1
|
Moghimian M, Nazari-Motlagh R, Alavi-Kakhki SS, Ghaffari MK, Akbari E, Fani M, Sadegh M, Gholami M. Repeated injections of isovaline lead to analgesic tolerance and cross-tolerance to salicylate but not to morphine in male mice. Drug Res (Stuttg) 2025; 75:60-65. [PMID: 39805294 DOI: 10.1055/a-2481-6129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Tolerance to the antinociceptive effects of opioids is a major concern. Studies have shown that chronic use of non-steroidal anti-inflammatory (NSAIDs) causes significant tolerance and cross-tolerance to morphine. Chronic NSAIDs use can increase the risk of certain diseases, such as peptic ulcers, and exacerbate others, like heart failure. Therefore, developing novel pharmacological approaches could provide considerable benefits for chronic therapeutic procedures. Isovaline with a chemical structure similar to glycine and GABA induce a significant analgesic effect through GABA-B receptors. In this study, we investigated the impact of both short-term and long-term use of isovaline on the immediate response to pain, as well as the development of analgesic tolerance through daily injection (i.p.) of isovaline (100 mg/kg) for 5 days in male Balb/c mice. Additionally, on day 6, we examined the potential for cross-tolerance between isovaline and sodium salicylate (300 mg/kg) or morphine (5 mg/kg). The findings showed that isovaline injection resulted in a delayed onset of analgesic effect, a lowered peak effect, and less cumulative pain relief compared with sodium salicylate and morphine. This analgesic effect gradually decreased over the five days of isovaline injection. When sodium salicylate was injected into isovaline-tolerant mice, the antinociceptive effect decreased, suggesting cross-tolerance to sodium salicylate. However, no such tolerance was observed following morphine injection. Accordingly, it seems that chronic isovaline may interact with the sodium salicylate analgesic pathway but not with morphine.
Collapse
Affiliation(s)
- Maryam Moghimian
- Department of Physiology, Faculty of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Reza Nazari-Motlagh
- Department of Physiology, Faculty of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Seyed Sajjad Alavi-Kakhki
- Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahdi Khorsand Ghaffari
- Department of Physiology, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Elham Akbari
- Department of Biology and Microbiology, School of Medical Laboratory Technology, Khatam Al Nabieen University, Kabul, Afghanistan
| | - Masoumeh Fani
- Department of Anatomy, Faculty of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Mehdi Sadegh
- Department of Physiology, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Masoumeh Gholami
- Department of Physiology, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| |
Collapse
|
2
|
Onal Sis C, Okcay Y, Ulusoy KG, Vural IM, Yıldız O. Exploring the antinociceptive effect of taraxasterol in mice: Possible mechanisms. Neurosci Lett 2025; 845:138075. [PMID: 39638086 DOI: 10.1016/j.neulet.2024.138075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/11/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
OBJECTIVES Taraxasterol is the active ingredient of Taraxacum officinale which has been used in traditional medicine for its several therapeutic effects. This study aims first to evaluate the potential spinal/supraspinal and peripheral/visceral antinociceptive effect of taraxasterol and then to investigate the contribution of GABAergic, opioidergic systems, and KATP channels to its antinociceptive effect. METHODS The antinociceptive activity of taraxasterol (2.5, 5, and 10 mg/kg i.p.) was investigated with hot-plate, tail-immersion, and acetic acid-induced abdominal writhing tests (for supraspinal, spinal, peripheral/visceral pain evaluation, respectively) in BALB/c male mice, and percentage of possible maximum effect (MPE%) values were calculated. Mechanism of action studies were performed by pre-administering bicuculline, naloxone, and glibenclamide. RESULTS Taraxasterol increased the MPE% values in hot-plate and tail-immersion tests at 2.5, 5, and 10 mg/kg doses (P < 0.001) and decreased the mean number of writhes at 10 mg/kg in the abdominal writhing test (P < 0.05). Naloxone and bicuculline pre-administration reversed the antinociceptive effect of taraxasterol in hot-plate and tail-immersion tests and it had no effect in the abdominal writhing test. Pre-administration of glibenclamide reversed the antinociceptive effect of taraxasterol in all tests. CONCLUSION Our study is the first to show the involvement of GABAergic and opioidergic systems in the antinociceptive effect of taraxasterol in supraspinal and spinal pain tests, and KATP channels in tests evaluating supraspinal, spinal, and peripheral pain pathways. Taraxasterol is a potential new herbal medicine that can be used for pain control.
Collapse
Affiliation(s)
- Cagil Onal Sis
- Pharmaceuticals and Medical Devices Agency of Türkiye, Department of Clinical Trials, Ankara, Turkey.
| | - Yagmur Okcay
- University of Health Sciences Gulhane Faculty of Pharmacy, Department of Pharmacology, Ankara, Turkey.
| | - Kemal Gokhan Ulusoy
- University of Health Sciences Gulhane Faculty of Medicine, Department of Medical Pharmacology, Ankara, Turkey.
| | - Ismail Mert Vural
- University of Health Sciences Gulhane Faculty of Pharmacy, Department of Pharmacology, Ankara, Turkey.
| | - Oguzhan Yıldız
- University of Health Sciences Gulhane Faculty of Medicine, Department of Medical Pharmacology, Ankara, Turkey.
| |
Collapse
|
3
|
Orser BA. Discovering the Intriguing Properties of Extrasynaptic γ-Aminobutyric Acid Type A Receptors. Anesthesiology 2024; 140:1192-1200. [PMID: 38624275 DOI: 10.1097/aln.0000000000004949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Tonic inhibition in mouse hippocampal CA1 pyramidal neurons is mediated by α5 subunit-containing γ-aminobutyric acid type A receptors. By Caraiscos VB, Elliott EM, You-Ten KE, Cheng VY, Belelli D, Newell JG, Jackson MF, Lambert JJ, Rosahl TW, Wafford KA, MacDonald JF, Orser BA. Proc Natl Acad Sci U S A 2004; 101:3662-7. Reprinted with permission. In this Classic Paper Revisited, the author recounts the scientific journey leading to a report published in the Proceedings of the National Academy of Sciences (PNAS) and shares several personal stories from her formative years and "research truths" that she has learned along the way. Briefly, the principal inhibitory neurotransmitter in the brain, γ-aminobutyric acid (GABA), was conventionally thought to regulate cognitive processes by activating synaptic GABA type A (GABAA) receptors and generating transient inhibitory synaptic currents. However, the author's laboratory team discovered a novel nonsynaptic form of tonic inhibition in hippocampal pyramidal neurons, mediated by extrasynaptic GABAA receptors that are pharmacologically distinct from synaptic GABAA receptors. This tonic current is highly sensitive to most general anesthetics, including sevoflurane and propofol, and likely contributes to the memory-blocking properties of these drugs. Before the publication in PNAS, the subunit composition of GABAA receptors that generate the tonic current was unknown. The team's research showed that GABAA receptors containing the α5 subunit (α5GABAARs) generated the tonic inhibitory current in hippocampal neurons. α5GABAARs are highly sensitive to GABA, desensitize slowly, and are thus well suited for detecting low, persistent, ambient concentrations of GABA in the extracellular space. Interest in α5GABAARs has surged since the PNAS report, driven by their pivotal roles in cognitive processes and their potential as therapeutic targets for treating various neurologic disorders.
Collapse
Affiliation(s)
- Beverley A Orser
- Department of Anesthesiology and Pain Medicine, and Department of Physiology, University of Toronto, Toronto, Canada
| |
Collapse
|
4
|
Qian X, Zhao X, Yu L, Yin Y, Zhang XD, Wang L, Li JX, Zhu Q, Luo JL. Current status of GABA receptor subtypes in analgesia. Biomed Pharmacother 2023; 168:115800. [PMID: 37935070 DOI: 10.1016/j.biopha.2023.115800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/15/2023] [Accepted: 10/26/2023] [Indexed: 11/09/2023] Open
Abstract
Gamma-aminobutyric acid (GABA), a non-protein-producing amino acid synthesized from the excitatory amino acid glutamate via the enzyme glutamic acid decarboxylase, is extensively found in microorganisms, plants and vertebrates, and is abundantly expressed in the spinal cord and brain. It is the major inhibitory neurotransmitter in the mammalian nervous system. GABA plays crucial roles in the regulation of synaptic transmission, the promotion of neuronal development and relaxation, and the prevention of insomnia and depression. As the major inhibitory neurotransmitter, GABA plays pivotal roles in the regulation of pain sensation, which is initiated by the activation of peripheral nociceptors and transmitted to the spinal cord and brain along nerves. GABA exerts these roles by directly acting on three types of receptors: ionotropic GABAA and GABAC receptors and G protein-coupled GABAB receptor. The chloride-permeable ion channel receptors GABAA and GABAC mediate fast neurotransmission, while the metabotropic GABAB receptor mediates slow effect. Different GABA receptors regulate pain sensation via different signaling pathways. Here we highlight recent updates on the involvement of specific GABA receptors and their subtypes in the process of pain sensation. Further understanding of different GABA receptors and signaling pathways in pain sensation will benefit the development of novel analgesics for pain management by targeting specific GABA receptor subtypes and signaling pathways.
Collapse
Affiliation(s)
- Xunjia Qian
- School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Xinyi Zhao
- School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Lulu Yu
- School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Yujian Yin
- School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Xiao-Dan Zhang
- School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Liyun Wang
- School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Jun-Xu Li
- School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China; Provincial Key Laboratory of Inflammation and Molecular Drug Target, Nantong 226001, Jiangsu, China
| | - Qing Zhu
- School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China; Provincial Key Laboratory of Inflammation and Molecular Drug Target, Nantong 226001, Jiangsu, China.
| | - Jia-Lie Luo
- School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China.
| |
Collapse
|
5
|
Bai X, Li Y, Li Y, Li M, Luo M, Tian K, Jiang M, Xiong Y, Lu Y, Li Y, Yu H, Huang X. Antinociceptive activity of doliroside B. PHARMACEUTICAL BIOLOGY 2023; 61:201-212. [PMID: 36628487 PMCID: PMC9848282 DOI: 10.1080/13880209.2022.2163407] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 11/16/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
CONTEXT Dolichos trilobus Linn (Leguminosae) is often used in Yi ethnic medicine to treat pain, fracture, and rheumatism. OBJECTIVE To explore the therapeutic potential of doliroside B (DB) from D. trilobus and its disodium salt (DBDS) and the underlying mechanism in pain. MATERIALS AND METHODS In the writhing test, Kunming mice were orally treated with DB and DBDS at doses of 0.31, 0.62, 1.25, 2.5, and 5 mg/kg. Vehicle, morphine, indomethacin, and acetylsalicylic acid were used as negative and positive control on the nociception-induced models, respectively. In the hot plate test, mice were orally treated with DB and DBDS at doses of 2.5, 5, 10, and 20 mg/kg. In the formalin test, mice were orally treated with DB and DBDS at doses of 2.5, 5, 10, and 20 mg/kg. In the meanwhile, lipopolysaccharide-induced inflammatory model in RAW264.7 macrophages was adopted to study the mechanism of pain alleviation for DBDS. RESULTS DBDS (5 mg/kg) inhibited the writhing number by 80.2%, which exhibited the highest antinociceptive activity in pain models. DBDS could selectively inhibite the activity of COX-1. Meanwhile, it also reduced the production of NO, iNOS, and IL-6 by 55.8%, 69.0%, and 49.9% inhibition, respectively. It was found that DBDS also positively modulated the function of GABAA1 receptor. DISCUSSION AND CONCLUSIONS DBDS displayed antinociceptive activity by acting on both the peripheral and central nervous systems, which may act on multitargets. Further work is warranted for developing DBDS into a potential drug for the treatment of pain.
Collapse
Affiliation(s)
- Xishan Bai
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, China
| | - Yanhong Li
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, China
| | - Yuxiao Li
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, China
| | - Min Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ming Luo
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, China
| | - Kai Tian
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, China
| | - Mengyuan Jiang
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, China
| | - Yong Xiong
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, China
| | - Ya Lu
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, China
| | - Yukui Li
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, China
| | - Haibo Yu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiangzhong Huang
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, China
| |
Collapse
|
6
|
Cui X, Qin B, Xia C, Li H, Li Z, Li Z, Nasir A, Bai Q. Transcriptome-wide analysis of trigeminal ganglion and subnucleus caudalis in a mouse model of chronic constriction injury-induced trigeminal neuralgia. Front Pharmacol 2023; 14:1230633. [PMID: 37841912 PMCID: PMC10568182 DOI: 10.3389/fphar.2023.1230633] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 09/05/2023] [Indexed: 10/17/2023] Open
Abstract
Trigeminal neuropathic pain (TNP) induces mechanical allodynia and hyperalgesia, which are known to alter gene expression in injured dorsal root ganglia primary sensory neurons. Non-coding RNAs (ncRNAs) have been linked to TNP. However, the functional mechanism underlying TNP and the expression profile of ncRNAs in the trigeminal ganglion (TG) and trigeminal subnucleus caudalis (Sp5C) are still unknown. We used RNA sequencing and bioinformatics analysis to examine the TG and Sp5C transcriptomes after infraorbital nerve chronic constrictive injury (IoN-CCI). The robust changes in the gene expression of lncRNAs, circRNAs, and mRNAs were observed within the TG and Sp5C from mice that underwent IoN-CCI and the sham-operated mice (day 7). In total, 111,003 lncRNAs were found in TG and 107,157 in Sp5C; 369 lncRNAs were differentially expressed in TG, and 279 lncRNAs were differentially expressed in Sp5C. In addition, 13,216 circRNAs in TG and 21,658 circRNAs in Sp5C were identified, with 1,155 circRNAs and 2,097 circRNAs differentially expressed in TG and Sp5C, respectively. Furthermore, 5,205 DE mRNAs in TG and 3,934 DE mRNAs in Sp5C were differentially expressed between IoN-CCI and sham groups. The study revealed a high correlation of pain-related differentially expressed genes in the TG and Sp5C to anxiety, depression, inflammation, neuroinflammation, and apoptosis. Gene Ontology analysis revealed that binding-related molecular functions and membrane-related cell components were significantly enriched. Kyoto Encyclopedia of Genes and Genomes analysis shows the most significant enrichments in neurogenesis, nervous system development, neuron differentiation, adrenergic signaling, cAMP signaling, MAPK signaling, and PI3K-Akt signaling pathways. Furthermore, protein-protein interaction analysis showed that hub genes were implicated in neuropeptide signaling pathways. Functional analysis of DE ncRNA-targeting genes was mostly enriched with nociception-related signaling pathways underpinning TNP. Our findings suggest that ncRNAs are involved in TNP development and open new avenues for research and treatment.
