with Psoriatic Arthritis and Axial Spondyloarthritis: Insights from an Italian Cohort Study. Biomedicines 2024; 12:371. [PMID: 38397972 PMCID: PMC10886921 DOI: 10.3390/biomedicines12020371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/14/2023] [Accepted: 01/12/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND Psoriatic arthritis (PsA) and axial spondyloarthritis (axSpA) are inflammatory diseases with shared genetic backgrounds and clinical comorbidities. Headache, a common global health issue, affects over 50% of adults and encompasses various types, including migraine, tension-type, and cluster headaches. Migraine, the most prevalent, recurrent, and disabling type, is often associated with other medical conditions such as depression, epilepsy, and psoriasis, but little is known about the relationship between autoimmune disease and the risk of migraine. METHODS A cross-sectional study was conducted from July to November 2022, enrolling 286 participants, including 216 with PsA, 70 with axSpA, and 87 healthy controls. RESULTS Headache prevalence was significantly higher in the PsA (39.81%) and axSpA (45.71%) patients compared to the healthy controls. The prevalence of migraine without aura was also significantly higher in both the PsA (18.52%) and axSpA (28.57%) groups compared to the healthy controls. CONCLUSIONS These findings underscore the high burden of headache and migraine in PsA and axSpA participants, highlighting the need for improved management and treatment strategies for these patients.
Collapse
Affiliation(s)
- Annalisa Marino
- Rheumatology and Clinical Immunology, Department of Medicine, School of Medicine, University of Rome “Campus Bio-Medico”, 00128 Rome, Italy; (A.M.); (D.C.); (M.V.); (E.C.); (L.K.); (A.P.); (A.B.); (I.G.); (M.M.); (A.O.); (F.T.); (M.Q.); (C.S.); (L.P.D.C.); (F.S.); (R.G.); (L.N.)
- Clinical and Research Section of Rheumatology and Clinical Immunology, Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy
| | - Damiano Currado
- Rheumatology and Clinical Immunology, Department of Medicine, School of Medicine, University of Rome “Campus Bio-Medico”, 00128 Rome, Italy; (A.M.); (D.C.); (M.V.); (E.C.); (L.K.); (A.P.); (A.B.); (I.G.); (M.M.); (A.O.); (F.T.); (M.Q.); (C.S.); (L.P.D.C.); (F.S.); (R.G.); (L.N.)
- Clinical and Research Section of Rheumatology and Clinical Immunology, Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy
| | - Claudia Altamura
- Instituite of Neurology, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Rome, Italy;
- Unit of Headache and Neurosonology, Department of Medicine and Surgery, University of Rome “Campus Bio-Medico”, 00128 Rome, Italy
| | - Marta Vomero
- Rheumatology and Clinical Immunology, Department of Medicine, School of Medicine, University of Rome “Campus Bio-Medico”, 00128 Rome, Italy; (A.M.); (D.C.); (M.V.); (E.C.); (L.K.); (A.P.); (A.B.); (I.G.); (M.M.); (A.O.); (F.T.); (M.Q.); (C.S.); (L.P.D.C.); (F.S.); (R.G.); (L.N.)
| | - Onorina Berardicurti
- Rheumatology and Clinical Immunology, Department of Medicine, School of Medicine, University of Rome “Campus Bio-Medico”, 00128 Rome, Italy; (A.M.); (D.C.); (M.V.); (E.C.); (L.K.); (A.P.); (A.B.); (I.G.); (M.M.); (A.O.); (F.T.); (M.Q.); (C.S.); (L.P.D.C.); (F.S.); (R.G.); (L.N.)
- Clinical and Research Section of Rheumatology and Clinical Immunology, Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy
| | - Erika Corberi
- Rheumatology and Clinical Immunology, Department of Medicine, School of Medicine, University of Rome “Campus Bio-Medico”, 00128 Rome, Italy; (A.M.); (D.C.); (M.V.); (E.C.); (L.K.); (A.P.); (A.B.); (I.G.); (M.M.); (A.O.); (F.T.); (M.Q.); (C.S.); (L.P.D.C.); (F.S.); (R.G.); (L.N.)
| | - Lyubomyra Kun
- Rheumatology and Clinical Immunology, Department of Medicine, School of Medicine, University of Rome “Campus Bio-Medico”, 00128 Rome, Italy; (A.M.); (D.C.); (M.V.); (E.C.); (L.K.); (A.P.); (A.B.); (I.G.); (M.M.); (A.O.); (F.T.); (M.Q.); (C.S.); (L.P.D.C.); (F.S.); (R.G.); (L.N.)
| | - Andrea Pilato
- Rheumatology and Clinical Immunology, Department of Medicine, School of Medicine, University of Rome “Campus Bio-Medico”, 00128 Rome, Italy; (A.M.); (D.C.); (M.V.); (E.C.); (L.K.); (A.P.); (A.B.); (I.G.); (M.M.); (A.O.); (F.T.); (M.Q.); (C.S.); (L.P.D.C.); (F.S.); (R.G.); (L.N.)
| | - Alice Biaggi
- Rheumatology and Clinical Immunology, Department of Medicine, School of Medicine, University of Rome “Campus Bio-Medico”, 00128 Rome, Italy; (A.M.); (D.C.); (M.V.); (E.C.); (L.K.); (A.P.); (A.B.); (I.G.); (M.M.); (A.O.); (F.T.); (M.Q.); (C.S.); (L.P.D.C.); (F.S.); (R.G.); (L.N.)
| | - Irene Genovali
- Rheumatology and Clinical Immunology, Department of Medicine, School of Medicine, University of Rome “Campus Bio-Medico”, 00128 Rome, Italy; (A.M.); (D.C.); (M.V.); (E.C.); (L.K.); (A.P.); (A.B.); (I.G.); (M.M.); (A.O.); (F.T.); (M.Q.); (C.S.); (L.P.D.C.); (F.S.); (R.G.); (L.N.)
| | - Pietro Bearzi
- Rheumatology and Clinical Immunology, Department of Medicine, School of Medicine, University of Rome “Campus Bio-Medico”, 00128 Rome, Italy; (A.M.); (D.C.); (M.V.); (E.C.); (L.K.); (A.P.); (A.B.); (I.G.); (M.M.); (A.O.); (F.T.); (M.Q.); (C.S.); (L.P.D.C.); (F.S.); (R.G.); (L.N.)
| | - Marco Minerba
- Rheumatology and Clinical Immunology, Department of Medicine, School of Medicine, University of Rome “Campus Bio-Medico”, 00128 Rome, Italy; (A.M.); (D.C.); (M.V.); (E.C.); (L.K.); (A.P.); (A.B.); (I.G.); (M.M.); (A.O.); (F.T.); (M.Q.); (C.S.); (L.P.D.C.); (F.S.); (R.G.); (L.N.)
| | - Antonio Orlando
- Rheumatology and Clinical Immunology, Department of Medicine, School of Medicine, University of Rome “Campus Bio-Medico”, 00128 Rome, Italy; (A.M.); (D.C.); (M.V.); (E.C.); (L.K.); (A.P.); (A.B.); (I.G.); (M.M.); (A.O.); (F.T.); (M.Q.); (C.S.); (L.P.D.C.); (F.S.); (R.G.); (L.N.)
| | - Francesca Trunfio
- Rheumatology and Clinical Immunology, Department of Medicine, School of Medicine, University of Rome “Campus Bio-Medico”, 00128 Rome, Italy; (A.M.); (D.C.); (M.V.); (E.C.); (L.K.); (A.P.); (A.B.); (I.G.); (M.M.); (A.O.); (F.T.); (M.Q.); (C.S.); (L.P.D.C.); (F.S.); (R.G.); (L.N.)
| | - Maria Quadrini
- Rheumatology and Clinical Immunology, Department of Medicine, School of Medicine, University of Rome “Campus Bio-Medico”, 00128 Rome, Italy; (A.M.); (D.C.); (M.V.); (E.C.); (L.K.); (A.P.); (A.B.); (I.G.); (M.M.); (A.O.); (F.T.); (M.Q.); (C.S.); (L.P.D.C.); (F.S.); (R.G.); (L.N.)
| | - Chiara Salvolini
- Rheumatology and Clinical Immunology, Department of Medicine, School of Medicine, University of Rome “Campus Bio-Medico”, 00128 Rome, Italy; (A.M.); (D.C.); (M.V.); (E.C.); (L.K.); (A.P.); (A.B.); (I.G.); (M.M.); (A.O.); (F.T.); (M.Q.); (C.S.); (L.P.D.C.); (F.S.); (R.G.); (L.N.)
| | - Letizia Pia Di Corcia
- Rheumatology and Clinical Immunology, Department of Medicine, School of Medicine, University of Rome “Campus Bio-Medico”, 00128 Rome, Italy; (A.M.); (D.C.); (M.V.); (E.C.); (L.K.); (A.P.); (A.B.); (I.G.); (M.M.); (A.O.); (F.T.); (M.Q.); (C.S.); (L.P.D.C.); (F.S.); (R.G.); (L.N.)
| | - Francesca Saracino
- Rheumatology and Clinical Immunology, Department of Medicine, School of Medicine, University of Rome “Campus Bio-Medico”, 00128 Rome, Italy; (A.M.); (D.C.); (M.V.); (E.C.); (L.K.); (A.P.); (A.B.); (I.G.); (M.M.); (A.O.); (F.T.); (M.Q.); (C.S.); (L.P.D.C.); (F.S.); (R.G.); (L.N.)
| | - Roberto Giacomelli
- Rheumatology and Clinical Immunology, Department of Medicine, School of Medicine, University of Rome “Campus Bio-Medico”, 00128 Rome, Italy; (A.M.); (D.C.); (M.V.); (E.C.); (L.K.); (A.P.); (A.B.); (I.G.); (M.M.); (A.O.); (F.T.); (M.Q.); (C.S.); (L.P.D.C.); (F.S.); (R.G.); (L.N.)
- Clinical and Research Section of Rheumatology and Clinical Immunology, Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy
| | - Luca Navarini
- Rheumatology and Clinical Immunology, Department of Medicine, School of Medicine, University of Rome “Campus Bio-Medico”, 00128 Rome, Italy; (A.M.); (D.C.); (M.V.); (E.C.); (L.K.); (A.P.); (A.B.); (I.G.); (M.M.); (A.O.); (F.T.); (M.Q.); (C.S.); (L.P.D.C.); (F.S.); (R.G.); (L.N.)
- Clinical and Research Section of Rheumatology and Clinical Immunology, Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy
| |
Collapse
|
9
|
Kryukov AI, Kunelskaya NL, Zaoeva ZO, Baybakova EV, Chugunova MA, Tovmasyan AS, Panasov SA, Yanyushkina ES, Manaenkova EA, Nikitkina YY, Panova TN, Kishinevskii AE. [Features of olfactory impairment connected with trigeminal nerve system]. Vestn Otorinolaringol 2024; 89:33-39. [PMID: 38805461 DOI: 10.17116/otorino20248902133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Data on the state of sense of smell in patients who had a new coronavirus infection caused by the SARS-CoV-2 virus are currently reduced because of the impairment of the olfactory nerve system. There are practically no results in studies of disorders in the trigeminal nerve system. OBJECTIVE Qualitative assessment of olfactory disorders after COVID-19 according to the system of olfactory and trigeminal nerves with a targeted assessment of the functional component of olfactory disorders. MATERIAL AND METHODS We examined 40 patients aged 19 to 66 who had a coronavirus infection. All patients underwent neurological, otorhinolaryngological examinations, olfactometry, filled out the hospital anxiety and depression scale. RESULTS Anosmia was diagnosed in 5 (12.5%) patients, hyposmia in 21 (52.5%) patients, and normosmia in 14 (35%) patients. Formed: the 1st group - 14 patients (35%) with normogram according to olfactometry; the 2nd group - 26 patients (65%) with anosmia/hyposmia. In the 1st group, disorders of the anxiety-depressive spectrum were significantly more common. In the 2nd group, a low identification of odors was found, lying in the spectrum of fresh, sharp, unpleasant, irritating, compared with sweet and pleasant or neutral, which indicates a predominant lesion of the trigeminal system. CONCLUSION In patients with complaints of impaired sense of smell after undergoing COVID-19, the possible functional nature of anosmia/hyposmia should be taken into account, which requires the referral of such patients to psychotherapeutic specialists, and the possible entry of olfactory disorders into the 'trigeminal' spectrum.
