1
|
Wong PF, Kamarul T. Targeting Ubiquitin-Proteasome system (UPS) in treating osteoarthritis. Eur J Pharmacol 2025; 989:177237. [PMID: 39732357 DOI: 10.1016/j.ejphar.2024.177237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 11/21/2024] [Accepted: 12/23/2024] [Indexed: 12/30/2024]
Abstract
Despite osteoarthritis (OA) being recognised for over a century as a debilitating disease that affects millions, there are huge gaps in our understanding of the underlying pathophysiology that drives this disease. Present day studies that focussed on ubiquitination (Ub) and ubiquitylation-like (Ubl) modification related mechanisms have brought light into the possibility of attenuating OA development by targeting these specific proteins in chondrocytes. In the present review, we discuss recent advances in studies involving Ub ligases and deubiquitinating enzymes (DUBs) which are of importance in the development of OA, and may offer potential therapeutic strategies for OA. Such targets may involve attenuating proteases such as matrix metalloproteinases (MMP) 1, 8, 13, 4 and several A Disintegrin and Metalloproteinase with Thrombospondin Motifs (ADAMTS) that are well known for their roles in cartilage breakdown. Ligases such as ubiquitin-conjugating enzymes (E2) and ubiquitin-ligating enzymes (E3) that are involved in extracellular matrix (ECM) degradation in OA and of their pathogenesis would be discussed. In addition to catabolic and degenerative downstream effects of Ub and DUBs in OA, inflammatory mechanisms most notably involving nuclear factor-kappa B (NF-κB) signalling pathways regulated through Ub and using various targeting molecules would also be highlighted. Challenges, gaps and insights from clinical trials will provide valuable guidance for future investigations on targeting ubiquitin-proteosome system (UPS) as a therapeutic option for OA.
Collapse
Affiliation(s)
- Pooi-Fong Wong
- Department of Pharmacology, Faculty of Medicine, 50603 Kuala Lumpur, Malaysia.
| | - Tunku Kamarul
- National Orthopaedic Centre of Excellence in Research and Learning (NOCERAL), Department of Orthopaedic Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| |
Collapse
|
2
|
Neto EDS, Pedro PPDA, Cartágenes MDSDS, Neto JOB, Garcia JBS. The effect of low dose intra-articular S(+) ketamine on osteoarthritis in rats: an experimental study. BRAZILIAN JOURNAL OF ANESTHESIOLOGY (ELSEVIER) 2024; 74:844502. [PMID: 38604407 PMCID: PMC11031719 DOI: 10.1016/j.bjane.2024.844502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 02/16/2024] [Accepted: 03/04/2024] [Indexed: 04/13/2024]
Abstract
BACKGROUND This study aimed to investigate the analgesic impact of S(+)-ketamine on pain behavior and synovial inflammation in an osteoarthritis (OA) model. METHODS Animals were grouped as follows: OA-Saline (n = 24) and OA-Ketamine (n = 24), OA induced via intra-articular sodium monoiodoacetate (MIA); a Non-OA group (n = 24) served as the control. On the 7th day post OA induction, animals received either saline or S(+)-ketamine (0.5 mg.kg-1). Behavioral and histopathological assessments were conducted up to day 28. RESULTS S(+)-ketamine reduced allodynia from day 7 to 28 and hyperalgesia from day 10 to 28. It notably alleviated weight distribution deficits from day 10 until the end of the study. Significant walking improvement was observed on day 14 in S(+)-ketamine-treated rats. Starting on day 14, OA groups showed grip force decline, which was countered by S(+)-ketamine on day 21. However, S(+)-ketamine did not diminish synovial inflammation. CONCLUSION Low Intra-articular (IA) doses of S(+)-ketamine reduced MIA-induced OA pain but did not reverse synovial histopathological changes. IRB APPROVAL NUMBER 23115 012030/2009-05.
Collapse
Affiliation(s)
| | | | - Maria do Socorro de Sousa Cartágenes
- Universidade Federal do Maranhão, Departamento de Ciências Fisiológicas; Universidade Federal do Maranhão, Laboratório Experimental para Estudo da Dor, São Luiz, MA, Brazil; Faculdade de Medicina da Universidade Ceuma, São Luiz, MA, Brazil
| | - José Osvaldo Barbosa Neto
- Universidade Federal do Maranhão, Laboratório Experimental para Estudo da Dor, São Luiz, MA, Brazil; Faculdade de Medicina da Universidade Ceuma, São Luiz, MA, Brazil.
| | - João Batista Santos Garcia
- Universidade Federal do Maranhão, Laboratório Experimental para Estudo da Dor, São Luiz, MA, Brazil; Universidade Federal do Maranhão, Departamento de Anestesiologia, Dor e Paliativos, São Luiz, MA, Brazil
| |
Collapse
|
3
|
Villalón Landeros E, Kho SC, Church TR, Brennan A, Türker F, Delannoy M, Caterina MJ, Margolis SS. The nociceptive activity of peripheral sensory neurons is modulated by the neuronal membrane proteasome. Cell Rep 2024; 43:114058. [PMID: 38614084 PMCID: PMC11157458 DOI: 10.1016/j.celrep.2024.114058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/05/2024] [Accepted: 03/20/2024] [Indexed: 04/15/2024] Open
Abstract
Proteasomes are critical for peripheral nervous system (PNS) function. Here, we investigate mammalian PNS proteasomes and reveal the presence of the neuronal membrane proteasome (NMP). We show that specific inhibition of the NMP on distal nerve fibers innervating the mouse hind paw leads to reduction in mechanical and pain sensitivity. Through investigating PNS NMPs, we demonstrate their presence on the somata and proximal and distal axons of a subset of dorsal root ganglion (DRG) neurons. Single-cell RNA sequencing experiments reveal that the NMP-expressing DRGs are primarily MrgprA3+ and Cysltr2+. NMP inhibition in DRG cultures leads to cell-autonomous and non-cell-autonomous changes in Ca2+ signaling induced by KCl depolarization, αβ-meATP, or the pruritogen histamine. Taken together, these data support a model whereby NMPs are expressed on a subset of somatosensory DRGs to modulate signaling between neurons of distinct sensory modalities and indicate the NMP as a potential target for controlling pain.
Collapse
Affiliation(s)
- Eric Villalón Landeros
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Samuel C Kho
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Taylor R Church
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Anna Brennan
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Fulya Türker
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Michael Delannoy
- Microscopy Facility, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Michael J Caterina
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurosurgery and Neurosurgery Pain Research Institute, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Seth S Margolis
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
4
|
Mei C, Pan C, Xu L, Miao M, Lu Q, Yu Y, Lin P, Wu W, Ni F, Gao Y, Xu Y, Xu J, Chen X. Trimethoxyflavanone relieves Paclitaxel-induced neuropathic pain via inhibiting expression and activation of P2X7 and production of CGRP in mice. Neuropharmacology 2023; 236:109584. [PMID: 37225085 DOI: 10.1016/j.neuropharm.2023.109584] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 04/28/2023] [Accepted: 05/07/2023] [Indexed: 05/26/2023]
Abstract
Paclitaxel (PTX) is an anticancer drug used to treat solid tumors, but one of its common adverse effects is chemotherapy-induced peripheral neuropathy (CIPN). Currently, there is limited understanding of neuropathic pain associated with CIPN and effective treatment strategies are inadequate. Previous studies report the analgesic actions of Naringenin, a dihydroflavonoid compound, in pain. Here we observed that the anti-nociceptive action of a Naringenin derivative, Trimethoxyflavanone (Y3), was superior to Naringenin in PTX-induced pain (PIP). An intrathecal injection of Y3 (1 μg) reversed the mechanical and thermal thresholds of PIP and suppressed the PTX-induced hyper-excitability of dorsal root ganglion (DRG) neurons. PTX enhanced the expression of ionotropic purinergic receptor P2X7 (P2X7) in satellite glial cells (SGCs) and neurons in DRGs. The molecular docking simulation predicts possible interactions between Y3 and P2X7. Y3 reduced the PTX-enhanced P2X7 expression in DRGs. Electrophysiological recordings revealed that Y3 directly inhibited P2X7-mediated currents in DRG neurons of PTX-treated mice, suggesting that Y3 suppressed both expression and function of P2X7 in DRGs post-PTX administration. Y3 also reduced the production of calcitonin gene-related peptide (CGRP) in DRGs and at the spinal dorsal horn. Additionally, Y3 suppressed the PTX-enhanced infiltration of Iba1-positive macrophage-like cells in DRGs and overactivation of spinal astrocytes and microglia. Therefore, our results indicate that Y3 attenuates PIP via inhibiting P2X7 function, CGRP production, DRG neuron sensitization, and abnormal spinal glial activation. Our study implies that Y3 could be a promising drug candidate against CIPN-associated pain and neurotoxicity.
Collapse
Affiliation(s)
- Changqing Mei
- Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Chen Pan
- Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Linbin Xu
- Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Mengmeng Miao
- Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Qichen Lu
- Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Yang Yu
- Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Pengyu Lin
- Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Wenwei Wu
- Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Feng Ni
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, 315211, China; LeadArt Technologies Ltd., Ningbo, 315201, China
| | - Yinping Gao
- Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Yuhao Xu
- Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Jia Xu
- Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China.
| | - Xiaowei Chen
- Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
5
|
He L, Kang Q, Chan KI, Zhang Y, Zhong Z, Tan W. The immunomodulatory role of matrix metalloproteinases in colitis-associated cancer. Front Immunol 2023; 13:1093990. [PMID: 36776395 PMCID: PMC9910179 DOI: 10.3389/fimmu.2022.1093990] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/07/2022] [Indexed: 01/22/2023] Open
Abstract
Matrix metalloproteinases (MMPs) are an important class of enzymes in the body that function through the extracellular matrix (ECM). They are involved in diverse pathophysiological processes, such as tumor invasion and metastasis, cardiovascular diseases, arthritis, periodontal disease, osteogenesis imperfecta, and diseases of the central nervous system. MMPs participate in the occurrence and development of numerous cancers and are closely related to immunity. In the present study, we review the immunomodulatory role of MMPs in colitis-associated cancer (CAC) and discuss relevant clinical applications. We analyze more than 300 pharmacological studies retrieved from PubMed and the Web of Science, related to MMPs, cancer, colitis, CAC, and immunomodulation. Key MMPs that interfere with pathological processes in CAC such as MMP-2, MMP-3, MMP-7, MMP-9, MMP-10, MMP-12, and MMP-13, as well as their corresponding mechanisms are elaborated. MMPs are involved in cell proliferation, cell differentiation, angiogenesis, ECM remodeling, and the inflammatory response in CAC. They also affect the immune system by modulating differentiation and immune activity of immune cells, recruitment of macrophages, and recruitment of neutrophils. Herein we describe the immunomodulatory role of MMPs in CAC to facilitate treatment of this special type of colon cancer, which is preceded by detectable inflammatory bowel disease in clinical populations.
Collapse
Affiliation(s)
- Luying He
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Qianming Kang
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Ka Iong Chan
- Macao Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, Macao SAR, China
| | - Yang Zhang
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Zhangfeng Zhong
- Macao Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, Macao SAR, China,*Correspondence: Zhangfeng Zhong, ; Wen Tan,
| | - Wen Tan
- School of Pharmacy, Lanzhou University, Lanzhou, China,*Correspondence: Zhangfeng Zhong, ; Wen Tan,
| |
Collapse
|
6
|
Giolo FP, Santos GS, Pacheco VF, Huber SC, Malange KF, Rodrigues BL, Bassora F, Mosaner T, Azzini G, Ribeiro LL, Parada CA, Lana JFSD. Photobiomodulation therapy for osteoarthritis: Mechanisms of action. World J Transl Med 2022; 10:29-42. [DOI: 10.5528/wjtm.v10.i3.29] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/23/2022] [Accepted: 08/05/2022] [Indexed: 02/05/2023] Open
Abstract
Photobiomodulation (PBM) is a non-invasive therapeutic modality with demonstrated effects in many fields related to regenerative medicine. In the field of orthopedics, in particular, PBM at various wavelengths has demonstrated the capacity to trigger multiple biological effects associated with protective mechanisms in musculoskeletal tissues. The articles cited in this review show that devices operating close to or within the near infrared range at low intensities can provoke responses which favor the shift in the predominant catabolic microenvironment typically seen in degenerative joint diseases, especially osteoarthritis (OA). These responses include proliferation, differentiation and expression of proteins associated with stable cell cycles. Additionally, PBM can also modulate oxidative stress, inflammation and pain by exerting regulatory effects on immune cells and blocking the transmission of pain through sensory neuron fibers, without adverse events. Collectively, these effects are essential in order to control the progression of OA, which is in part attributed to exacerbated inflammation and degradative enzymatic reactions which gradually contribute to the destruction of joint tissues. PBM may offer medical experts ease of application, financial viability, efficacy and lack of serious adverse events. Therefore, it may prove to be a suitable ally in the management of mild to moderate degrees of OA. This review explores and discusses the principal biological mechanisms of PBM and how the produced effects may contribute to the amelioration of osteoarthritic progression. Literature was reviewed using PubMed and Google Scholar in order to find studies describing the mechanisms of PBM. The investigation included a combination of nomenclature such as: “photobiomodulation”, “phototherapy”, “laser therapy”, “PBM”, “osteoarthritis”, low level light therapy”, “inflammation” and “cartilage”. We considered only articles written in English, with access to the full text.
Collapse
Affiliation(s)
- Fábio Pericinoto Giolo
- Department of Physical Therapy, Brazilian Institute of Regenerative Medicine, Indaiatuba 13334-170, Brazil
| | - Gabriel Silva Santos
- Biomedical Science, Brazilian Institute of Regenerative Medicine, Indaiatuba 13334-170, Brazil
| | - Victor Fontes Pacheco
- Department of Orthopedics, Brazilian Institute of Regenerative Medicine, Indaiatuba 13334-170, Brazil
| | - Stephany Cares Huber
- Biomedical Science, Brazilian Institute of Regenerative Medicine, Indaiatuba 13334-170, Brazil
| | - Kaue Franco Malange
- Neurobiology of Pain and Regenerative Medicine, The University of Campinas, Campinas 13083-862, Brazil
| | - Bruno Lima Rodrigues
- Biomedical Science, Brazilian Institute of Regenerative Medicine, Indaiatuba 13334-170, Brazil
| | - Fernanda Bassora
- Department of Hematology, The University of Campinas, Campinas 13083-878, Brazil
| | - Tomas Mosaner
- Department of Orthopedics, Brazilian Institute of Regenerative Medicine, Indaiatuba 13334-170, Brazil
| | - Gabriel Azzini
- Department of Orthopedics, Brazilian Institute of Regenerative Medicine, Indaiatuba 13334-170, Brazil
| | - Lucas Leite Ribeiro
- Department of Orthopedics, Brazilian Institute of Regenerative Medicine, Indaiatuba 13334-170, Brazil
| | - Carlos Amilcar Parada
- Neurobiology of Pain and Regenerative Medicine, The University of Campinas, Campinas 13083-862, Brazil
| | | |
Collapse
|
7
|
Protective role of microRNA-23a/b-3p inhibition against osteoarthritis through Gremlin1-depenent activation of TGF-β/smad signaling in chondrocytesa. Inflammopharmacology 2022; 30:843-853. [PMID: 35441352 DOI: 10.1007/s10787-022-00923-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 01/08/2022] [Indexed: 01/15/2023]
Abstract
The changed biomechanical environment of chondrocytes elicited by altered extracellular matrix is reported to accelerate the progression of OA. MicroRNAs (miRNAs or miRs) have emerged as major regulators in chondrocyte function. Hence, we explored effect of miR-23a/b-3p on OA in regulating chondrocyte growth. The medial meniscus and anterior cruciate ligaments of right knee was removed to induce a mouse model of OA. miR-23a/b-3p and Gremlin1 (Grem1) expressions in OA were determined by RT-qPCR. Dual luciferase reporter gene assay was conducted to assess their relationship in the context of OA. Loss- and gain-of-function assays were adopted to clarify their effects on OA by determining the release of pro-inflammatory proteins and the apoptosis of chondrocytes. RT-qPCR determined increased miR-23a/b-3p expression and decreased Grem1 expression in the setting OA. Inhibiting miR-23a/b-3p or overexpressing Grem1 activated transforming growth factor-β/solvated metal atom dispersed 3 (TGF-β/Smad) signaling to prevent OA development. Silencing Grem1 ablated suppressive effects of miR-23a/b-3p inhibitor on the release of pro-inflammatory proteins and the apoptosis of chondrocytes. To conclude, inhibition of miR-23a/b-3p delays OA progression through Grem1-mediated activation of TGF-β/Smad signaling, contributing to deepen understanding of the pathogenesis of OA.