Collapse
Affiliation(s)
- Xiaona Cui
- Medical Research Center, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Anesthesiology, International Peace Maternity & Child Health Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | - Bo Qin
- Translational Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Chaoyun Xia
- Medical Research Center, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Hong Li
- Medical Research Center, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhiye Li
- Department of Pharmacy, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhisong Li
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Abdul Nasir
- Medical Research Center, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Qian Bai
- Medical Research Center, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
7
|
Delgado‐Lezama R, Bravo‐Hernández M, Franco‐Enzástiga Ú, De la Luz‐Cuellar YE, Alvarado‐Cervantes NS, Raya‐Tafolla G, Martínez‐Zaldivar LA, Vargas‐Parada A, Rodríguez‐Palma EJ, Vidal‐Cantú GC, Guzmán‐Priego CG, Torres‐López JE, Murbartián J, Felix R, Granados‐Soto V. The role of spinal cord extrasynaptic α 5 GABA A receptors in chronic pain. Physiol Rep 2021; 9:e14984. [PMID: 34409771 PMCID: PMC8374381 DOI: 10.14814/phy2.14984] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 06/25/2021] [Accepted: 06/29/2021] [Indexed: 11/24/2022] Open
Abstract
Chronic pain is an incapacitating condition that affects a large population worldwide. Until now, there is no drug treatment to relieve it. The impairment of GABAergic inhibition mediated by GABAA receptors (GABAA R) is considered a relevant factor in mediating chronic pain. Even though both synaptic and extrasynaptic GABAA inhibition are present in neurons that process nociceptive information, the latter is not considered relevant as a target for the development of pain treatments. In particular, the extrasynaptic α5 GABAA Rs are expressed in laminae I-II of the spinal cord neurons, sensory neurons, and motoneurons. In this review, we discuss evidence showing that blockade of the extrasynaptic α5 GABAA Rs reduces mechanical allodynia in various models of chronic pain and restores the associated loss of rate-dependent depression of the Hoffmann reflex. Furthermore, in healthy animals, extrasynaptic α5 GABAA R blockade induces both allodynia and hyperalgesia. These results indicate that this receptor may have an antinociceptive and pronociceptive role in healthy and chronic pain-affected animals, respectively. We propose a hypothesis to explain the relevant role of the extrasynaptic α5 GABAA Rs in the processing of nociceptive information. The data discussed here strongly suggest that this receptor could be a valid pharmacological target to treat chronic pain states.
Collapse
Affiliation(s)
| | - Mariana Bravo‐Hernández
- Neuroregeneration LaboratoryDepartment of AnesthesiologyUniversity of CaliforniaSan Diego, La JollaCAUSA
| | | | | | | | | | | | | | | | | | - Crystell G. Guzmán‐Priego
- Mechanisms of Pain LaboratoryDivisión Académica de Ciencias de la SaludUniversidad Juárez Autónoma de Tabasco, VillahermosaTabascoMexico
| | - Jorge E. Torres‐López
- Mechanisms of Pain LaboratoryDivisión Académica de Ciencias de la SaludUniversidad Juárez Autónoma de Tabasco, VillahermosaTabascoMexico
- Hospital Regional de Alta Especialidad “Dr. Juan Graham Casasús”, VillahermosaTabascoMexico
| | | | - Ricardo Felix
- Departamento de Biología CelularCinvestavMexico CityMexico
| | - Vinicio Granados‐Soto
- Neurobiology of Pain LaboratoryDepartamento de FarmacobiologíaCinvestavMexico CityMexico
| |
Collapse
|
8
|
Drexler B, Grenz J, Grasshoff C, Antkowiak B. Allopregnanolone Enhances GABAergic Inhibition in Spinal Motor Networks. Int J Mol Sci 2020; 21:ijms21197399. [PMID: 33036451 PMCID: PMC7582554 DOI: 10.3390/ijms21197399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 09/28/2020] [Accepted: 10/01/2020] [Indexed: 11/16/2022] Open
Abstract
The neurosteroid allopregnanolone (ALLO) causes unconsciousness by allosteric modulation of γ-aminobutyric acid type A (GABAA) receptors, but its actions on the spinal motor networks are unknown. We are therefore testing the hypothesis that ALLO attenuates the action potential firing of spinal interneurons and motoneurons predominantly via enhancing tonic, but not synaptic GABAergic inhibition. We used video microscopy to assess motoneuron-evoked muscle activity in organotypic slice cultures prepared from the spinal cord and muscle tissue. Furthermore, we monitored GABAA receptor-mediated currents by performing whole-cell voltage-clamp recordings. We found that ALLO (100 nM) reduced the action potential firing of spinal interneurons by 27% and that of α-motoneurons by 33%. The inhibitory effects of the combination of propofol (1 µM) and ALLO on motoneuron-induced muscle contractions were additive. Moreover, ALLO evoked a tonic, GABAA receptor-mediated current (amplitude: 41 pA), without increasing phasic GABAergic transmission. Since we previously showed that at a clinically relevant concentration of 1 µM propofol enhanced phasic, but not tonic GABAergic inhibition, we conclude that ALLO and propofol target distinct subpopulations of GABAA receptors. These findings provide first evidence that the combined application of ALLO and propofol may help to reduce intraoperative movements and undesired side effects that are frequently observed under total intravenous anesthesia.
Collapse
|
9
|
Tudeau L, Acuña MA, Albisetti GW, Neumann E, Ralvenius WT, Scheurer L, Poe M, Cook JM, Johannssen HC, Zeilhofer HU. Mice lacking spinal α2GABA A receptors: Altered GABAergic neurotransmission, diminished GABAergic antihyperalgesia, and potential compensatory mechanisms preventing a hyperalgesic phenotype. Brain Res 2020; 1741:146889. [PMID: 32439345 DOI: 10.1016/j.brainres.2020.146889] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/24/2020] [Accepted: 05/12/2020] [Indexed: 12/11/2022]
Abstract
Diminished synaptic inhibition in the superficial spinal dorsal horn contributes to exaggerated pain responses that accompany peripheral inflammation and neuropathy. α2GABAA receptors (α2GABAAR) constitute the most abundant GABAAR subtype at this site and are the targets of recently identified antihyperalgesic compounds. Surprisingly, hoxb8-α2-/- mice that lack α2GABAAR from the spinal cord and peripheral sensory neurons exhibit unaltered sensitivity to acute painful stimuli and develop normal inflammatory and neuropathic hyperalgesia. Here, we provide a comprehensive analysis of GABAergic neurotransmission, of behavioral phenotypes and of possible compensatory mechanisms in hoxb8-α2-/- mice. Our results confirm that hoxb8-α2-/- mice show significantly diminished GABAergic inhibitory postsynaptic currents (IPSCs) in the superficial dorsal horn but no hyperalgesic phenotype. We also confirm that the potentiation of dorsal horn GABAergic IPSCs by the α2-preferring GABAAR modulator HZ-166 is reduced in hoxb8-α2-/- mice and that hoxb8-α2-/- mice are resistant to the analgesic effects of HZ-166. Tonic GABAergic currents, glycinergic IPSCs, and sensory afferent-evoked EPSCs did not show significant changes in hoxb8-α2-/- mice rendering a compensatory up-regulation of other GABAAR subtypes or of glycine receptors unlikely. Although expression of serotonin and of the serotonin producing enzyme tryptophan hydroxylase (TPH2) was significantly increased in the dorsal horn of hoxb8-α2-/- mice, ablation of serotonergic terminals from the lumbar spinal cord failed to unmask a nociceptive phenotype. Our results are consistent with an important contribution of α2GABAAR to spinal nociceptive control but their ablation early in development appears to activate yet-to-be identified compensatory mechanisms that protect hoxb8-α2-/- mice from hyperalgesia.
Collapse
Affiliation(s)
- Laetitia Tudeau
- Institute of Pharmacology and Toxicology, University of Zurich, CH-8057 Zurich, Switzerland
| | - Mario A Acuña
- Institute of Pharmacology and Toxicology, University of Zurich, CH-8057 Zurich, Switzerland
| | - Gioele W Albisetti
- Institute of Pharmacology and Toxicology, University of Zurich, CH-8057 Zurich, Switzerland
| | - Elena Neumann
- Institute of Pharmacology and Toxicology, University of Zurich, CH-8057 Zurich, Switzerland
| | - William T Ralvenius
- Institute of Pharmacology and Toxicology, University of Zurich, CH-8057 Zurich, Switzerland
| | - Louis Scheurer
- Institute of Pharmacology and Toxicology, University of Zurich, CH-8057 Zurich, Switzerland
| | - Michael Poe
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, USA
| | - James M Cook
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, USA
| | - Helge C Johannssen
- Institute of Pharmacology and Toxicology, University of Zurich, CH-8057 Zurich, Switzerland
| | - Hanns Ulrich Zeilhofer
- Institute of Pharmacology and Toxicology, University of Zurich, CH-8057 Zurich, Switzerland; Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich, CH-8093 Zurich, Switzerland.
| |
Collapse
|
10
|
Freitag FB, Ahemaiti A, Jakobsson JET, Weman HM, Lagerström MC. Spinal gastrin releasing peptide receptor expressing interneurons are controlled by local phasic and tonic inhibition. Sci Rep 2019; 9:16573. [PMID: 31719558 PMCID: PMC6851355 DOI: 10.1038/s41598-019-52642-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 10/18/2019] [Indexed: 11/09/2022] Open
Abstract
Dorsal horn gastrin-releasing peptide receptor (GRPR) neurons have a central role in itch transmission. Itch signaling has been suggested to be controlled by an inhibitory network in the spinal dorsal horn, as increased scratching behavior can be induced by pharmacological disinhibition or ablation of inhibitory interneurons, but the direct influence of the inhibitory tone on the GRPR neurons in the itch pathway have not been explored. Here we have investigated spinal GRPR neurons through in vitro and bioinformatical analysis. Electrophysiological recordings revealed that GRPR neurons receive local spontaneous excitatory inputs transmitted by glutamate and inhibitory inputs by glycine and GABA, which were transmitted either by separate glycinergic and GABAergic synapses or by glycine and GABA co-releasing synapses. Additionally, all GRPR neurons received both glycine- and GABA-induced tonic currents. The findings show a complex inhibitory network, composed of synaptic and tonic currents that gates the excitability of GRPR neurons, which provides direct evidence for the existence of an inhibitory tone controlling spontaneous discharge in an itch-related neuronal network in the spinal cord. Finally, calcium imaging revealed increased levels of neuronal activity in Grpr-Cre neurons upon application of somatostatin, which provides direct in vitro evidence for disinhibition of these dorsal horn interneurons.
Collapse
Affiliation(s)
- Fabio B Freitag
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | | | | | - Hannah M Weman
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | | |
Collapse
|
11
|
Orser BA. Musings from an Unlikely Clinician-Scientist: 2018 American Society of Anesthesiologists Excellence in Research Award. Anesthesiology 2019; 131:795-800. [PMID: 31335546 DOI: 10.1097/aln.0000000000002881] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
This article, which stems from the 2018 American Society of Anesthesiologists Excellence in Research Award Lecture, aims to encourage young investigators, offer advice, and share several early life experiences that have influenced the author's career as an anesthesiologist and clinician-scientist. The article also describes key discoveries that have increased understanding of the role of γ-aminobutyric acid type A (GABAA) receptors in health and disease. The author's research team identified the unique pharmacologic properties of extrasynaptic GABAA receptors and their role in the anesthetic state. The author's team also showed that extrasynaptic GABAA receptors expressed in neuronal and nonneuronal cells contribute to a variety of disorders and are novel drug targets. The author's overarching message is that young investigators must create their own unique narratives, train hard, be relentless in their studies and-most important-enjoy the journey of discovering new truths that will ultimately benefit patients.