Collapse
Affiliation(s)
- A I Kryukov
- Sverzhevsky Research Clinical Institute of Otorhinolaryngology, Moscow, Russia
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - N L Kunelskaya
- Sverzhevsky Research Clinical Institute of Otorhinolaryngology, Moscow, Russia
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - Z O Zaoeva
- Sverzhevsky Research Clinical Institute of Otorhinolaryngology, Moscow, Russia
| | - E V Baybakova
- Sverzhevsky Research Clinical Institute of Otorhinolaryngology, Moscow, Russia
| | - M A Chugunova
- Sverzhevsky Research Clinical Institute of Otorhinolaryngology, Moscow, Russia
| | - A S Tovmasyan
- Sverzhevsky Research Clinical Institute of Otorhinolaryngology, Moscow, Russia
| | - S A Panasov
- Sverzhevsky Research Clinical Institute of Otorhinolaryngology, Moscow, Russia
| | - E S Yanyushkina
- Sverzhevsky Research Clinical Institute of Otorhinolaryngology, Moscow, Russia
| | - E A Manaenkova
- Sverzhevsky Research Clinical Institute of Otorhinolaryngology, Moscow, Russia
| | - Ya Yu Nikitkina
- Sverzhevsky Research Clinical Institute of Otorhinolaryngology, Moscow, Russia
| | - T N Panova
- Sverzhevsky Research Clinical Institute of Otorhinolaryngology, Moscow, Russia
| | - A E Kishinevskii
- Sverzhevsky Research Clinical Institute of Otorhinolaryngology, Moscow, Russia
| |
Collapse
|
10
|
Huang C, Chen Y, Cai Y, Ding H, Hong J, You S, Lin Y, Hu H, Chen Y, Hu X, Chen Y, Huang Y, Zhang C, Lin Y, Huang Z, Li W, Zhang W, Fang X. TRPV1 + neurons alter Staphylococcus aureus skin infection outcomes by affecting macrophage polarization and neutrophil recruitment. BMC Immunol 2023; 24:55. [PMID: 38129779 PMCID: PMC10740264 DOI: 10.1186/s12865-023-00584-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 11/06/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND The interaction between the nervous system and the immune system can affect the outcome of a bacterial infection. Staphylococcus aureus skin infection is a common infectious disease, and elucidating the relationship between the nervous system and immune system may help to improve treatment strategies. RESULTS In this study, we found that the local release of calcitonin gene-related peptide (CGRP) increased during S. aureus skin infection, and S. aureus could promote the release of CGRP from transient receptor potential cation channel subfamily V member 1 (TRPV1+) neurons in vitro. The existence of TRPV1+ neurons inhibited the recruitment of neutrophils to the infected region and regulated the polarization of macrophages toward M2 while inhibiting polarization toward M1. This reduces the level of inflammation in the infected area, which aggravates the local infection. Furthermore, this study demonstrates that TRPV1 may be a target for the treatment of S. aureus skin infections and that botulinum neurotoxin A (BoNT/A) and BIBN4096 may reverse the inhibited inflammatory effect of CGRP, making them potential therapeutics for the treatment of skin infection in S. aureus. CONCLUSIONS In S. aureus skin infection, TRPV1+ neurons inhibit neutrophil recruitment and regulate macrophage polarization by releasing CGRP. BoNT/A and BIBN4096 may be potential therapeutic agents for S. aureus skin infection.
Collapse
Affiliation(s)
- Changyu Huang
- Department of Orthopaedic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
- Department of Orthopedic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350000, China
- Fujian Provincial Institute of Orthopedics, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350000, China
| | - Yang Chen
- Department of Orthopaedic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
- Department of Orthopedic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350000, China
- Fujian Provincial Institute of Orthopedics, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350000, China
| | - Yuanqing Cai
- Department of Orthopaedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Haiqi Ding
- Department of Orthopaedic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
- Department of Orthopedic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350000, China
- Fujian Provincial Institute of Orthopedics, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350000, China
| | - Jiaoying Hong
- Department of Anesthesiology, The Second Hospital of Nan'an, Quanzhou, Fujian, China
| | - Shan You
- Fujian Medical University, Fuzhou, Fujian, China
| | - Yiming Lin
- Department of Orthopaedic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
- Department of Orthopedic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350000, China
- Fujian Provincial Institute of Orthopedics, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350000, China
| | - Hongxin Hu
- Department of Orthopaedic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
- Department of Orthopedic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350000, China
- Fujian Provincial Institute of Orthopedics, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350000, China
| | - Yongfa Chen
- Department of Orthopaedic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
- Department of Orthopedic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350000, China
- Fujian Provincial Institute of Orthopedics, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350000, China
| | - Xueni Hu
- Department of Laboratory Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Yanshu Chen
- Department of Laboratory Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Ying Huang
- Department of Orthopaedic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
- Department of Orthopedic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350000, China
- Fujian Provincial Institute of Orthopedics, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350000, China
| | - Chaofan Zhang
- Department of Orthopaedic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
- Department of Orthopedic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350000, China
- Fujian Provincial Institute of Orthopedics, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350000, China
| | - Yunzhi Lin
- Department of Stomatology, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Zida Huang
- Department of Orthopaedic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
- Department of Orthopedic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350000, China
- Fujian Provincial Institute of Orthopedics, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350000, China
| | - Wenbo Li
- Department of Orthopaedic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
- Department of Orthopedic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350000, China
- Fujian Provincial Institute of Orthopedics, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350000, China
| | - Wenming Zhang
- Department of Orthopaedic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China.
- Department of Orthopedic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350000, China.
- Fujian Provincial Institute of Orthopedics, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350000, China.
- , Fuzhou, China.
| | - Xinyu Fang
- Department of Orthopaedic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China.
- Department of Orthopedic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350000, China.
- Fujian Provincial Institute of Orthopedics, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350000, China.
- , Fuzhou, China.
| |
Collapse
|
11
|
Blaeser AS, Zhao J, Sugden AU, Carneiro-Nascimento S, Andermann ML, Levy D. Sensitization of meningeal afferents to locomotion-related meningeal deformations in a migraine model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.31.549838. [PMID: 37577675 PMCID: PMC10418100 DOI: 10.1101/2023.07.31.549838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Migraine headache is hypothesized to involve the activation and sensitization of trigeminal sensory afferents that innervate the cranial meninges. To better understand migraine pathophysiology and improve clinical translation, we used two-photon calcium imaging via a closed cranial window in awake mice to investigate changes in the responses of meningeal afferent fibers using a preclinical model of migraine involving cortical spreading depolarization (CSD). A single CSD episode caused a seconds-long wave of calcium activation that propagated across afferents and along the length of individual afferents. Surprisingly, unlike previous studies in anesthetized animals with exposed meninges, only a very small afferent population was persistently activated in our awake mouse preparation, questioning the relevance of this neuronal response to the onset of migraine pain. In contrast, we identified a larger subset of meningeal afferents that developed augmented responses to acute three-dimensional meningeal deformations that occur in response to locomotion bouts. We observed increased responsiveness in a subset of afferents that were already somewhat sensitive to meningeal deformation before CSD. Furthermore, another subset of previously insensitive afferents also became sensitive to meningeal deformation following CSD. Our data provides new insights into the mechanisms underlying migraine, including the emergence of enhanced meningeal afferent responses to movement-related meningeal deformations as a potential neural substrate underlying the worsening of migraine headache during physical activity.
Collapse
Affiliation(s)
- Andrew S Blaeser
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Jun Zhao
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Arthur U Sugden
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Simone Carneiro-Nascimento
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Mark L Andermann
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA, 02115, USA
| | - Dan Levy
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| |
Collapse
|
12
|
Overeem LH, Raffaelli B, Fleischmann R, Süße M, Vogelgesang A, Maceski AM, Papadopoulou A, Ruprecht K, Su W, Koch M, Siebert A, Arkuszewski M, Tenenbaum N, Kuhle J, Reuter U. Serum tau protein elevation in migraine: a cross-sectional case-control study. J Headache Pain 2023; 24:130. [PMID: 37726712 PMCID: PMC10507851 DOI: 10.1186/s10194-023-01663-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/01/2023] [Indexed: 09/21/2023] Open
Abstract
BACKGROUND Migraine is a disorder associated with neuropeptide release, pain and inflammation. Tau protein has recently been linked to inflammatory diseases and can be influenced by neuropeptides such as CGRP, a key neurotransmitter in migraine. Here, we report serum concentrations of total-tau protein in migraine patients and healthy controls. METHODS In this cross-sectional study, interictal blood samples from n = 92 patients with episodic migraine (EM), n = 93 patients with chronic migraine (CM), and n = 42 healthy matched controls (HC) were studied. We assessed serum total-tau protein (t-tau) and for comparison neurofilament light chain protein (NfL), glial fibrillary acidic protein (GFAP), and ubiquitin carboxy-terminal hydrolase L (UCH-L1) concentrations using the Neurology 4-plex kit, on a single molecule array HD-X Analyzer (Quanterix Corp Lexington, MA). Matched serum/cerebrospinal fluid (CSF) samples were used for post-hoc evaluations of a central nervous system (CNS) source of relevant findings. We applied non-parametric tests to compare groups and assess correlations. RESULTS Serum t-tau concentrations were elevated in EM [0.320 (0.204 to 0.466) pg/mL] and CM [0.304 (0.158 to 0.406) pg/mL] patients compared to HC [0.200 (0.114 to 0.288) pg/mL] (p = 0.002 vs. EM; p = 0.025 vs. CM). EM with aura [0.291 (0.184 to 0.486 pg/mL); p = 0.013] and EM without aura [0.332 (0.234 to 0.449) pg/mL; p = 0.008] patients had higher t-tau levels than HC but did not differ between each other. Subgroup analysis of CM with/without preventive treatment revealed elevated t-tau levels compared to HC only in the non-prevention group [0.322 (0.181 to 0.463) pg/mL; p = 0.009]. T-tau was elevated in serum (p = 0.028) but not in cerebrospinal fluid (p = 0.760). In contrast to t-tau, all proteins associated with cell damage (NfL, GFAP, and UCH-L1), did not differ between groups. DISCUSSION Migraine is associated with t-tau elevation in serum but not in the CSF. Our clinical study identifies t-tau as a new target for migraine research.
Collapse
Affiliation(s)
- Lucas Hendrik Overeem
- Department of Neurology With Experimental Neurology, Charité - Universitätsmedizin Berlin, Charitéplatz 1, Berlin, 10117, Germany
- Doctoral Program, International Graduate Program Medical Neurosciences, Humboldt Graduate School, Berlin, 10117, Germany
| | - Bianca Raffaelli
- Department of Neurology With Experimental Neurology, Charité - Universitätsmedizin Berlin, Charitéplatz 1, Berlin, 10117, Germany
- Clinician Scientist Program, Berlin Institute of Health (BIH), Berlin, 10117, Germany
| | - Robert Fleischmann
- Department of Neurology, Universitätsmedizin Greifswald, Greifswald, 17475, Germany
| | - Marie Süße
- Department of Neurology, Universitätsmedizin Greifswald, Greifswald, 17475, Germany
| | - Antje Vogelgesang
- Department of Neurology, Universitätsmedizin Greifswald, Greifswald, 17475, Germany
| | - Aleksandra Maleska Maceski
- Department of Neurology, University Hospital and University of Basel, Basel, 4051, Switzerland
- Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Basel, 4051, Switzerland
| | - Athina Papadopoulou
- Department of Neurology, University Hospital and University of Basel, Basel, 4051, Switzerland
- Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Basel, 4051, Switzerland
| | - Klemens Ruprecht
- Department of Neurology With Experimental Neurology, Charité - Universitätsmedizin Berlin, Charitéplatz 1, Berlin, 10117, Germany
| | - Wendy Su
- Novartis Pharma AG, Basel, 4056, Switzerland
| | - Mirja Koch
- Novartis Pharma AG, Basel, 4056, Switzerland
| | - Anke Siebert
- Department of Neurology With Experimental Neurology, Charité - Universitätsmedizin Berlin, Charitéplatz 1, Berlin, 10117, Germany
| | | | - Nadia Tenenbaum
- EMD Serono Research and Development Institute, New York, NY, USA
| | - Jens Kuhle
- Department of Neurology, University Hospital and University of Basel, Basel, 4051, Switzerland
- Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Basel, 4051, Switzerland
| | - Uwe Reuter
- Department of Neurology With Experimental Neurology, Charité - Universitätsmedizin Berlin, Charitéplatz 1, Berlin, 10117, Germany.
- Department of Neurology, Universitätsmedizin Greifswald, Greifswald, 17475, Germany.
| |
Collapse
|
13
|
Huang W, Zhang Y, Zhou Y, Zong J, Qiu T, Hu L, Pan S, Xiao Z. Glymphatic Dysfunction in Migraine Mice Model. Neuroscience 2023; 528:64-74. [PMID: 37516436 DOI: 10.1016/j.neuroscience.2023.07.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 07/31/2023]
Abstract
The glymphatic system is important for waste removal in the central nervous system. It removes soluble proteins and metabolic waste under the action of aquaporin-4 (AQP4) at the end of astrocytes. The glymphatic system plays a role in numerous neurological diseases; however, the relationship between migraine and the glymphatic system remains unclear. In this study, we explored the relationship between the glymphatic system and migraine using the nitroglycerin migraine model in C57/BL6mice. The glymphatic influx of cerebrospinal fluid tracer was reduced in mice in the migraine model, accompanied by decreased expression and impaired polarization of AQP4, thereby suggesting glymphatic dysfunction in migraine mice model. Then, further suppression of glymphatic function by TGN-020 (an AQP4 blocker) aggravated the migraine pathological changes in mice. The results indicated that glymphatic dysfunction may aggravate migraine pathology. Therefore, our findings revealed the potential role of the glymphatic system in migraine, providing possible targets for migraine prevention and treatment.
Collapse
Affiliation(s)
- Wanbin Huang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yu Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yanjie Zhou
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Jiabin Zong
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Tao Qiu
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Luyu Hu
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Songqing Pan
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Zheman Xiao
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| |
Collapse
|
14
|
Zhao J, Harrison S, Levy D. Meningeal P2X7 Signaling Mediates Migraine-Related Intracranial Mechanical Hypersensitivity. J Neurosci 2023; 43:5975-5985. [PMID: 37487740 PMCID: PMC10436684 DOI: 10.1523/jneurosci.0368-23.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/11/2023] [Accepted: 06/02/2023] [Indexed: 07/26/2023] Open
Abstract
Cortical spreading depolarization (CSD) is a key pathophysiological event that underlies visual and sensory auras in migraine. CSD is also thought to drive the headache phase in migraine by promoting the activation and mechanical sensitization of trigeminal primary afferent nociceptive neurons that innervate the cranial meninges. The factors underlying meningeal nociception in the wake of CSD remain poorly understood but potentially involve the parenchymal release of algesic mediators and damage-associated molecular patterns, particularly ATP. Here, we explored the role of ATP-P2X purinergic receptor signaling in mediating CSD-evoked meningeal afferent activation and mechanical sensitization. Male rats were subjected to a single CSD episode. In vivo, extracellular single-unit recording was used to measure meningeal afferent ongoing activity changes. Quantitative mechanical stimuli using a servomotor force-controlled stimulator assessed changes in the afferent's mechanosensitivity. Manipulation of meningeal P2X receptors was achieved via local administration of pharmacological agents. Broad-spectrum P2X receptor inhibition, selective blockade of the P2X7 receptor, and its related Pannexin 1 channel suppressed CSD-evoked afferent mechanical sensitization but did not affect the accompanying afferent activation response. Surprisingly, inhibition of the pronociceptive P2X2/3 receptor did not affect the activation or sensitization of meningeal afferents post-CSD. P2X7 signaling underlying afferent mechanosensitization was localized to the meninges and did not affect CSD susceptibility. We propose that meningeal P2X7 and Pannexin 1 signaling, potentially in meningeal macrophages or neutrophils, mediates the mechanical sensitization of meningeal afferents, which contributes to migraine pain by exacerbating the headache during normally innocuous physical activities.SIGNIFICANCE STATEMENT Activation and sensitization of meningeal afferents play a key role in migraine headache, but the underlying mechanisms remain unclear. Here, using a rat model of migraine with aura involving cortical spreading depolarization (CSD), we demonstrate that meningeal purinergic P2X7 signaling and its related Pannexin 1 pore, but not nociceptive P2X2/3 receptors, mediate prolonged meningeal afferent sensitization. Additionally, we show that meningeal P2X signaling does not contribute to the increased afferent ongoing activity in the wake of CSD. Our finding points to meningeal P2X7 signaling as a critical mechanism underlying meningeal nociception in migraine, the presence of distinct mechanisms underlying the activation and sensitization of meningeal afferents in migraine, and highlight the need to target both processes for effective migraine therapy.