Collapse
|
8
|
Abstract
PURPOSE OF REVIEW Osteoarthritis is a degenerative joint disease that features pain as a hallmark symptom. This review summarises progress and obstacles in our understanding of pain mechanisms in arthritis. RECENT FINDINGS Pain phenotypes in osteoarthritis are poorly characterized in clinical studies and animal studies are largely carti-centric. Different animal models incur variable disease progression patterns and activation of distinct pain pathways, but studies reporting both structural and pain outcomes permit better translational insights. In patients, classification of osteoarthritis disease severity is only based on structural integrity of the joint, but pain outcomes do not consistently correlate with joint damage. The complexity of this relationship underlines the need for pain detection in criteria for osteoarthritis classification and patient-reported outcome measures. SUMMARY Variable inflammatory and neuropathic components and spatiotemporal evolution underlie the heterogeneity of osteoarthritis pain phenotypes, which must be considered to adequately stratify patients. Revised classification of osteoarthritis at different stages encompassing both structural and pain outcomes would significantly improve detection and diagnosis at both early and late stages of disease. These are necessary advancements in the field that would also improve trial design and provide better understanding of basic mechanisms of disease progression and pain in osteoarthritis.
Collapse
|
9
|
Abstract
To verify the influence of ozone (O3) therapy on an experimental model of rheumatoid arthritis (RA), 30 male Wistar rats were randomly allocated to 2 groups, control (C) and treatment (T), and subdivided into control (C12, C48, C72) and treatment (T12, T48, T72) groups. RA was induced by administration of collagenase plus complete Freud's adjuvant in the knee joint region. The animals were treated with ozone therapy (1 ml O3 injection in the knee i.a.) according to group assignment: T12, 2 h; T48, 2 and 24 h; and T72, 2, 24, and 48 h post-RA induction. The different animal groups were euthanized 12, 24, or 72 h post-RA induction, respectively. Synovial exudate levels of IL-10, IL-12p70, TNF-α, INF-γ, and MCP-1 were assessed by flow cytometry, and histopathological analysis of the knee cartilage was conducted. Ozone therapy effectively decreases inflammation, reducing IL-12 and TNF-α, and increasing IL10. O3 did not statistically affect INF-γ or MCP-1 levels. More expressive results were obtained with group T72, i.e., treated 2, 24, and 48 h post-RA induction, which indicates that longer-term ozone treatment is more effective than a single acute application. Ozone therapy effectively reduced inflammation with effects, at least in part, mediated through reduction of pro-inflammatory cytokines and activation of IL-10 anti-inflammatory cytokine.
Collapse
|
10
|
Yamada EF, Dos Santos Stein C, Moresco RN, Bobinski F, Palandi J, Fernandes PF, Folmer V, da Silva MD. Photobiomodulation and Sida tuberculata combination declines the inflammation's markers in knee-induced osteoarthritis. Lasers Med Sci 2021; 37:193-204. [PMID: 33417067 DOI: 10.1007/s10103-020-03207-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 11/19/2020] [Indexed: 12/13/2022]
Abstract
The aim of this study was to assess potential combination effects of photobiomodulation therapy (PBMT) with Sida tuberculata extracts on the oxidative stress and antioxidant activity, as well as on the inflammatory process. Rats with knee osteoarthritis (OA) were treated with S. tuberculata extracts and PBMT (904 nm, 18 J/cm2). The animals were evaluated for nociception and edema. The blood, knee lavage and structures, spinal cord, and brainstem were collected for biochemical analyses (lipid peroxidation, protein carbonyl content, superoxide dismutase activity, non-protein thiol levels, and measurement of nitrite/nitrate). The knee structures were also used to measure cytokine levels. PBMT lowered the damage due to oxidative stress in the knee and at distant sites from the lesion. PBMT also reduced the levels of nitric oxide and cytokines, which could explain the nociception reduction mechanism. Similarly, S. tuberculata decreased the damage by oxidative stress, levels of nitrite/nitrate, and cytokines. The therapy combination reduced levels of cytokines and nitrite/nitrate. PBMT and S. tuberculata extracts reduced the oxidative stress and inflammation. It is noteworthy that PBMT increased the antioxidant activity in the knee and at sites distant from the lesion, contributing to a more significant decrease in nociception. The combination of therapies did not present significant effects on the analyzed parameters. Therefore, it is suggested that PBM is sufficient to minimize the signs and symptoms of the knee OA in our rat model.
Collapse
Affiliation(s)
- Eloá Ferreira Yamada
- Graduate Program in Biochemistry, Universidade Federal do Pampa (Unipampa), BR 472, Km 585, Uruguaiana, RS, 97501-970, Brazil.
| | - Carolina Dos Santos Stein
- Laboratory of Clinical Biochemistry, Department of Clinical and Toxicological Analyses, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, 97105-900, Brazil
| | - Rafael Noal Moresco
- Laboratory of Clinical Biochemistry, Department of Clinical and Toxicological Analyses, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, 97105-900, Brazil
| | - Franciane Bobinski
- Graduate Program in Health Sciences, Laboratory of Experimental Neuroscience (LaNEx), Universidade do Sul de Santa Catarina (UNISUL), Palhoça, SC, 88137-272, Brazil
| | - Juliete Palandi
- Graduate Program in Health Sciences, Laboratory of Experimental Neuroscience (LaNEx), Universidade do Sul de Santa Catarina (UNISUL), Palhoça, SC, 88137-272, Brazil.,Laboratory of Experimentation in Neuropathology (LEN), Graduate Program in Neuroscience, Biochemistry Department, Biological Sciences Center, Universidade Federal de Santa Catarina (UFSC), Florianópolis, SC, 88040-900, Brazil
| | - Paula Franson Fernandes
- Graduate Program in Health Sciences, Laboratory of Experimental Neuroscience (LaNEx), Universidade do Sul de Santa Catarina (UNISUL), Palhoça, SC, 88137-272, Brazil
| | - Vanderlei Folmer
- Graduate Program in Biochemistry, Universidade Federal do Pampa (Unipampa), BR 472, Km 585, Uruguaiana, RS, 97501-970, Brazil
| | - Morgana Duarte da Silva
- Graduate Program in Biochemistry, Universidade Federal do Pampa (Unipampa), BR 472, Km 585, Uruguaiana, RS, 97501-970, Brazil
| |
Collapse
|
11
|
Hong-Hui-Xiang Alleviates Pain Hypersensitivity in a Mouse Model of Monoarthritis. Pain Res Manag 2020; 2020:5626948. [PMID: 33376567 PMCID: PMC7738786 DOI: 10.1155/2020/5626948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 10/01/2020] [Accepted: 11/28/2020] [Indexed: 11/18/2022]
Abstract
Background Hong-Hui-Xiang (HHX) is a sterilized aqueous solution extracted from Illicium lanceolatum A.C. Smith widely used for pain relief in China. Despite its history, it is not well understood. In the present study, we used a mouse model of arthritic knee pain to investigate the antinociceptive effects of HHX and its potential side effects on weight and respiratory function, as well as on the liver, kidney, and heart. Methods Mice were randomly assigned to four groups: saline and HHX at three doses (1 μl, 10 μl, and 50 μl). Each group was randomly divided to two subgroups: saline and CFA. After the first injection of HHX or saline on day 7, mechanical hyperalgesia was tested via the hind paw. Only after the tests had established that the analgesic effect had subsided was the next injection administered. A total of five injections were administered. Blood, knee joints, and other organs were collected for histopathological observation and biochemical detection. Objectives We found that mechanical threshold of hind paw increased 2 h after of the initial injection HHX (10 μl and 50 μl), which lasted for at least 3 h. The analgesic effect lasted for three days after the second injection on day 8 and was approximately maintained for five days each time after the third injection. We also found a reduction in the diameter of the knee joint and suppression of synovial inflammation in response to treatment of HHX (10 μl and 50 μl). Meanwhile, HHX had no toxic effects on the liver, kidneys, and heart via histological and biochemical assays in all groups. Conclusion HHX exerts antinociceptive and anti-inflammatory effects in a mouse model of arthritic knee pain. There were no obvious side effects on the liver, kidneys, or heart.
Collapse
|
12
|
Vassão PG, Silva BA, de Souza MC, Parisi JR, de Camargo MR, Renno ACM. Level of pain, muscle strength and posture: effects of PBM on an exercise program in women with knee osteoarthritis - a randomized controlled trial. Lasers Med Sci 2020; 35:1967-1974. [PMID: 32157582 DOI: 10.1007/s10103-020-02989-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 02/25/2020] [Indexed: 12/18/2022]
Abstract
To evaluate the effectiveness of an exercise program associated to photobiomodulation (PBM) on pain, postural changes, functionally, and muscular strength in women, one of the risk factors, with knee osteoarthritis (OA). A randomized controlled trial, with a blinded assessor and intention-to-treat analysis and placebo control. Sixty-two participants with knee OA (with confirmed radiological diagnosis) were evaluated for this study. However, 34 were considered eligible and were randomized into two groups: EPPG - exercise and PBM placebo group (n = 17) and EPAG - exercise and PBM active group (n = 16), but one participant was excluded of EPAG. The exercise program and PBM (808 nm, 100 mW/point, 4 J/point, 56 J total, 91 J/cm2) were realized twice a week, during 8 weeks. West Ontario and the McMaster University Osteoarthritis Index (WOMAC) and Lequesne questionnaires, 1-repetition maximum test (1-RM) and posture evaluation software (SAPO) were used to analyze the effects of the therapies. In intragroup analysis, a significant improvement in pain WOMAC (p < 0.001), stiffness (p < 0.001), function (p < 0.001), Lequesne (p < 0.001), and 1-RM (all muscle groups) (p < 0.001) were observed. In this study, the exercise program improved pain, function, and muscle strength of all the participants. However, PBM, in the parameters used, did not optimize the effects of the exercise program in women with knee OA.
Collapse
Affiliation(s)
- Patricia Gabrielli Vassão
- Department of Biosciences, Federal University of São Paulo, Campus Baixada Santista, Rua Silva Jardim, 136, Santos, SP, 11015-020, Brazil.
| | - Bruna Arcaim Silva
- Department of Biosciences, Federal University of São Paulo, Campus Baixada Santista, Rua Silva Jardim, 136, Santos, SP, 11015-020, Brazil
| | - Mayra Cavenague de Souza
- Department of Biosciences, Federal University of São Paulo, Campus Baixada Santista, Rua Silva Jardim, 136, Santos, SP, 11015-020, Brazil
| | - Julia Risso Parisi
- Department of Physiotherapy, Federal University of São Carlos (UFSCar), São Carlos, SP, Brazil
| | - Marcela Regina de Camargo
- Department of Biosciences, Federal University of São Paulo, Campus Baixada Santista, Rua Silva Jardim, 136, Santos, SP, 11015-020, Brazil
| | - Ana Claudia Muniz Renno
- Department of Biosciences, Federal University of São Paulo, Campus Baixada Santista, Rua Silva Jardim, 136, Santos, SP, 11015-020, Brazil
| |
Collapse
|
13
|
Alves CJ, Couto M, Sousa DM, Magalhães A, Neto E, Leitão L, Conceição F, Monteiro AC, Ribeiro-da-Silva M, Lamghari M. Nociceptive mechanisms driving pain in a post-traumatic osteoarthritis mouse model. Sci Rep 2020; 10:15271. [PMID: 32943744 PMCID: PMC7499425 DOI: 10.1038/s41598-020-72227-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 08/20/2020] [Indexed: 11/29/2022] Open
Abstract
In osteoarthritis (OA), pain is the dominant clinical symptom, yet the therapeutic approaches remain inadequate. The knowledge of the nociceptive mechanisms in OA, which will allow to develop effective therapies for OA pain, is of utmost need. In this study, we investigated the nociceptive mechanisms involved in post-traumatic OA pain, using the destabilization of the medial meniscus (DMM) mouse model. Our results revealed the development of peripheral pain sensitization, reflected by augmented mechanical allodynia. Along with the development of pain behaviour, we observed an increase in the expression of calcitonin gene-related peptide (CGRP) in both the sensory nerve fibers of the periosteum and the dorsal root ganglia. Interestingly, we also observed that other nociceptive mechanisms commonly described in non-traumatic OA phenotypes, such as infiltration of the synovium by immune cells, neuropathic mechanisms and also central sensitization were not present. Overall, our results suggest that CGRP in the sensory nervous system is underlying the peripheral sensitization observed after traumatic knee injury in the DMM model, highlighting the CGRP as a putative therapeutic target to treat pain in post-traumatic OA. Moreover, our findings suggest that the nociceptive mechanisms involved in driving pain in post-traumatic OA are considerably different from those in non-traumatic OA.