Collapse
Affiliation(s)
- Beverley A Orser
- From the Department of Anesthesia and the Department of Physiology, University of Toronto, Toronto, Canada; and the Department of Anesthesia, Sunnybrook Health Sciences Centre, Toronto, Canada
| |
Collapse
|
12
|
Positive allosteric modulators of nonbenzodiazepine γ-aminobutyric acidA receptor subtypes for the treatment of chronic pain. Pain 2019; 160:198-209. [PMID: 30204648 DOI: 10.1097/j.pain.0000000000001392] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Chronic neuropathic pain may be caused, in part, by loss of inhibition in spinal pain processing pathways due to attenuation of local GABAergic tone. Nociception and nocifensive behaviors are reduced after enhancement of tonically activated extrasynaptic GABAAR-mediated currents by agonist ligands for δ subunit-containing GABAARs. However, typical ligands that target δ subunit-containing GABAARs are limited due to sedative effects at higher doses. We used the spinal nerve ligation (SNL) and gp120 models of experimental neuropathic pain to evaluate compound 2-261, a nonbenzodiazepine site positive allosteric modulator of α4β3δ GABAARs optimized to be nonsedative by selective activation of β2/3-subunit-containing GABAARs over receptor subtypes incorporating β1 subunits. Similar levels of 2-261 were detected in the brain and plasma after intraperitoneal administration. Although systemic 2-261 did not alter sensory thresholds in sham-operated animals, it significantly reversed SNL-induced thermal and tactile hypersensitivity in a GABAAR-dependent fashion. Intrathecal 2-261 produced conditioned place preference and elevated dopamine levels in the nucleus accumbens of nerve-injured, but not sham-operated, rats. In addition, systemic pretreatment with 2-261 blocked conditioned place preference from spinal clonidine in SNL rats. Moreover, 2-261 reversed thermal hyperalgesia and partially reversed tactile allodynia in the gp120 model of HIV-related neuropathic pain. The effects of 2-261 likely required interaction with the α4β3δ GABAAR because 2-301, a close structural analog of 2-261 with limited extrasynaptic receptor efficacy, was not active. Thus, 2-261 may produce pain relief with diminished side effects through selective modulation of β2/3-subunit-containing extrasynaptic GABAARs.
Collapse
|
13
|
Bravo-Caparrós I, Perazzoli G, Yeste S, Cikes D, Baeyens JM, Cobos EJ, Nieto FR. Sigma-1 Receptor Inhibition Reduces Neuropathic Pain Induced by Partial Sciatic Nerve Transection in Mice by Opioid-Dependent and -Independent Mechanisms. Front Pharmacol 2019; 10:613. [PMID: 31263413 PMCID: PMC6584826 DOI: 10.3389/fphar.2019.00613] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 05/15/2019] [Indexed: 12/12/2022] Open
Abstract
Sigma-1 (σ1) receptor antagonists are promising tools for neuropathic pain treatment, but it is unknown whether σ1 receptor inhibition ameliorates the neuropathic signs induced by nerve transection, in which the pathophysiological mechanisms and response to drug treatment differ from other neuropathic pain models. In addition, σ1 antagonism ameliorates inflammatory pain through modulation of the endogenous opioid system, but it is unknown whether this occurs during neuropathic pain. We investigated the effect of σ1 inhibition on the painful hypersensitivity associated with the spared nerve injury (SNI) model in mice. Wild-type (WT) mice developed prominent cold (acetone test), mechanical (von Frey test), and heat hypersensitivity (Hargreaves test) after SNI. σ1 receptor knockout (ခσ1-KO) mice did not develop cold allodynia and showed significantly less mechanical allodynia, although they developed heat hyperalgesia after SNI. The systemic acute administration of the selective σ1 receptor antagonist S1RA attenuated all three types of SNI-induced hypersensitivity in WT mice. These ameliorative effects of S1RA were reversed by the administration of the σ1 agonist PRE-084, and were absent in σ1-KO mice, indicating the selectivity of S1RA-induced effects. The opioid antagonist naloxone and its peripherally restricted analog naloxone methiodide prevented S1RA-induced effects in mechanical and heat hypersensitivity, but not in cold allodynia, indicating that opioid-dependent and -independent mechanisms are involved in the effects of this σ1 antagonist. The repeated administration of S1RA twice a day during 10 days reduced SNI-induced cold, mechanical, and heat hypersensitivity without inducing analgesic tolerance during treatment. These effects were observed up to 12 h after the last administration, when S1RA was undetectable in plasma or brain, indicating long-lasting pharmacodynamic effects. These data suggest that σ1 antagonism may have therapeutic value for the treatment of neuropathic pain induced by the transection of peripheral nerves.
Collapse
Affiliation(s)
- Inmaculada Bravo-Caparrós
- Department of Pharmacology, School of Medicine, University of Granada, Granada, Spain.,Institute of Neuroscience, Biomedical Research Center, University of Granada, Granada, Spain.,Biosanitary Research Institute, University Hospital Complex of Granada, Granada, Spain
| | - Gloria Perazzoli
- Biosanitary Research Institute, University Hospital Complex of Granada, Granada, Spain.,Department of Human Anatomy and Embryology, School of Medicine, University of Granada, Granada, Spain
| | - Sandra Yeste
- Drug Discovery and Preclinical Development, Esteve, Barcelona, Spain
| | - Domagoj Cikes
- Institute of Molecular Biotechnology, Vienna, Austria
| | - José Manuel Baeyens
- Department of Pharmacology, School of Medicine, University of Granada, Granada, Spain.,Institute of Neuroscience, Biomedical Research Center, University of Granada, Granada, Spain.,Biosanitary Research Institute, University Hospital Complex of Granada, Granada, Spain
| | - Enrique José Cobos
- Department of Pharmacology, School of Medicine, University of Granada, Granada, Spain.,Institute of Neuroscience, Biomedical Research Center, University of Granada, Granada, Spain.,Biosanitary Research Institute, University Hospital Complex of Granada, Granada, Spain.,Teófilo Hernando Institute for Drug Discovery, Madrid, Spain
| | - Francisco Rafael Nieto
- Department of Pharmacology, School of Medicine, University of Granada, Granada, Spain.,Institute of Neuroscience, Biomedical Research Center, University of Granada, Granada, Spain.,Biosanitary Research Institute, University Hospital Complex of Granada, Granada, Spain
| |
Collapse
|
14
|
Chen X, Li Z, Zhang B, Hu R, Li J, Feng M, Yao W, Zhang C, Wan L, Zhang Y. Alleviation of Mechanical Allodynia by 14,15-Epoxyeicosatrienoic Acid in a Central Poststroke Pain Model: Possible Role of Allopregnanolone and δ-Subunit-Containing Gamma-Aminobutyric Acid A Receptors. THE JOURNAL OF PAIN 2019; 20:577-591. [DOI: 10.1016/j.jpain.2018.11.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 11/05/2018] [Accepted: 11/13/2018] [Indexed: 01/17/2023]
|
15
|
Antkowiak B, Rammes G. GABA(A) receptor-targeted drug development -New perspectives in perioperative anesthesia. Expert Opin Drug Discov 2019; 14:683-699. [DOI: 10.1080/17460441.2019.1599356] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Bernd Antkowiak
- Department of Anesthesiology and Intensive Care, Experimental Anesthesiology Section, Eberhard-Karls-University,
Tübingen, Germany
- Department of Anaesthesiology and Intensive Care, Experimental Anaesthesiology Section, Werner Reichardt Center for Integrative Neuroscience, Tübingen,
Germany
| | - Gerhard Rammes
- University Hospital rechts der Isar, Department of Anesthesiology, München,
Germany
| |
Collapse
|
16
|
Yu J, Wang DS, Bonin RP, Penna A, Alavian-Ghavanini A, Zurek AA, Rauw G, Baker GB, Orser BA. Gabapentin increases expression of δ subunit-containing GABA A receptors. EBioMedicine 2019; 42:203-213. [PMID: 30878595 PMCID: PMC6491385 DOI: 10.1016/j.ebiom.2019.03.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 02/22/2019] [Accepted: 03/04/2019] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Gabapentin is a structural analog of the inhibitory neurotransmitter γ-aminobutyric acid (GABA). Its anticonvulsant, analgesic and anxiolytic properties suggest that it increases GABAergic inhibition; however, the molecular basis for these effects is unknown as gabapentin does not directly modify GABA type A (GABAA) receptor function, nor does it modify synaptic inhibition. Here, we postulated that gabapentin increases expression of δ subunit-containing GABAA (δGABAA) receptors that generate a tonic inhibitory conductance in multiple brain regions including the cerebellum and hippocampus. METHODS Cell-surface biotinylation, Western blotting, electrophysiologic recordings, behavioral assays, high-performance liquid chromatography and gas chromatography-mass spectrometry studies were performed using mouse models. FINDINGS Gabapentin enhanced expression of δGABAA receptors and increased a tonic inhibitory conductance in neurons. This increased expression likely contributes to GABAergic effects as gabapentin caused ataxia and anxiolysis in wild-type mice but not δ subunit null-mutant mice. In contrast, the antinociceptive properties of gabapentin were observed in both genotypes. Levels of GABAA receptor agonists and neurosteroids in the brain were not altered by gabapentin. INTERPRETATION These results provide compelling evidence to account for the GABAergic properties of gabapentin. Since reduced expression of δGABAA receptor occurs in several disorders, gabapentin may have much broader therapeutic applications than is currently recognized. FUND: Supported by a Foundation Grant (FDN-154312) from the Canadian Institutes of Health Research (to B.A.O.); a NSERC Discovery Grant (RGPIN-2016-05538), a Canada Research Chair in Sensory Plasticity and Reconsolidation, and funding from the University of Toronto Centre for the Study of Pain (to R.P.B.).
Collapse
Affiliation(s)
- Jieying Yu
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Dian-Shi Wang
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Robert P Bonin
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Antonello Penna
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Anesthesia and Centro de Investigación Clínica Avanzada, Universidad de Chile, Santiago, 838 0456, Chile
| | | | - Agnieszka A Zurek
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Gail Rauw
- Neurochemical Research Unit, Department of Psychiatry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2G3, Canada
| | - Glen B Baker
- Neurochemical Research Unit, Department of Psychiatry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2G3, Canada
| | - Beverley A Orser
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Anesthesia, University of Toronto, Toronto, ON M5G 1E2, Canada; Department of Anesthesia, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada.
| |
Collapse
|
17
|
Xie YF, Wang J, Bonin RP. Optogenetic exploration and modulation of pain processing. Exp Neurol 2018; 306:117-121. [PMID: 29729250 DOI: 10.1016/j.expneurol.2018.05.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 04/21/2018] [Accepted: 05/01/2018] [Indexed: 12/26/2022]
Abstract
Intractable pain is the single most common cause of disability, affecting more than 20% of the population world-wide. There is accordingly a global effort to decipher how changes in nociceptive processing in the peripheral and central nervous systems contribute to the onset and maintenance of chronic pain. The past several years have brought rapid progress in the adaptation of optogenetic approaches to study and manipulate the activity of sensory afferents and spinal cord neurons in freely behaving animals, and to investigate cortical processing and modulation of pain responses. This review discusses methodological advances that underlie this recent progress, and discusses practical considerations for the optogenetic modulation of nociceptive sensory processing.
Collapse
Affiliation(s)
- Yu-Feng Xie
- Leslie Dan Faculty of Pharmacy, University of Toronto, Canada.
| | - Jing Wang
- The Department of Osteoporosis, the People's Hospital of Baoan District, Shenzhen, Guangdong Province, China
| | - Robert P Bonin
- Leslie Dan Faculty of Pharmacy, University of Toronto, Canada.
| |
Collapse
|
18
|
Faroni A, Melfi S, Castelnovo LF, Bonalume V, Colleoni D, Magni P, Araúzo-Bravo MJ, Reinbold R, Magnaghi V. GABA-B1 Receptor-Null Schwann Cells Exhibit Compromised In Vitro Myelination. Mol Neurobiol 2018; 56:1461-1474. [PMID: 29948947 DOI: 10.1007/s12035-018-1158-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 05/28/2018] [Indexed: 12/11/2022]
Abstract
GABA-B receptors are important for Schwann cell (SC) commitment to a non-myelinating phenotype during development. However, the P0-GABA-B1fl/fl conditional knockout mice, lacking the GABA-B1 receptor specifically in SCs, also presented axon modifications, suggesting SC non-autonomous effects through the neuronal compartment. In this in vitro study, we evaluated whether the specific deletion of the GABA-B1 receptor in SCs may induce autonomous or non-autonomous cross-changes in sensory dorsal root ganglia (DRG) neurons. To this end, we performed an in vitro biomolecular and transcriptomic analysis of SC and DRG neuron primary cultures from P0-GABA-B1fl/fl mice. We found that cells from conditional P0-GABA-B1fl/fl mice exhibited proliferative, migratory and myelinating alterations. Moreover, we found transcriptomic changes in novel molecules that are involved in peripheral neuron-SC interaction.