Collapse
Affiliation(s)
- Jun Zhao
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02115
| | - Samantha Harrison
- Center for Anesthesia Research Excellence, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02115
| | - Dan Levy
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
15
|
Abstract
Migraine is a complex neurovascular pain disorder linked to the meninges, a border tissue innervated by neuropeptide-containing primary afferent fibers chiefly from the trigeminal nerve. Electrical or mechanical stimulation of this nerve surrounding large blood vessels evokes headache patterns as in migraine, and the brain, blood, and meninges are likely sources of headache triggers. Cerebrospinal fluid may play a significant role in migraine by transferring signals released from the brain to overlying pain-sensitive meningeal tissues, including dura mater. Interactions between trigeminal afferents, neuropeptides, and adjacent meningeal cells and tissues cause neurogenic inflammation, a critical target for current prophylactic and abortive migraine therapies. Here we review the importance of the cranial meninges to migraine headaches, explore the properties of trigeminal meningeal afferents, and briefly review emerging concepts, such as meningeal neuroimmune interactions, that may one day prove therapeutically relevant.
Collapse
Affiliation(s)
- Dan Levy
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA;
| | - Michael A Moskowitz
- Center for Systems Biology and Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA;
| |
Collapse
|
16
|
Tonc E, Omwanda GK, Tovar KA, Golden XME, Chatterjea D. Immune mechanisms in vulvodynia: key roles for mast cells and fibroblasts. Front Cell Infect Microbiol 2023; 13:1215380. [PMID: 37360527 PMCID: PMC10285386 DOI: 10.3389/fcimb.2023.1215380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 05/26/2023] [Indexed: 06/28/2023] Open
Abstract
Vulvodynia is a debilitating condition characterized by painful sensitivity to touch and pressure in the vestibular tissue surrounding the vaginal opening. It is often a "diagnosis of exclusion" of idiopathic pain made in the absence of visible inflammation or injury. However, the association between increased vulvodynia risk and a history of yeast infections and skin allergies has led researchers to explore whether immune mechanisms of dysregulated inflammation might underlie the pathophysiology of this chronic pain condition. Here we synthesize epidemiological investigations, clinical biopsies and primary cell culture studies, and mechanistic insights from several pre-clinical models of vulvar pain. Taken together, these findings suggest that altered inflammatory responses of tissue fibroblasts, and other immune changes in the genital tissues, potentially driven by the accumulation of mast cells may be key to the development of chronic vulvar pain. The association of increased numbers and function of mast cells with a wide variety of chronic pain conditions lends credence to their involvement in vulvodynia pathology and underscores their potential as an immune biomarker for chronic pain. Alongside mast cells, neutrophils, macrophages, and numerous inflammatory cytokines and mediators are associated with chronic pain suggesting immune-targeted approaches including the therapeutic administration of endogenous anti-inflammatory compounds could provide much needed new ways to treat, manage, and control the growing global pandemic of chronic pain.
Collapse
|
17
|
Zhao J, Harrison S, Levy D. Meningeal P2X7 signaling mediates migraine-related intracranial mechanical hypersensitivity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.02.526853. [PMID: 36778299 PMCID: PMC9915648 DOI: 10.1101/2023.02.02.526853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cortical spreading depolarization (CSD) is a key pathophysiological event that underlies visual and sensory auras in migraine. CSD is also thought to drive the headache phase in migraine by promoting the activation and mechanical sensitization of trigeminal primary afferent nociceptive neurons that innervate the cranial meninges. The factors underlying meningeal nociception in the wake of CSD remain poorly understood but potentially involve the parenchymal release of algesic mediators and damage-associated molecular patterns, particularly ATP. Here, we explored the role of ATP-P2X purinergic receptor signaling in mediating CSD-evoked meningeal afferent activation and mechanical sensitization. Male rats were subjected to a single CSD episode. In vivo, extracellular single-unit recording was used to measure meningeal afferent ongoing activity changes. Quantitative mechanical stimuli using a servomotor force-controlled stimulator assessed changes in the afferent's mechanosensitivity. Manipulation of meningeal P2X receptors was achieved via local administration of pharmacological agents. Broad-spectrum P2X receptor inhibition, selective blockade of the P2X7 receptor, and its related pannexin 1 channel suppressed CSD-evoked afferent mechanical sensitization but did not affect the accompanying afferent activation response. Surprisingly, inhibition of the pronociceptive P2X2/3 receptor did not affect the activation or sensitization of meningeal afferents post-CSD. P2X7 signaling underlying afferent mechanosensitization was localized to the meninges and did not affect CSD susceptibility. We propose that meningeal P2X7 and Pannexin 1 signaling, potentially in meningeal macrophages or neutrophils, mediates the mechanical sensitization of meningeal afferents, which contributes to migraine pain by exacerbating the headache during normally innocuous physical activities. Significance Statement Activation and sensitization of meningeal afferents play a key role in migraine headache, but the underlying mechanisms remain unclear. Here, using a rat model of migraine with aura involving cortical spreading depolarization (CSD), we demonstrate that meningeal purinergic P2X7 signaling and its related Pannexin 1 pore, but not nociceptive P2X2/3 receptors, mediate prolonged meningeal afferent sensitization. Additionally, we show that meningeal P2X signaling does not contribute to the increased afferent ongoing activity in the wake of CSD. Our finding points to meningeal P2X7 signaling as a critical mechanism underlying meningeal nociception in migraine, the presence of distinct mechanisms underlying the activation and sensitization of meningeal afferents in migraine, and highlight the need to target both processes for effective migraine therapy.
Collapse
Affiliation(s)
- Jun Zhao
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02115
| | - Samantha Harrison
- Center for Anesthesia Research Excellence, Beth Israel Deaconess Medical Center, Boston, MA 02115
| | - Dan Levy
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02115
| |
Collapse
|
18
|
Yamanaka G, Hayashi K, Morishita N, Takeshita M, Ishii C, Suzuki S, Ishimine R, Kasuga A, Nakazawa H, Takamatsu T, Watanabe Y, Morichi S, Ishida Y, Yamazaki T, Go S. Experimental and Clinical Investigation of Cytokines in Migraine: A Narrative Review. Int J Mol Sci 2023; 24:ijms24098343. [PMID: 37176049 PMCID: PMC10178908 DOI: 10.3390/ijms24098343] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/01/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
The role of neuroinflammation in the pathophysiology of migraines is increasingly being recognized, and cytokines, which are important endogenous substances involved in immune and inflammatory responses, have also received attention. This review examines the current literature on neuroinflammation in the pathogenesis of migraine. Elevated TNF-α, IL-1β, and IL-6 levels have been identified in non-invasive mouse models with cortical spreading depolarization (CSD). Various mouse models to induce migraine attack-like symptoms also demonstrated elevated inflammatory cytokines and findings suggesting differences between episodic and chronic migraines and between males and females. While studies on human blood during migraine attacks have reported no change in TNF-α levels and often inconsistent results for IL-1β and IL-6 levels, serial analysis of cytokines in jugular venous blood during migraine attacks revealed consistently increased IL-1β, IL-6, and TNF-α. In a study on the interictal period, researchers reported higher levels of TNF-α and IL-6 compared to controls and no change regarding IL-1β levels. Saliva-based tests suggest that IL-1β might be useful in discriminating against migraine. Patients with migraine may benefit from a cytokine perspective on the pathogenesis of migraine, as there have been several encouraging reports suggesting new therapeutic avenues.
Collapse
Affiliation(s)
- Gaku Yamanaka
- Department of Pediatrics and Adolescent Medicine, Tokyo Medical University, Tokyo 160-0023, Japan
| | - Kanako Hayashi
- Department of Pediatrics and Adolescent Medicine, Tokyo Medical University, Tokyo 160-0023, Japan
| | - Natsumi Morishita
- Department of Pediatrics and Adolescent Medicine, Tokyo Medical University, Tokyo 160-0023, Japan
| | - Mika Takeshita
- Department of Pediatrics and Adolescent Medicine, Tokyo Medical University, Tokyo 160-0023, Japan
| | - Chiako Ishii
- Department of Pediatrics and Adolescent Medicine, Tokyo Medical University, Tokyo 160-0023, Japan
| | - Shinji Suzuki
- Department of Pediatrics and Adolescent Medicine, Tokyo Medical University, Tokyo 160-0023, Japan
| | - Rie Ishimine
- Department of Pediatrics and Adolescent Medicine, Tokyo Medical University, Tokyo 160-0023, Japan
| | - Akiko Kasuga
- Department of Pediatrics and Adolescent Medicine, Tokyo Medical University, Tokyo 160-0023, Japan
| | - Haruka Nakazawa
- Department of Pediatrics and Adolescent Medicine, Tokyo Medical University, Tokyo 160-0023, Japan
| | - Tomoko Takamatsu
- Department of Pediatrics and Adolescent Medicine, Tokyo Medical University, Tokyo 160-0023, Japan
| | - Yusuke Watanabe
- Department of Pediatrics and Adolescent Medicine, Tokyo Medical University, Tokyo 160-0023, Japan
| | - Shinichiro Morichi
- Department of Pediatrics and Adolescent Medicine, Tokyo Medical University, Tokyo 160-0023, Japan
| | - Yu Ishida
- Department of Pediatrics and Adolescent Medicine, Tokyo Medical University, Tokyo 160-0023, Japan
| | - Takashi Yamazaki
- Department of Pediatrics and Adolescent Medicine, Tokyo Medical University, Tokyo 160-0023, Japan
| | - Soken Go
- Department of Pediatrics and Adolescent Medicine, Tokyo Medical University, Tokyo 160-0023, Japan
| |
Collapse
|
19
|
Huang IH, Hung WK, Chi CC. Bidirektionale Assoziationen zwischen Psoriasis und Migräne: Eine systematische Übersicht und Metaanalyse. J Dtsch Dermatol Ges 2023; 21:493-503. [PMID: 37183737 DOI: 10.1111/ddg.14994_g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 12/20/2022] [Indexed: 05/16/2023]
Affiliation(s)
- I-Hsin Huang
- Department of Dermatology, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| | - Wei-Kai Hung
- Department of Dermatology, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| | - Ching-Chi Chi
- Department of Dermatology, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
20
|
Giniatullin R, Nistri A. Role of ATP in migraine mechanisms: focus on P2X3 receptors. J Headache Pain 2023; 24:1. [PMID: 36597043 PMCID: PMC9809127 DOI: 10.1186/s10194-022-01535-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 12/16/2022] [Indexed: 01/04/2023] Open
Abstract
Migraine is a major health burden worldwide with complex pathophysiology and multifarious underlying mechanisms. One poorly understood issue concerns the early steps in the generation of migraine pain. To elucidate the basic process of migraine pain further, it seems useful to consider key molecular players that may operate synergistically to evoke headache. While the neuropeptide CGRP is an important contributor, we propose that extracellular ATP (that generally plays a powerful nociceptive role) is also a major component of migraine headache, acting in concert with CGRP to stimulate trigeminal nociceptive neurons. The aim of the present focused review is to highlight the role of ATP activating its P2X3 membrane receptors selectively expressed by sensory neurons including their nerve fiber terminals in the meninges. Specifically, we present data on the homeostasis of ATP and related purines in the trigeminovascular system and in the CNS; the basic properties of ATP signalling at peripheral and central nerve terminals; the characteristics of P2X3 and related receptors in trigeminal neurons; the critical speed and persistence of P2X3 receptor activity; their cohabitation at the so-called meningeal neuro-immune synapse; the identity of certain endogenous agents cooperating with ATP to induce neuronal sensitization in the trigeminal sensory system; the role of P2X3 receptors in familial type migraine; the current state of P2X3 receptor antagonists and their pharmacological perspectives in migraine. It is proposed that the unique kinetic properties of P2X3 receptors activated by ATP offer an interesting translational value to stimulate future studies for innovative treatments of migraine pain.