Collapse
Affiliation(s)
- C J Alves
- Neuro-Skeletal Circuits Group, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal. .,Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal.
| | - M Couto
- Neuro-Skeletal Circuits Group, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.,Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal
| | - D M Sousa
- Neuro-Skeletal Circuits Group, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.,Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal
| | - A Magalhães
- Neuro-Skeletal Circuits Group, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - E Neto
- Neuro-Skeletal Circuits Group, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.,Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal
| | - L Leitão
- Neuro-Skeletal Circuits Group, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.,Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal.,Instituto Ciências Biomédicas Abel Salazar (ICBAS), Universidade de Porto, Porto, Portugal
| | - F Conceição
- Neuro-Skeletal Circuits Group, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.,Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal.,Instituto Ciências Biomédicas Abel Salazar (ICBAS), Universidade de Porto, Porto, Portugal
| | - A C Monteiro
- Neuro-Skeletal Circuits Group, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.,Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal
| | - M Ribeiro-da-Silva
- Neuro-Skeletal Circuits Group, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.,Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal.,Faculdade de Medicina, Universidade do Porto (FMUP), Porto, Portugal.,Serviço de Ortopedia e Traumatologia, Centro Hospitalar São João, Porto, Portugal
| | - M Lamghari
- Neuro-Skeletal Circuits Group, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.,Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal.,Instituto Ciências Biomédicas Abel Salazar (ICBAS), Universidade de Porto, Porto, Portugal
| |
Collapse
|
14
|
|
15
|
Fusco R, Siracusa R, Peritore AF, Gugliandolo E, Genovese T, D’Amico R, Cordaro M, Crupi R, Mandalari G, Impellizzeri D, Cuzzocrea S, Di Paola R. The Role of Cashew ( Anacardium occidentale L.) Nuts on an Experimental Model of Painful Degenerative Joint Disease. Antioxidants (Basel) 2020; 9:antiox9060511. [PMID: 32532064 PMCID: PMC7346149 DOI: 10.3390/antiox9060511] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/08/2020] [Accepted: 06/08/2020] [Indexed: 01/05/2023] Open
Abstract
Osteoarthritis is a progressive joint disease characterized by the activation of different molecular mediators, including proinflammatory cytokines, reactive oxygen species, metalloproteinases and nociceptive mediators. Anacardium occidentale L. is a medicinal plant with anti-oxidative and anti-inflammatory properties. In this study we evaluate the effects of cashew nuts (from Anacardium occidentale L.) oral administration on an experimental model of painful degenerative joint disease. Monosodium iodoacetate (MIA) was intraarticularly injected, and cashew nuts were orally administered three times per week for 21 days, starting the third day after MIA injection. Nociception was evaluated by a Von Frey filament test, and motor function by walking track analysis at 3, 7, 14 and 21 days after osteoarthritis. Histological and biochemical alteration were examined at the end of the experiment. Cashew nuts administration reduced pain-like behavior and showed antioxidant activities, restoring biochemical serum parameters: glutathione (GSH), catalase (CAT) levels, glutathione peroxidase (GPx) activity and lipid peroxidation. Moreover, cashew nuts ameliorated radiographic and histological alteration, resulting in decreased cartilage degradation, pro-inflammatory cytokines and metalloproteinases levels and mast cells recruitment. Our results demonstrated that the oral assumption of cashew nuts counteracts the inflammatory and oxidative process involved in osteoarthritis.
Collapse
Affiliation(s)
- Roberta Fusco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (R.F.); (R.S.); (A.F.P.); (E.G.); (T.G.); (R.D.); (G.M.); (R.D.P.)
| | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (R.F.); (R.S.); (A.F.P.); (E.G.); (T.G.); (R.D.); (G.M.); (R.D.P.)
| | - Alesso Filippo Peritore
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (R.F.); (R.S.); (A.F.P.); (E.G.); (T.G.); (R.D.); (G.M.); (R.D.P.)
| | - Enrico Gugliandolo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (R.F.); (R.S.); (A.F.P.); (E.G.); (T.G.); (R.D.); (G.M.); (R.D.P.)
| | - Tiziana Genovese
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (R.F.); (R.S.); (A.F.P.); (E.G.); (T.G.); (R.D.); (G.M.); (R.D.P.)
| | - Ramona D’Amico
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (R.F.); (R.S.); (A.F.P.); (E.G.); (T.G.); (R.D.); (G.M.); (R.D.P.)
| | - Marika Cordaro
- Department of Biomedical, Dental and Morphological and Functional Imaging University of Messina, Via Consolare Valeria, 98125 Messina, Italy;
| | - Rosalia Crupi
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy;
| | - Giuseppina Mandalari
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (R.F.); (R.S.); (A.F.P.); (E.G.); (T.G.); (R.D.); (G.M.); (R.D.P.)
| | - Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (R.F.); (R.S.); (A.F.P.); (E.G.); (T.G.); (R.D.); (G.M.); (R.D.P.)
- Correspondence: (D.I.); (S.C.); Tel.: +39-090-676-5208 (D.I. & S.C.)
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (R.F.); (R.S.); (A.F.P.); (E.G.); (T.G.); (R.D.); (G.M.); (R.D.P.)
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, Saint Louis, MO 63104, USA
- Correspondence: (D.I.); (S.C.); Tel.: +39-090-676-5208 (D.I. & S.C.)
| | - Rosanna Di Paola
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (R.F.); (R.S.); (A.F.P.); (E.G.); (T.G.); (R.D.); (G.M.); (R.D.P.)
| |
Collapse
|
16
|
The Protective Effect of New Carnosine-Hyaluronic Acid Conjugate on the Inflammation and Cartilage Degradation in the Experimental Model of Osteoarthritis. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10041324] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Osteoarthritis (OA) is a disease that currently has no cure. There are numerous studies showing that carnosine and hyaluronic acid (HA) have a positive pharmacological action during joint inflammation. For this reason, the goal of this research was to discover the protective effect of a new carnosine conjugate with hyaluronic acid (FidHycarn) on the inflammatory response and on the cartilage degradation in an in vivo experimental model of OA. This model was induced by a single intra-articular (i.ar.) injection of 25 µL of normal saline with 1 mg of monosodium iodoacetate solution (MIA) in the knee joint of rats. MIA injection caused histological alterations and degradation of the cartilage, as well as behavioral changes. Oral treatment with FidHycarn ameliorated the macroscopic signs, improved thermal hyperalgesia and the weight distribution of the hind paw, and decreased histological and radiographic alterations. The oxidative damage was analyzed by evaluating the levels of nitrotyrosine and inducible nitric oxide synthase (iNOS) that were significantly reduced in FidHycarn rats. Moreover, the levels of pro-inflammatory cytokines and chemokines were also significantly reduced by FidHycarn. Therefore, for the first time, the effectiveness of oral administration of FidHycarn has been demonstrated in an osteoarthritis model. In conclusion, the new FidHycarn could represent an interesting therapeutic strategy to combat osteoarthritis.
Collapse
|
17
|
Transdermal co-delivery of glucosamine sulfate and diacerein for the induction of chondroprotection in experimental osteoarthritis. Drug Deliv Transl Res 2020; 10:1327-1340. [PMID: 31907788 DOI: 10.1007/s13346-019-00701-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The aim of this work was to develop a transdermal delivery system consisting of a glucosamine sulfate-laden xanthan hydrogel containing a nanoemulsion-loaded diacerein. The system was intended to prevent cartilage degradation typical of osteoarthritis. The nanoemulsion, made of soybean oil as the oil phase; soybean lecithin, Tween 80, and poloxamer 407 as surfactants; and propylene glycol as cosurfactant, was formed within the hydrogel. The hydrodynamic diameter of the nanoemulsion globules was 81.95 ± 0.256 nm with 0.285 ± 0.036 of PDI value and the zeta potential value of the formulation was 39.33 ± 0.812 mV. CryoSEM and TEM studies revealed the uniform morphology of the vehicle. A rheological study exposed the nanoemulsion-loaded hydrogel as a thixotropic system. Satisfactory storage stability under ICH conditions was established by the zeta potential and rheological studies. Furthermore, skin biocompatibility of the hydrogel was ascertained on the basis of skin irritation study. Additionally, the diffusion of the drugs across rat skin followed a controlled non-Fickian anomalous steady mechanism. Following in vivo administration in experimental osteoarthritis, the transdermal hydrogel showed a reduction in tumor necrosis factor-alpha, C-reactive protein, high mobility group box protein, and monocyte chemoattractant protein-1. Finally, histopathological analysis of the animals showed satisfactory chondroprotection in the in vivo study. In conclusion, the developed transdermal systems showed a potential against the progression of experimental osteoarthritis.
Collapse
|
18
|
Yamada EF, Bobinski F, Martins DF, Palandi J, Folmer V, da Silva MD. Photobiomodulation therapy in knee osteoarthritis reduces oxidative stress and inflammatory cytokines in rats. JOURNAL OF BIOPHOTONICS 2020; 13:e201900204. [PMID: 31568634 DOI: 10.1002/jbio.201900204] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 09/12/2019] [Accepted: 09/15/2019] [Indexed: 06/10/2023]
Abstract
Knee osteoarthritis (OA) is a chronic disease that causes pain and gradual degeneration of the articular cartilage. In this study, MIA-induced OA knee model was used in rats to test the effects of the photobiomodulation therapy (PBM). We analyzed the inflammatory process (pain and cytokine levels), and its influence on the oxidative stress and antioxidant capacity. Knee OA was induced by monosodium iodoacetate (MIA) intra-articular injection (1.5 mg/50 μL) and the rats were treated with eight sessions of PBM 3 days/week (904 nm, 6 or 18 J/cm2 ). For each animal, mechanical and cold hyperalgesia and spontaneous pain were evaluated; biological analyses were performed in blood serum, intra-articular lavage, knee structures, spinal cord and brainstem. Cytokine assays were performed in knee, spinal cord and brainstem samples. The effects of the 18 J/cm2 dose of PBM were promising in reducing pain and neutrophil activity in knee samples, together with reducing oxidative stress damage in blood serum and spinal cord samples. PBM improved the antioxidant capacity in blood serum and brainstem, and decreased the knee pro-inflammatory cytokine levels. Our study demonstrated that PBM decreased oxidative damage, inflammation and pain. Therefore, this therapy could be an important tool in the treatment of knee OA.
Collapse
Affiliation(s)
- Eloá F Yamada
- Department of Physical Therapy, Universidade Federal do Pampa (Unipampa), Uruguaiana, Rio Grande do Sul, Brazil
| | - Franciane Bobinski
- Laboratory of Experimental Neuroscience (LaNEx), Universidade do Sul de Santa Catarina (UNISUL), Palhoça, Santa Catarina, Brazil
| | - Daniel F Martins
- Laboratory of Experimental Neuroscience (LaNEx), Universidade do Sul de Santa Catarina (UNISUL), Palhoça, Santa Catarina, Brazil
| | - Juliete Palandi
- Department of Physical Therapy, Center for Health and Sports Sciences, Universidade do Estado de Santa Catarina (UDESC), Florianópolis, Santa Catarina, Brazil
| | - Vanderlei Folmer
- Department of Physical Therapy, Universidade Federal do Pampa (Unipampa), Uruguaiana, Rio Grande do Sul, Brazil
| | - Morgana D da Silva
- Department of Physical Therapy, Universidade Federal do Pampa (Unipampa), Uruguaiana, Rio Grande do Sul, Brazil
| |
Collapse
|
19
|
Cordaro M, Siracusa R, Impellizzeri D, D' Amico R, Peritore AF, Crupi R, Gugliandolo E, Fusco R, Di Paola R, Schievano C, Cuzzocrea S. Safety and efficacy of a new micronized formulation of the ALIAmide palmitoylglucosamine in preclinical models of inflammation and osteoarthritis pain. Arthritis Res Ther 2019; 21:254. [PMID: 31779692 PMCID: PMC6883534 DOI: 10.1186/s13075-019-2048-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 11/01/2019] [Indexed: 12/21/2022] Open
Abstract
Background Osteoarthritis is increasingly recognized as the result of a complex interplay between inflammation, chrondrodegeneration, and pain. Joint mast cells are considered to play a key role in orchestrating this detrimental triad. ALIAmides down-modulate mast cells and more generally hyperactive cells. Here we investigated the safety and effectiveness of the ALIAmide N-palmitoyl-d-glucosamine (PGA) in inflammation and osteoarthritis pain. Methods Acute toxicity of micronized PGA (m-PGA) was assessed in rats following OECD Guideline No.425. PGA and m-PGA (30 mg/kg and 100 mg/kg) were orally administered to carrageenan (CAR)-injected rats. Dexamethasone 0.1 mg/kg was used as reference. Paw edema and thermal hyperalgesia were measured up to 6 h post-injection, when also myeloperoxidase activity and histological inflammation score were assessed. Rats subjected to intra-articular injection of sodium monoiodoacetate (MIA) were treated three times per week for 21 days with PGA or m-PGA (30 mg/kg). Mechanical allodynia and motor function were evaluated at different post-injection time points. Joint histological and radiographic damage was scored, articular mast cells were counted, and macrophages were immunohistochemically investigated. Levels of TNF-α, IL-1β, NGF, and MMP-1, MMP-3, and MMP-9 were measured in serum using commercial colorimetric ELISA kits. One- or two-way ANOVA followed by a Bonferroni post hoc test for multiple comparisons was used. Results Acute oral toxicity of m-PGA resulted in LD50 values in excess of 2000 mg/kg. A single oral administration of PGA and m-PGA significantly reduced CAR-induced inflammatory signs (edema, inflammatory infiltrate, and hyperalgesia), and m-PGA also reduced the histological score. Micronized PGA resulted in a superior activity to PGA on MIA-induced mechanical allodynia, locomotor disability, and histologic and radiographic damage. The MIA-induced increase in mast cell count and serum level of the investigated markers was also counteracted by PGA and to a significantly greater extent by m-PGA. Conclusions The results of the present study showed that PGA is endorsed with anti-inflammatory, pain-relieving, and joint-protective effects. Moreover, it proved that particle size reduction greatly enhances the activity of PGA, particularly on joint pain and disability. Given these results, m-PGA could be considered a valuable option in the management of osteoarthritis.
Collapse
Affiliation(s)
- Marika Cordaro
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Messina, Italy
| | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Messina, Italy
| | - Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Messina, Italy
| | - Ramona D' Amico
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Messina, Italy
| | - Alessio Filippo Peritore
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Messina, Italy
| | - Rosalia Crupi
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Messina, Italy
| | - Enrico Gugliandolo
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Messina, Italy
| | - Roberta Fusco
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Messina, Italy
| | - Rosanna Di Paola
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Messina, Italy
| | - Carlo Schievano
- Innovative Statistical Research srl, Prato Della Valle 24, I-35123, Padova, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Messina, Italy. .,Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, Saint Louis, USA.
| |
Collapse
|
20
|
Lima MVV, Freire ADO, Sousa ELF, Vale AAM, Lopes AJO, Vasconcelos CC, Lima-Aragão MVV, Serra HO, Liberio RNMG, dos Santos APSDA, Silva GEB, da Rocha CQ, Moreira Lima FCV, Cartágenes MDSDS, Garcia JBS. Therapeutic Use of Scoparia dulcis Reduces the Progression of Experimental Osteoarthritis. Molecules 2019; 24:molecules24193474. [PMID: 31557835 PMCID: PMC6803828 DOI: 10.3390/molecules24193474] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/07/2019] [Accepted: 09/10/2019] [Indexed: 11/20/2022] Open
Abstract
Pain is recognized as one of the main symptoms in knee osteoarthritis and is the main reason why patients seek medical attention. Scoparia dulcis has been popularly used to relieve discomfort caused by various painful conditions. The objective of the study is to evaluate the analgesic and anti-inflammatory effect of the crude extract of S. dulcis, in an experimental model of osteoarthritis. The experiment was performed with Wistar rats divided into 4 groups with 5 animals each: healthy, saline, crude extract, and meloxicam groups. Knee osteoarthritis was induced by intra-articular injection of sodium mono-iodoacetate. First, clinical parameters of pain were assessed at days 0, 5, 10, 15, and 20 after induction. Second, the potential cyclooxygenase inhibition was evaluated, and the cytokines of the synovial fluid were quantified. An in silico test and Molecular Docking tests were performed. A histopathological evaluation was made on articular cartilage with safranin O staining. The results showed that a 15-day treatment with crude extract reduced edema, spontaneous pain, peripheral nociceptive activity, and proinflammatory cytokines in the synovial fluid. The highest inhibition of cyclooxygenase 2 in the crude extract occurred at 50 µg/mL. The crude extract of S. dulcis presents therapeutic potential for the treatment of osteoarthritis due to its anti-inflammatory and anti-nociceptive action.