Collapse
Affiliation(s)
- Alessandro Faroni
- Blond McIndoe Laboratories, Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Simona Melfi
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via G. Balzaretti 9, 20133, Milan, Italy
| | - Luca Franco Castelnovo
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via G. Balzaretti 9, 20133, Milan, Italy
| | - Veronica Bonalume
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via G. Balzaretti 9, 20133, Milan, Italy
| | - Deborah Colleoni
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via G. Balzaretti 9, 20133, Milan, Italy
| | - Paolo Magni
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via G. Balzaretti 9, 20133, Milan, Italy
| | - Marcos J Araúzo-Bravo
- Computational Biology and Systems Biomedicine, Biodonostia Health Research Institute, San Sebastián, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Rolland Reinbold
- Institute of Biomedical Technologies, National Research Council, Milan, Italy
| | - Valerio Magnaghi
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via G. Balzaretti 9, 20133, Milan, Italy.
| |
Collapse
|
19
|
Yakoub K, Jung S, Sattler C, Damerow H, Weber J, Kretzschmann A, Cankaya AS, Piel M, Rösch F, Haugaard AS, Frølund B, Schirmeister T, Lüddens H. Structure–Function Evaluation of Imidazopyridine Derivatives Selective for δ-Subunit-Containing γ-Aminobutyric Acid Type A (GABAA) Receptors. J Med Chem 2018; 61:1951-1968. [DOI: 10.1021/acs.jmedchem.7b01484] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Kirsten Yakoub
- Department of Psychiatry and Psychotherapy, Faculty of Health and Medical Sciences, University Medical Center Mainz, D-55131 Mainz, Germany
| | | | - Christian Sattler
- Department of Psychiatry and Psychotherapy, Faculty of Health and Medical Sciences, University Medical Center Mainz, D-55131 Mainz, Germany
| | | | | | | | | | | | | | - Anne S. Haugaard
- Department of Drug Design and Pharmacology, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Bente Frølund
- Department of Drug Design and Pharmacology, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | | | - Hartmut Lüddens
- Department of Psychiatry and Psychotherapy, Faculty of Health and Medical Sciences, University Medical Center Mainz, D-55131 Mainz, Germany
| |
Collapse
|
20
|
Liu JP, He YT, Duan XL, Suo ZW, Yang X, Hu XD. Enhanced Activities of δ Subunit-containing GABAA Receptors Blocked Spinal Long-term Potentiation and Attenuated Formalin-induced Spontaneous Pain. Neuroscience 2018; 371:155-165. [DOI: 10.1016/j.neuroscience.2017.12.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 11/11/2017] [Accepted: 12/02/2017] [Indexed: 01/22/2023]
|
21
|
Gradwell MA, Boyle KA, Callister RJ, Hughes DI, Graham BA. Heteromeric α/β glycine receptors regulate excitability in parvalbumin-expressing dorsal horn neurons through phasic and tonic glycinergic inhibition. J Physiol 2017; 595:7185-7202. [PMID: 28905384 PMCID: PMC5709328 DOI: 10.1113/jp274926] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Accepted: 09/01/2017] [Indexed: 11/21/2022] Open
Abstract
Key points Spinal parvalbumin‐expressing interneurons have been identified as a critical source of inhibition to regulate sensory thresholds by gating mechanical inputs in the dorsal horn. This study assessed the inhibitory regulation of the parvalbumin‐expressing interneurons, showing that synaptic and tonic glycinergic currents dominate, blocking neuronal or glial glycine transporters enhances tonic glycinergic currents, and these manipulations reduce excitability. Synaptically released glycine also enhanced tonic glycinergic currents and resulted in decreased parvalbumin‐expressing interneuron excitability. Analysis of the glycine receptor properties mediating inhibition of parvalbumin neurons, as well as single channel recordings, indicates that heteromeric α/β subunit‐containing receptors underlie both synaptic and tonic glycinergic currents. Our findings indicate that glycinergic inhibition provides critical control of excitability in parvalbumin‐expressing interneurons in the dorsal horn and represents a pharmacological target to manipulate spinal sensory processing.
Abstract The dorsal horn (DH) of the spinal cord is an important site for modality‐specific processing of sensory information and is essential for contextually relevant sensory experience. Parvalbumin‐expressing inhibitory interneurons (PV+ INs) have functional properties and connectivity that enables them to segregate tactile and nociceptive information. Here we examine inhibitory drive to PV+ INs using targeted patch‐clamp recording in spinal cord slices from adult transgenic mice that express enhanced green fluorescent protein in PV+ INs. Analysis of inhibitory synaptic currents showed glycinergic transmission is the dominant form of phasic inhibition to PV+ INs. In addition, PV+ INs expressed robust glycine‐mediated tonic currents; however, we found no evidence for tonic GABAergic currents. Manipulation of extracellular glycine by blocking either, or both, the glial and neuronal glycine transporters markedly decreased PV+ IN excitability, as assessed by action potential discharge. This decreased excitability was replicated when tonic glycinergic currents were increased by electrically activating glycinergic synapses. Finally, we show that both phasic and tonic forms of glycinergic inhibition are mediated by heteromeric α/β glycine receptors. This differs from GABAA receptors in the dorsal horn, where different receptor stoichiometries underlie phasic and tonic inhibition. Together these data suggest both phasic and tonic glycinergic inhibition regulate the output of PV+ INs and contribute to the processing and segregation of tactile and nociceptive information. The shared stoichiometry for phasic and tonic glycine receptors suggests pharmacology is unlikely to be able to selectively target each form of inhibition in PV+ INs. Spinal parvalbumin‐expressing interneurons have been identified as a critical source of inhibition to regulate sensory thresholds by gating mechanical inputs in the dorsal horn. This study assessed the inhibitory regulation of the parvalbumin‐expressing interneurons, showing that synaptic and tonic glycinergic currents dominate, blocking neuronal or glial glycine transporters enhances tonic glycinergic currents, and these manipulations reduce excitability. Synaptically released glycine also enhanced tonic glycinergic currents and resulted in decreased parvalbumin‐expressing interneuron excitability. Analysis of the glycine receptor properties mediating inhibition of parvalbumin neurons, as well as single channel recordings, indicates that heteromeric α/β subunit‐containing receptors underlie both synaptic and tonic glycinergic currents. Our findings indicate that glycinergic inhibition provides critical control of excitability in parvalbumin‐expressing interneurons in the dorsal horn and represents a pharmacological target to manipulate spinal sensory processing.
Collapse
Affiliation(s)
- M A Gradwell
- School of Biomedical Sciences and Pharmacy, Faculty of Health, University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute (HMRI), New Lambton Heights, NSW, Australia
| | - K A Boyle
- Institute of Neuroscience Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - R J Callister
- School of Biomedical Sciences and Pharmacy, Faculty of Health, University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute (HMRI), New Lambton Heights, NSW, Australia
| | - D I Hughes
- Institute of Neuroscience Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - B A Graham
- School of Biomedical Sciences and Pharmacy, Faculty of Health, University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute (HMRI), New Lambton Heights, NSW, Australia
| |
Collapse
|
22
|
Noradrenaline, Serotonin, GABA, and Glycine in Cerebrospinal Fluid during Labor Pain: A Cross-Sectional Prospective Study. Pain Res Manag 2017; 2017:2752658. [PMID: 28701860 PMCID: PMC5494104 DOI: 10.1155/2017/2752658] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 05/04/2017] [Accepted: 05/24/2017] [Indexed: 11/17/2022]
Abstract
Background and Aims The inhibitory pathways that play a role in spinal modulation include local interneurons and descending control. Clinical data regarding the role of these pathways in acute pain is lacking. Accordingly, the aim of this study was to evaluate cerebrospinal fluid (CSF) levels of noradrenaline, serotonin, gamma-aminobutyric acid (GABA), and glycine in parturients with labor pain compared to those without labor pain. Methods One hundred term uncomplicated pregnant women receiving spinal anesthesia for cesarean section were enrolled in this prospective cross-sectional study. CSF noradrenaline, serotonin, GABA, and glycine levels were analyzed by enzyme-linked immunosorbent assay. Labor pain score was assessed by numerical rating scale. Results Median CSF serotonin concentration in parturients with labor pain was significantly lower than in those without pain (p < 0.001). Median CSF glycine level in the labor pain group was significantly higher than in the control group (p < 0.001). There were no significant differences in median CSF level of noradrenaline or GABA between parturients with and without labor pain. Subsequent analysis showed labor pain scores to be negatively correlated with CSF serotonin (r = −0.217, p = 0.04) but positively correlated with CSF glycine (r = 0.415, p < 0.001). Conclusion CSF serotonin and glycine were significantly correlated with labor pain scores. These findings suggest that the serotonergic and glycinergic systems may play a role in spinal modulation of visceral pain.
Collapse
|
23
|
Xue M, Liu J, Yang Y, Suo Z, Yang X, Hu X. Inhibition of α5 subunit-containing GABAAreceptors facilitated spinal nociceptive transmission and plasticity. Eur J Pain 2017; 21:1061-1071. [DOI: 10.1002/ejp.1009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2016] [Indexed: 01/09/2023]
Affiliation(s)
- M. Xue
- Department of Molecular Pharmacology, School of Pharmacy; Lanzhou University; China
| | - J.P. Liu
- Department of Molecular Pharmacology, School of Pharmacy; Lanzhou University; China
| | - Y.H. Yang
- Department of Molecular Pharmacology, School of Pharmacy; Lanzhou University; China
| | - Z.W. Suo
- Department of Molecular Pharmacology, School of Pharmacy; Lanzhou University; China
| | - X. Yang
- Department of Molecular Pharmacology, School of Pharmacy; Lanzhou University; China
| | - X.D. Hu
- Department of Molecular Pharmacology, School of Pharmacy; Lanzhou University; China
| |
Collapse
|
24
|
Abstract
There is a critical need for new analgesics acting through new mechanisms of action, which could increase the efficacy respect to existing therapies and/or reduce their unwanted effects. Current preclinical evidence supports the modulatory role of the sigma-1 receptor (σ1R) in nociception, mainly based on the pain-attenuated phenotype of σ1R knockout mice and on the antinociceptive effect exerted by σ1R antagonists on pain of different etiology, very consistently in neuropathic pain, but also in nociceptive, inflammatory, and visceral pain. σ1R is highly expressed in different pain areas of the CNS and the periphery, particularly dorsal root ganglia (DRG), and interacts and modulates the functionality of different receptors and ion channels. Accordingly, antinociceptive effects of σ1R antagonists both acting alone and in combination with other analgesics have been reported at both central and peripheral sites. At the central level, behavioral, electrophysiological, neurochemical, and molecular findings support a role for σ1R antagonists in inhibiting augmented excitability secondary to sustained afferent input. Moreover, the involvement of σ1R in mechanisms regulating pain at the periphery has been recently confirmed. Unlike opioids, σ1R antagonists do not modify normal sensory mechanical and thermal sensitivity thresholds but they exert antihypersensitivity effects (antihyperalgesic and antiallodynic) in sensitizing conditions, enabling the reversal of nociceptive thresholds back to normal values. These are distinctive features allowing σ1R antagonists to exert a modulatory effect specifically in pathophysiological conditions such as chronic pain.
Collapse
Affiliation(s)
- Manuel Merlos
- Drug Discovery and Preclinical Development, ESTEVE, Barcelona, Spain
| | - Luz Romero
- Drug Discovery and Preclinical Development, ESTEVE, Barcelona, Spain
| | - Daniel Zamanillo
- Drug Discovery and Preclinical Development, ESTEVE, Barcelona, Spain
| | | | - José Miguel Vela
- Drug Discovery and Preclinical Development, ESTEVE, Barcelona, Spain.
- Parc Científic de Barcelona, Baldiri Reixac 4-8, 08028, Barcelona, Spain.
| |
Collapse
|
25
|
Sánchez-Fernández C, Entrena JM, Baeyens JM, Cobos EJ. Sigma-1 Receptor Antagonists: A New Class of Neuromodulatory Analgesics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 964:109-132. [PMID: 28315268 DOI: 10.1007/978-3-319-50174-1_9] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The sigma-1 receptor is a unique ligand-operated chaperone present in key areas for pain control, in both the peripheral and central nervous system. Sigma-1 receptors interact with a variety of protein targets to modify their function. These targets include several G-protein-coupled receptors such as the μ-opioid receptor, and ion channels such as the N-methyl-D-aspartate receptor (NMDAR). Sigma-1 antagonists modify the chaperoning activity of sigma-1 receptor by increasing opioid signaling and decreasing NMDAR responses, consequently enhancing opioid antinociception and decreasing the sensory hypersensitivity that characterizes pathological pain conditions. However, the participation in pain relief of other protein partners of sigma-1 receptors in addition to opioid receptors and NMDARs cannot be ruled out. The enhanced opioid antinociception by sigma-1 antagonism is not accompanied by an increase in opioid side effects , including tolerance, dependence or constipation, so the use of sigma-1 antagonists may increase the therapeutic index of opioids. Furthermore, sigma-1 antagonists (in the absence of opioids) have been shown to exert antinociceptive effects in preclinical models of neuropathic pain induced by nerve trauma or chemical injury (the antineoplastic paclitaxel), and more recently in inflammatory and ischemic pain. Although most studies attributed the analgesic properties of sigma-1 antagonists to their central actions, it is now known that peripheral sigma-1 receptors also participate in their effects. Overwhelming preclinical evidence of the role of sigma-1 receptors in pain has led to the development of the first selective sigma-1 antagonist with an intended indication for pain treatment, which is currently in Phase II clinical trials.
Collapse
Affiliation(s)
- Cristina Sánchez-Fernández
- Department of Pharmacology, School of Medicine, University of Granada, Avenida de la Investigación 11, 18016, Granada, Spain
- Institute of Neuroscience, Biomedical Research Center, University of Granada, Parque Tecnológico de Ciencias de la Salud, 18100, Armilla, Granada, Spain
| | - José Manuel Entrena
- Institute of Neuroscience, Biomedical Research Center, University of Granada, Parque Tecnológico de Ciencias de la Salud, 18100, Armilla, Granada, Spain
- Animal Behavior Research Unit, Scientific Instrumentation Center, University of Granada, Parque Tecnológico de Ciencias de la Salud, 18100, Armilla, Granada, Spain
| | - José Manuel Baeyens
- Department of Pharmacology, School of Medicine, University of Granada, Avenida de la Investigación 11, 18016, Granada, Spain
- Institute of Neuroscience, Biomedical Research Center, University of Granada, Parque Tecnológico de Ciencias de la Salud, 18100, Armilla, Granada, Spain
| | - Enrique José Cobos
- Department of Pharmacology, School of Medicine, University of Granada, Avenida de la Investigación 11, 18016, Granada, Spain.