Collapse
Affiliation(s)
- R. Giniatullin
- grid.9668.10000 0001 0726 2490A.I Virtanen Institute, University of Eastern Finland, 70211 Kuopio, Finland
| | - A. Nistri
- grid.5970.b0000 0004 1762 9868Department of Neuroscience, International School for Advanced Studies (SISSA), 34136 Trieste, Italy
| |
Collapse
|
21
|
Caronna E, van den Hoek TC, Bolay H, Garcia-Azorin D, Gago-Veiga AB, Valeriani M, Takizawa T, Messlinger K, Shapiro RE, Goadsby PJ, Ashina M, Tassorelli C, Diener HC, Terwindt GM, Pozo-Rosich P. Headache attributed to SARS-CoV-2 infection, vaccination and the impact on primary headache disorders of the COVID-19 pandemic: A comprehensive review. Cephalalgia 2023; 43:3331024221131337. [PMID: 36606562 DOI: 10.1177/03331024221131337] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
OBJECTIVE The objective is to summarize the knowledge on the epidemiology, pathophysiology and management of secondary headache attributed to SARS-CoV-2 infection and vaccination; as well as to delineate their impact on primary headache disorders. METHODS This is a narrative review of the literature regarding primary and secondary headache disorders in the setting of COVID-19 pandemic. We conducted a literature search in 2022 on PubMed, with the keywords "COVID 19" or "vaccine" and "headache" to assess the appropriateness of all published articles for their inclusion in the review. RESULTS Headache is a common and sometimes difficult-to-treat symptom of both the acute and post-acute phase of SARS-CoV-2 infection. Different pathophysiological mechanisms may be involved, with the trigeminovascular system as a plausible target. Specific evidence-based effective therapeutic options are lacking at present. Headache attributed to SARS-CoV-2 vaccinations is also common, its pathophysiology being unclear. People with primary headache disorders experience headache in the acute phase of COVID-19 and after vaccination more commonly than the general population. Pandemic measures, forcing lifestyle changes, seemed to have had a positive impact on migraine, and changes in headache care (telemedicine) have been effectively introduced. CONCLUSIONS The ongoing COVID-19 pandemic is a global challenge, having an impact on the development of secondary headaches, both in people with or without primary headaches. This has created opportunities to better understand and treat headache and to potentiate strategies to manage patients and ensure care.
Collapse
Affiliation(s)
- Edoardo Caronna
- Neurology Department, Hospital Universitari Vall d'Hebron, Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain.,Headache and Neurological Pain Research Group, Vall d'Hebron Research Institute, Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | - Hayrunnisa Bolay
- Department of Neurology and Algology, NÖROM, Gazi University Hospital, Ankara, Turkey
| | - David Garcia-Azorin
- Headache Unit, Department of Neurology, Hospital Clínico Universitario de Valladolid, Valladolid, Spain.,Department of Medicine, Universidad de Valladolid, Valladolid, Spain
| | - Ana Beatriz Gago-Veiga
- Headache Unit, Department of Neurology, Hospital Universitario de La Princesa and Instituto de Investigación Sanitaria de La Princesa, Madrid, Spain.,Department of Neurology, Universidad Autónoma de Madrid, Madrid, Spain
| | - Massimiliano Valeriani
- Headache Center, Department of Neuroscience, Bambino Gesù Children's Hospital, Rome, Italy
| | - Tsubasa Takizawa
- Department of Neurology, Keio University School of Medicine, Tokyo, Japan
| | - Karl Messlinger
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-University, Erlangen-Nuernberg, Germany
| | - Robert E Shapiro
- Department of Neurological Sciences, Larner College of Medicine, University of Vermont, Burlington, USA
| | - Peter J Goadsby
- NIHR-Wellcome Trust King's Clinical Research Facility, SLaM Biomedical Research Centre, King's College London, London, UK.,Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Messoud Ashina
- Danish Headache Center, Department of Neurology, Faculty of Health and Medical Sciences, Rigshospitalet Glostrup, University of Copenhagen, Glostrup, Denmark
| | - Cristina Tassorelli
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy.,Headache Science and Neurorehabilitation Centre, IRCCS Mondino Foundation, Pavia, Italy
| | - Hans-Christoph Diener
- Institute of Medical Informatics, Biometry and Epidemiology (IMIBE) Faculty of Medicine, University Duisburg-Essen, Essen, Germany
| | - Gisela M Terwindt
- Department of Neurology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Patricia Pozo-Rosich
- Neurology Department, Hospital Universitari Vall d'Hebron, Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain.,Headache and Neurological Pain Research Group, Vall d'Hebron Research Institute, Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
22
|
Volobueva MN, Suleymanova EM, Smirnova MP, Bolshakov AP, Vinogradova LV. A Single Episode of Cortical Spreading Depolarization Increases mRNA Levels of Proinflammatory Cytokines, Calcitonin Gene-Related Peptide and Pannexin-1 Channels in the Cerebral Cortex. Int J Mol Sci 2022; 24:ijms24010085. [PMID: 36613527 PMCID: PMC9820231 DOI: 10.3390/ijms24010085] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/01/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Cortical spreading depolarization (CSD) is the neuronal correlate of migraine aura and the reliable consequence of acute brain injury. The role of CSD in triggering headaches that follow migraine aura and brain injury remains to be uncertain. We examined whether a single CSD occurring in awake animals modified the expression of proinflammatory cytokines (Il1b, TNF, and Il6) and endogenous mediators of nociception/neuroinflammation-pannexin 1 (Panx1) channel and calcitonin gene-related peptide (CGRP), transforming growth factor beta (TGFb) in the cortex. Unilateral microinjury of the somatosensory cortex triggering a single CSD was produced in awake Wistar rats. Three hours later, tissue samples from the lesioned cortex, intact ipsilesional cortex invaded by CSD, and homologous areas of the contralateral sham-treated cortex were harvested and analyzed using qPCR. Three hours post-injury, intact CSD-exposed cortexes increased TNF, Il1b, Panx1, and CGRP mRNA levels. The strongest upregulation of proinflammatory cytokines was observed at the injury site, while CGRP and Panx1 were upregulated more strongly in the intact cortexes invaded by CSD. A single CSD is sufficient to produce low-grade parenchymal neuroinflammation with simultaneous overexpression of Panx1 and CGRP. The CSD-induced molecular changes may contribute to pathogenic mechanisms of migraine pain and post-injury headache.
Collapse
Affiliation(s)
- Maria N. Volobueva
- Department of Molecular Neurobiology, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Butlerova Street 5A, 117485 Moscow, Russia
| | - Elena M. Suleymanova
- Department of Molecular Neurobiology, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Butlerova Street 5A, 117485 Moscow, Russia
| | - Maria P. Smirnova
- Department of Conditioned Reflexes and Physiology of Emotion, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Butlerova Street 5A, 117485 Moscow, Russia
| | - Alexey P. Bolshakov
- Department of Molecular Neurobiology, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Butlerova Street 5A, 117485 Moscow, Russia
| | - Lyudmila V. Vinogradova
- Department of Molecular Neurobiology, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Butlerova Street 5A, 117485 Moscow, Russia
- Correspondence: or
| |
Collapse
|
23
|
Asiedu K. Role of ocular surface neurobiology in neuronal-mediated inflammation in dry eye disease. Neuropeptides 2022; 95:102266. [PMID: 35728484 DOI: 10.1016/j.npep.2022.102266] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 01/18/2023]
Abstract
Inflammation is the consequence of dry eye disease regardless of its etiology. Several injurious or harmless processes to the ocular surface neurons promote ocular surface neurogenic inflammation, leading to the vicious cycle of dry eye disease. These processes include the regular release of neuromediators during the conduction of ocular surface sensations, hyperosmolarity-induced ocular surface neuronal damage, neuro-regenerative activities, and neuronal-mediated dendritic cell activities. Neurogenic inflammation appears to be the main culprit, instigating the self-perpetuating inflammation observed in patients with dry eye disease.
Collapse
Affiliation(s)
- Kofi Asiedu
- School of Optometry & Vision Science, Faculty of Medicine and Health, University of New South Wales, Sydney, Australia.
| |
Collapse
|
24
|
Thuraiaiyah J, Erritzøe-Jervild M, Al-Khazali HM, Schytz HW, Younis S. The role of cytokines in migraine: A systematic review. Cephalalgia 2022; 42:1565-1588. [PMID: 35962530 DOI: 10.1177/03331024221118924] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Cytokines are important endogenous substances that are involved in immune and inflammatory responses. Neurogenic inflammation has been proposed to play a role in migraine involving altered cytokine levels. Therefore, we aimed to provide a systematic review on the current knowledge on cytokine levels in migraine patients during and outside attacks. METHODS Databases of PubMed and Embase were systematically searched for studies investigating cytokine levels in migraine patients during and outside attacks. RESULTS Screening yielded identification of 45 articles investigating 18 cytokines in total. We found that the interictal level of the anti-inflammatory cytokine, interleukin 10, was decreased, while the level of transforming growth factor beta 1 was increased in migraine patients compared to controls. Levels of pro-inflammatory cytokines, tumor necrosis factor α and interleukin 6, were increased outside attacks compared to controls. Ictal levels of cytokines were unchanged or varying compared to the interictal state in migraine patients. Three studies reported dynamic cytokines levels during the course of an attack. CONCLUSION The findings of the current review underline a possible involvement of cytokines in the proposed inflammatory mechanisms of migraine. However, future studies are needed to expand our knowledge of the exact role of cytokines in the migraine pathophysiology with focus on cytokines TNF-α, IL-1ß, IL-6 and IL-10 while applying refined methodology.
Collapse
Affiliation(s)
- Janu Thuraiaiyah
- Danish Headache Center, Department of Neurology, Rigshospitalet, Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Mai Erritzøe-Jervild
- Danish Headache Center, Department of Neurology, Rigshospitalet, Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Haidar Muhsen Al-Khazali
- Danish Headache Center, Department of Neurology, Rigshospitalet, Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Henrik Winther Schytz
- Danish Headache Center, Department of Neurology, Rigshospitalet, Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Samaira Younis
- Danish Headache Center, Department of Neurology, Rigshospitalet, Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| |
Collapse
|
25
|
Abstract
Headache disorders can produce recurrent, incapacitating pain. Migraine and cluster headache are notable for their ability to produce significant disability. The anatomy and physiology of headache disorders is fundamental to evolving treatment approaches and research priorities. Key concepts in headache mechanisms include activation and sensitization of trigeminovascular, brainstem, thalamic, and hypothalamic neurons; modulation of cortical brain regions; and activation of descending pain circuits. This review will examine the relevant anatomy of the trigeminal, brainstem, subcortical, and cortical brain regions and concepts related to the pathophysiology of migraine and cluster headache disorders.
Collapse
Affiliation(s)
- Andrea M Harriott
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Yulia Orlova
- Department of Neurology, University of Florida, Gainesville, Florida
| |
Collapse
|
26
|
Viero FT, Rodrigues P, Frare JM, Da Silva NAR, Ferreira MDA, Da Silva AM, Pereira GC, Ferreira J, Pillat MM, Bocchi GV, Nassini R, Geppetti P, Trevisan G. Unpredictable Sound Stress Model Causes Migraine-Like Behaviors in Mice With Sexual Dimorphism. Front Pharmacol 2022; 13:911105. [PMID: 35784726 PMCID: PMC9243578 DOI: 10.3389/fphar.2022.911105] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/10/2022] [Indexed: 11/13/2022] Open
Abstract
Migraine represents one of the major causes of disability worldwide and is more prevalent in women; it is also related to anxiety symptoms. Stress, such as sound stress, is a frequently reported trigger in migraine patients, but the underlying mechanisms are not fully understood. However, it is known that patients with migraine have higher levels of plasma inflammatory cytokines and calcitonin gene-related peptide (CGRP). Stress mediated by unpredictable sound is already used as a model of painful sensitization, but migraine-like behaviors and sexual dimorphism have not yet been evaluated. This study characterized nociception and anxiety-related symptoms after the induction of sound stress in mice. C57BL/6 mice (20-30 g) were exposed to unpredictable sound stress for 3 days, nonconsecutive days. We observed enhanced plasma corticosterone levels on day 1 after stress induction. First, 7 days after the last stress session, mice developed hind paw and periorbital mechanical allodynia, grimacing pain behavior, anxiety-like symptoms, and reduced exploratory behavior. The nociceptive and behavioral alterations detected in this model were mostly shown in female stressed mice at day 7 post-stress. In addition, on day 7 post-stress nociception, these behaviors were consistently abolished by the CGRP receptor antagonist olcegepant (BIBN4096BS, 100 mg/kg by intraperitoneal route) in female and male stressed mice. We also demonstrated an increase in interleukine-6 (IL-6), tumor necrosis factor (TNF-α), and CGRP levels in stressed mice plasma, with female mice showing higher levels compared to male mice. This stress paradigm allows further preclinical investigation of mechanisms contributing to migraine-inducing pain.
Collapse
Affiliation(s)
- Fernanda Tibolla Viero
- Graduate Program in Pharmacology, Federal University of Santa Maria (UFSM), Santa Maria, Brazil
| | - Patrícia Rodrigues
- Graduate Program in Pharmacology, Federal University of Santa Maria (UFSM), Santa Maria, Brazil
| | - Julia Maria Frare
- Graduate Program in Pharmacology, Federal University of Santa Maria (UFSM), Santa Maria, Brazil
| | | | | | - Ana Merian Da Silva
- Graduate Program in Pharmacology, Federal University of Santa Catarina (UFSC), Florianópolis, Brazil
| | | | - Juliano Ferreira
- Graduate Program in Pharmacology, Federal University of Santa Catarina (UFSC), Florianópolis, Brazil
| | - Micheli Mainardi Pillat
- Graduate Program in Pharmacology, Federal University of Santa Maria (UFSM), Santa Maria, Brazil
| | - Guilherme Vargas Bocchi
- Graduate Program in Pharmacology, Federal University of Santa Maria (UFSM), Santa Maria, Brazil
| | - Romina Nassini
- Department of Health Science, Clinical Pharmacology and Oncology, University of Florence (UNIFI), Florence, Italy
| | - Pierangelo Geppetti
- Department of Health Science, Clinical Pharmacology and Oncology, University of Florence (UNIFI), Florence, Italy
| | - Gabriela Trevisan
- Graduate Program in Pharmacology, Federal University of Santa Maria (UFSM), Santa Maria, Brazil
| |
Collapse
|
27
|
Inflammatory-associated apoptotic markers: are they the culprit to rheumatoid arthritis pain? Mol Biol Rep 2022; 49:10077-10090. [PMID: 35699858 DOI: 10.1007/s11033-022-07591-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 05/11/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Rheumatoid arthritis (RA) is a prolonged inflammatory disease resulting from autoimmune reactions that leads to local and systemic bone erosion, joint defects and functional impairment. Although the inflammation is subsided through the prescription of anti-inflammatory therapeutics, the patients persistently complained of sleepless nights due to flare pain. This indicates the possible contribution of other pathways besides inflammation in leading to RA pain. This review aims to uncover the roles and involvement of several inflammatory-associated apoptotic markers in facilitating pain transmission and processing during the pathogenesis of RA. MATERIALS AND METHODS This narrative review focused on the reports from the previous literature based on the search string of "apoptotic marker AND inflammation AND 'chronic pain' OR 'neuropathic pain' and apoptosis AND 'rheumatoid arthritis' OR arthritis from the databases including Science Direct and Scopus, considering the exclusion criteria of the published abstracts, proceedings or articles on other neuropathic pain types such as painful bowel syndrom, insterstitial cystitis, fibrosis and so on. RESULTS Several studies in the literature demonstrate a close association between imbalanced apoptotic regulations and an increased number of synovial fibroblasts and inflammatory cells in RA. Cell death or specific cell survival has been linked with increased central hypersensitivity in various types of chronic and neuropathic pain. CONCLUSION The RA-related flare pain is possibly contributed by the abnormal regulation of apoptosis through several inflammatory-related pathways, and further studies need to modulate these pathways for the putative anti-nociceptive benefits.