Collapse
Affiliation(s)
- Marcus Vinícius Viégas Lima
- Centro de Ciências Biológicas e da Saúde, Universidade Federal do Maranhão, São Luís 65080-805, Brazil; (A.d.O.F.); (E.L.F.S.); (A.A.M.V.); (A.J.O.L.); (C.C.V.); (R.N.M.G.L.); (A.P.S.d.A.d.S.); (G.E.B.S.)
- Universidade Ceuma, São Luís 65075-120, Brazil
- Correspondence: (M.V.V.L.); (M.d.S.d.S.C.); (J.B.S.G.); Tel.: +55-(98)-3272-9527 (M.V.V.L.)
| | - Abner de Oliveira Freire
- Centro de Ciências Biológicas e da Saúde, Universidade Federal do Maranhão, São Luís 65080-805, Brazil; (A.d.O.F.); (E.L.F.S.); (A.A.M.V.); (A.J.O.L.); (C.C.V.); (R.N.M.G.L.); (A.P.S.d.A.d.S.); (G.E.B.S.)
| | - Emerson Lucas Frazão Sousa
- Centro de Ciências Biológicas e da Saúde, Universidade Federal do Maranhão, São Luís 65080-805, Brazil; (A.d.O.F.); (E.L.F.S.); (A.A.M.V.); (A.J.O.L.); (C.C.V.); (R.N.M.G.L.); (A.P.S.d.A.d.S.); (G.E.B.S.)
| | - André Alvares Marques Vale
- Centro de Ciências Biológicas e da Saúde, Universidade Federal do Maranhão, São Luís 65080-805, Brazil; (A.d.O.F.); (E.L.F.S.); (A.A.M.V.); (A.J.O.L.); (C.C.V.); (R.N.M.G.L.); (A.P.S.d.A.d.S.); (G.E.B.S.)
| | - Alberto Jorge Oliveira Lopes
- Centro de Ciências Biológicas e da Saúde, Universidade Federal do Maranhão, São Luís 65080-805, Brazil; (A.d.O.F.); (E.L.F.S.); (A.A.M.V.); (A.J.O.L.); (C.C.V.); (R.N.M.G.L.); (A.P.S.d.A.d.S.); (G.E.B.S.)
- Universidade Federal do Maranhão, Coordenação de Ciências Naturais, Campus Bacabal, São Luís 65080-80, Brazil
| | - Cleydlenne Costa Vasconcelos
- Centro de Ciências Biológicas e da Saúde, Universidade Federal do Maranhão, São Luís 65080-805, Brazil; (A.d.O.F.); (E.L.F.S.); (A.A.M.V.); (A.J.O.L.); (C.C.V.); (R.N.M.G.L.); (A.P.S.d.A.d.S.); (G.E.B.S.)
| | - Mônica Virginia Viégas Lima-Aragão
- Centro de Ciências Biológicas e da Saúde, Universidade Federal do Maranhão, São Luís 65080-805, Brazil; (A.d.O.F.); (E.L.F.S.); (A.A.M.V.); (A.J.O.L.); (C.C.V.); (R.N.M.G.L.); (A.P.S.d.A.d.S.); (G.E.B.S.)
| | | | - Rosane Nassar Meireles Guerra Liberio
- Centro de Ciências Biológicas e da Saúde, Universidade Federal do Maranhão, São Luís 65080-805, Brazil; (A.d.O.F.); (E.L.F.S.); (A.A.M.V.); (A.J.O.L.); (C.C.V.); (R.N.M.G.L.); (A.P.S.d.A.d.S.); (G.E.B.S.)
| | - Ana Paula Silva de Azevedo dos Santos
- Centro de Ciências Biológicas e da Saúde, Universidade Federal do Maranhão, São Luís 65080-805, Brazil; (A.d.O.F.); (E.L.F.S.); (A.A.M.V.); (A.J.O.L.); (C.C.V.); (R.N.M.G.L.); (A.P.S.d.A.d.S.); (G.E.B.S.)
| | - Gyl Eanes Barros Silva
- Centro de Ciências Biológicas e da Saúde, Universidade Federal do Maranhão, São Luís 65080-805, Brazil; (A.d.O.F.); (E.L.F.S.); (A.A.M.V.); (A.J.O.L.); (C.C.V.); (R.N.M.G.L.); (A.P.S.d.A.d.S.); (G.E.B.S.)
- Hospital Universitário Presidente Dutra, São Luís 65020-070, Brazil;
| | | | | | - Maria do Socorro de Sousa Cartágenes
- Centro de Ciências Biológicas e da Saúde, Universidade Federal do Maranhão, São Luís 65080-805, Brazil; (A.d.O.F.); (E.L.F.S.); (A.A.M.V.); (A.J.O.L.); (C.C.V.); (R.N.M.G.L.); (A.P.S.d.A.d.S.); (G.E.B.S.)
- Correspondence: (M.V.V.L.); (M.d.S.d.S.C.); (J.B.S.G.); Tel.: +55-(98)-3272-9527 (M.V.V.L.)
| | - João Batista Santos Garcia
- Centro de Ciências Biológicas e da Saúde, Universidade Federal do Maranhão, São Luís 65080-805, Brazil; (A.d.O.F.); (E.L.F.S.); (A.A.M.V.); (A.J.O.L.); (C.C.V.); (R.N.M.G.L.); (A.P.S.d.A.d.S.); (G.E.B.S.)
- Correspondence: (M.V.V.L.); (M.d.S.d.S.C.); (J.B.S.G.); Tel.: +55-(98)-3272-9527 (M.V.V.L.)
| |
Collapse
|
21
|
Sakamoto T, Miyazaki T, Watanabe S, Takahashi A, Honjoh K, Nakajima H, Oki H, Kokubo Y, Matsumine A. Intraarticular injection of processed lipoaspirate cells has anti-inflammatory and analgesic effects but does not improve degenerative changes in murine monoiodoacetate-induced osteoarthritis. BMC Musculoskelet Disord 2019; 20:335. [PMID: 31324245 PMCID: PMC6642531 DOI: 10.1186/s12891-019-2710-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 07/09/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Previous basic research and clinical studies examined the effects of mesenchymal stem cells (MSCs) on regeneration and maintenance of articular cartilage. However, our pilot study suggested that MSCs are more effective at suppressing inflammation and pain rather than promoting cartilage regeneration in osteoarthritis. Adipose tissue is considered a useful source of MSCs; it can be harvested easily in larger quantities compared with the bone marrow. The present study was designed to evaluate the anti-inflammatory, analgesic, and regenerative effects of intra-articularly injected processed lipoaspirate (PLA) cells (containing adipose-derived MSCs) on degenerative cartilage in a rat osteoarthritis model. METHODS PLA cells were isolated from subcutaneous adipose tissue of 12-week-old female Sprague-Dawley rats. Osteoarthritis was induced by injection of monoiodoacetate (MIA). Each rat received 1 × 106 MSCs into the joint at day 7 (early injection group) and day 14 (late injection group) post-MIA injection. At 7, 14, 21 days after MIA administration, pain was assessed by immunostaining and western blotting of dorsal root ganglion (DRG). Cartilage quality was assessed macroscopically and by safranin-O and H&E staining, and joint inflammation was assessed by western blotting of the synovium. RESULTS The early injection group showed less cartilage degradation, whereas the late injection group showed cartilage damage similar to untreated OA group. The relative expression level of CGRP protein in DRG neurons was significantly lower in the two treatment groups, compared with the untreated group. CONCLUSIONS Intra-articular injection of PLA cells prevented degenerative changes in the early injection group, but had little effect in promoting cartilage repair in the late injection group. Interestingly, intra-articular injection of PLA cells resulted in suppression of inflammation and pain in both OA groups. Further studies are needed to determine the long-term effects of intra-articular injection of PLA cells in osteoarthritis.
Collapse
Affiliation(s)
- Takumi Sakamoto
- Department of Orthopaedics and Rehabilitation Medicine, Faculty of Medical Sciences, University of Fukui, Matsuoka Shimoaizuki 23-3, Eiheiji, Fukui, 910-1193, Japan
| | - Tsuyoshi Miyazaki
- Department of Orthopaedics and Rehabilitation Medicine, Faculty of Medical Sciences, University of Fukui, Matsuoka Shimoaizuki 23-3, Eiheiji, Fukui, 910-1193, Japan.
| | - Shuji Watanabe
- Department of Orthopaedics and Rehabilitation Medicine, Faculty of Medical Sciences, University of Fukui, Matsuoka Shimoaizuki 23-3, Eiheiji, Fukui, 910-1193, Japan
| | - Ai Takahashi
- Department of Orthopaedics and Rehabilitation Medicine, Faculty of Medical Sciences, University of Fukui, Matsuoka Shimoaizuki 23-3, Eiheiji, Fukui, 910-1193, Japan
| | - Kazuya Honjoh
- Department of Orthopaedics and Rehabilitation Medicine, Faculty of Medical Sciences, University of Fukui, Matsuoka Shimoaizuki 23-3, Eiheiji, Fukui, 910-1193, Japan
| | - Hideaki Nakajima
- Department of Orthopaedics and Rehabilitation Medicine, Faculty of Medical Sciences, University of Fukui, Matsuoka Shimoaizuki 23-3, Eiheiji, Fukui, 910-1193, Japan
| | - Hisashi Oki
- Department of Orthopaedics and Rehabilitation Medicine, Faculty of Medical Sciences, University of Fukui, Matsuoka Shimoaizuki 23-3, Eiheiji, Fukui, 910-1193, Japan
| | - Yasuo Kokubo
- Department of Orthopaedics and Rehabilitation Medicine, Faculty of Medical Sciences, University of Fukui, Matsuoka Shimoaizuki 23-3, Eiheiji, Fukui, 910-1193, Japan
| | - Akihiko Matsumine
- Department of Orthopaedics and Rehabilitation Medicine, Faculty of Medical Sciences, University of Fukui, Matsuoka Shimoaizuki 23-3, Eiheiji, Fukui, 910-1193, Japan
| |
Collapse
|
22
|
Otis C, Guillot M, Moreau M, Pelletier JP, Beaudry F, Troncy E. Sensitivity of functional targeted neuropeptide evaluation in testing pregabalin analgesic efficacy in a rat model of osteoarthritis pain. Clin Exp Pharmacol Physiol 2019; 46:723-733. [PMID: 31046168 DOI: 10.1111/1440-1681.13100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 03/22/2019] [Accepted: 04/28/2019] [Indexed: 12/27/2022]
Abstract
The monosodium iodoacetate (MIA)-induced joint degeneration in rats is the most used animal model to screen analgesic drugs to alleviate osteoarthritis (OA) pain. This study aimed to evaluate the analgesic efficacy of pregabalin (PGB) in an MIA-induced OA model in rodents by using functional and neuroproteomic pain assessment methods. Treatment group included PGB in curative intent over 9 days compared to gold standard therapy (positive controls) and placebo (negative control). Functional assessments of pain (quantitative sensory testing and operant test) were performed concomitantly with spinal neuropeptides quantification. At day 21 post-OA induction, PGB in MIA rats reduced tactile allodynia (P = 0.028) and improved the place escape/avoidance behaviour (P = 0.04) compared to values recorded at last time-point before initiating analgesic therapy. All spinal neuropeptide concentrations, such as substance P, calcitonin gene-related peptide, bradykinin and somatostatin, came back to normal (non-affected) rat values, compared to their increase observed in MIA rats receiving the placebo (P < 0.0001). Initiated 13 days after chemical OA induction, repeated medication with PGB provided analgesia according to quantitative sensory testing, operant test and targeted neuropeptides pain assessment methods. This report highlights the interest of using reliable and sensitive methods like targeted neuropeptide quantification to detect the analgesic effects of a test article with concomitant functional assessments of pain when studying OA pain components.
Collapse
Affiliation(s)
- Colombe Otis
- Animal Pharmacology Research Group of Quebec (GREPAQ), Department of Veterinary Biomedicine, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, Quebec, Canada
| | - Martin Guillot
- Animal Pharmacology Research Group of Quebec (GREPAQ), Department of Veterinary Biomedicine, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, Quebec, Canada.,Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), Montreal, Quebec, Canada
| | - Maxim Moreau
- Animal Pharmacology Research Group of Quebec (GREPAQ), Department of Veterinary Biomedicine, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, Quebec, Canada.,Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), Montreal, Quebec, Canada
| | - Jean-Pierre Pelletier
- Animal Pharmacology Research Group of Quebec (GREPAQ), Department of Veterinary Biomedicine, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, Quebec, Canada.,Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), Montreal, Quebec, Canada
| | - Francis Beaudry
- Animal Pharmacology Research Group of Quebec (GREPAQ), Department of Veterinary Biomedicine, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, Quebec, Canada.,Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), Montreal, Quebec, Canada
| | - Eric Troncy
- Animal Pharmacology Research Group of Quebec (GREPAQ), Department of Veterinary Biomedicine, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, Quebec, Canada.,Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), Montreal, Quebec, Canada
| |
Collapse
|
23
|
NF-κB-Associated Pain-Related Neuropeptide Expression in Patients with Degenerative Disc Disease. Int J Mol Sci 2019; 20:ijms20030658. [PMID: 30717434 PMCID: PMC6386867 DOI: 10.3390/ijms20030658] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 01/30/2019] [Accepted: 01/30/2019] [Indexed: 12/14/2022] Open
Abstract
The role of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) has been highlighted in mechanisms underlying inflammatory and neuropathic pain processes. The present study was designed to investigate whether NF-κB signaling is associated with pain-related neuropeptide expression in patients with chronic back pain related to degenerative disc disease (DDD). Intervertebral disc (IVD) tissues were collected from forty DDD patients undergoing disc replacement or fusion surgery, and from eighteen postmortem (PM) control subjects. RELA, NFKB1, CGRP, TAC1, TRPV1, and MMP-3 gene expression were analyzed by RT-qPCR, while NF-κB subunit RelA and NF-κB1⁻DNA binding in nuclear extracts and calcitonin gene related peptide (CGRP), substance P (SP), and transient receptor potential, subfamily V, member 1 (TRPV1) protein levels in cytosolic extracts of tissues were assessed by enzyme-linked immunosorbent assay (ELISA). An upregulated NF-κB1⁻DNA binding, and higher CGRP and TRPV1 protein levels were observed in DDD patients compared to PM controls. In DDD patients, NF-κB1⁻DNA binding was positively correlated with nuclear RelA levels. Moreover, NF-κB1⁻DNA binding was positively associated with TRPV1 and MMP-3 gene and SP and TRPV1 protein expression in DDD patients. Our results indicate that the expression of SP and TRPV1 in IVD tissues was associated with NF-κB activation. Moreover, NF-κB may be involved in the generation or maintenance of peripheral pain mechanisms by the regulation of pain-related neuropeptide expression in DDD patients.