- Institute of Neuroscience, Biomedical Research Center, University of Granada, Parque Tecnológico de Ciencias de la Salud, 18100, Armilla, Granada, Spain.
- Teófilo Hernando Institute for Drug Discovery, 28029, Madrid, Spain.
| |
Collapse
|
26
|
Whissell PD, Avramescu S, Wang DS, Orser BA. δGABAA Receptors Are Necessary for Synaptic Plasticity in the Hippocampus. Anesth Analg 2016; 123:1247-1252. [DOI: 10.1213/ane.0000000000001373] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
27
|
Perez-Sanchez J, Lorenzo LE, Lecker I, Zurek AA, Labrakakis C, Bridgwater EM, Orser BA, De Koninck Y, Bonin RP. α5GABAAReceptors Mediate Tonic Inhibition in the Spinal Cord Dorsal Horn and Contribute to the Resolution Of Hyperalgesia. J Neurosci Res 2016; 95:1307-1318. [DOI: 10.1002/jnr.23981] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 10/02/2016] [Accepted: 10/06/2016] [Indexed: 12/12/2022]
Affiliation(s)
| | | | - Irene Lecker
- Leslie Dan Faculty of Pharmacy; University of Toronto; Toronto Ontario Canada
| | | | - Charalampos Labrakakis
- Department of Biological Applications and Technology; University of Ioannina; Ioannina Greece
| | | | - Beverley A. Orser
- University of Toronto, Department of Physiology; Toronto Ontario Canada
- University of Toronto, Department of Anesthesia; Toronto Ontario Canada
- Department of Anesthesia; Sunnybrook Health Sciences Centre; Toronto Ontario Canada
| | - Yves De Koninck
- Institut Universitaire en Santé Mentale de Québec; Québec Canada
- Department of Psychiatry and Neuroscience; Université Laval; Québec Canada
| | - Robert P. Bonin
- Institut Universitaire en Santé Mentale de Québec; Québec Canada
- Leslie Dan Faculty of Pharmacy; University of Toronto; Toronto Ontario Canada
| |
Collapse
|
28
|
Iura A, Takahashi A, Hakata S, Mashimo T, Fujino Y. Reductions in tonic GABAergic current in substantia gelatinosa neurons and GABAAreceptor δ subunit expression after chronic constriction injury of the sciatic nerve in mice. Eur J Pain 2016; 20:1678-1688. [DOI: 10.1002/ejp.891] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2016] [Indexed: 11/09/2022]
Affiliation(s)
- A. Iura
- Department of Anesthesiology and Intensive Care Medicine; Graduate School of Medicine; Osaka University; Japan
| | - A. Takahashi
- Department of Anesthesiology and Intensive Care Medicine; Graduate School of Medicine; Osaka University; Japan
| | - S. Hakata
- Department of Anesthesiology and Intensive Care Medicine; Graduate School of Medicine; Osaka University; Japan
| | - T. Mashimo
- Toyonaka Municipal Hospital; Osaka Japan
| | - Y. Fujino
- Department of Anesthesiology and Intensive Care Medicine; Graduate School of Medicine; Osaka University; Japan
| |
Collapse
|
29
|
Jaenisch N, Liebmann L, Guenther M, Hübner CA, Frahm C, Witte OW. Reduced tonic inhibition after stroke promotes motor performance and epileptic seizures. Sci Rep 2016; 6:26173. [PMID: 27188341 PMCID: PMC4870642 DOI: 10.1038/srep26173] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 04/28/2016] [Indexed: 01/19/2023] Open
Abstract
Stroke survivors often recover from motor deficits, either spontaneously or with the support of rehabilitative training. Since tonic GABAergic inhibition controls network excitability, it may be involved in recovery. Middle cerebral artery occlusion in rodents reduces tonic GABAergic inhibition in the structurally intact motor cortex (M1). Transcript and protein abundance of the extrasynaptic GABAA-receptor complex α4β3δ are concurrently reduced (δ-GABAARs). In vivo and in vitro analyses show that stroke-induced glutamate release activates NMDA receptors, thereby reducing KCC2 transporters and down-regulates δ-GABAARs. Functionally, this is associated with improved motor performance on the RotaRod, a test in which mice are forced to move in a similar manner to rehabilitative training sessions. As an adverse side effect, decreased tonic inhibition facilitates post-stroke epileptic seizures. Our data imply that early and sometimes surprisingly fast recovery following stroke is supported by homeostatic, endogenous plasticity of extrasynaptic GABAA receptors.
Collapse
Affiliation(s)
- Nadine Jaenisch
- Hans-Berger Department of Neurology, Jena University Hospital, D-07747 Jena, Germany
| | - Lutz Liebmann
- Institute of Human Genetics, Jena University Hospital, D-07743 Jena, Germany
| | - Madlen Guenther
- Hans-Berger Department of Neurology, Jena University Hospital, D-07747 Jena, Germany
| | - Christian A. Hübner
- Institute of Human Genetics, Jena University Hospital, D-07743 Jena, Germany
| | - Christiane Frahm
- Hans-Berger Department of Neurology, Jena University Hospital, D-07747 Jena, Germany
| | - Otto W. Witte
- Hans-Berger Department of Neurology, Jena University Hospital, D-07747 Jena, Germany
| |
Collapse
|
30
|
Klinger F, Bajric M, Salzer I, Dorostkar MM, Khan D, Pollak DD, Kubista H, Boehm S, Koenig X. δ Subunit-containing GABAA receptors are preferred targets for the centrally acting analgesic flupirtine. Br J Pharmacol 2015; 172:4946-58. [PMID: 26211808 PMCID: PMC4621994 DOI: 10.1111/bph.13262] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 07/15/2015] [Accepted: 07/16/2015] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND AND PURPOSE The Kv 7 channel activator flupirtine is a clinical analgesic characterized as 'selective neuronal potassium channel opener'. Flupirtine was found to exert comparable actions at GABAA receptors and Kv 7 channels in neurons of pain pathways, but not in hippocampus. EXPERIMENTAL APPROACH Expression patterns of GABAA receptors were explored in immunoblots of rat dorsal root ganglia, dorsal horns and hippocampi using antibodies for 10 different subunits. Effects of flupirtine on recombinant and native GABAA receptors were investigated in patch clamp experiments and compared with the actions on Kv 7 channels. KEY RESULTS Immunoblots pointed towards α2, α3, β3 and γ2 subunits as targets, but in all γ2-containing receptors the effects of flupirtine were alike: leftward shift of GABA concentration-response curves and diminished maximal amplitudes. After replacement of γ2S by δ, flupirtine increased maximal amplitudes. Currents through α1β2δ receptors were more enhanced than those through Kv 7 channels. In hippocampal neurons, flupirtine prolonged inhibitory postsynaptic currents, left miniature inhibitory postsynaptic currents (mIPSCs) unaltered and increased bicuculline-sensitive tonic currents; penicillin abolished mIPSCs, but not tonic currents; concentration-response curves for GABA-induced currents were shifted to the left by flupirtine without changes in maximal amplitudes; in the presence of penicillin, maximal amplitudes were increased; GABA-induced currents in the presence of penicillin were more sensitive towards flupirtine than K(+) currents. In dorsal horn neurons, currents evoked by the δ-preferring agonist THIP (gaboxadol) were more sensitive towards flupirtine than K(+) currents. CONCLUSIONS AND IMPLICATIONS Flupirtine prefers δ-containing GABAA receptors over γ-containing ones and over Kv 7 channels.
Collapse
Affiliation(s)
- Felicia Klinger
- Department of Neurophysiology and Neuropharmacology, Centre for Physiology and PharmacologyMedical University of ViennaSpitalgasse 23Vienna1090Austria
| | - Mirnes Bajric
- Department of Neurophysiology and Neuropharmacology, Centre for Physiology and PharmacologyMedical University of ViennaSpitalgasse 23Vienna1090Austria
| | - Isabella Salzer
- Department of Neurophysiology and Neuropharmacology, Centre for Physiology and PharmacologyMedical University of ViennaSpitalgasse 23Vienna1090Austria
| | - Mario M. Dorostkar
- Department of Neurophysiology and Neuropharmacology, Centre for Physiology and PharmacologyMedical University of ViennaSpitalgasse 23Vienna1090Austria
| | - Deeba Khan
- Department of Neurophysiology and Neuropharmacology, Centre for Physiology and PharmacologyMedical University of ViennaSpitalgasse 23Vienna1090Austria
| | - Daniela D. Pollak
- Department of Neurophysiology and Neuropharmacology, Centre for Physiology and PharmacologyMedical University of ViennaSpitalgasse 23Vienna1090Austria
| | - Helmut Kubista
- Department of Neurophysiology and Neuropharmacology, Centre for Physiology and PharmacologyMedical University of ViennaSpitalgasse 23Vienna1090Austria
| | - Stefan Boehm
- Department of Neurophysiology and Neuropharmacology, Centre for Physiology and PharmacologyMedical University of ViennaSpitalgasse 23Vienna1090Austria
| | - Xaver Koenig
- Department of Neurophysiology and Neuropharmacology, Centre for Physiology and PharmacologyMedical University of ViennaSpitalgasse 23Vienna1090Austria
| |
Collapse
|
31
|
Advances in the pharmacology of lGICs auxiliary subunits. Pharmacol Res 2015; 101:65-73. [PMID: 26255765 DOI: 10.1016/j.phrs.2015.07.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 07/25/2015] [Accepted: 07/26/2015] [Indexed: 11/21/2022]
Abstract
Ligand-gated ion channels (LGICs) are cell surface integral proteins that mediate the fast neurotransmission in the nervous system. LGICs require auxiliary subunits for their trafficking, assembly and pharmacological modulation. Auxiliary subunits do not form functional homomeric receptors, but are reported to assemble with the principal subunits in order to modulate their pharmacological profiles. For example, nACh receptors are built at least by co-assemble of α and β subunits, and the neuronal auxiliary subunits β3 and α5 and muscle type β, δ, γ, and ϵ determine the agonist affinity of these receptors. Serotonergic 5-HT3B, 5-HT3C, 5-HT3D and 5-HT3E are reported to assemble with the 5-HT3A subunit to modulate its pharmacological profile. Functional studies evaluating the role of γ2 and δ auxiliary subunits of GABAA receptors have made important advances in the understanding of the action of benzodiazepines, ethanol and neurosteroids. Glycine receptors are composed principally by α1-3 subunits and the auxiliary subunit β determines their synaptic location and their pharmacological response to propofol and ethanol. NMDA receptors appear to be functional as heterotetrameric channels. So far, the existence of NMDA auxiliary subunits is controversial. On the other hand, Kainate receptors are modulated by NETO 1 and 2. AMPA receptors are modulated by TARPs, Shisa 9, CKAMP44, CNIH2-3 auxiliary proteins reported that controls their trafficking, conductance and gating of channels. P2X receptors are able to associate with auxiliary Pannexin-1 protein to modulate P2X7 receptors. Considering the pharmacological relevance of different LGICs auxiliary subunits in the present work we will highlight the therapeutic potential of these modulator proteins.
Collapse
|
32
|
Yadav R, Yan X, Maixner DW, Gao M, Weng HR. Blocking the GABA transporter GAT-1 ameliorates spinal GABAergic disinhibition and neuropathic pain induced by paclitaxel. J Neurochem 2015; 133:857-69. [PMID: 25827582 DOI: 10.1111/jnc.13103] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 03/02/2015] [Accepted: 03/05/2015] [Indexed: 11/24/2022]
Abstract
Paclitaxel is a chemotherapeutic agent widely used for treating carcinomas. Patients receiving paclitaxel often develop neuropathic pain and have a reduced quality of life which hinders the use of this life-saving drug. In this study, we determined the role of GABA transporters in the genesis of paclitaxel-induced neuropathic pain using behavioral tests, electrophysiology, and biochemical techniques. We found that tonic GABA receptor activities in the spinal dorsal horn were reduced in rats with neuropathic pain induced by paclitaxel. In normal controls, tonic GABA receptor activities were mainly controlled by the GABA transporter GAT-1 but not GAT-3. In the spinal dorsal horn, GAT-1 was expressed at presynaptic terminals and astrocytes while GAT-3 was only expressed in astrocytes. In rats with paclitaxel-induced neuropathic pain, the protein expression of GAT-1 was increased while GAT-3 was decreased. This was concurrently associated with an increase in global GABA uptake. The paclitaxel-induced attenuation of GABAergic tonic inhibition was ameliorated by blocking GAT-1 but not GAT-3 transporters. Paclitaxel-induced neuropathic pain was significantly attenuated by the intrathecal injection of a GAT-1 inhibitor. These findings suggest that targeting GAT-1 transporters for reversing disinhibition in the spinal dorsal horn may be a useful approach for treating paclitaxel-induced neuropathic pain. Patients receiving paclitaxel for cancer therapy often develop neuropathic pain and have a reduced quality of life. In this study, we demonstrated that animals treated with paclitaxel develop neuropathic pain, have enhancements of GABA transporter-1 protein expression and global GABA uptake, as well as suppression of GABAergic tonic inhibition in the spinal dorsal horn. Pharmacological inhibition of GABA transporter-1 ameliorates the paclitaxel-induced suppression of GABAergic tonic inhibition and neuropathic pain. Thus, targeting GAT-1 transporters for reversing GABAergic disinhibition in the spinal dorsal horn could be a useful approach for treating paclitaxel-induced neuropathic pain.