Collapse
|
28
|
Christensen RH, Gollion C, Amin FM, Moskowitz MA, Hadjikhani N, Ashina M. Imaging the inflammatory phenotype in migraine. J Headache Pain 2022; 23:60. [PMID: 35650524 PMCID: PMC9158262 DOI: 10.1186/s10194-022-01430-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/05/2022] [Indexed: 11/10/2022] Open
Abstract
Several preclinical and clinical lines of evidence suggest a role of neuroinflammation in migraine. Neuroimaging offers the possibility to investigate and localize neuroinflammation in vivo in patients with migraine, and to characterize specific inflammatory constituents, such as vascular permeability, and macrophage or microglia activity. Despite all imaging data accumulated on neuroinflammation across the past three decades, an overview of the imaging evidence of neuroinflammation in migraine is still missing.We conducted a systematic review in the Pubmed and Embase databases to evaluate existing imaging data on inflammation in migraine, and to identify gaps in the literature. We included 20 studies investigating migraine without aura (N = 4), migraine with aura (N = 8), both migraine with and without aura (N = 3), or hemiplegic migraine (N = 5).In migraine without aura, macrophage activation was not evident. In migraine with aura, imaging evidence suggested microglial and parameningeal inflammatory activity. Increased vascular permeability was mostly found in hemiplegic migraine, and was atypical in migraine with and without aura. Based on the weight of existing and emerging data, we show that most studies have concentrated on demonstrating increased vascular permeability as a marker of neuroinflammation, with tools that may not have been optimal. In the future, novel, more sensitive techniques, as well as imaging tracers delineating specific inflammatory pathways may further bridge the gap between preclinical and clinical findings.
Collapse
Affiliation(s)
- Rune Häckert Christensen
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Glostrup, Denmark
| | - Cédric Gollion
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Glostrup, Denmark
- Department of Neurology, University Hospital of Toulouse, Toulouse, France
| | - Faisal Mohammad Amin
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Glostrup, Denmark
- Department of Neurorehabilitation/Traumatic Brain Injury, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Michael A Moskowitz
- Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Nouchine Hadjikhani
- Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
- Gillberg Neuropsychiatry Center, Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
| | - Messoud Ashina
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Glostrup, Denmark.
| |
Collapse
|
29
|
Li J, Tian J, Li C, Chen L, Zhao Y. A hydrogel spinal dural patch with potential anti-inflammatory, pain relieving and antibacterial effects. Bioact Mater 2022; 14:389-401. [PMID: 35386815 PMCID: PMC8964987 DOI: 10.1016/j.bioactmat.2022.01.043] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/13/2022] [Accepted: 01/24/2022] [Indexed: 11/16/2022] Open
Abstract
CSFL caused by spinal dural defect is a common complication of spinal surgery, which need repair such as suture or sealants. However, low intracranial pressure symptoms, wound infection and prolonged hospital associated with pin-hole leakage or loose seal effect were often occurred after surgical suture or sealants repair. Stable, pressure resistance and high viscosity spinal dural repair patch in wet environment without suture or sealants was highly needed. Herein, a bioactive patch composed of alginate and polyacrylamide hydrogel matrix cross-linked by calcium ions, and chitosan adhesive was proposed. This fabricated patch exhibits the capabilities of promoting defect closure and good tight seal ability with the bursting pressure is more than 790 mm H2O in wet environment. In addition, the chitosan adhesive layer of the patch could inhibit the growth of bacterial in vitro, which is meaningful for the postoperative infection. Furthermore, the patch also significantly reduced the expression of GFAP, IBA-1, MBP, TNF-α, and COX-2 in early postoperative period in vivo study, exerting the effects of anti-inflammatory, analgesic and adhesion prevention. Thus, the bioactive patch expected to be applied in spinal dural repair with the good properties of withstanding high pressure, promoting defect closure and inhibiting postoperative infection. A self-adhesive spinal dural patch that can be applied directly by pressing. A spinal dural patch maintains more than 790 mm H2O sealing pressure in a wet environment. A spinal dural patch with potential anti-inflammatory, analgesic and anti-bacterial properties.
Collapse
Affiliation(s)
- Jiahao Li
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jingjing Tian
- Medical Science Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chunxu Li
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Longyun Chen
- Department of Pathology, State Key Laboratory of Complex Severe and Rare Disease, Molecular Pathology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu Zhao
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Corresponding author.
| |
Collapse
|
30
|
Aczél T, Körtési T, Kun J, Urbán P, Bauer W, Herczeg R, Farkas R, Kovács K, Vásárhelyi B, Karvaly GB, Gyenesei A, Tuka B, Tajti J, Vécsei L, Bölcskei K, Helyes Z. Identification of disease- and headache-specific mediators and pathways in migraine using blood transcriptomic and metabolomic analysis. J Headache Pain 2021; 22:117. [PMID: 34615455 PMCID: PMC8493693 DOI: 10.1186/s10194-021-01285-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 07/01/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Recent data suggest that gene expression profiles of peripheral white blood cells can reflect changes in the brain. We aimed to analyze the transcriptome of peripheral blood mononuclear cells (PBMC) and changes of plasma metabolite levels of migraineurs in a self-controlled manner during and between attacks. METHODS Twenty-four patients with migraine were recruited and blood samples were collected in a headache-free (interictal) period and during headache (ictal) to investigate disease- and headache-specific alterations. Control samples were collected from 13 age- and sex-matched healthy volunteers. RNA was isolated from PBMCs and single-end 75 bp RNA sequencing was performed using Illumina NextSeq 550 instrument followed by gene-level differential expression analysis. Functional analysis was carried out on information related to the role of genes, such as signaling pathways and biological processes. Plasma metabolomic measurement was performed with the Biocrates MxP Quant 500 Kit. RESULTS We identified 144 differentially-expressed genes in PBMCs between headache and headache-free samples and 163 between symptom-free patients and controls. Network analysis revealed that enriched pathways included inflammation, cytokine activity and mitochondrial dysfunction in both headache and headache-free samples compared to controls. Plasma lactate, succinate and methionine sulfoxide levels were higher in migraineurs while spermine, spermidine and aconitate were decreased during attacks. CONCLUSIONS It is concluded that enhanced inflammatory and immune cell activity, and oxidative stress can play a role in migraine susceptibility and headache generation.
Collapse
Affiliation(s)
- Timea Aczél
- Department of Pharmacology and Pharmacotherapy, Molecular Pharmacology Research Group and Centre for Neuroscience, University of Pécs Szentágothai Research Centre, University of Pécs Medical School, Szigeti út 12, Pécs, H-7624, Hungary
| | - Tamás Körtési
- Department of Neurology, Interdisciplinary Excellence Centre, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis u. 6, Szeged, H-6725, Hungary
- MTA-SZTE Neuroscience Research Group, University of Szeged, Semmelweis u. 6, Szeged, H-6725, Hungary
- Faculty of Health Sciences and Social Studies, University of Szeged, Temesvári krt. 31, Szeged, H-6726, Hungary
| | - József Kun
- Department of Pharmacology and Pharmacotherapy, Molecular Pharmacology Research Group and Centre for Neuroscience, University of Pécs Szentágothai Research Centre, University of Pécs Medical School, Szigeti út 12, Pécs, H-7624, Hungary
- Szentágothai Research Centre, Bioinformatics Research Group, Genomics and Bioinformatics Core Facility, University of Pécs, Ifjúság útja 20, Pécs, H-7624, Hungary
| | - Péter Urbán
- Szentágothai Research Centre, Bioinformatics Research Group, Genomics and Bioinformatics Core Facility, University of Pécs, Ifjúság útja 20, Pécs, H-7624, Hungary
| | - Witold Bauer
- Szentágothai Research Centre, Bioinformatics Research Group, Genomics and Bioinformatics Core Facility, University of Pécs, Ifjúság útja 20, Pécs, H-7624, Hungary
| | - Róbert Herczeg
- Szentágothai Research Centre, Bioinformatics Research Group, Genomics and Bioinformatics Core Facility, University of Pécs, Ifjúság útja 20, Pécs, H-7624, Hungary
| | - Róbert Farkas
- Department of Laboratory Medicine, Semmelweis University, Nagyvárad tér 4, Budapest, H-1089, Hungary
| | - Krisztián Kovács
- Department of Laboratory Medicine, Semmelweis University, Nagyvárad tér 4, Budapest, H-1089, Hungary
| | - Barna Vásárhelyi
- Department of Laboratory Medicine, Semmelweis University, Nagyvárad tér 4, Budapest, H-1089, Hungary
| | - Gellért B Karvaly
- Department of Laboratory Medicine, Semmelweis University, Nagyvárad tér 4, Budapest, H-1089, Hungary
| | - Attila Gyenesei
- Szentágothai Research Centre, Bioinformatics Research Group, Genomics and Bioinformatics Core Facility, University of Pécs, Ifjúság útja 20, Pécs, H-7624, Hungary
| | - Bernadett Tuka
- Department of Neurology, Interdisciplinary Excellence Centre, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis u. 6, Szeged, H-6725, Hungary
- MTA-SZTE Neuroscience Research Group, University of Szeged, Semmelweis u. 6, Szeged, H-6725, Hungary
| | - János Tajti
- Department of Neurology, Interdisciplinary Excellence Centre, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis u. 6, Szeged, H-6725, Hungary
| | - László Vécsei
- Department of Neurology, Interdisciplinary Excellence Centre, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis u. 6, Szeged, H-6725, Hungary
- MTA-SZTE Neuroscience Research Group, University of Szeged, Semmelweis u. 6, Szeged, H-6725, Hungary
| | - Kata Bölcskei
- Department of Pharmacology and Pharmacotherapy, Molecular Pharmacology Research Group and Centre for Neuroscience, University of Pécs Szentágothai Research Centre, University of Pécs Medical School, Szigeti út 12, Pécs, H-7624, Hungary
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, Molecular Pharmacology Research Group and Centre for Neuroscience, University of Pécs Szentágothai Research Centre, University of Pécs Medical School, Szigeti út 12, Pécs, H-7624, Hungary.
| |
Collapse
|
31
|
Messlinger K, Neuhuber W, May A. Activation of the trigeminal system as a likely target of SARS-CoV-2 may contribute to anosmia in COVID-19. Cephalalgia 2021; 42:176-180. [PMID: 34407648 PMCID: PMC8793291 DOI: 10.1177/03331024211036665] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Clinical publications show consistently that headache is a common symptom in the coronavirus disease of 2019 (COVID-19). Several studies specifically investigated headache symptomatology and associated features in patients with COVID-19. The headache is frequently debilitating with manifold characters including migraine-like characteristics. Studies suggested that COVID-19 patients with headache vs. those without headache are more likely to have anosmia. We present a pathophysiological hypothesis which may explain this phenomenon, discuss current hypotheses about how the coronavirus SARS-CoV-2 enters the central nervous system and suggest that activation of the trigeminal nerve may contribute to both headache and anosmia in COVID-19.
Collapse
Affiliation(s)
- Karl Messlinger
- Institute of Physiology and Pathophysiology, Friedrich-Alexander University, Erlangen-Nuernberg, Germany
| | - Winfried Neuhuber
- Institute of Anatomy and Cell Biology, Friedrich-Alexander University, Erlangen-Nuernberg, Germany
| | - Arne May
- Department of Systems Neuroscience, University Medical Center Eppendorf, Hamburg, Germany
| |
Collapse
|
32
|
Abstract
Interactions between the immune system and the nervous system have been described mostly in the context of diseases. More recent studies have begun to reveal how certain immune cell-derived soluble effectors, the cytokines, can influence host behaviour even in the absence of infection. In this Review, we contemplate how the immune system shapes nervous system function and how it controls the manifestation of host behaviour. Interactions between these two highly complex systems are discussed here also in the context of evolution, as both may have evolved to maximize an organism's ability to respond to environmental threats in order to survive. We describe how the immune system relays information to the nervous system and how cytokine signalling occurs in neurons. We also speculate on how the brain may be hardwired to receive and process information from the immune system. Finally, we propose a unified theory depicting a co-evolution of the immune system and host behaviour in response to the evolutionary pressure of pathogens.