Collapse
|
24
|
Abstract
CGRP has long been suspected as a mediator of arthritis pain, although evidence that CGRP directly mediates human musculoskeletal pain remains circumstantial. This chapter describes in depth the evidence surrounding CGRP's association with pain in musculoskeletal disorders and also summarises evidence for CGRP being a direct cause of pain in other conditions. CGRP-immunoreactive nerves are present in musculoskeletal tissues, and CGRP expression is altered in musculoskeletal pain. CGRP modulates musculoskeletal pain through actions both in the periphery and central nervous system. Human observational studies, research on animal arthritis models and the few reported randomised controlled trials in humans of treatments that target CGRP provide the context of CGRP as a possible pain biomarker or mediator in conditions other than migraine.
Collapse
Affiliation(s)
- David A Walsh
- Pain Centre Versus Arthritis, NIHR Nottingham Biomedical Research Centre and Division of ROD, University of Nottingham, Nottingham, UK.
- Rheumatology, Sherwood Forest Hospitals NHS Foundation Trust, Nottinghamshire, UK.
| | - Daniel F McWilliams
- Pain Centre Versus Arthritis, NIHR Nottingham Biomedical Research Centre and Division of ROD, University of Nottingham, Nottingham, UK
| |
Collapse
|
25
|
Yamada EF, Salgueiro AF, Goulart ADS, Mendes VP, Anjos BL, Folmer V, da Silva MD. Evaluation of monosodium iodoacetate dosage to induce knee osteoarthritis: Relation with oxidative stress and pain. Int J Rheum Dis 2018; 22:399-410. [PMID: 30585422 DOI: 10.1111/1756-185x.13450] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 10/23/2018] [Accepted: 11/08/2018] [Indexed: 12/25/2022]
Abstract
AIM To determine the dose of monosodium iodoacetate (MIA) required to induce oxidative stress, as well as pain and edema; to confirm the induction of knee osteoarthritis (OA) symptoms in rats by the presence of reactive oxygen species (ROS) and reduction of antioxidant agents; and to verify the presence of histopathological injury in these affected joints. METHOD Biological markers of oxidative stress, pain, knee edema, and cartilage degeneration provided by different doses of MIA (0.5; 1.0 or 1.5 mg) in rat knee joints were analyzed. The animal evaluations were conducted during 15 days for mechanical and cold hypersensitivity, spontaneous pain and edema. After that, blood serum, intra-articular lavage and structures of knee, spinal cord and brainstem were collected for biochemical analysis; moreover, the knees were removed for histological evaluation. RESULTS This study demonstrates that the highest dose of MIA (1.5 mg) increased the oxidative stress markers and reduced the antioxidant reactions, both in the focus of the lesion and in distant sites. MIA also induced the inflammatory process, characterized by pain, edema, increase in neutrophil count and articular damage. CONCLUSION This model provides a basis for the exploration of underlying mechanisms in OA and the identification of mechanisms that may guide therapy and the discovery of OA signals and symptoms.
Collapse
Affiliation(s)
- Eloá Ferreira Yamada
- Postgraduate Program in Biochemistry, Universidade Federal do Pampa (Unipampa), Uruguaiana, Brazil
| | | | - Aline da Silva Goulart
- Postgraduate Program in Biochemistry, Universidade Federal do Pampa (Unipampa), Uruguaiana, Brazil
| | - Vanessa Pereira Mendes
- Veterinary Pathology Laboratory, Universidade Federal do Pampa (Unipampa), Uruguaiana, Brazil
| | - Bruno Leite Anjos
- Veterinary Pathology Laboratory, Universidade Federal do Pampa (Unipampa), Uruguaiana, Brazil
| | - Vanderlei Folmer
- Postgraduate Program in Biochemistry, Universidade Federal do Pampa (Unipampa), Uruguaiana, Brazil
| | - Morgana Duarte da Silva
- Postgraduate Program in Biochemistry, Universidade Federal do Pampa (Unipampa), Uruguaiana, Brazil
| |
Collapse
|
26
|
Ahmed AS, Gedin P, Hugo A, Bakalkin G, Kanar A, Hart DA, Druid H, Svensson C, Kosek E. Activation of NF-κB in Synovium versus Cartilage from Patients with Advanced Knee Osteoarthritis: A Potential Contributor to Inflammatory Aspects of Disease Progression. THE JOURNAL OF IMMUNOLOGY 2018; 201:1918-1927. [PMID: 30135182 DOI: 10.4049/jimmunol.1800486] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 07/22/2018] [Indexed: 02/01/2023]
Abstract
The aim was to assess the activation and association of the NF-κB system across synovial membrane (SM) and articular cartilage (AC) in patients with knee osteoarthritis (OA) and ascertain its potential effects on catabolic mediator expression in advanced OA. SM and AC were obtained from 40 OA patients undergoing total knee arthroplasty and from 19 postmortem control subjects. NF-κB subunit RelA in nuclear and cytosolic fractions and NF-κB1-DNA binding in nuclear extracts was assessed by ELISA, whereas NFKB1, RELA, IL-8, IL-6, and MMP3 gene expression were analyzed by reverse transcriptase-quantitative PCR in tissues. We observed higher SM nuclear RelA protein levels and upregulated NF-κB1-DNA binding in OA patients compared with postmortem controls. However, in AC, lower nuclear RelA levels were observed compared with cytosolic extracts in patients. Nuclear RelA levels correlated positively with NF-κB1-DNA binding in SM and AC in patients. SM RELA and MMP3 mRNA levels were upregulated, whereas IL-8 and IL-6 as well as AC RELA were downregulated in patients compared with controls. In SM, nuclear RelA levels correlated positively with MMP3 gene expression in patients. A negative correlation was observed between SM nuclear RelA levels and AC NF-κB1-DNA binding, and SM nuclear NF-κB1-DNA binding correlated negatively with AC MMP3 and NFKB1 mRNA levels in patients. These findings highlight NF-κB-triggered cross-talk and feedback mechanisms between SM and AC in OA. Further, our findings strongly support a role for an activated NF-κB system in the transcriptional mechanism of inflammatory processes, especially in SM of patients with advanced OA.
Collapse
Affiliation(s)
- Aisha S Ahmed
- Department of Clinical Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden;
| | - Per Gedin
- Ortho Center Stockholm, Löwenströmska Hospital, 194 89 Upplands Väsby, Sweden
| | - Anders Hugo
- Ortho Center Stockholm, Löwenströmska Hospital, 194 89 Upplands Väsby, Sweden
| | - Georgy Bakalkin
- Department of Pharmaceutical Biosciences, Uppsala University, 751 05 Uppsala, Sweden
| | - Alkass Kanar
- Department of Oncology-Pathology, Karolinska Institutet, 171 77 Stockholm, Sweden.,Swedish National Board of Forensic Medicine, 171 65 Solna, Sweden
| | - David A Hart
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Henrik Druid
- Department of Oncology-Pathology, Karolinska Institutet, 171 77 Stockholm, Sweden.,Swedish National Board of Forensic Medicine, 171 65 Solna, Sweden
| | - Camilla Svensson
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden; and
| | - Eva Kosek
- Department of Clinical Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden.,Stockholm Spine Center, Löwenströmska Hospital, 194 89 Upplands Väsby, Sweden
| |
Collapse
|
27
|
Hsieh MC, Ho YC, Lai CY, Chou D, Chen GD, Lin TB, Peng HY. Spinal TNF-α impedes Fbxo45-dependent Munc13-1 ubiquitination to mediate neuropathic allodynia in rats. Cell Death Dis 2018; 9:811. [PMID: 30042425 PMCID: PMC6057957 DOI: 10.1038/s41419-018-0859-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 06/16/2018] [Accepted: 07/05/2018] [Indexed: 12/12/2022]
Abstract
Presynaptic active zone proteins play a crucial role in regulating synaptic plasticity. Although the ubiquitin–proteasome system underlying the degradation of the presynaptic active zone protein is well established, the contribution of this machinery to regulating spinal plasticity during neuropathic pain development remains unclear. Here, using male Sprague Dawley rats, we demonstrated along with behavioral allodynia, neuropathic injury induced a marked elevation in the expression levels of an active zone protein Munc13-1 in the homogenate and synaptic plasma membrane of the ipsilateral dorsal horn. Moreover, nerve injury-increased Munc13-1 expression was associated with an increase in the frequency and amplitude of miniature excitatory postsynaptic currents (mEPSCs) in ipsilateral dorsal horn neurons. This neuropathic injury-induced accumulation of Munc13-1 colocalized with synaptophysin but not homer1 in the dorsal horn. Focal knockdown of spinal Munc13-1 expression attenuated behavioral allodynia and the increased frequency, not the amplitude, of mEPSCs in neuropathic rats. Remarkably, neuropathic injury decreased spinal Fbxo45 expression, Fbxo45-Munc13-1 co-precipitation, and Munc13-1 ubiquitination in the ipsilateral dorsal horn. Conversely, focal knockdown of spinal Fbxo45 expression in naive animals resulted in behavioral allodynia in association with similar protein expression and ubiquitination in the dorsal horn as observed with neuropathic injury rats. Furthermore, both neuropathic insults and intrathecal injection of tumor necrosis factor-α (TNF-α) impeded spinal Fbxo45-dependent Munc13-1 ubiquitination, which was reversed by intrathecal TNF-α-neutralizing antibody. Our data revealed that spinal TNF-α impedes Fbxo45-dependent Munc13-1 ubiquitination that accumulates Munc13-1 in the presynaptic area and hence facilitates the synaptic excitability of nociceptive neurotransmission underlying neuropathic pain.
Collapse
Affiliation(s)
- Ming-Chun Hsieh
- Department of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Medicine, Mackay Medical College, New Taipei, Taiwan
| | - Yu-Cheng Ho
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan
| | - Cheng-Yuan Lai
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan.,Department of Veterinary Medicine, College of Veterinary Medicine, National Chung-Hsing University, Taichung, Taiwan
| | - Dylan Chou
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan.,Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Gin-Den Chen
- Department of Obstetrics and Gynecology, Chung-Shan Medical University Hospital, Chung-Shan Medical University, Taichung, Taiwan
| | - Tzer-Bin Lin
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan.,Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan.,Department of Biotechnology, Asia University, Taichung, Taiwan
| | - Hsien-Yu Peng
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan.
| |
Collapse
|
28
|
Serrano RL, Chen LY, Lotz MK, Liu-Bryan R, Terkeltaub R. Impaired Proteasomal Function in Human Osteoarthritic Chondrocytes Can Contribute to Decreased Levels of SOX9 and Aggrecan. Arthritis Rheumatol 2018; 70:1030-1041. [PMID: 29457374 DOI: 10.1002/art.40456] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 02/13/2018] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Osteoarthritis (OA) chondrocytes exhibit impairment of autophagy, one arm of the proteostasis network that coordinates proteome and organelle quality control and degradation. Deficient proteostasis impacts differentiation and viability, and inflammatory processes in aging and disease. The present study was undertaken to assess ubiquitin proteasome system proteasomal function in OA chondrocytes. METHODS We evaluated human knee cartilage by immunohistochemistry, and assessed proteasomal function, levels of proteasomal core subunits and chaperones, and autophagy in cultured chondrocytes. Assays included Western blotting, quantitative reverse transcription-polymerase chain reaction, proteasomal protease activity assessment, and cell immunofluorescence analysis. RESULTS Human knee OA cartilage exhibited polyubiquitin accumulation, with increased ubiquitin K48-linked polyubiquitinated proteins in situ, suggesting proteasomal impairment. Cultured OA chondrocytes demonstrated accumulation of K48 polyubiquitinated proteins, significantly reduced 20S proteasome core protease activity, and decreased levels of phosphorylated FOXO4 and proteasome 26S subunit, non-ATPase 11 (PSMD11), a FOXO4-inducible promoter of proteasomal activation. Levels of proteasome subunit β type 3 (PSMB3), PSMB5, PSMB6, and proteasome assembly chaperone 1 were not decreased in OA chondrocytes. In normal chondrocytes, PSMD11 small interfering RNA knockdown stimulated certain autophagy machinery elements, increased extracellular nitric oxide (NO) levels, and reduced chondrocytic master transcription factor SOX9 protein and messenger RNA (mRNA) and aggrecan (AGC1) mRNA. PSMD11 gain-of- function by transfection increased proteasomal function, increased levels of SOX9-induced AGC1 mRNA, stimulated elements of the autophagic machinery, and inhibited extracellular levels of interleukin-1-induced NO and matrix metalloproteinase 13 in OA chondrocytes. CONCLUSION Deficient PSMD11, associated with reduced phosphorylated FOXO4, promotes impaired proteasomal function in OA chondrocytes, dysregulation of chondrocytic homeostasis, and decreased levels of SOX9 mRNA, SOX9 protein, and AGC1 mRNA. Chondrocyte proteasomal impairment may be a therapeutic target for OA.
Collapse
Affiliation(s)
- Ramon L Serrano
- VA San Diego Healthcare System, University of California San Diego, La Jolla, California
| | - Liang-Yu Chen
- VA San Diego Healthcare System, University of California San Diego, La Jolla, California
| | - Martin K Lotz
- The Scripps Research Institute, La Jolla, California
| | - Ru Liu-Bryan
- VA San Diego Healthcare System, University of California San Diego, La Jolla, California
| | - Robert Terkeltaub
- VA San Diego Healthcare System, University of California San Diego, La Jolla, California
| |
Collapse
|
29
|
Shen XF, Zeng Y, Li JC, Tang C, Zhang Y, Meng XL. The anti-arthritic activity of total glycosides from Pterocephalus hookeri, a traditional Tibetan herbal medicine. PHARMACEUTICAL BIOLOGY 2017; 55:560-570. [PMID: 27937009 PMCID: PMC6130749 DOI: 10.1080/13880209.2016.1263869] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 08/06/2016] [Accepted: 11/05/2016] [Indexed: 06/06/2023]
Abstract
CONTEXT Pterocephalus hookeri (C. B. Clarke) Hock., a traditional Tibetan herbal medicine rich in glycosides, has been used to treat several diseases including rheumatoid arthritis. OBJECTIVE To evaluate the anti-arthritic activity of total glycosides from P. hookeri, and its possible mechanisms of action. MATERIALS AND METHODS Anti-arthritic activity of total glycosides from P. hookeri (oral administration for 30 days at 14-56 mg/kg) was evaluated using paw swelling, arthritis scores and histopathological measurement in adjuvant-induced arthritis (AA) Sprague-Dawley rats. The NF-κB p65 expression in synovial tissues, and serum superoxide dismutase (SOD) activity, malondialdehyde (MDA) and nitric oxide (NO) levels was measured in AA rats, respectively. Further assessment of anti-inflammatory and analgesic activities of these glycosides were carried out using inflammation and hyperalgesia models induced by xylene, carrageenan, agar and acetic acid, respectively. RESULTS Total glycosides (56 mg/kg) decreased the paw swelling (38.0%, p < 0.01), arthritis scores (25.3%, p < 0.01) and synovial inflammation in AA rats. The glycosides significantly (p < 0.05-0.01) attenuated the inflammation induced by xylene, carrageenan, acetic acid and agar, increased the pain threshold in acetic acid-induced writhing in mice and mechanical stimuli-induced hyperalgia in AA rats. The glycosides (14, 28, 56 mg/kg) also suppressed the NF-κB p65 expression (33.1-78.2%, p < 0.05-0.01), reduced MDA (21.3-35.9%, p < 0.01) and NO (20.3-32.4%, p < 0.05-0.01) levels, respectively, enhanced the SOD activity (7.8%, p < 0.05) at 56 mg/kg in AA rats. DISCUSSION AND CONCLUSION Our findings confirmed the anti-arthritic property of the total glycosides from P. hookeri, which may be attributed to its inhibition on NF-κB signalling and oxidative stress.