Collapse
Affiliation(s)
- Ruchi Yadav
- Department of Pharmaceutical and Biomedical Sciences, The University of Georgia College of Pharmacy, Athens, Georgia, USA
| | - Xisheng Yan
- Department of Pharmaceutical and Biomedical Sciences, The University of Georgia College of Pharmacy, Athens, Georgia, USA.,Department of Cardiovascular Medicine, the Third Hospital of Wuhan, Wuhan, Hubei Province, China
| | - Dylan W Maixner
- Department of Pharmaceutical and Biomedical Sciences, The University of Georgia College of Pharmacy, Athens, Georgia, USA
| | - Mei Gao
- Department of Pharmaceutical and Biomedical Sciences, The University of Georgia College of Pharmacy, Athens, Georgia, USA
| | - Han-Rong Weng
- Department of Pharmaceutical and Biomedical Sciences, The University of Georgia College of Pharmacy, Athens, Georgia, USA
| |
Collapse
|
33
|
Biggs JE, Boakye PA, Ganesan N, Stemkowski PL, Lantero A, Ballanyi K, Smith PA. Analysis of the long-term actions of gabapentin and pregabalin in dorsal root ganglia and substantia gelatinosa. J Neurophysiol 2014; 112:2398-412. [DOI: 10.1152/jn.00168.2014] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The α2δ-ligands pregabalin (PGB) and gabapentin (GBP) are used to treat neuropathic pain. We used whole cell recording to study their long-term effects on substantia gelatinosa and dorsal root ganglion (DRG) neurons. Spinal cord slices were prepared from embryonic day 13 rat embryos and maintained in organotypic culture for >5 wk (neuronal age equivalent to young adult rats). Exposure of similarly aged DRG neurons (dissociated and cultured from postnatal day 19 rats) to GBP or PGB for 5–6 days attenuated high-voltage-activated calcium channel currents (HVA ICa). Strong effects were seen in medium-sized and in small isolectin B4-negative (IB4−) DRG neurons, whereas large neurons and small neurons that bound isolectin B4 (IB4+) were hardly affected. GBP (100 μM) or PGB (10 μM) were less effective than 20 μM Mn2+ in suppression of HVA ICa in small DRG neurons. By contrast, 5–6 days of exposure to these α2δ-ligands was more effective than 20 μM Mn2+ in reducing spontaneous excitatory postsynaptic currents at synapses in substantia gelatinosa. Spinal actions of gabapentinoids cannot therefore be ascribed to decreased expression of HVA Ca2+ channels in primary afferent nerve terminals. In substantia gelatinosa, 5–6 days of exposure to PGB was more effective in inhibiting excitatory synaptic drive to putative excitatory neurons than to putative inhibitory neurons. Although spontaneous inhibitory postsynaptic currents were also attenuated, the overall long-term effect of α2δ-ligands was to decrease network excitability as monitored by confocal Ca2+ imaging. We suggest that selective actions of α2δ-ligands on populations of DRG neurons may predict their selective attenuation of excitatory transmission onto excitatory vs. inhibitory neurons in substantia gelatinosa.
Collapse
Affiliation(s)
- James E. Biggs
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada; and
| | - Paul A. Boakye
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
| | - Naren Ganesan
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
| | | | - Aquilino Lantero
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada; and
| | - Klaus Ballanyi
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
- Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Peter A. Smith
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada; and
| |
Collapse
|
34
|
Wang K, Xiang XH, Qiao N, Qi JY, Lin LB, Zhang R, Shou XJ, Ping XJ, Han JS, Han JD, Zhao GP, Cui CL. Genomewide analysis of rat periaqueductal gray-dorsal horn reveals time-, region- and frequency-specific mRNA expression changes in response to electroacupuncture stimulation. Sci Rep 2014; 4:6713. [PMID: 25346229 PMCID: PMC4209446 DOI: 10.1038/srep06713] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 10/02/2014] [Indexed: 12/23/2022] Open
Abstract
Electroacupuncture (EA) has been widely applied for illness prevention, treatment or rehabilitation in the clinic, especially for pain management. However, the molecular events that induce these changes remain largely uncharacterized. The periaqueductal gray (PAG) and the spinal dorsal horn (DH) have been verified as two critical regions in the response to EA stimulation in EA analgesia. In this study, a genetic screen was conducted to delineate the gene expression profile in the PAG-DH regions of rats to explore the molecular events of the analgesic effect induced by low-frequency (2-Hz) and high-frequency (100-Hz) EAs. Microarray analysis at two different time points after EA stimulation revealed time-, region- and frequency-specific gene expression changes. These expression differences suggested that modulation of neural-immune interaction in the central nervous system played an important role during EA analgesia. Furthermore, low-frequency EA could regulate gene expression to a greater degree than high-frequency EA. Altogether, the present study offers, for the first time, a characterized transcriptional response pattern in the PAG-DH regions followed by EA stimulation and, thus, provides a solid experimental framework for future in-depth analysis of the mechanisms underlying EA-induced effects.
Collapse
Affiliation(s)
- Ke Wang
- 1] Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai, Shanghai 201203, China [2] Laboratory of Integrative Medicine Surgery, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xiao-Hui Xiang
- Neuroscience Research Institute; Department of Neurobiology, Peking University Health Science Center; Key Laboratory of Neuroscience of the Ministry of Education/National Health and Family Planning Commission; Peking University, Beijing 100191, China
| | - Nan Qiao
- Chinese Academy of Sciences Key Laboratory of Computational Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai 200031, China
| | - Jun-Yi Qi
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai, Shanghai 201203, China
| | - Li-Bo Lin
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai, Shanghai 201203, China
| | - Rong Zhang
- Neuroscience Research Institute; Department of Neurobiology, Peking University Health Science Center; Key Laboratory of Neuroscience of the Ministry of Education/National Health and Family Planning Commission; Peking University, Beijing 100191, China
| | - Xiao-jing Shou
- Neuroscience Research Institute; Department of Neurobiology, Peking University Health Science Center; Key Laboratory of Neuroscience of the Ministry of Education/National Health and Family Planning Commission; Peking University, Beijing 100191, China
| | - Xing-Jie Ping
- Neuroscience Research Institute; Department of Neurobiology, Peking University Health Science Center; Key Laboratory of Neuroscience of the Ministry of Education/National Health and Family Planning Commission; Peking University, Beijing 100191, China
| | - Ji-Sheng Han
- Neuroscience Research Institute; Department of Neurobiology, Peking University Health Science Center; Key Laboratory of Neuroscience of the Ministry of Education/National Health and Family Planning Commission; Peking University, Beijing 100191, China
| | - Jing-Dong Han
- Chinese Academy of Sciences Key Laboratory of Computational Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai 200031, China
| | - Guo-Ping Zhao
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai, Shanghai 201203, China
| | - Cai-Lian Cui
- Neuroscience Research Institute; Department of Neurobiology, Peking University Health Science Center; Key Laboratory of Neuroscience of the Ministry of Education/National Health and Family Planning Commission; Peking University, Beijing 100191, China
| |
Collapse
|
35
|
Tejada MA, Montilla-García A, Sánchez-Fernández C, Entrena JM, Perazzoli G, Baeyens JM, Cobos EJ. Sigma-1 receptor inhibition reverses acute inflammatory hyperalgesia in mice: role of peripheral sigma-1 receptors. Psychopharmacology (Berl) 2014; 231:3855-69. [PMID: 24639046 DOI: 10.1007/s00213-014-3524-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Accepted: 02/26/2014] [Indexed: 11/29/2022]
Abstract
RATIONALE Sigma-1 (σ1) receptor inhibition ameliorates neuropathic pain by inhibiting central sensitization. However, it is unknown whether σ1 receptor inhibition also decreases inflammatory hyperalgesia, or whether peripheral σ1 receptors are involved in this process. OBJECTIVE The purpose of this study was to determine the role of σ1 receptors in carrageenan-induced inflammatory hyperalgesia, particularly at the inflammation site. RESULTS The subcutaneous (s.c.) administration of the selective σ1 antagonists BD-1063 and S1RA to wild-type mice dose-dependently and fully reversed inflammatory mechanical (paw pressure) and thermal (radiant heat) hyperalgesia. These antihyperalgesic effects were abolished by the s.c. administration of the σ1 agonist PRE-084 and also by the intraplantar (i.pl.) administration of this compound in the inflamed paw, suggesting that blockade of peripheral σ1 receptors in the inflamed site is involved in the antihyperalgesic effects induced by σ1 antagonists. In fact, the i.pl. administration of σ1 antagonists in the inflamed paw (but not in the contralateral paw) was sufficient to completely reverse inflammatory hyperalgesia. σ1 knockout (σ1-KO) mice did not develop mechanical hyperalgesia but developed thermal hypersensitivity; however, the s.c. administration of BD-1063 or S1RA had no effect on thermal hyperalgesia in σ1-KO mice, supporting on-target mechanisms for the effects of both drugs. The antiedematous effects of σ1 inhibition do not account for the decreased hyperalgesia, since carrageenan-induced edema was unaffected by σ1 knockout or systemic σ1 pharmacological antagonism. CONCLUSIONS σ1 receptors play a major role in inflammatory hyperalgesia. Targeting σ1 receptors in the inflamed tissue may be useful for the treatment of inflammatory pain.
Collapse
Affiliation(s)
- M A Tejada
- Department of Pharmacology and Institute of Neuroscience, Faculty of Medicine, University of Granada, Avenida de Madrid 11, 18012, Granada, Spain
| | | | | | | | | | | | | |
Collapse
|
36
|
Altered expression of δGABAA receptors in health and disease. Neuropharmacology 2014; 88:24-35. [PMID: 25128850 DOI: 10.1016/j.neuropharm.2014.08.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2014] [Revised: 07/28/2014] [Accepted: 08/03/2014] [Indexed: 01/08/2023]
Abstract
γ-Aminobutyric acid type A receptors that contain the δ subunit (δGABAA receptors) are expressed in multiple types of neurons throughout the central nervous system, where they generate a tonic conductance that shapes neuronal excitability and synaptic plasticity. These receptors regulate a variety of important behavioral functions, including memory, nociception and anxiety, and may also modulate neurogenesis. Given their functional significance, δGABAA receptors are considered to be novel therapeutic targets for the treatment of memory dysfunction, pain, insomnia and mood disorders. These receptors are highly responsive to sedative-hypnotic drugs, general anesthetics and neuroactive steroids. A further remarkable feature of δGABAA receptors is that their expression levels are highly dynamic and fluctuate substantially during development and in response to physiological changes including stress and the reproductive cycle. Furthermore, the expression of these receptors varies in pathological conditions such as alcoholism, fragile X syndrome, epilepsy, depression, schizophrenia, mood disorders and traumatic brain injury. Such fluctuations in receptor expression have significant consequences for behavior and may alter responsiveness to therapeutic drugs. This review considers the alterations in the expression of δGABAA receptors associated with various states of health and disease and the implications of these changes.
Collapse
|
37
|
Zell V, Hanesch U, Poisbeau P, Anton F, Darbon P. Plasma glucocorticoids differentially modulate phasic and tonic GABA inhibition during early postnatal development in rat spinal lamina II. Neurosci Lett 2014; 578:39-43. [DOI: 10.1016/j.neulet.2014.06.035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 06/05/2014] [Accepted: 06/10/2014] [Indexed: 10/25/2022]
|
38
|
Marowsky A, Vogt KE. Delta-subunit-containing GABAA-receptors mediate tonic inhibition in paracapsular cells of the mouse amygdala. Front Neural Circuits 2014; 8:27. [PMID: 24723854 PMCID: PMC3971179 DOI: 10.3389/fncir.2014.00027] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 03/04/2014] [Indexed: 11/13/2022] Open
Abstract
The intercalated paracapsular cells (pcs) are small GABAergic interneurons that form densely populated clusters surrounding the basolateral (BLA) complex of the amygdala. Their main task in the amygdala circuitry appears to be the control of information flow, as they act as an inhibitory interface between input and output nuclei. Modulation of their activity is thus thought to affect amygdala output and the generation of fear and anxiety. Recent evidence indicates that pcs express benzodiazepine (BZ)-sensitive GABAA receptor (GABAAR) variants containing the α2- and α3-subunit for transmission of post-synaptic currents, yet little is known about the expression of extrasynaptic GABAARs, mediating tonic inhibition and regulating neuronal excitability. Here, we show that pcs from the lateral and medial intercalated cell cluster (l- and mITC, respectively) express a tonic GABAergic conductance that could be significantly increased in a concentration-dependent manner by the δ-preferring GABAAR agonist THIP (0.5-10 μM), but not by the BZ diazepam (1 μM). The neurosteroid THDOC (300 nM) also increased tonic currents in pcs significantly, but only in the presence of additional GABA (5 μM). Immunohistochemical stainings revealed that both the δ-GABAAR and the α4-GABAAR subunit are expressed throughout all ITCs, while no staining for the α5-GABAAR subunit could be detected. Moreover, 1 μM THIP dampened excitability in pcs most likely by increasing shunting inhibition. In line with this, THIP significantly decreased lITC-generated inhibition in target cells residing in the BLA nucleus by 30%. Taken together these results demonstrate for the first time that pcs express a tonic inhibitory conductance mediated most likely by α4/δ-containing GABAARs. This data also suggest that δ-GABAAR targeting compounds might possibly interfere with pcs-related neuronal processes such as fear extinction.