Collapse
|
33
|
Mai L, Liu Q, Huang F, He H, Fan W. Involvement of Mast Cells in the Pathophysiology of Pain. Front Cell Neurosci 2021; 15:665066. [PMID: 34177465 PMCID: PMC8222580 DOI: 10.3389/fncel.2021.665066] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 05/07/2021] [Indexed: 12/11/2022] Open
Abstract
Mast cells (MCs) are immune cells and are widely distributed throughout the body. MCs are not only classically viewed as effector cells of some allergic diseases but also participate in host defense, innate and acquired immunity, homeostatic responses, and immunoregulation. Mounting evidence indicates that activation of MCs releasing numerous vasoactive and inflammatory mediators has effects on the nervous system and has been involved in different pain conditions. Here, we review the latest advances made about the implication of MCs in pain. Possible cellular and molecular mechanisms regarding the crosstalk between MC and the nervous system in the initiation and maintenance of pain are also discussed.
Collapse
Affiliation(s)
- Lijia Mai
- Department of Anesthesiology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, China
| | - Qing Liu
- Department of Anesthesiology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, China
| | - Fang Huang
- Guangdong Provincial Key Laboratory of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, China
| | - Hongwen He
- Guangdong Provincial Key Laboratory of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, China
| | - Wenguo Fan
- Department of Anesthesiology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
34
|
Bachiocco V, Cappa M, Petroni A, Salsano E, Bizzarri C, Ceccarelli I, Cevenini G, Pensato V, Aloisi AM. Pain Study in X-Linked Adrenoleukodystrophy in Males and Females. Pain Ther 2021; 10:505-523. [PMID: 33609269 PMCID: PMC8119579 DOI: 10.1007/s40122-021-00245-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/08/2021] [Indexed: 12/30/2022] Open
Abstract
INTRODUCTION X-linked adrenoleukodystrophy (ALD) is a metabolic disorder in which very long chain fatty acids (VLCFAs) are accumulated in the nervous system and adrenal cortex, impairing their functions. Three main variants are described in males: adrenomyeloneuropathy (AMN), a cerebral form (cALD or cAMN) and Addison's disease only (AD), while for females no classification is used. To evaluate pain and the functional state of afferent fibers, a series of tests was carried out in male and female patients. METHODS Chronic pain occurrence and sensory phenotype profile were assessed in 30 patients (20 male: 10 AMN, 1 cAMN, 1 cALD, 8 AD; and 10 female). A set of instruments assessed the intensity, quality and extent of pain, while a battery of quantitative sensory testing (QST) procedures examined the functional status of Aβ and Aδ fibers. Principal component analysis and hierarchical clustering with sensory responses input were used to identify distinct clusters. RESULTS Nearly half of the subjects reported pain, with a high prevalence in females and male AMN patients. No sex differences in pain dimensions were found. The sensory responses were heterogeneous, differing among the clinical variants and between genders. Male AMN/cAMN/cALD patients showed the worst impairment. Aβ and Aδ fibers were affected in males and females, but Aβ fibers appeared undamaged in females when tactile sensitivity was tested. Abnormal responses were localized in the lower body district, according to the dying-back pattern of the neuropathy. Cluster analysis showed discrete clusters for each function examined, with well-interpretable sensory and clinical phenotypes. CONCLUSION The study of pain and of the sensory profile appears to indicate a difference in the mechanisms underlying the AMN/cAMN/cALD and AD clinical forms and in the treatment of the respective generated pain types.
Collapse
Affiliation(s)
- Valeria Bachiocco
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Marco Cappa
- Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Anna Petroni
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
- Biomedicine and Nutrition Research Network, Milan, Italy
| | - Ettore Salsano
- IRCCS C. Besta Neurological Institute Foundation, Milan, Italy
| | | | - Ilaria Ceccarelli
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Gabriele Cevenini
- Department of Medical Biotechnology, University of Siena, Siena, Italy
| | - Viviana Pensato
- IRCCS C. Besta Neurological Institute Foundation, Milan, Italy
| | - Anna M Aloisi
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy.
- Biomedicine and Nutrition Research Network, Milan, Italy.
| |
Collapse
|
35
|
Randhi R, Damon M, Dixon KJ. Selective inhibition of soluble TNF using XPro1595 relieves pain and attenuates cerulein-induced pathology in mice. BMC Gastroenterol 2021; 21:243. [PMID: 34049483 PMCID: PMC8161932 DOI: 10.1186/s12876-021-01827-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 05/19/2021] [Indexed: 11/12/2022] Open
Abstract
Background Symptoms associated with acute pancreatitis can be debilitating, and treatment remains a challenge. This study aimed to investigate the efficacy of selectively inhibiting the soluble form of TNF (solTNF) using the biologic XPro1595 in a mouse model of acute pancreatitis. Methods Acute pancreatitis was induced in adult male C57Bl/6J mice by administering cerulein (8 injections of 50 µg/kg I.P., spaced an hour apart), with XPro1595 (10 mg/kg, S.C.) or vehicle being administered approximately 18 h after the last injection. Serum was collected 6 or 18 h after the last cerulein injection, pancreatic tissue was collected 2 and 7 days post-induction, and brain hippocampal tissue was collected at 7 days post-induction. The animal’s pain level was assessed 3, 5 and 7 days post-induction. Results The induction of acute pancreatitis promoted a strong increase in serum amylase levels, which had receded back to baseline levels by the next morning. XPro1595 treatment began after amylase levels had subsided at 18 h, and prevented pancreatic immune cell infiltration, that subsequently prevented tissue disruption and acinar cell death. These improvements in pathology were associated with a significant reduction in mechanical hypersensitivity (neuropathic pain). XPro1595 treatment also prevented an increase in hippocampal astrocyte reactivity, that may be associated with the prevention of neuropathic pain in this mouse model. Conclusion Overall, we observed that selectively inhibiting solTNF using XPro1595 improved the pathophysiological and neurological sequelae of cerulein-induced pancreatitis in mice, which provides support of its use in patients with pancreatitis.
Collapse
Affiliation(s)
- Rajasa Randhi
- Department of Surgery, Virginia Commonwealth University, 1101 E. Marshall St, Richmond, VA, 23298, USA
| | - Melissa Damon
- Department of Surgery, Virginia Commonwealth University, 1101 E. Marshall St, Richmond, VA, 23298, USA
| | - Kirsty J Dixon
- Department of Surgery, Virginia Commonwealth University, 1101 E. Marshall St, Richmond, VA, 23298, USA.
| |
Collapse
|
36
|
Tripathi GM, Tripathi S. Immunogenetics in Migraine. THE MOLECULAR IMMUNOLOGY OF NEUROLOGICAL DISEASES 2021:135-147. [DOI: 10.1016/b978-0-12-821974-4.00006-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
37
|
Psoriasis Increases the Risk of Sudden Sensorineural Hearing Loss: A Longitudinal Follow Up Study Using a National Sample Cohort. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17249310. [PMID: 33322823 PMCID: PMC7764529 DOI: 10.3390/ijerph17249310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/10/2020] [Accepted: 12/11/2020] [Indexed: 12/27/2022]
Abstract
Psoriasis is a well-known immune-mediated disease. Its autoimmune pathophysiology is consistent with the immune-mediated systemic vascular hypothesis regarding the pathogenesis of sudden sensorineural hearing loss (SSNHL). The purpose of our study was to investigate whether psoriasis affects the prevalence of SSNHL in all age groups matched by age, sex, income, and region of residence. Korean Health Insurance Review and Assessment Service-National Patient Samples were collected from 2002 to 2013. A 1:4 matched psoriasis group (n = 12,864) and control group (n = 51,456) were selected. The crude (simple) and adjusted (Charlson comorbidity index) hazard ratios (HR) for psoriasis and SSNHL were analyzed using the stratified Cox proportional hazard model. The incidence of SSNHL was significantly higher in the psoriasis group than in the control group (0.5% vs. 0.4%, p = 0.004). Psoriasis increased the risk of SSNHL (adjusted HR = 1.44, 95% confidence interval (CI) = 1.09–1.90, p = 0.010). In the stratification analysis, the incidence of SSNHL was significantly higher in the 30–59-year-old group than other group SSNHL (adjusted HR = 1.50, 95% CI = 1.06–2.12, p = 0.023). In addition, SSNHL occurred significantly more frequently in men with psoriasis (adjusted HR = 1.70, 95% CI = 1.17–2.49, p = 0.006). Psoriasis increased the risk of SSNHL, and SSNHL was more prevalent in between the age of 30–59-year-olds and men with psoriasis.
Collapse
|
38
|
Ghanizada H, Al-Karagholi MAM, Arngrim N, Mørch-Rasmussen M, Metcalf-Clausen M, Larsson HBW, Amin FM, Ashina M. Investigation of sumatriptan and ketorolac trometamol in the human experimental model of headache. J Headache Pain 2020; 21:19. [PMID: 32093617 PMCID: PMC7038568 DOI: 10.1186/s10194-020-01089-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 02/12/2020] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Pituitary adenylate cyclase-activating polypeptide-38 (PACAP38) induces headache in healthy volunteers but the precise mechanisms by which PACAP38 leads to headache are unclear. We investigated the headache preventive effect of sumatriptan and ketorolac on PACAP38-induced headache in healthy volunteers. In addition, we explored contribution of vascular mechanisms to PACAP38-induced headache using high resolution magnetic resonance angiography. METHODS Thirty-four healthy volunteers were divided in two groups (A and B) and received infusion of PACAP38 (10 picomol/kg/min) over 20 min. Group A was pretreated with intravenous sumatriptan (4 mg) or ketorolac (30 mg) 20 min before infusion of PACAP38. Group B received infusion of sumatriptan or ketorolac as post-treatment 90 min after infusion of PACAP38. In both experiments, we used a randomized, double-blind, cross-over design. We recorded headache characteristics and circumference of extra-intracerebral arteries. RESULTS We found no difference in AUC (0-6 h) of PACAP38-induced headache in group A, pretreated with sumatriptan or ketorolac (p = 0.297). There was no difference between sumatriptan and ketorolac in PACAP38-induced circumference change (AUCBaseline-110 min) of MMA (p = 0.227), STA (p = 0.795) and MCA (p = 0.356). In group B, post-treatment with ketorolac reduced PACAP38-headache compared to sumatriptan (p < 0.001). Post-treatment with sumatriptan significantly reduced the circumference of STA (p = 0.039) and MMA (p = 0.015) but not of MCA (p = 0.981) compared to ketorolac. In an explorative analysis, we found that pre-treatment with sumatriptan reduced PACAP38-induced headache compared to no treatment (AUC0-90min). CONCLUSIONS Post-treatment with ketorolac was more effective in attenuating PACAP38-induced headache compared to sumatriptan. Ketorolac exerted its effect without affecting PACAP38-induced arterial dilation, whereas sumatriptan post-treatment attenuated PACAP38-induced dilation of MMA and STA. Pre-treatment with sumatriptan attenuated PACAP38-induced headache without affecting PACAP38-induced arterial dilation. Our findings suggest that ketorolac and sumatriptan attenuated PACAP38-induced headache in healthy volunteers without vascular effects. TRIAL REGISTRATION Clinicaltrials.gov (NCT03585894). Registered 13 July 2018.
Collapse
Affiliation(s)
- Hashmat Ghanizada
- Danish Headache Center and Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Valdemar Hansens Vej 5, DK-2600, Glostrup, Denmark
| | - Mohammad Al-Mahdi Al-Karagholi
- Danish Headache Center and Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Valdemar Hansens Vej 5, DK-2600, Glostrup, Denmark
| | - Nanna Arngrim
- Danish Headache Center and Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Valdemar Hansens Vej 5, DK-2600, Glostrup, Denmark
| | - Mette Mørch-Rasmussen
- Danish Headache Center and Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Valdemar Hansens Vej 5, DK-2600, Glostrup, Denmark
| | - Matias Metcalf-Clausen
- Danish Headache Center and Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Valdemar Hansens Vej 5, DK-2600, Glostrup, Denmark
| | - Henrik Bo Wiberg Larsson
- Functional Imaging Unit, Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Faisal Mohammad Amin
- Danish Headache Center and Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Valdemar Hansens Vej 5, DK-2600, Glostrup, Denmark
| | - Messoud Ashina
- Danish Headache Center and Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Valdemar Hansens Vej 5, DK-2600, Glostrup, Denmark.
| |
Collapse
|
39
|
Dehghani A, Karatas H. Mouse Models of Familial Hemiplegic Migraine for Studying Migraine Pathophysiology. Curr Neuropharmacol 2020; 17:961-973. [PMID: 31092180 PMCID: PMC7052833 DOI: 10.2174/1570159x17666190513085013] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 02/08/2019] [Accepted: 04/23/2019] [Indexed: 12/14/2022] Open
Abstract
Migraine, an extremely disabling neurological disorder, has a strong genetic component. Since monogenic mi-graines (resulting from mutations or changes in a single gene) may help researchers discover migraine pathophysiology, transgenic mice models harboring gene mutations identified in Familial Hemiplegic Migraine (FHM) patients have been gen-erated. Studies in these FHM mutant mice models have shed light on the mechanisms of migraine and may aid in the identifi-cation of novel targets for treatment. More specifically, the studies shed light on how gene mutations, hormones, and other factors impact the pathophysiology of migraine. The models may also be of relevance to researchers outside the field of mi-graine as some of their aspects are relevant to pain in general. Additionally, because of the comorbidities associated with mi-graine, they share similarities with the mutant mouse models of epilepsy, stroke, and perhaps depression. Here, we review the experimental data obtained from these mutant mice and focus on how they can be used to investigate the pathophysiology of migraine, including synaptic plasticity, neuroinflammation, metabolite alterations, and molecular and behavioral mecha-nisms of pain.