Collapse
Affiliation(s)
- Xiao-fei Shen
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yong Zeng
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Jia-chuan Li
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Ce Tang
- College of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yi Zhang
- College of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xian-li Meng
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
30
|
Otis C, Guillot M, Moreau M, Martel-Pelletier J, Pelletier JP, Beaudry F, Troncy E. Spinal neuropeptide modulation, functional assessment and cartilage lesions in a monosodium iodoacetate rat model of osteoarthritis. Neuropeptides 2017; 65:56-62. [PMID: 28456437 DOI: 10.1016/j.npep.2017.04.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 03/31/2017] [Accepted: 04/22/2017] [Indexed: 01/19/2023]
Abstract
BACKGROUND AND AIMS Characterising the temporal evolution of changes observed in pain functional assessment, spinal neuropeptides and cartilage lesions of the joint after chemical osteoarthritis (OA) induction in rats. METHODS AND RESULTS On day (D) 0, OA was induced by an IA injection of monosodium iodoacetate (MIA). Rats receiving 2mg MIA were temporally assessed at D3, D7, D14 and D21 for the total spinal cord concentration of substance P (SP), calcitonin gene related-peptide (CGRP), bradykinin (BK) and somatostatin (STT), and for severity of cartilage lesions. At D21, the same outcomes were compared with the IA 1mg MIA, IA 2mg MIA associated with punctual IA injection of lidocaine at D7, D14 and D21, sham (sterile saline) and naïve groups. Tactile allodynia was sequentially assessed using a von Frey anaesthesiometer. Non-parametric and mixed models were applied for statistical analysis. Tactile allodynia developed in the 2mg MIA group as soon as D3 and was maintained up to D21. Punctual IA treatment with lidocaine counteracted it at D7 and D14. Compared to naïve, [STT], [BK] and [CGRP] reached a maximum as early as D7, which plateaued up to D21. For [SP], the increase was delayed up to D14 and maintained at D21. No difference in levels of neuropeptides was observed between MIA doses, except for higher [STT] in the 2mg MIA group (P=0.029). Neuropeptides SP and BK were responsive to lidocaine treatment. The increase in severity of cartilage lesions was significant only in the 2mg MIA groups (P=0.01). CONCLUSION In the MIA OA pain model, neuropeptide modulation appears early, and confirms the central nervous system to be an attractive target for OA pain quantification. The relationship of neuropeptide release with severity of cartilage lesions and functional assessment are promising and need further validation.
Collapse
Affiliation(s)
- Colombe Otis
- Animal Pharmacology Research Group of Quebec (GREPAQ), Department of Veterinary Biomedicine, Faculty of Veterinary Medicine, Université de Montréal, St.-Hyacinthe, QC J2S 7C6, Canada; Osteoarthritis Research Unit, Université de Montréal Hospital Research Center (CRCHUM), Pavillon R, Montreal, QC H2X 0A9, Canada
| | - Martin Guillot
- Animal Pharmacology Research Group of Quebec (GREPAQ), Department of Veterinary Biomedicine, Faculty of Veterinary Medicine, Université de Montréal, St.-Hyacinthe, QC J2S 7C6, Canada; Osteoarthritis Research Unit, Université de Montréal Hospital Research Center (CRCHUM), Pavillon R, Montreal, QC H2X 0A9, Canada
| | - Maxim Moreau
- Animal Pharmacology Research Group of Quebec (GREPAQ), Department of Veterinary Biomedicine, Faculty of Veterinary Medicine, Université de Montréal, St.-Hyacinthe, QC J2S 7C6, Canada; Osteoarthritis Research Unit, Université de Montréal Hospital Research Center (CRCHUM), Pavillon R, Montreal, QC H2X 0A9, Canada
| | - Johanne Martel-Pelletier
- Osteoarthritis Research Unit, Université de Montréal Hospital Research Center (CRCHUM), Pavillon R, Montreal, QC H2X 0A9, Canada
| | - Jean-Pierre Pelletier
- Osteoarthritis Research Unit, Université de Montréal Hospital Research Center (CRCHUM), Pavillon R, Montreal, QC H2X 0A9, Canada
| | - Francis Beaudry
- Animal Pharmacology Research Group of Quebec (GREPAQ), Department of Veterinary Biomedicine, Faculty of Veterinary Medicine, Université de Montréal, St.-Hyacinthe, QC J2S 7C6, Canada; Osteoarthritis Research Unit, Université de Montréal Hospital Research Center (CRCHUM), Pavillon R, Montreal, QC H2X 0A9, Canada
| | - Eric Troncy
- Animal Pharmacology Research Group of Quebec (GREPAQ), Department of Veterinary Biomedicine, Faculty of Veterinary Medicine, Université de Montréal, St.-Hyacinthe, QC J2S 7C6, Canada; Osteoarthritis Research Unit, Université de Montréal Hospital Research Center (CRCHUM), Pavillon R, Montreal, QC H2X 0A9, Canada.
| |
Collapse
|
31
|
Han L, Ma J, Duan W, Zhang L, Yu S, Xu Q, Lei J, Li X, Wang Z, Wu Z, Huang JH, Wu E, Ma Q, Ma Z. Pancreatic stellate cells contribute pancreatic cancer pain via activation of sHH signaling pathway. Oncotarget 2017; 7:18146-58. [PMID: 26934446 PMCID: PMC4951278 DOI: 10.18632/oncotarget.7776] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Accepted: 01/05/2016] [Indexed: 12/29/2022] Open
Abstract
Abdominal pain is a critical clinical symptom in pancreatic cancer (PC) that affects the quality of life for PC patients. However, the pathogenesis of PC pain is largely unknown. In this study, we show that PC pain is initiated by the sonic hedgehog (sHH) signaling pathway in pancreatic stellate cells (PSCs), which is activated by sHH secreted from PC cells, and then, neurotrophic factors derived from PSCs mediate the pain. The different culture systems were established in vitro, and the expression of sHH pathway molecules, neurotrophic factors, TRPV1, and pain factors were examined. Capsaicin-evoked TRPV1 currents in dorsal root ganglion (DRG) neurons were examined by the patch-clamp technique. Pain-related behavior was observed in an orthotopic tumor model. sHH and PSCs increased the expression and secretion of TRPV1, SP, and CGRP by inducing NGF and BDNF in a co-culture system, also increasing TRPV1 current. But, suppressing sHH pathway or NGF reduced the expression of TRPV1, SP, and CGRP. In vivo, PSCs and PC cells that expressed high levels of sHH could enhance pain behavior. Furthermore, the blockade of NGF or TRPV1 significantly attenuated the pain response to mechanical stimulation compared with the control. Our results demonstrate that sHH signaling pathway is involved in PC pain, and PSCs play an essential role in the process greatly by inducing NGF.
Collapse
Affiliation(s)
- Liang Han
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Jiguang Ma
- Department of Anesthesiology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Wanxing Duan
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Lun Zhang
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Shuo Yu
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Qinhong Xu
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Jianjun Lei
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Xuqi Li
- Department of General Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Zheng Wang
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Zheng Wu
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Jason H Huang
- Department of Neurosurgery, Baylor Scott and White Health Care, Temple, TX, 76508, USA.,Department of Surgery, Texas A & M College of Medicine, Temple, TX, 76504, USA
| | - Erxi Wu
- Department of Neurosurgery, Baylor Scott and White Health Care, Temple, TX, 76508, USA.,Department of Pharmaceutical Sciences, Texas A & M Health Science Center, College Station, TX, 77843, USA
| | - Qingyong Ma
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Zhenhua Ma
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| |
Collapse
|
32
|
Minatani A, Uchida K, Inoue G, Takano S, Aikawa J, Miyagi M, Fujimaki H, Iwase D, Onuma K, Matsumoto T, Takaso M. Activation of calcitonin gene-related peptide signaling through the prostaglandin E2-EP1/EP2/EP4 receptor pathway in synovium of knee osteoarthritis patients. J Orthop Surg Res 2016; 11:117. [PMID: 27751171 PMCID: PMC5067902 DOI: 10.1186/s13018-016-0460-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 09/28/2016] [Indexed: 02/24/2023] Open
Abstract
BACKGROUND Calcitonin gene-related peptide (CGRP) is a 37-amino-acid vasodilatory neuropeptide that binds to receptor activity-modifying protein 1 (RAMP1) and the calcitonin receptor-like receptor (CLR). Clinical and preclinical evidence suggests that CGRP is associated with hip and knee joint pain; however, the regulation mechanisms of CGRP/CGRP receptor signaling in synovial tissue are not fully understood. METHODS Synovial tissues were harvested from 43 participants with radiographic knee osteoarthritis (OA; unilateral Kellgren/Lawrence (K/L) grades 3-4) during total knee arthroplasty. Correlationships between the mRNA expression levels of CGRP and those of tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, IL-6, and cycloxygenase-2 (COX-2) were evaluated using real-time PCR analysis of total RNA extracted from the collected synovial tissues. To investigate the factors controlling the regulation of CGRP and CGRP receptor expression, cultured synovial cells were stimulated with TNF-α, IL-1β, IL-6, and prostaglandin E2 (PGE2) and were also treated with PGE2 receptor (EP) agonist. RESULTS CGRP and COX-2 localized in the synovial lining layer. Expression of COX-2 positively correlated with CGRP mRNA expression in the synovial tissue of OA patients. The gene expression of CGRP and RAMP1 increased significantly in synovial cells exogenously treated with PGE2 compared to untreated control cells. In cultured synovial cells, CGRP gene expression increased significantly following EP4 agonist treatment, whereas RAMP1 gene expression increased significantly in the presence of exogenously added EP1 and EP2 agonists. CONCLUSIONS PGE2 appears to regulate CGRP/CGRP receptor signaling through the EP receptor in the synovium of knee OA patients.
Collapse
Affiliation(s)
- Atsushi Minatani
- Department of Orthopedic Surgery, Kitasato University School of Medicine, 1-15-1 Minami-ku Kitasato, Sagamihara City, Kanagawa, 252-0374, Japan
| | - Kentaro Uchida
- Department of Orthopedic Surgery, Kitasato University School of Medicine, 1-15-1 Minami-ku Kitasato, Sagamihara City, Kanagawa, 252-0374, Japan.
| | - Gen Inoue
- Department of Orthopedic Surgery, Kitasato University School of Medicine, 1-15-1 Minami-ku Kitasato, Sagamihara City, Kanagawa, 252-0374, Japan
| | - Shotaro Takano
- Department of Orthopedic Surgery, Kitasato University School of Medicine, 1-15-1 Minami-ku Kitasato, Sagamihara City, Kanagawa, 252-0374, Japan
| | - Jun Aikawa
- Department of Orthopedic Surgery, Kitasato University School of Medicine, 1-15-1 Minami-ku Kitasato, Sagamihara City, Kanagawa, 252-0374, Japan
| | - Masayuki Miyagi
- Department of Orthopedic Surgery, Kitasato University School of Medicine, 1-15-1 Minami-ku Kitasato, Sagamihara City, Kanagawa, 252-0374, Japan
| | - Hisako Fujimaki
- Department of Orthopedic Surgery, Kitasato University School of Medicine, 1-15-1 Minami-ku Kitasato, Sagamihara City, Kanagawa, 252-0374, Japan
| | - Dai Iwase
- Department of Orthopedic Surgery, Kitasato University School of Medicine, 1-15-1 Minami-ku Kitasato, Sagamihara City, Kanagawa, 252-0374, Japan
| | - Kenji Onuma
- Department of Orthopedic Surgery, Kitasato University School of Medicine, 1-15-1 Minami-ku Kitasato, Sagamihara City, Kanagawa, 252-0374, Japan
| | - Toshihide Matsumoto
- Department of Pathology, Kitasato University School of Medicine, 1-15-1 Minami-ku Kitasato, Sagamihara City, Kanagawa, 252-0374, Japan
| | - Masashi Takaso
- Department of Orthopedic Surgery, Kitasato University School of Medicine, 1-15-1 Minami-ku Kitasato, Sagamihara City, Kanagawa, 252-0374, Japan
| |
Collapse
|
33
|
Otis C, Gervais J, Guillot M, Gervais JA, Gauvin D, Péthel C, Authier S, Dansereau MA, Sarret P, Martel-Pelletier J, Pelletier JP, Beaudry F, Troncy E. Concurrent validity of different functional and neuroproteomic pain assessment methods in the rat osteoarthritis monosodium iodoacetate (MIA) model. Arthritis Res Ther 2016; 18:150. [PMID: 27338815 PMCID: PMC4918125 DOI: 10.1186/s13075-016-1047-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 06/09/2016] [Indexed: 11/17/2022] Open
Abstract
Background Lack of validity in osteoarthritis pain models and assessment methods is suspected. Our goal was to 1) assess the repeatability and reproducibility of measurement and the influence of environment, and acclimatization, to different pain assessment outcomes in normal rats, and 2) test the concurrent validity of the most reliable methods in relation to the expression of different spinal neuropeptides in a chemical model of osteoarthritic pain. Methods Repeatability and inter-rater reliability of reflexive nociceptive mechanical thresholds, spontaneous static weight-bearing, treadmill, rotarod, and operant place escape/avoidance paradigm (PEAP) were assessed by the intraclass correlation coefficient (ICC). The most reliable acclimatization protocol was determined by comparing coefficients of variation. In a pilot comparative study, the sensitivity and responsiveness to treatment of the most reliable methods were tested in the monosodium iodoacetate (MIA) model over 21 days. Two MIA (2 mg) groups (including one lidocaine treatment group) and one sham group (0.9 % saline) received an intra-articular (50 μL) injection. Results No effect of environment (observer, inverted circadian cycle, or exercise) was observed; all tested methods except mechanical sensitivity (ICC <0.3), offered good repeatability (ICC ≥0.7). The most reliable acclimatization protocol included five assessments over two weeks. MIA-related osteoarthritic change in pain was demonstrated with static weight-bearing, punctate tactile allodynia evaluation, treadmill exercise and operant PEAP, the latter being the most responsive to analgesic intra-articular lidocaine. Substance P and calcitonin gene-related peptide were higher in MIA groups compared to naive (adjusted P (adj-P) = 0.016) or sham-treated (adj-P = 0.029) rats. Repeated post-MIA lidocaine injection resulted in 34 times lower downregulation for spinal substance P compared to MIA alone (adj-P = 0.029), with a concomitant increase of 17 % in time spent on the PEAP dark side (indicative of increased comfort). Conclusion This study of normal rats and rats with pain established the most reliable and sensitive pain assessment methods and an optimized acclimatization protocol. Operant PEAP testing was more responsive to lidocaine analgesia than other tests used, while neuropeptide spinal concentration is an objective quantification method attractive to support and validate different centralized pain functional assessment methods.