Collapse
Affiliation(s)
- Anne Marowsky
- Institute of Pharmacology and Toxicology, University of Zurich Zurich, Switzerland
| | - Kaspar E Vogt
- International Institute for Integrative Sleep Medicine, University of Tsukuba Tsukuba, Japan
| |
Collapse
|
39
|
McCarson KE, Enna SJ. GABA pharmacology: the search for analgesics. Neurochem Res 2014; 39:1948-63. [PMID: 24532294 DOI: 10.1007/s11064-014-1254-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 01/28/2014] [Accepted: 01/31/2014] [Indexed: 12/28/2022]
Abstract
Decades of research have been devoted to defining the role of GABAergic transmission in nociceptive processing. Much of this work was performed using rigid, orthosteric GABA analogs created by Povl Krogsgaard-Larsen and his associates. A relationship between GABA and pain is suggested by the anatomical distribution of GABA receptors and the ability of some GABA agonists to alter nociceptive responsiveness. Outlined in this report are data supporting this proposition, with particular emphasis on the anatomical localization and function of GABA-containing neurons and the molecular and pharmacological properties of GABAA and GABAB receptor subtypes. Reference is made to changes in overall GABAergic tone, GABA receptor expression and activity as a function of the duration and intensity of a painful stimulus or exposure to GABAergic agents. Evidence is presented that the plasticity of this receptor system may be responsible for the variability in the antinociceptive effectiveness of compounds that influence GABA transmission. These findings demonstrate that at least some types of persistent pain are associated with a regionally selective decline in GABAergic tone, highlighting the need for agents that enhance GABA activity in the affected regions without compromising GABA function over the long-term. As subtype selective positive allosteric modulators may accomplish these goals, such compounds might represent a new class of analgesic drugs.
Collapse
Affiliation(s)
- Kenneth E McCarson
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Boulevard, Mail Stop 1018, Kansas City, KS, 66160, USA
| | | |
Collapse
|
40
|
Lee V, Maguire J. The impact of tonic GABAA receptor-mediated inhibition on neuronal excitability varies across brain region and cell type. Front Neural Circuits 2014; 8:3. [PMID: 24550784 PMCID: PMC3909947 DOI: 10.3389/fncir.2014.00003] [Citation(s) in RCA: 153] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 01/08/2014] [Indexed: 01/19/2023] Open
Abstract
The diversity of GABAA receptor (GABAAR) subunits and the numerous configurations during subunit assembly give rise to a variety of receptors with different functional properties. This heterogeneity results in variations in GABAergic conductances across numerous brain regions and cell types. Phasic inhibition is mediated by synaptically-localized receptors with a low affinity for GABA and results in a transient, rapidly desensitizing GABAergic conductance; whereas, tonic inhibition is mediated by extrasynaptic receptors with a high affinity for GABA and results in a persistent GABAergic conductance. The specific functions of tonic versus phasic GABAergic inhibition in different cell types and the impact on specific neural circuits are only beginning to be unraveled. Here we review the diversity in the magnitude of tonic GABAergic inhibition in various brain regions and cell types, and highlight the impact on neuronal excitability in different neuronal circuits. Further, we discuss the relevance of tonic inhibition in various physiological and pathological contexts as well as the potential of targeting these receptor subtypes for treatment of diseases, such as epilepsy.
Collapse
Affiliation(s)
- Vallent Lee
- Medical Scientist Training Program and Graduate Program in Neuroscience, Sackler School of Graduate Biomedical Sciences, Tufts University Boston, MA, USA
| | - Jamie Maguire
- Department of Neuroscience, Tufts University School of Medicine Boston, MA, USA
| |
Collapse
|
41
|
Inhibition of carbonic anhydrase augments GABAA receptor-mediated analgesia via a spinal mechanism of action. THE JOURNAL OF PAIN 2014; 15:395-406. [PMID: 24412803 DOI: 10.1016/j.jpain.2014.01.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 10/22/2013] [Accepted: 01/04/2014] [Indexed: 12/21/2022]
Abstract
UNLABELLED Peripheral nerve injury (PNI) negatively influences spinal gamma-aminobutyric acid (GABA)ergic networks via a reduction in the neuron-specific potassium-chloride (K(+)-Cl(-)) cotransporter (KCC2). This process has been linked to the emergence of neuropathic allodynia. In vivo pharmacologic and modeling studies show that a loss of KCC2 function results in a decrease in the efficacy of GABAA-mediated spinal inhibition. One potential strategy to mitigate this effect entails inhibition of carbonic anhydrase activity to reduce HCO3(-)-dependent depolarization via GABAA receptors when KCC2 function is compromised. We have tested this hypothesis here. Our results show that, similarly to when KCC2 is pharmacologically blocked, PNI causes a loss of analgesic effect for neurosteroid GABAA allosteric modulators at maximally effective doses in naïve mice in the tail-flick test. Remarkably, inhibition of carbonic anhydrase activity with intrathecal acetazolamide rapidly restores an analgesic effect for these compounds, suggesting an important role of carbonic anhydrase activity in regulating GABAA-mediated analgesia after PNI. Moreover, spinal acetazolamide administration leads to a profound reduction in the mouse formalin pain test, indicating that spinal carbonic anhydrase inhibition produces analgesia when primary afferent activity is driven by chemical mediators. Finally, we demonstrate that systemic administration of acetazolamide to rats with PNI produces an antiallodynic effect by itself and an enhancement of the peak analgesic effect with a change in the shape of the dose-response curve of the α1-sparing benzodiazepine L-838,417. Thus, carbonic anhydrase inhibition mitigates the negative effects of loss of KCC2 function after nerve injury in multiple species and through multiple administration routes resulting in an enhancement of analgesic effects for several GABAA allosteric modulators. We suggest that carbonic anhydrase inhibitors, many of which are clinically available, might be advantageously employed for the treatment of pathologic pain states. PERSPECTIVE Using behavioral pharmacology techniques, we show that spinal GABAA-mediated analgesia can be augmented, especially following nerve injury, via inhibition of carbonic anhydrases. Carbonic anhydrase inhibition alone also produces analgesia, suggesting these enzymes might be targeted for the treatment of pain.
Collapse
|
42
|
Bonin RP, De Koninck Y. Restoring ionotropic inhibition as an analgesic strategy. Neurosci Lett 2013; 557 Pt A:43-51. [PMID: 24080373 DOI: 10.1016/j.neulet.2013.09.047] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2013] [Revised: 09/11/2013] [Accepted: 09/16/2013] [Indexed: 12/31/2022]
Abstract
Neuronal inhibition in nociceptive relays of the spinal cord is essential for the proper processing of nociceptive information. In the spinal cord dorsal horn, the activity of synaptic and extrasynaptic GABAA and glycine receptors generates rapid, Cl(-)-dependent neuronal inhibition. A loss of this ionotropic inhibition, particularly through the collapse of the inhibitory Cl(-)-gradient, is a key mechanism by which pathological pain conditions develop. This review summarizes the roles of ionotropic inhibition in the regulation of nociception, and explores recent evidence that the potentiation of GABAA or glycine receptor activity or the enhancement of inhibitory drive can reverse pathological pain.
Collapse
Affiliation(s)
- Robert P Bonin
- Unité de neurosciences cellulaires et moléculaire, Centre de recherche de l'institut universitaire en santé mentale de Québec, Québec, Canada
| | | |
Collapse
|
43
|
Gagnon M, Bergeron MJ, Lavertu G, Castonguay A, Tripathy S, Bonin RP, Perez-Sanchez J, Boudreau D, Wang B, Dumas L, Valade I, Bachand K, Jacob-Wagner M, Tardif C, Kianicka I, Isenring P, Attardo G, Coull JA, De Koninck Y. Chloride extrusion enhancers as novel therapeutics for neurological diseases. Nat Med 2013; 19:1524-8. [PMID: 24097188 PMCID: PMC4005788 DOI: 10.1038/nm.3356] [Citation(s) in RCA: 247] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 08/21/2013] [Indexed: 12/19/2022]
Abstract
The K(+)-Cl(-) cotransporter KCC2 is responsible for maintaining low Cl(-) concentration in neurons of the central nervous system (CNS), which is essential for postsynaptic inhibition through GABA(A) and glycine receptors. Although no CNS disorders have been associated with KCC2 mutations, loss of activity of this transporter has emerged as a key mechanism underlying several neurological and psychiatric disorders, including epilepsy, motor spasticity, stress, anxiety, schizophrenia, morphine-induced hyperalgesia and chronic pain. Recent reports indicate that enhancing KCC2 activity may be the favored therapeutic strategy to restore inhibition and normal function in pathological conditions involving impaired Cl(-) transport. We designed an assay for high-throughput screening that led to the identification of KCC2 activators that reduce intracellular chloride concentration ([Cl(-)]i). Optimization of a first-in-class arylmethylidine family of compounds resulted in a KCC2-selective analog (CLP257) that lowers [Cl(-)]i. CLP257 restored impaired Cl(-) transport in neurons with diminished KCC2 activity. The compound rescued KCC2 plasma membrane expression, renormalized stimulus-evoked responses in spinal nociceptive pathways sensitized after nerve injury and alleviated hypersensitivity in a rat model of neuropathic pain. Oral efficacy for analgesia equivalent to that of pregabalin but without motor impairment was achievable with a CLP257 prodrug. These results validate KCC2 as a druggable target for CNS diseases.
Collapse
Affiliation(s)
- Martin Gagnon
- Institut universitaire en santé mentale de Québec, Qc
- Department of Psychiatry & Neuroscience, Université Laval, Québec, Qc
- Chlorion Pharma, Inc. Laval, Qc
| | - Marc J. Bergeron
- Institut universitaire en santé mentale de Québec, Qc
- Department of Psychiatry & Neuroscience, Université Laval, Québec, Qc
| | - Guillaume Lavertu
- Institut universitaire en santé mentale de Québec, Qc
- Department of Psychiatry & Neuroscience, Université Laval, Québec, Qc
| | - Annie Castonguay
- Institut universitaire en santé mentale de Québec, Qc
- Department of Psychiatry & Neuroscience, Université Laval, Québec, Qc
| | | | - Robert P. Bonin
- Institut universitaire en santé mentale de Québec, Qc
- Department of Psychiatry & Neuroscience, Université Laval, Québec, Qc
| | - Jimena Perez-Sanchez
- Institut universitaire en santé mentale de Québec, Qc
- Department of Psychiatry & Neuroscience, Université Laval, Québec, Qc
| | - Dominic Boudreau
- Institut universitaire en santé mentale de Québec, Qc
- Department of Psychiatry & Neuroscience, Université Laval, Québec, Qc
| | | | | | | | - Karine Bachand
- Institut universitaire en santé mentale de Québec, Qc
- Department of Psychiatry & Neuroscience, Université Laval, Québec, Qc
| | | | - Christian Tardif
- Institut universitaire en santé mentale de Québec, Qc
- Graduate program in biophotonics, Université Laval, Québec, Qc
| | | | - Paul Isenring
- Centre de recherche du Centre Hospitalier Universitaire de Québec, Qc
| | | | | | - Yves De Koninck
- Institut universitaire en santé mentale de Québec, Qc
- Department of Psychiatry & Neuroscience, Université Laval, Québec, Qc
- Graduate program in biophotonics, Université Laval, Québec, Qc
| |
Collapse
|
44
|
Egawa K, Fukuda A. Pathophysiological power of improper tonic GABA(A) conductances in mature and immature models. Front Neural Circuits 2013; 7:170. [PMID: 24167475 PMCID: PMC3807051 DOI: 10.3389/fncir.2013.00170] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 09/28/2013] [Indexed: 11/25/2022] Open
Abstract
High-affinity extrasynaptic gamma-aminobutyric acid A (GABAA) receptors are tonically activated by low and consistent levels of ambient GABA, mediating chronic inhibition against neuronal excitability (tonic inhibition) and the modulation of neural development. Synaptic (phasic) inhibition is spatially and temporally precise compared with tonic inhibition, which provides blunt yet strong integral inhibitory force by shunting electrical signaling. Although effects of acute modification of tonic inhibition are known, its pathophysiological significance remains unclear because homeostatic regulation of neuronal excitability can compensate for long-term deficit of extrasynaptic GABAA receptor activation. Nevertheless, tonic inhibition is of great interest for its pathophysiological involvement in central nervous system (CNS) diseases and thus as a therapeutic target. Together with the development of experimental models for various pathological states, recent evidence demonstrates such pathological involvements of tonic inhibition in neuronal dysfunction. This review focuses on the recent progress of tonic activation of GABAA conductance on the development and pathology of the CNS. Findings indicate that neuronal function in various brain regions are exacerbated with a gain or loss of function of tonic inhibition by GABA spillover. Disturbance of tonic GABAA conductance mediated by non-synaptic ambient GABA may result in brain mal-development. Therefore, various pathological states (epilepsy, motor dysfunctions, psychiatric disorders, and neurodevelopmental disorders) may be partly attributable to abnormal tonic GABAA conductances. Thus, the tone of tonic conductance and level of ambient GABA may be precisely tuned to maintain the regular function and development of the CNS. Therefore, receptor expression and factors for regulating the ambient GABA concentration are highlighted to gain a deeper understanding of pathology and therapeutic strategy for CNS diseases.