Collapse
Affiliation(s)
- Anisa Dehghani
- Institute of Neurological Sciences and Psychiatry, Faculty of Medicine, Hacettepe University, Ankara 06100, Turkey
| | - Hulya Karatas
- Institute of Neurological Sciences and Psychiatry, Faculty of Medicine, Hacettepe University, Ankara 06100, Turkey
| |
Collapse
|
40
|
Zhao L, Liu L, Xu X, Qu Z, Zhu Y, Li Z, Zhao J, Wang L, Jing X, Li B. Electroacupuncture Inhibits Hyperalgesia by Alleviating Inflammatory Factors in a Rat Model of Migraine. J Pain Res 2020; 13:75-86. [PMID: 32021397 PMCID: PMC6968809 DOI: 10.2147/jpr.s225431] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 12/24/2019] [Indexed: 01/22/2023] Open
Abstract
Objective Acupuncture has a therapeutic effect similar to that of prophylactic drugs and can be considered a treatment option for migraineurs. However, the mechanism of acupuncture treatment's effect on migraine is uncertain. An approach based on anti-inflammatory effects is an important treatment strategy for migraine because non-steroidal anti-inflammatory drugs (NSAIDs) are usually used during migraine attacks. Meningeal inflammation is thought to be responsible for the activation of the trigeminovascular system. Our previous study found that electroacupuncture (EA) decreased neurogenic inflammation mediator expression in the trigeminal ganglion (TG) and alleviated hyperalgesia. The present study examined whether EA would inhibit hyperalgesia by alleviating neurogenic inflammatory factors. Methods A rat model of migraine was established using dural electrical stimulation (DES). Five groups were analyzed in this study. The Model group received DES three times to mimic migraine attacks, a Control group had sham DES, and three groups received electroacupuncture after DES: a Non-Acu group at a non-acupuncture point, a GB20 group at GB20, and a GB20/34 group at GB20 and GB34 acupuncture points. We evaluated mechanical hyperalgesia using an electronic von Frey esthesiometer in the awake state. After sacrifice, the dura mater was analyzed using immunofluorescence. Serum calcitonin gene-related peptide, cyclooxygenase-2, brain-derived neurotrophic factor, IL-1β, IL-6, and TNF levels were determined using enzyme-linked immunosorbent assays to evaluate the anti-inflammatory effect of acupuncture. Results After repeated DES, we observed facial and hind paw mechanical hyperalgesia, which was inhibited by electroacupuncture. Electrical stimulation increased the number of mast cells and macrophages and serum levels of inflammatory factors. GB20 and GB20/34 electroacupuncture significantly decreased the number of mast cells and macrophages and serum levels of inflammatory factors. Moreover, electroacupuncture at GB20/34 was superior to that at GB20 alone in inhibiting hyperalgesia and alleviating inflammatory factors. Conclusion Electroacupuncture inhibits DES-induced hyperalgesia by alleviating inflammatory factors. Inhibition of dural mast cells, macrophages, and serum inflammatory factors may be one of the mechanisms involved in acupuncture treatment's effect on migraine.
Collapse
Affiliation(s)
- Luopeng Zhao
- Acupuncture and Moxibustion Department, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Key Laboratory of Acupuncture Neuromodulation, Beijing, People's Republic of China.,Beijing Key Laboratory of Clinic and Basic Research with Traditional Chinese Medicine on Psoriasis, Beijing Institute of Traditional Chinese Medicine, Beijing, People's Republic of China
| | - Lu Liu
- Acupuncture and Moxibustion Department, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Key Laboratory of Acupuncture Neuromodulation, Beijing, People's Republic of China.,Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| | - Xiaobai Xu
- Acupuncture and Moxibustion Department, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Key Laboratory of Acupuncture Neuromodulation, Beijing, People's Republic of China
| | - Zhengyang Qu
- Acupuncture and Moxibustion Department, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Key Laboratory of Acupuncture Neuromodulation, Beijing, People's Republic of China
| | - Yupu Zhu
- Acupuncture and Moxibustion Department, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Key Laboratory of Acupuncture Neuromodulation, Beijing, People's Republic of China
| | - Zhijuan Li
- Acupuncture and Moxibustion Department, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Key Laboratory of Acupuncture Neuromodulation, Beijing, People's Republic of China
| | - Jingxia Zhao
- Beijing Key Laboratory of Clinic and Basic Research with Traditional Chinese Medicine on Psoriasis, Beijing Institute of Traditional Chinese Medicine, Beijing, People's Republic of China
| | - Linpeng Wang
- Acupuncture and Moxibustion Department, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Key Laboratory of Acupuncture Neuromodulation, Beijing, People's Republic of China
| | - Xianghong Jing
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| | - Bin Li
- Acupuncture and Moxibustion Department, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Key Laboratory of Acupuncture Neuromodulation, Beijing, People's Republic of China
| |
Collapse
|
41
|
The Effects of Rebamipide 2% Ophthalmic Solution Application on Murine Subbasal Corneal Nerves After Environmental Dry Eye Stress. Int J Mol Sci 2019; 20:ijms20164031. [PMID: 31426602 PMCID: PMC6719011 DOI: 10.3390/ijms20164031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/09/2019] [Accepted: 08/16/2019] [Indexed: 12/13/2022] Open
Abstract
Rebamipide ophthalmic solution is a mucin secretagogue which is an important therapeutic agent in the treatment of dry eye. It has been noted that dry eye in office workers is associated with a decrease in secretory mucin. This study aimed to evaluate the effects of 2% rebamipide ophthalmic solution in mice subjected to environmental dry eye stress (EDES), which mimics the conditions of office workers. Thirty eyes from thirty BALB/c mice (eight-week-old males) were divided into three treatment groups: artificial tear (vehicle), 2% rebamipide ophthalmic solution, and 0.1% hyaluronic acid (HA) ophthalmic solution. After four days of pretreatment, mice were exposed to EDES for three days. The corneal subbasal nerve and inflammatory cells were then examined using in vivo confocal microscopy. Following EDES exposure, the lissamine green staining score was significantly lower and corneal sensitivity was more preserved in the 2% rebamipide group than in the HA group. In addition, the subbasal nerve fiber density was significantly higher and the DC density was significantly lower in the 2% rebamipide group than in the HA group. Overall, the topical rebamipide ophthalmic solution showed more favorable therapeutic effects when compared to the HA ophthalmic solution in a mouse model of EDES, likely owing to its anti-inflammatory and neuroprotective effects.
Collapse
|
42
|
Saleem M, Deal B, Nehl E, Janjic JM, Pollock JA. Nanomedicine-driven neuropathic pain relief in a rat model is associated with macrophage polarity and mast cell activation. Acta Neuropathol Commun 2019; 7:108. [PMID: 31277709 PMCID: PMC6612172 DOI: 10.1186/s40478-019-0762-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 06/26/2019] [Indexed: 12/13/2022] Open
Abstract
We explored the immune neuropathology underlying multi-day relief from neuropathic pain in a rat model initiated at the sciatic nerve, by using a nanoemulsion-based nanomedicine as a biological probe. The nanomedicine is theranostic: both therapeutic (containing celecoxib drug) and diagnostic (containing near-infrared fluorescent (NIRF) dye) and is small enough to be phagocytosed by circulating monocytes. We show that pain-like behavior reaches a plateau of maximum hypersensitivity 8 days post-surgery, and is the rationale for intravenous delivery at this time-point. Pain relief is evident within 24 h, lasting approximately 6 days. The ipsilateral sciatic nerve and associated L4 and L5 dorsal root ganglia (DRG) tissue of both nanomedicine and control (nanoemulsion without drug) treated animals was investigated by immunofluorescence and confocal microscopy at the peak of pain relief (day-12 post-surgery), and when pain-like hypersensitivity returns (day-18 post-surgery). At day-12, a significant reduction of infiltrating macrophages, mast cells and mast cell degranulation was observed at the sciatic nerve following treatment. In the DRG, there was no effect of treatment at both day-12 and day-18. Conversely, at the DRG, there is a significant increase in macrophage infiltration and mast cell degranulation at day-18. The treatment effect on immune pathology in the sciatic nerve was investigated further by assessing the expression of macrophage cyclooxygenase-2 (COX-2)-the drug target-and extracellular prostaglandin E2 (PGE2), as well as the proportion of M1 (pro-inflammatory) and M2 (anti-inflammatory) macrophages. At day-12, there is a significant reduction of COX-2 positive macrophages, extracellular PGE2, and a striking reversal of macrophage polarity. At day-18, these measures revert to levels observed in control-treated animals. Here we present a new paradigm of immune neuropathology research, by employing a nanomedicine to target a mechanism of neuropathic pain-resulting in long-lasting pain relief--whilst revealing novel immune pathology at the injured nerve and associated DRG.
Collapse
Affiliation(s)
- Muzamil Saleem
- Department of Biological Sciences, Duquesne University, Pittsburgh, PA USA
- Chronic Pain Research Consortium, Duquesne University, Pittsburgh, PA USA
| | - Brooke Deal
- Department of Biological Sciences, Duquesne University, Pittsburgh, PA USA
- Chronic Pain Research Consortium, Duquesne University, Pittsburgh, PA USA
| | - Emily Nehl
- Jacobs School of Medicine and Biomedical Sciences, University of Buffalo, Buffalo, NY USA
| | - Jelena M. Janjic
- Graduate School of Pharmacy, Duquesne University, Pittsburgh, PA USA
- Chronic Pain Research Consortium, Duquesne University, Pittsburgh, PA USA
| | - John A. Pollock
- Department of Biological Sciences, Duquesne University, Pittsburgh, PA USA
- Chronic Pain Research Consortium, Duquesne University, Pittsburgh, PA USA
| |
Collapse
|
43
|
McKay TB, Seyed-Razavi Y, Ghezzi CE, Dieckmann G, Nieland TJF, Cairns DM, Pollard RE, Hamrah P, Kaplan DL. Corneal pain and experimental model development. Prog Retin Eye Res 2019; 71:88-113. [PMID: 30453079 PMCID: PMC6690397 DOI: 10.1016/j.preteyeres.2018.11.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 11/03/2018] [Accepted: 11/13/2018] [Indexed: 12/13/2022]
Abstract
The cornea is a valuable tissue for studying peripheral sensory nerve structure and regeneration due to its avascularity, transparency, and dense innervation. Somatosensory innervation of the cornea serves to identify changes in environmental stimuli at the ocular surface, thereby promoting barrier function to protect the eye against injury or infection. Due to regulatory demands to screen ocular safety of potential chemical exposure, a need remains to develop functional human tissue models to predict ocular damage and pain using in vitro-based systems to increase throughput and minimize animal use. In this review, we summarize the anatomical and functional roles of corneal innervation in propagation of sensory input, corneal neuropathies associated with pain, and the status of current in vivo and in vitro models. Emphasis is placed on tissue engineering approaches to study the human corneal pain response in vitro with integration of proper cell types, controlled microenvironment, and high-throughput readouts to predict pain induction. Further developments in this field will aid in defining molecular signatures to distinguish acute and chronic pain triggers based on the immune response and epithelial, stromal, and neuronal interactions that occur at the ocular surface that lead to functional outcomes in the brain depending on severity and persistence of the stimulus.
Collapse
Affiliation(s)
- Tina B McKay
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA, 02155, USA
| | - Yashar Seyed-Razavi
- Center for Translational Ocular Immunology and Cornea Service, Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA
| | - Chiara E Ghezzi
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA, 02155, USA
| | - Gabriela Dieckmann
- Center for Translational Ocular Immunology and Cornea Service, Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA
| | - Thomas J F Nieland
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA, 02155, USA
| | - Dana M Cairns
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA, 02155, USA
| | - Rachel E Pollard
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA, 02155, USA
| | - Pedram Hamrah
- Center for Translational Ocular Immunology and Cornea Service, Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA, 02155, USA.
| |
Collapse
|
44
|
Khan S, Amin FM, Fliedner FP, Christensen CE, Tolnai D, Younis S, Olinger ACR, Birgens H, Daldrup-Link H, Kjær A, Larsson HBW, Lindberg U, Ashina M. Investigating macrophage-mediated inflammation in migraine using ultrasmall superparamagnetic iron oxide-enhanced 3T magnetic resonance imaging. Cephalalgia 2019; 39:1407-1420. [DOI: 10.1177/0333102419848122] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background Initiating mechanisms of migraine headache remain poorly understood and a biomarker of migraine does not exist. Inflammation pertaining to the wall of cerebral arteries and brain parenchyma has been suggested to play a role in migraine pathophysiology. Objective We conducted the first experimental human study to investigate macrophage-mediated inflammation as a possible biomarker of migraine. Methods Using ultrasmall superparamagnetic iron oxide (USPIO)-enhanced 3T magnetic resonance imaging (MRI), we investigated the presence of macrophages in cerebral artery walls and in brain parenchyma of patients with migraine without aura. We used the phosphodiesterase-3-inhibitor cilostazol as an experimental migraine trigger, and investigated both patients who received sumatriptan treatment, and patients who did not. To validate our use of USPIO-enhanced MRI, we included a preclinical mouse model with subcutaneous capsaicin injection in the trigeminal V1 area. The study is registered at ClinicalTrials.gov with the identifier NCT02549898. Results A total of 28 female patients with migraine without aura underwent a baseline MRI scan, ingested cilostazol, developed a migraine-like attack, and underwent an USPIO-enhanced MRI scan > 24 hours after intravenous administration of USPIO. Twelve patients treated their attack with 6 mg s.c. sumatriptan, while the remaining 16 patients received no migraine-specific rescue medication. The preclinical model confirmed that USPIO-enhanced MRI detects macrophage-mediated inflammation. In patients, however, migraine attacks were not associated with increased USPIO signal on the pain side of the head compared to the non-pain side. Conclusion Our findings suggest that migraine without aura is not associated with macrophage-mediated inflammation specific to the head pain side.