Collapse
Affiliation(s)
- Colombe Otis
- Groupe de Recherche en Pharmacologie Animale du Québec (GREPAQ), Department of Biomedical Sciences, Faculty of veterinary medicine, Université de Montréal, 1500 des Vétérinaires Street, P.O. Box 5000, St-Hyacinthe, Quebec, J2S 7C6, Canada.,Osteoarthritis Research Unit, Research Center Hospital of Montreal University (CRCHUM), Montreal, Quebec, Canada
| | - Julie Gervais
- Groupe de Recherche en Pharmacologie Animale du Québec (GREPAQ), Department of Biomedical Sciences, Faculty of veterinary medicine, Université de Montréal, 1500 des Vétérinaires Street, P.O. Box 5000, St-Hyacinthe, Quebec, J2S 7C6, Canada
| | - Martin Guillot
- Groupe de Recherche en Pharmacologie Animale du Québec (GREPAQ), Department of Biomedical Sciences, Faculty of veterinary medicine, Université de Montréal, 1500 des Vétérinaires Street, P.O. Box 5000, St-Hyacinthe, Quebec, J2S 7C6, Canada.,Osteoarthritis Research Unit, Research Center Hospital of Montreal University (CRCHUM), Montreal, Quebec, Canada
| | - Julie-Anne Gervais
- Groupe de Recherche en Pharmacologie Animale du Québec (GREPAQ), Department of Biomedical Sciences, Faculty of veterinary medicine, Université de Montréal, 1500 des Vétérinaires Street, P.O. Box 5000, St-Hyacinthe, Quebec, J2S 7C6, Canada
| | - Dominique Gauvin
- Groupe de Recherche en Pharmacologie Animale du Québec (GREPAQ), Department of Biomedical Sciences, Faculty of veterinary medicine, Université de Montréal, 1500 des Vétérinaires Street, P.O. Box 5000, St-Hyacinthe, Quebec, J2S 7C6, Canada.,Osteoarthritis Research Unit, Research Center Hospital of Montreal University (CRCHUM), Montreal, Quebec, Canada
| | - Catherine Péthel
- Groupe de Recherche en Pharmacologie Animale du Québec (GREPAQ), Department of Biomedical Sciences, Faculty of veterinary medicine, Université de Montréal, 1500 des Vétérinaires Street, P.O. Box 5000, St-Hyacinthe, Quebec, J2S 7C6, Canada.,Department of Physiology and Biophysics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | | | - Marc-André Dansereau
- Department of Physiology and Biophysics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Philippe Sarret
- Department of Physiology and Biophysics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Johanne Martel-Pelletier
- Osteoarthritis Research Unit, Research Center Hospital of Montreal University (CRCHUM), Montreal, Quebec, Canada
| | - Jean-Pierre Pelletier
- Osteoarthritis Research Unit, Research Center Hospital of Montreal University (CRCHUM), Montreal, Quebec, Canada
| | - Francis Beaudry
- Groupe de Recherche en Pharmacologie Animale du Québec (GREPAQ), Department of Biomedical Sciences, Faculty of veterinary medicine, Université de Montréal, 1500 des Vétérinaires Street, P.O. Box 5000, St-Hyacinthe, Quebec, J2S 7C6, Canada.,Osteoarthritis Research Unit, Research Center Hospital of Montreal University (CRCHUM), Montreal, Quebec, Canada
| | - Eric Troncy
- Groupe de Recherche en Pharmacologie Animale du Québec (GREPAQ), Department of Biomedical Sciences, Faculty of veterinary medicine, Université de Montréal, 1500 des Vétérinaires Street, P.O. Box 5000, St-Hyacinthe, Quebec, J2S 7C6, Canada. .,Osteoarthritis Research Unit, Research Center Hospital of Montreal University (CRCHUM), Montreal, Quebec, Canada.
| |
Collapse
|
34
|
Fbxo3-Dependent Fbxl2 Ubiquitination Mediates Neuropathic Allodynia through the TRAF2/TNIK/GluR1 Cascade. J Neurosci 2016; 35:16545-60. [PMID: 26674878 DOI: 10.1523/jneurosci.2301-15.2015] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
UNLABELLED Emerging evidence has indicated that the pathogenesis of neuropathic pain is mediated by spinal neural plasticity in the dorsal horn, which provides insight for analgesic therapy. Here, we report that the abundance of tumor necrosis factor receptor-associated factor 2 and NcK-interacting kinase (TNIK), a kinase that is presumed to regulate neural plasticity, was specifically enhanced in ipsilateral dorsal horn neurons after spinal nerve ligation (SNL; left L5 and L6). Spinal TNIK-associated allodynia is mediated by downstream TNIK-GluR1 coupling and the subsequent phosphorylation-dependent trafficking of GluR1 toward the plasma membrane in dorsal horn neurons. Tumor necrosis factor receptor-associated factor 2 (TRAF2), which is regulated by spinal F-box protein 3 (Fbxo3)-dependent F-box and leucine-rich repeat protein 2 (Fbxl2) ubiquitination, contributes to SNL-induced allodynia by modifying TNIK/GluR1 phosphorylation-associated GluR1 trafficking. Although exhibiting no effect on Fbxo3/Fbxl2/TRAF2 signaling, focal knockdown of spinal TNIK expression prevented SNL-induced allodynia by attenuating TNIK/GluR1 phosphorylation-dependent subcellular GluR1 redistribution. In contrast, intrathecal administration of BC-1215 (N1,N2-Bis[[4-(2-pyridinyl)phenyl]methyl]-1,2-ethanediamine) (a novel Fbxo3 inhibitor) prevented SNL-induced Fbxl2 ubiquitination and subsequent TFAF2 de-ubiquitination to ameliorate behavioral allodynia via antagonizing TRAF2/TNIK/GluR1 signaling. By targeting spinal Fbxo3-dependent Fbxl2 ubiquitination and the subsequent TRAF2/TNIK/GluR1 cascade, spinal application of a TNF-α-neutralizing antibody ameliorated SNL-induced allodynia, and, conversely, intrathecal TNF-α injection into naive rats induced allodynia via a spinal Fbxo3/Fbxl2-dependent modification of the TRAF2/TNIK/GluR1 cascade. Together, our results suggest that spinal TNF-α contributes to the development of neuropathic pain by upregulating TRAF2/TNIK/GluR1 signaling via Fbxo3-dependent Fbxl2 ubiquitination and degradation. Thus, we propose a potential medical treatment strategy for neuropathic pain by targeting the F-box protein or TNIK. SIGNIFICANCE STATEMENT TNF-α participates in neuropathic pain development by facilitating the spinal TRAF2-dependent TNIK-GluR1 association, which drives GluR1-containing AMPA receptor trafficking toward the plasma membrane. In addition, F-box protein 3 modifies this pathway by inhibiting F-box and leucine-rich repeat protein 2-mediated TRAF2 ubiquitination, suggesting that protein ubiquitination contributes crucially to the development of neuropathic pain. These results provide a novel therapeutic strategy for pain relief.
Collapse
|
35
|
Chattopadhyay H, Auddy B, Sur T, Sana S, Datta S. Accentuated transdermal application of glucosamine sulphate attenuates experimental osteoarthritis induced by monosodium iodoacetate. J Mater Chem B 2016; 4:4470-4481. [DOI: 10.1039/c6tb00327c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Osteoarthritis is a chronic degenerative joint disease causing pain and disability.
Collapse
Affiliation(s)
- Helen Chattopadhyay
- Department of Chemical Technology
- University of Calcutta
- Kolkata – 700 009
- India
| | - Biswajit Auddy
- Department of Chemical Technology
- University of Calcutta
- Kolkata – 700 009
- India
| | - Tapas Sur
- Department of Pharmacology
- Institute of Post Graduate Medical Education & Research
- Kolkata – 700020
- India
| | - Santanu Sana
- Department of Chemical Technology
- University of Calcutta
- Kolkata – 700 009
- India
| | - Sriparna Datta
- Department of Chemical Technology
- University of Calcutta
- Kolkata – 700 009
- India
| |
Collapse
|
36
|
Moilanen LJ, Hämäläinen M, Nummenmaa E, Ilmarinen P, Vuolteenaho K, Nieminen RM, Lehtimäki L, Moilanen E. Monosodium iodoacetate-induced inflammation and joint pain are reduced in TRPA1 deficient mice--potential role of TRPA1 in osteoarthritis. Osteoarthritis Cartilage 2015; 23:2017-26. [PMID: 26521748 DOI: 10.1016/j.joca.2015.09.008] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 07/20/2015] [Accepted: 09/11/2015] [Indexed: 02/02/2023]
Abstract
OBJECTIVES Intra-articularly injected monosodium iodoacetate (MIA) induces joint pathology mimicking osteoarthritis (OA) and it is a widely used experimental model of OA. MIA induces acute inflammation, cartilage degradation and joint pain. Transient Receptor Potential Ankyrin 1 (TRPA1) is an ion channel known to mediate nociception and neurogenic inflammation. Here, we tested the hypothesis that TRPA1 would be involved in the development of MIA-induced acute inflammation, cartilage changes and joint pain. METHODS The effects of pharmacological blockade (by TCS 5861528) and genetic depletion of TRPA1 were studied in MIA-induced acute paw inflammation. Cartilage changes (histological scoring) and joint pain (weight-bearing test) in MIA-induced experimental OA were compared between wild type and TRPA1 deficient mice. The effects of MIA were also studied in primary human OA chondrocytes and in mouse cartilage. RESULTS MIA evoked acute inflammation, degenerative cartilage changes and joint pain in wild type mice. Interestingly, these responses were attenuated in TRPA1 deficient animals. MIA-induced paw inflammation was associated with increased tissue levels of substance P; and the inflammatory edema was reduced by pretreatment with catalase, with the TRPA1 antagonist TCS 5861528 and with the neurokinin 1 receptor antagonist L703,606. In chondrocytes, MIA enhanced interleukin-1 induced cyclooxygenase-2 (COX-2) expression, an effect that was blunted by pharmacological inhibition and genetic depletion of TRPA1. CONCLUSIONS TRPA1 was found to mediate acute inflammation and the development of degenerative cartilage changes and joint pain in MIA-induced experimental OA in the mouse. The results reveal TRPA1 as a potential mediator and drug target in OA.
Collapse
Affiliation(s)
- L J Moilanen
- The Immunopharmacology Research Group, University of Tampere School of Medicine and Tampere University Hospital, Tampere, Finland.
| | - M Hämäläinen
- The Immunopharmacology Research Group, University of Tampere School of Medicine and Tampere University Hospital, Tampere, Finland.
| | - E Nummenmaa
- The Immunopharmacology Research Group, University of Tampere School of Medicine and Tampere University Hospital, Tampere, Finland.
| | - P Ilmarinen
- The Immunopharmacology Research Group, University of Tampere School of Medicine and Tampere University Hospital, Tampere, Finland.
| | - K Vuolteenaho
- The Immunopharmacology Research Group, University of Tampere School of Medicine and Tampere University Hospital, Tampere, Finland.
| | - R M Nieminen
- The Immunopharmacology Research Group, University of Tampere School of Medicine and Tampere University Hospital, Tampere, Finland.
| | - L Lehtimäki
- The Immunopharmacology Research Group, University of Tampere School of Medicine and Tampere University Hospital, Tampere, Finland.
| | - E Moilanen
- The Immunopharmacology Research Group, University of Tampere School of Medicine and Tampere University Hospital, Tampere, Finland.
| |
Collapse
|
37
|
Thysen S, Luyten FP, Lories RJU. Targets, models and challenges in osteoarthritis research. Dis Model Mech 2015; 8:17-30. [PMID: 25561745 PMCID: PMC4283647 DOI: 10.1242/dmm.016881] [Citation(s) in RCA: 189] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Osteoarthritis is a chronic degenerative disorder of the joint and represents one of the most common diseases worldwide. Its prevalence and severity are increasing owing to aging of the population, but treatment options remain largely limited to painkillers and anti-inflammatory drugs, which only provide symptomatic relief. In the late stages of the disease, surgical interventions are often necessary to partially restore joint function. Although the focus of osteoarthritis research has been originally on the articular cartilage, novel findings are now pointing to osteoarthritis as a disease of the whole joint, in which failure of different joint components can occur. In this Review, we summarize recent progress in the field, including data from novel ‘omics’ technologies and from a number of preclinical and clinical trials. We describe different in vitro and in vivo systems that can be used to study molecules, pathways and cells that are involved in osteoarthritis. We illustrate that a comprehensive and multisystem approach is necessary to understand the complexity and heterogeneity of the disease and to better guide the development of novel therapeutic strategies for osteoarthritis.
Collapse
Affiliation(s)
- Sarah Thysen
- Laboratory of Tissue Homeostasis and Disease, Skeletal Biology and Engineering Research Center, KU Leuven, 3000 Leuven, Belgium
| | - Frank P Luyten
- Skeletal Biology and Engineering Research Center, KU Leuven, 3000 Leuven, Belgium. Division of Rheumatology, University Hospitals Leuven, KU Leuven, 3000 Leuven, Belgium
| | - Rik J U Lories
- Laboratory of Tissue Homeostasis and Disease, Skeletal Biology and Engineering Research Center, KU Leuven, 3000 Leuven, Belgium. Division of Rheumatology, University Hospitals Leuven, KU Leuven, 3000 Leuven, Belgium.
| |
Collapse
|
38
|
Gao XH, Gao R, Tian YZ, McGonigle P, Barrett JE, Dai Y, Hu H. A store-operated calcium channel inhibitor attenuates collagen-induced arthritis. Br J Pharmacol 2015; 172:2991-3002. [PMID: 25651822 DOI: 10.1111/bph.13104] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2014] [Revised: 01/20/2015] [Accepted: 01/27/2015] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND AND PURPOSE Store-operated calcium (SOC) channels are thought to play a critical role in immune responses, inflammatory diseases and chronic pain. The aim of this study was to explore the potential role and mechanisms of SOC channels in collagen-induced arthritis (CIA). EXPERIMENTAL APPROACH The CIA mouse model was used to examine the effects of the SOC channel inhibitor YM-58483 on CIA and arthritic pain. Hargreaves' and von Frey hair tests were conducted to measure thermal and mechanical sensitivities of hind paws. elisa was performed to measure cytokine production, and haematoxylin and eosin staining was used to assess knee histological changes. Western blot analysis was performed to examine protein levels. KEY RESULTS Pretreatment with 5 or 10 mg · kg(-1) of YM-58483 reduced the incidence of CIA, prevented the development of inflammation and pain hypersensitivity and other signs and features of arthritis disease. Similarly, treatment with YM-58483 after the onset of CIA: (i) reversed the clinical scores; (ii) reduced paw oedema; (iii) attenuated mechanical and thermal hypersensitivity; (iv) improved spontaneous motor activity; (v) decreased periphery production of IL-1β, IL-6 and TNF-α; and (vi) reduced spinal activation of ERK and calmodulin-dependent PKII (CaMKIIα). CONCLUSIONS AND IMPLICATIONS This study provides the first evidence that inhibition of SOC entry prevents and relieves rheumatoid arthritis (RA) and arthritic pain. These effects are probably mediated by a reduction in cytokine levels in the periphery and activation of ERK and CaMKIIα in the spinal cord. These results suggest that SOC channels are potential drug targets for the treatment of RA.