Collapse
Affiliation(s)
- Kiyoshi Egawa
- Department of Neurology, Massachusetts General Hospital Charlestown, MA, USA ; Department of Pediatrics, Hokkaido University Graduate School of Medicine Sapporo, Japan
| | | |
Collapse
|
45
|
Whissell PD, Eng D, Lecker I, Martin LJ, Wang DS, Orser BA. Acutely increasing δGABA(A) receptor activity impairs memory and inhibits synaptic plasticity in the hippocampus. Front Neural Circuits 2013; 7:146. [PMID: 24062648 PMCID: PMC3775149 DOI: 10.3389/fncir.2013.00146] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 08/29/2013] [Indexed: 12/03/2022] Open
Abstract
Extrasynaptic γ-aminobutyric acid type A (GABAA) receptors that contain the δ subunit (δGABAA receptors) are expressed in several brain regions including the dentate gyrus (DG) and CA1 subfields of the hippocampus. Drugs that increase δGABAA receptor activity have been proposed as treatments for a variety of disorders including insomnia, epilepsy and chronic pain. Also, long-term pretreatment with the δGABAA receptor–preferring agonist 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol (THIP) enhances discrimination memory and increases neurogenesis in the DG. Despite the potential therapeutic benefits of such treatments, the effects of acutely increasing δGABAA receptor activity on memory behaviors remain unknown. Here, we studied the effects of THIP (4 mg/kg, i.p.) on memory performance in wild-type (WT) and δGABAA receptor null mutant (Gabrd−/−) mice. Additionally, the effects of THIP on long-term potentiation (LTP), a molecular correlate of memory, were studied within the DG and CA1 subfields of the hippocampus using electrophysiological recordings of field potentials in hippocampal slices. The results showed that THIP impaired performance in the Morris water maze, contextual fear conditioning and object recognition tasks in WT mice but not Gabrd−/− mice. Furthermore, THIP inhibited LTP in hippocampal slices from WT but not Gabrd−/− mice, an effect that was blocked by GABAA receptor antagonist bicuculline. Thus, acutely increasing δGABAA receptor activity impairs memory behaviors and inhibits synaptic plasticity. These results have important implications for the development of therapies aimed at increasing δGABAA receptor activity.
Collapse
Affiliation(s)
- Paul D Whissell
- Institute of Medical Science, University of Toronto Toronto, ON, Canada
| | | | | | | | | | | |
Collapse
|
46
|
Jensen ML, Wafford KA, Brown AR, Belelli D, Lambert JJ, Mirza NR. A study of subunit selectivity, mechanism and site of action of the delta selective compound 2 (DS2) at human recombinant and rodent native GABA(A) receptors. Br J Pharmacol 2013; 168:1118-32. [PMID: 23061935 DOI: 10.1111/bph.12001] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 07/18/2012] [Accepted: 08/23/2012] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND AND PURPOSE Most GABA(A) receptor subtypes comprise 2α, 2β and 1γ subunit, although for some isoforms, a δ replaces a γ-subunit. Extrasynaptic δ-GABA(A) receptors are important therapeutic targets, but there are few suitable pharmacological tools. We profiled DS2, the purported positive allosteric modulator (PAM) of δ-GABA(A) receptors to better understand subtype selectivity, mechanism/site of action and activity at native δ-GABA(A) receptors. EXPERIMENTAL APPROACH Subunit specificity of DS2 was determined using electrophysiological recordings of Xenopus laevis oocytes expressing human recombinant GABA(A) receptor isoforms. Effects of DS2 on GABA concentration-response curves were assessed to define mechanisms of action. Radioligand binding and electrophysiology utilising mutant receptors and pharmacology were used to define site of action. Using brain-slice electrophysiology, we assessed the influence of DS2 on thalamic inhibition in wild-type and δ(0/0) mice. KEY RESULTS Actions of DS2 were primarily determined by the δ-subunit but were additionally influenced by the α, but not the β, subunit (α4/6βxδ > α1βxδ >> γ2-GABA(A) receptors > α4β3). For δ-GABA(A) receptors, DS2 enhanced maximum responses to GABA, with minimal influence on GABA potency. (iii) DS2 did not act via the orthosteric, or known modulatory sites on GABA(A) receptors. (iv) DS2 enhanced tonic currents of thalamocortical neurones from wild-type but not δ(0/0) mice. CONCLUSIONS AND IMPLICATIONS DS2 is the first PAM selective for α4/6βxδ receptors, providing a novel tool to investigate extrasynaptic δ-GABA(A) receptors. The effects of DS2 are mediated by an unknown site leading to GABA(A) receptor isoform selectivity.
Collapse
|
47
|
Patte-Mensah C, Meyer L, Taleb O, Mensah-Nyagan AG. Potential role of allopregnanolone for a safe and effective therapy of neuropathic pain. Prog Neurobiol 2013; 113:70-8. [PMID: 23948490 DOI: 10.1016/j.pneurobio.2013.07.004] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 07/11/2013] [Accepted: 07/24/2013] [Indexed: 01/12/2023]
Abstract
Because the treatment and management of neuropathic pain are extremely complicated, the characterization of novel analgesics and neuroprotectors with safe toxicological profiles is a crucial need to develop efficient therapies. Several investigations revealed that the natural neurosteroid allopregnanolone (AP) exerts analgesic, neuroprotective, antidepressant and anxiolytic effects. These effects result from AP ability to modulate GABA(A), glycine, L- and T-type calcium channels. It has been shown that AP treatment induced beneficial actions in humans and animal models with no toxic side effects. In particular, a multi-parametric analysis revealed that AP efficiently counteracted chemotherapy-evoked neuropathic pain in rats. It has also been demonstrated that the modulation of AP-producing enzyme, 3α-hydroxysteroid oxido-reductase (3α-HSOR), in the spinal cord regulates thermal and mechanical pain thresholds of peripheral nerve injured neuropathic rats. The painful symptoms were exacerbated by intrathecal injections of provera (pharmacological inhibitor of 3α-HSOR) which decreased AP production in the spinal cord. By contrast, the enhancement of AP concentration in the intrathecal space induced analgesia and suppression of neuropathic symptoms. Moreover, in vivo siRNA-knockdown of 3α-HSOR expression in healthy rat dorsal root ganglia increased thermal and mechanical pain perceptions while AP evoked a potent antinociceptive action. In humans, blood levels of AP were inversely associated with low back and chest pain. Furthermore, oral administration of AP analogs induced antinociception. Altogether, these data indicate that AP, which possesses a high therapeutic potential and a good toxicological profile, may be used to develop effective and safe strategies against chronic neuropathic pain.
Collapse
Affiliation(s)
- C Patte-Mensah
- Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, INSERM U1119, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Bâtiment 3 de la Faculté de Médecine, 11 rue Humann, 67 000 Strasbourg, France
| | - L Meyer
- Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, INSERM U1119, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Bâtiment 3 de la Faculté de Médecine, 11 rue Humann, 67 000 Strasbourg, France
| | - O Taleb
- Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, INSERM U1119, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Bâtiment 3 de la Faculté de Médecine, 11 rue Humann, 67 000 Strasbourg, France
| | - A G Mensah-Nyagan
- Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, INSERM U1119, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Bâtiment 3 de la Faculté de Médecine, 11 rue Humann, 67 000 Strasbourg, France.
| |
Collapse
|
48
|
Whissell PD, Rosenzweig S, Lecker I, Wang DS, Wojtowicz JM, Orser BA. γ-aminobutyric acid type A receptors that contain the δ subunit promote memory and neurogenesis in the dentate gyrus. Ann Neurol 2013; 74:611-21. [PMID: 23686887 DOI: 10.1002/ana.23941] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 05/08/2013] [Accepted: 05/10/2013] [Indexed: 01/13/2023]
Abstract
OBJECTIVE Extrasynaptic γ-aminobutyric acid type A receptors that contain the δ subunit (δGABAA receptors) are highly expressed in the dentate gyrus (DG) subfield of the hippocampus, where they generate a tonic conductance that regulates neuronal activity. GABAA receptor-dependent signaling regulates memory and also facilitates postnatal neurogenesis in the adult DG; however, the role of the δGABAA receptors in these processes is unclear. Accordingly, we sought to determine whether δGABAA receptors regulate memory behaviors, as well as neurogenesis in the DG. METHODS Memory and neurogenesis were studied in wild-type (WT) mice and transgenic mice that lacked δGABAA receptors (Gabrd(-/-)). To pharmacologically increase δGABAA receptor activity, mice were treated with the δGABAA receptor-preferring agonist 4,5,6,7-tetrahydroisoxazolo(5,4-c)pyridin-3-ol (THIP). Behavioral assays including recognition memory, contextual discrimination, and fear extinction were used. Neurogenesis was studied by measuring the proliferation, survival, migration, maturation, and dendritic complexity of adult-born neurons in the DG. RESULTS Gabrd(-/-) mice exhibited impaired recognition memory and contextual discrimination relative to WT mice. Fear extinction was also impaired in Gabrd(-/-) mice, although the acquisition of fear memory was enhanced. Neurogenesis was disrupted in Gabrd(-/-) mice as the migration, maturation, and dendritic development of adult-born neurons were impaired. Long-term treatment with THIP facilitated learning and neurogenesis in WT but not Gabrd(-/-) mice. INTERPRETATION δGABAA receptors promote the performance of certain DG-dependent memory behaviors and facilitate neurogenesis. Furthermore, δGABAA receptors can be pharmacologically targeted to enhance these processes.
Collapse
Affiliation(s)
- Paul D Whissell
- Institute of Medical Science, University of Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
49
|
Clarke H, Kirkham KR, Orser BA, Katznelson R, Mitsakakis N, Ko R, Snyman A, Ma M, Katz J. Gabapentin reduces preoperative anxiety and pain catastrophizing in highly anxious patients prior to major surgery: a blinded randomized placebo-controlled trial. Can J Anaesth 2013; 60:432-43. [PMID: 23377862 DOI: 10.1007/s12630-013-9890-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 01/14/2013] [Indexed: 10/27/2022] Open
Abstract
INTRODUCTION Gabapentin is increasingly being used for the treatment of postoperative pain and a variety of psychiatric diseases, including chronic anxiety disorders. Trials have reported mixed results when gabapentin has been administered for the treatment of preoperative anxiety. We tested the hypothesis that gabapentin 1,200 mg vs placebo would reduce preoperative anxiety in patients who exhibit moderate to high preoperative anxiety. METHODS A blinded randomized controlled trial was conducted from September 2009 to June 2011 at the Toronto General Hospital. Following ethics approval and informed consent, 50 female patients with a 0-10 numeric rating scale (NRS) anxiety score of greater than or equal to 5/10 consented to receive either gabapentin 1,200 mg (n = 25) or placebo (n = 25) prior to surgery. Randomization was computer generated, and the Investigational Pharmacy was responsible for the blinding and dispensing of medication. All patients and care providers, including physicians, nurses, and study personnel, were blinded to group allocation. Before administering the study medication, baseline anxiety levels were measured using a NRS, the Spielberger State-Trait Anxiety Inventories, the Pain Catastrophizing Scale, and the Pain Anxiety Symptoms Scale-20. Baseline pain intensity (0-10 NRS) and level of sedation (0-10 NRS and Richmond Agitation-Sedation Scale [RASS]) were also measured. Two hours after the administration of gabapentin or placebo (prior to surgery), patients again rated their anxiety, pain, and sedation levels using the same measurement tools as at baseline. The main outcome was a reduction in preoperative anxiety. RESULTS Forty-four patients (22 treated with gabapentin 1,200 mg and 22 treated with placebo) were included in the analysis of the primary outcome. Analysis of covariance in which pre-drug NRS anxiety scores were used as the covariate showed that post-drug preoperative NRS anxiety (Effect size, 1.44; confidence interval [CI] 0.19 to 2.70) and pain catastrophizing (Effect size, 0.43; CI 0.12 to 0.74) scores were significantly lower in the gabapentin group than in the placebo control group, respectively. Post-drug sedation (Effect size, -3.02; CI -4.28 to -1.77) and RASS (Effect size, 0.41; CI 0.12 to 0.71) scores were significantly higher in the gabapentin group than in the placebo group, respectively. CONCLUSIONS Administration of gabapentin 1,200 mg prior to surgery reduces preoperative NRS anxiety scores and pain catastrophizing scores and increases sedation prior to entering the operating room. These results suggest that gabapentin 1,200 mg may be a treatment option for patients who exhibit high levels of preoperative anxiety and pain catastrophizing; however, the sedative properties of the medication and the possibility of delayed postoperative discharge in the elective ambulatory population need to be considered.
Collapse
Affiliation(s)
- Hance Clarke
- Department of Anesthesia and Pain Management, Toronto General Hospital, 200 Elizabeth Street, Eaton North 3 EB 317, Acute Pain Research Unit, Toronto, ON, M5G 2C4, Canada.
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Melin C, Jacquot F, Dallel R, Artola A. Segmental disinhibition suppresses C-fiber inputs to the rat superficial medullary dorsal horn via the activation of GABABreceptors. Eur J Neurosci 2012; 37:417-28. [DOI: 10.1111/ejn.12048] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 09/13/2012] [Accepted: 09/27/2012] [Indexed: 12/17/2022]
Affiliation(s)
| | - Florian Jacquot
- Clermont Université; Université d'Auvergne; Neuro-Dol, BP 10448, F-63000, Clermont-Ferrand & Inserm U1107; F-63001 Clermont-Ferrand; France
| | | | - Alain Artola
- Clermont Université; Université d'Auvergne; Neuro-Dol, BP 10448, F-63000, Clermont-Ferrand & Inserm U1107; F-63001 Clermont-Ferrand; France
| |
Collapse
|