Collapse
Affiliation(s)
- Sabrina Khan
- Danish Headache Center and Department of Neurology, Rigshospitalet Glostrup, Copenhagen, Denmark
| | - Faisal Mohammad Amin
- Danish Headache Center and Department of Neurology, Rigshospitalet Glostrup, Copenhagen, Denmark
| | - Frederikke Petrine Fliedner
- Cluster for Molecular Imaging, Department of Biomedical Research and Department of Clinical Physiology, Nuclear Medicine & PET, University of Copenhagen and Rigshospitalet, Copenhagen, Denmark
| | - Casper Emil Christensen
- Danish Headache Center and Department of Neurology, Rigshospitalet Glostrup, Copenhagen, Denmark
| | - Daniel Tolnai
- Department of Radiology, Rigshospitalet Glostrup, Copenhagen, Denmark
| | - Samaira Younis
- Danish Headache Center and Department of Neurology, Rigshospitalet Glostrup, Copenhagen, Denmark
| | | | - Henrik Birgens
- Department of Hematology, Herlev Hospital, Herlev, Denmark
| | - Heike Daldrup-Link
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA, USA
| | - Andreas Kjær
- Cluster for Molecular Imaging, Department of Biomedical Research and Department of Clinical Physiology, Nuclear Medicine & PET, University of Copenhagen and Rigshospitalet, Copenhagen, Denmark
| | - Henrik Bo Wiberg Larsson
- Functional Imaging Unit, Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet Glostrup, Copenhagen, Denmark
| | - Ulrich Lindberg
- Functional Imaging Unit, Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet Glostrup, Copenhagen, Denmark
| | - Messoud Ashina
- Danish Headache Center and Department of Neurology, Rigshospitalet Glostrup, Copenhagen, Denmark
| |
Collapse
|
45
|
Abubakar A, Nazifi AB, Odoma S, Shehu S, Danjuma NM. Antinociceptive activity of methanol extract of Chlorophytum alismifolium tubers in murine model of pain: Possible involvement of α 2-adrenergic receptor and K ATP channels. J Tradit Complement Med 2019; 10:1-6. [PMID: 31956552 PMCID: PMC6957804 DOI: 10.1016/j.jtcme.2019.03.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 03/10/2019] [Accepted: 03/13/2019] [Indexed: 11/25/2022] Open
Abstract
The tubers of Chlorophytum alismifolium are used in Nigerian Herbal Medicine for the management of diabetes mellitus, painful and inflammatory conditions. The antinociceptive activity has been validated but the mechanism of this activity is yet to be explored. This study therefore, aimed to investigate the probable mechanism(s) of the antinociceptive activity of C. alismifolium tubers using experimental animal model of pain. HPLC and GC-MS analyses were carried out on the extract. Antinociceptive activity was investigated using acetic acid-induced writhing response test in mice. Three groups of mice were orally administered distilled water (10 ml/kg), C. alismifolium (400 mg/kg) and morphine (10 mg/kg) 60 min before administration of acetic acid and the resulting writhing were counted for 10 min. To establish the probable mechanism(s) of action of C. alismifolium, separate groups of animals were pretreated intraperitoneally with naloxone (2 mg/kg), prazosin (1 mg/kg), yohimbine (1 mg/kg), propranolol (20 mg/kg) and glibenclamide (5 mg/kg) 15 min before C. alismifolium administration. HPLC chromatogram of the extract revealed seventeen characteristic peaks with retention times ranging between 2.1 and 7.4 min. Administration of C. alismifolium significantly (p < 0.01) reduced the mean number of writhes compared to control group. Pretreatment with yohimbine and glibenclamide significantly (p < 0.05 and p < 0.01 respectively) reduced the antinociceptive activity of extract-alone treated group. However, pretreatment with prazosin, naloxone and propranolol showed no effect on its analgesic activity. The findings from this research revealed the possible involvement of α2-adrenergic receptor and KATP channels in the antinociceptive activity of Chlorophytum alismifolium tuber extract.
Collapse
Affiliation(s)
- Abdulhakim Abubakar
- Department of Pharmacology and Therapeutics, Ahmadu Bello University, Zaria, Nigeria
| | | | - Saidi Odoma
- Department of Pharmacology and Therapeutics, Kogi State University, Anyigba, Nigeria
| | - Salisu Shehu
- Department of Pharmacognosy and Drug Development, Ahmadu Bello University, Zaria, Nigeria
| | - Nuhu Mohammed Danjuma
- Department of Pharmacology and Therapeutics, Ahmadu Bello University, Zaria, Nigeria
| |
Collapse
|
46
|
Conti P, D'Ovidio C, Conti C, Gallenga CE, Lauritano D, Caraffa A, Kritas SK, Ronconi G. Progression in migraine: Role of mast cells and pro-inflammatory and anti-inflammatory cytokines. Eur J Pharmacol 2019; 844:87-94. [PMID: 30529470 DOI: 10.1016/j.ejphar.2018.12.004] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 12/04/2018] [Accepted: 12/05/2018] [Indexed: 02/08/2023]
Abstract
Migraine is a common painful neurovascular disorder usually associated with several symptoms, such as photophobia, phonophobia, nausea, vomiting and inflammation, and involves immune cells. Mast cells (MCs) are immune cells derived from hematopoietic pluripotent stem cells which migrate and mature close to epithelial, blood vessels, and nerves. In almost all vascularized tissues there are MCs that produce, contain and release biologically active products including cytokines, arachidonic acid compounds, and proteases. In addition, MCs participate in innate and adaptive immune responses. Innate responses in the central nervous system (CNS) occur during neuroinflammatory phenomena, including migraine. Antigens found in the environment have a crucial role in inflammatory response, causing a broad range of diseases including migraine. They can be recognized by several innate immune cells, such as macrophages, microglia, dendritic cells and MCs, which can be activated trough Toll-like receptor (TLR) signaling. MCs reside close to primary nociceptive neurons, associate with nerves, and are capable of triggering local inflammation. MCs are involved in the pathophysiology of various tissues and organs, especially where there is an increase of angiogenesis. Activated MCs release preformed mediators include histamine, heparin, proteases (tryptase, chimase), hydrolases, cathepsin, carboxypeptidases, and peroxidase, and they also generate pro-inflammatory cytokines/chemokines. In addition, activated macrophages, microglia and MCs in the CNS release pro-inflammatory cytokines which provoke an increase of arachidonic acid product levels and lead to migraine and other neurological manifestations including fatigue, nausea, headaches and brain fog. Innate immunity and pro-inflammatory interleukin (IL)-1 cytokine family members can be inhibited by IL-37, a relatively new member of the IL-1 family. In this article, we report that some pro-inflammatory cytokines inducing migraine may be inhibited by IL-37, a natural suppressor of inflammation, and innate and acquired immunity.
Collapse
Affiliation(s)
- Pio Conti
- Immunology Division, Postgraduate Medical School, University of Chieti-Pescara, Chieti, Italy.
| | - Cristian D'Ovidio
- Section of Legal Medicine, Department of Medicine and Aging Sciences, "G. d'Annunzio" University of Chieti-Pescara, Italy.
| | - Chiara Conti
- Department of Psychological, Health, and Territorial Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy.
| | - Carla Enrica Gallenga
- Department of Biomedical Sciences and Specialist Surgery, Section of Ophthalmology, University of Ferrara, Italy.
| | - Dorina Lauritano
- University of Milan-Bicocca, Medicine and Surgery Department, Centre of Neuroscience of Milan, Italy.
| | | | - Spiros K Kritas
- Department of Microbiology and Infectious Diseases, Aristotle University of Thessaloniki, Macedonia, Greece.
| | - Gianpaolo Ronconi
- UOS Clinica dei Pazienti del Territorio, Policlinico Gemelli, Rome, Italy.
| |
Collapse
|
47
|
Aielli F, Ponzetti M, Rucci N. Bone Metastasis Pain, from the Bench to the Bedside. Int J Mol Sci 2019; 20:E280. [PMID: 30641973 PMCID: PMC6359191 DOI: 10.3390/ijms20020280] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/06/2019] [Accepted: 01/07/2019] [Indexed: 12/18/2022] Open
Abstract
Bone is the most frequent site of metastasis of the most common cancers in men and women. Bone metastasis incidence has been steadily increasing over the years, mainly because of higher life expectancy in oncologic patients. Although bone metastases are sometimes asymptomatic, their consequences are most often devastating, impairing both life quality and expectancy, due to the occurrence of the skeletal-related events, including bone fractures, hypercalcemia and spinal cord compression. Up to 75% of patients endure crippling cancer-induced bone pain (CIBP), against which we have very few weapons. This review's purpose is to discuss the molecular and cellular mechanisms that lead to CIBP, including how cancer cells convert the bone "virtuous cycle" into a cancer-fuelling "vicious cycle", and how this leads to the release of molecular mediators of pain, including protons, neurotrophins, interleukins, chemokines and ATP. Preclinical tests and assays to evaluate CIBP, including the incapacitance tester (in vivo), and neuron/glial activation in the dorsal root ganglia/spinal cord (ex vivo) will also be presented. Furthermore, current therapeutic options for CIBP are quite limited and nonspecific and they will also be discussed, along with up-and-coming options that may render CIBP easier to treat and let patients forget they are patients.
Collapse
Affiliation(s)
- Federica Aielli
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy.
| | - Marco Ponzetti
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy.
| | - Nadia Rucci
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy.
| |
Collapse
|
48
|
Martami F, Razeghi Jahromi S, Togha M, Ghorbani Z, Seifishahpar M, Saidpour A. The serum level of inflammatory markers in chronic and episodic migraine: a case-control study. Neurol Sci 2018; 39:1741-1749. [PMID: 30009333 DOI: 10.1007/s10072-018-3493-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 07/05/2018] [Indexed: 12/16/2022]
Abstract
The exact mechanism of the migraine pathophysiology remained unclear. Although there are some reports showing low-grade inflammation in migraineurs, further studies are needed in this field. Thus, we designed a study to evaluate the serum levels of two main proinflammatory markers in migraine patients. In this case-control research, 43 migraine patients (23 chronic and 20 episodic migraineurs) and 40 age-sex-matched headache-free controls were studied. Demographic, dietary, and anthropometric data, headache characteristics, and serum C-reactive proteins (CRP) and tumor necrosis factor-alpha (TNF-α) assessments were collected. The mean ± SD age of the case and control groups were 36.98 ± 9.91 and 34.84 ± 9.75 years respectively. Compared to control subjects, both episodic and chronic migraineurs had significantly higher median levels of TNF-α (0.24, 0.95, and 1.90 pg/ml, respectively; P value < 0.001). Also, we observed a positive association between the TNF-α levels and the odds of having migraine after considering gender, age, body mass index, and dietary intakes of energy, carbohydrate, protein, fat, and mono and poly unsaturated fatty acids in the multivariable regression models (OR = 2.15; 95% CI 1.31-3.52; P value < 0.001). However, no significant association was demonstrated between migraine and serum CRP (OR = 2.91; 95% CI 0.87-9.78; P value = 0.08). These findings supported that inflammatory state could be related to the pathogenesis of migraine and it can thus be suggested that this effect might be beyond migraine progression. Further detailed studies are needed to investigate the importance of these findings in the pathogenesis of migraine headache.
Collapse
Affiliation(s)
- Fahimeh Martami
- Headache Department, Iranian Center of Neurological Research¸ Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soodeh Razeghi Jahromi
- Headache Department, Iranian Center of Neurological Research¸ Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mansoureh Togha
- Headache Department, Iranian Center of Neurological Research¸ Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Zeinab Ghorbani
- Headache Department, Iranian Center of Neurological Research¸ Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
- School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Seifishahpar
- Headache Department, Iranian Center of Neurological Research¸ Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atoosa Saidpour
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
49
|
Levy D, Labastida-Ramirez A, MaassenVanDenBrink A. Current understanding of meningeal and cerebral vascular function underlying migraine headache. Cephalalgia 2018; 39:1606-1622. [PMID: 29929378 DOI: 10.1177/0333102418771350] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND The exact mechanisms underlying the onset of a migraine attack are not completely understood. It is, however, now well accepted that the onset of the excruciating throbbing headache of migraine is mediated by the activation and increased mechanosensitivity (i.e. sensitization) of trigeminal nociceptive afferents that innervate the cranial meninges and their related large blood vessels. OBJECTIVES To provide a critical summary of current understanding of the role that the cranial meninges, their associated vasculature, and immune cells play in meningeal nociception and the ensuing migraine headache. METHODS We discuss the anatomy of the cranial meninges, their associated vasculature, innervation and immune cell population. We then debate the meningeal neurogenic inflammation hypothesis of migraine and its putative contribution to migraine pain. Finally, we provide insights into potential sources of meningeal inflammation and nociception beyond neurogenic inflammation, and their potential contribution to migraine headache.
Collapse
Affiliation(s)
- Dan Levy
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Alejandro Labastida-Ramirez
- Department of Internal Medicine, Division of Vascular Medicine and Pharmacology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Antoinette MaassenVanDenBrink
- Department of Internal Medicine, Division of Vascular Medicine and Pharmacology, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
50
|
Park SH, Eber MR, Widner DB, Shiozawa Y. Role of the Bone Microenvironment in the Development of Painful Complications of Skeletal Metastases. Cancers (Basel) 2018; 10:cancers10050141. [PMID: 29747461 PMCID: PMC5977114 DOI: 10.3390/cancers10050141] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 05/07/2018] [Accepted: 05/08/2018] [Indexed: 01/02/2023] Open
Abstract
Cancer-induced bone pain (CIBP) is the most common and painful complication in patients with bone metastases. It causes a significant reduction in patient quality of life. Available analgesic treatments for CIBP, such as opioids that target the central nervous system, come with severe side effects as well as the risk of abuse and addiction. Therefore, alternative treatments for CIBP are desperately needed. Although the exact mechanisms of CIBP have not been fully elucidated, recent studies using preclinical models have demonstrated the role of the bone marrow microenvironment (e.g., osteoclasts, osteoblasts, macrophages, mast cells, mesenchymal stem cells, and fibroblasts) in CIBP development. Several clinical trials have been performed based on these findings. CIBP is a complex and challenging condition that currently has no standard effective treatments other than opioids. Further studies are clearly warranted to better understand this painful condition and develop more effective and safer targeted therapies.
Collapse
Affiliation(s)
- Sun H Park
- Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.
| | - Matthew R Eber
- Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.
| | - D Brooke Widner
- Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.
| | - Yusuke Shiozawa
- Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.
| |
Collapse
|