Collapse
Affiliation(s)
- X H Gao
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, USA.,Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing, China
| | - R Gao
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Y Z Tian
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - P McGonigle
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - J E Barrett
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Y Dai
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing, China
| | - H Hu
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, USA
| |
Collapse
|
39
|
Wang H, Zhang X, He JY, Zheng XF, Li D, Li Z, Zhu JF, Shen C, Cai GQ, Chen XD. Increasing expression of substance P and calcitonin gene-related peptide in synovial tissue and fluid contribute to the progress of arthritis in developmental dysplasia of the hip. Arthritis Res Ther 2015; 17:4. [PMID: 25578529 PMCID: PMC4320827 DOI: 10.1186/s13075-014-0513-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 12/23/2014] [Indexed: 12/21/2022] Open
Abstract
INTRODUCTION Developmental dysplasia of the hip (DDH) is a common musculoskeletal disorder that has pain and loss of joint function as major pathological features. In the present study, we explored the mechanisms of possible involvement and regulation of substance P (SP) and calcitonin gene-related peptide (CGRP) in the pathological and inflammatory processes of arthritis in DDH. METHODS Blood, synovial tissue and fluid samples were collected from patients diagnosed with different severities of DDH and from patients with femoral neck fracture. Levels of SP, CGRP and inflammatory cytokines in synovium and synovial fluid (SF) in the different groups were evaluated by immunohistochemistry, real-time PCR and enzyme-linked immunosorbent assay (ELISA). Correlations between neuropeptides and inflammatory cytokines in SF were evaluated by partial correlation analysis. The proinflammatory effects of SP and CGRP on synoviocytes obtained from patients with moderate DDH were investigated in vitro by real-time PCR and ELISA. The mechanisms of those effects were evaluated by Western blot analysis and nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) DNA binding assay. RESULTS Significantly increased levels of neuropeptides and inflammatory cytokines were observed in synovium and SF from patients in the severe DDH group compared with the moderate DDH and control groups. In moderate DDH samples, SP in SF correlated with tumor necrosis factor (TNF)-α, and CGRP in SF correlated with TNF-α and interleukin (IL)-10. In the severe DDH group, SP in SF correlated with interleukin (IL)-1β, TNF-α and IL-10. CGRP in SF correlated with TNF-α. Additionally, SP might have had obvious proinflammatory effects on synoviocytes through the activation of NF-κB. CONCLUSIONS The upregulation of SP and CGRP in synovium and SF might participate in the inflammatory process of arthritis in DDH. The activation of the NF-κB pathway seems indispensable in the proinflammatory effect of SP on synoviocytes. This original discovery may indicate a potential clinical drug target and the development of innovative therapies for DDH.
Collapse
Affiliation(s)
- Hui Wang
- Department of Orthopaedic Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, No. 1665, Kongjiang Road, Yangpu District, Shanghai, 200092, People's Republic of China.
| | - Xiang Zhang
- Department of Orthopaedic Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, No. 1665, Kongjiang Road, Yangpu District, Shanghai, 200092, People's Republic of China.
| | - Ji-Ye He
- Department of Orthopaedic Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, No. 1665, Kongjiang Road, Yangpu District, Shanghai, 200092, People's Republic of China.
| | - Xin-Feng Zheng
- Department of Orthopaedic Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, No. 1665, Kongjiang Road, Yangpu District, Shanghai, 200092, People's Republic of China.
| | - De Li
- Department of Orthopaedic Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, No. 1665, Kongjiang Road, Yangpu District, Shanghai, 200092, People's Republic of China.
| | - Zheng Li
- Department of Orthopaedic Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, No. 1665, Kongjiang Road, Yangpu District, Shanghai, 200092, People's Republic of China.
| | - Jun-Feng Zhu
- Department of Orthopaedic Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, No. 1665, Kongjiang Road, Yangpu District, Shanghai, 200092, People's Republic of China.
| | - Chao Shen
- Department of Orthopaedic Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, No. 1665, Kongjiang Road, Yangpu District, Shanghai, 200092, People's Republic of China.
| | - Gui-Quan Cai
- Department of Orthopaedic Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, No. 1665, Kongjiang Road, Yangpu District, Shanghai, 200092, People's Republic of China.
| | - Xiao-Dong Chen
- Department of Orthopaedic Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, No. 1665, Kongjiang Road, Yangpu District, Shanghai, 200092, People's Republic of China.
| |
Collapse
|
40
|
Sui P, Watanabe H, Ossipov MH, Bakalkin G, Artemenko K, Bergquist J. Proteomics of Neuropathic Pain: Proteins and Signaling Pathways Affected in a Rat Model. J Proteome Res 2014; 13:3957-65. [DOI: 10.1021/pr500241q] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
| | | | - Michael H. Ossipov
- Department
of Pharmacology, University of Arizona Health Sciences Center, 1501
North Campbell Avenue, Tucson, Arizona 85724, United States
| | | | | | | |
Collapse
|
41
|
Bullock CM, Kelly S. Calcitonin gene-related peptide receptor antagonists: beyond migraine pain--a possible analgesic strategy for osteoarthritis? Curr Pain Headache Rep 2014; 17:375. [PMID: 24068339 PMCID: PMC3824306 DOI: 10.1007/s11916-013-0375-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Osteoarthritis (OA) pain is poorly understood and managed, as current analgesics have only limited efficacy and unwanted side effect profiles. A broader understanding of the pathological mechanisms driving OA joint pain is vital for the development of improved analgesics. Both clinical and preclinical data suggest an association between joint levels of the sensory neuropeptide calcitonin gene-related peptide (CGRP) and pain during OA. Whether a direct causative link exists remains an important unanswered question. Given the recent development of small molecule CGRP receptor antagonists with clinical efficacy against migraine pain, the interrogation of the role of CGRP in OA pain mechanisms is extremely timely. In this article, we provide the background to the importance of CGRP in pain mechanisms and review the emerging clinical and preclinical evidence implicating a role for CGRP in OA pain. We suggest that the CGRP receptor antagonists developed for migraine pain warrant further investigation in OA.
Collapse
Affiliation(s)
- C. M. Bullock
- Arthritis Research UK Pain Centre, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Leicestershire, LE12 5RD UK
| | - S. Kelly
- Arthritis Research UK Pain Centre, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Leicestershire, LE12 5RD UK
| |
Collapse
|
42
|
Bowles RD, Mata BA, Bell RD, Mwangi TK, Huebner JL, Kraus VB, Setton LA. In vivo luminescence imaging of NF-κB activity and serum cytokine levels predict pain sensitivities in a rodent model of osteoarthritis. Arthritis Rheumatol 2014; 66:637-46. [PMID: 24574224 DOI: 10.1002/art.38279] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 11/12/2013] [Indexed: 12/20/2022]
Abstract
OBJECTIVE To investigate the relationship between NF-κB activity, cytokine levels, and pain sensitivities in a rodent model of osteoarthritis (OA). METHODS OA was induced in transgenic NF-κB-luciferase reporter mice via intraarticular injection of monosodium iodoacetate (MIA). Using luminescence imaging we evaluated the temporal kinetics of NF-κB activity and its relationship to the development of pain sensitivities and serum cytokine levels in this model. RESULTS MIA induced a transient increase in joint-related NF-κB activity at early time points (day 3 after injection) and an associated biphasic pain response (mechanical allodynia). NF-κB activity, serum interleukin-6 (IL-6), IL-1β, and IL-10 levels accounted for ∼75% of the variability in pain-related mechanical sensitivities in this model. Specifically, NF-κB activity was strongly correlated with mechanical allodynia and serum IL-6 levels in the inflammatory pain phase of this model (day 3), while serum IL-1β was strongly correlated with pain sensitivities in the chronic pain phase of the model (day 28). CONCLUSION Our findings suggest that NF-κB activity, IL-6, and IL-1β may play distinct roles in pain sensitivity development in this model of arthritis and may distinguish the acute pain phase from the chronic pain phase. This study establishes luminescence imaging of NF-κB activity as a novel imaging biomarker of pain sensitivities in this model of OA.
Collapse
|
43
|
Wang H, Zheng XF, Zhang X, Li Z, Shen C, Zhu JF, Cui YM, Chen XD. Increasing substance P levels in serum and synovial tissues from patients with developmental dysplasia of the hip (DDH). BMC Musculoskelet Disord 2014; 15:92. [PMID: 24642234 PMCID: PMC3995111 DOI: 10.1186/1471-2474-15-92] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Accepted: 03/10/2014] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND The tachykininergic neurotransmitters have been proved to be involved in the inflammatory progress and chronic pain in series of disease. The present study was undertaken to evaluate the levels of substance P (SP) and its receptors NK-1 receptor (NK-1R) in both serum and synovial tissues of hip joint from patients with different stages of DDH, and to detect the possible correlation of serum SP levels with pain sensation and dysfunction of the hip joint. METHODS SP levels in serum and synovial tissues from patients with DDH and DDH combined with osteoarthritis (DDH&OA) group were compared through immunohistochemistry (IHC), ELISA, and 2-step acetic acid extraction method respectively. Expression of NK-1R in synovial tissues was compared through IHC, quantitive Real-Time PCR (QRT-PCR) and Western-Blot. The severities of pain sensation and the functional activities of hip joint were assessed by Visual analogue scale (VAS) and Harris hip score (HHS). Correlations of serum SP levels with VAS, HHS and erythrocyte sedimentation rate (ESR) were evaluated respectively in these groups. RESULTS Significantly elevated serum SP levels were detected in group of DDH and DDH&OA compared to that in normal group. IHC, QRT-PCR as well as tissue Elisa showed that SP levels in synovial tissue of DDH&OA group is stronger than that in DDH group. Serum SP levels in each group have no gender differences. The enhanced SP levels in synovial tissue mainly came from the segregation of peripheral nerve endings. Serum SP correlated with VAS and HHS in patients with DDH&OA (Male + Female). Serum SP correlated with HHS in patients with DDH (Male). Serum SP levels also correlated with erythrocyte sedimentation rate (ESR) in patients with DDH&OA (Male + Female). Up-regulated expression of NK-1R was also observed in synovial tissue of patients with DDH&OA compared to patients with DDH, through western-blot, IHC, and QRT-PCR. CONCLUSIONS These findings indicated that the increasing SP levels in serum and synovial tissues, observed from patients with DDH to patients with DDH&OA, might associate with the loss of function and chronic pain sensation in hip joint. SP along with its receptors NK-1R might be involved in the progression of DDH into DDH&OA. In the future, inhibitors of SP as well as NK-1R may represent a novel pharmacotherapy target for pain relieving, inflammation alleviating and joint degeneration delaying for patients with DDH.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xiao-Dong Chen
- Department of Orthopaedic Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Kongjiang Road, No,1665, Yangpu District, Shanghai, China.
| |
Collapse
|
44
|
Zhang RX, Ren K, Dubner R. Osteoarthritis pain mechanisms: basic studies in animal models. Osteoarthritis Cartilage 2013; 21:1308-15. [PMID: 23973145 PMCID: PMC3771690 DOI: 10.1016/j.joca.2013.06.013] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 06/10/2013] [Accepted: 06/13/2013] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Osteoarthritis (OA) is a complex and painful disease of the whole joint. At present there are no satisfying agents for treating OA. To promote OA research and improved treatment, this review summarizes current preclinical evidence on the development of OA. METHODS Preclinical OA research was searched and key findings are summarized and commented. RESULTS Mechanisms of OA-associated pain have been studied in rodent knee OA models produced by intra-knee injection of the chondrocyte glycolytic inhibitor mono-iodoacetate (MIA), surgery, or spontaneous development in some species. These models are clinically relevant in terms of histological damage and functional changes, and are used to study mechanisms underlying mechanical, thermal, ambulatory, body weight supporting-evoked, and ongoing OA pain. Recent peripheral, spinal, and supraspinal biochemical and electrophysiological studies in these models suggest that peripheral pro-inflammatory mediators and neuropeptides sensitize knee nociceptors. Spinal cytokines and neuropeptides promote OA pain, and peripheral and spinal cannabinoids inhibit OA pain respectively through cannabinoid-1 (CB1) and CB1/CB2 receptors. TRPV1 and metalloproteinases contribute and supraspinal descending facilitation of 5-hydroxytryptamine (5-HT)/5-HT 3 receptors may also contribute to OA pain. Conditioned place preference tests demonstrate that OA pain induces aversive behaviors, suggesting the involvement of brain. During OA, brain functional connectivity is enhanced, but at present it is unclear how this change is related to OA pain. CONCLUSION Animal studies demonstrate that peripheral and central sensitization contributes to OA pain, involving inflammatory cytokines, neuropeptides, and a variety of chemical mediators. Interestingly, brainstem descending facilitation of 5-HT/5-HT3 receptors plays a role OA pain.
Collapse
Affiliation(s)
- Rui-Xin Zhang
- Center for Integrative Medicine, School of Medicine, University of Maryland, Baltimore, MD 21201 USA
| | - Ke Ren
- Department of Neural and Pain Sciences, Dental School, University of Maryland, Baltimore, MD 21201 USA
| | - Ronald Dubner
- Department of Neural and Pain Sciences, Dental School, University of Maryland, Baltimore, MD 21201 USA
| |
Collapse
|
45
|
Liu S, Liu YP, Yue DM, Liu GJ. Protease-activated receptor 2 in dorsal root ganglion contributes to peripheral sensitization of bone cancer pain. Eur J Pain 2013; 18:326-37. [PMID: 23893658 DOI: 10.1002/j.1532-2149.2013.00372.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2013] [Indexed: 01/24/2023]
Abstract
BACKGROUND Treating bone cancer pain continues to be a major clinical challenge, and the underlying mechanisms of bone cancer pain remain elusive. Protease-activated receptor 2 (PAR2) has been reported to be involved in neurogenic inflammation, nociceptive pain and hyperalgesia. Here, we investigated the role of PAR2 in bone cancer pain development. METHORDS Expression of PAR2, mechanical allodynia, thermal hyperalgesia and neurochemical alterations induced by bone cancer pain were analysed in male, adult C3H/HeJ mice with tumour cell implantation (TCI). To investigate the contribution of PAR2 to bone cancer pain, PAR2 antagonist peptide and PAR2 knockout mice were used. RESULTS TCI produced bone cancer-related pain behaviours. Production and persistence of these pain behaviours were well correlated with TCI-induced up-regulation of PAR2 in sciatic nerve and dorsal root ganglia (DRG). PAR2 knockout and spinal administration of PAR2 antagonist peptide prevented and/or reversed bone cancer-related pain behaviours and associated neurochemical changes in DRG and dorsal horn (DH). TCI also induced proteases release in tumour-bearing tibia, sciatic nerve and DRG. Plantar injection of supernatant from sarcoma cells induced PAR2 up-regulation and intracellular calcium [Ca(2+) ]i increase in DRG, and calcitonin gene-related peptide accumulation in DH, as well as significant thermal and mechanical hyperalgesia, which were all in PAR2-dependent manners. CONCLUSION These findings suggest that PAR2 may be a key mediator for peripheral sensitization of bone cancer pain. Inhibiting PAR2 activation, especially during the early phase, may be a new therapy for preventing/suppressing development of bone cancer pain.
Collapse
Affiliation(s)
- S Liu
- Department of Anesthesiology, Affiliated Hospital of Xuzhou Medical College, China; Department of Neurobiology, Parker University, Dallas, USA
| | | | | | | |
Collapse
|
46
|
A review of translational animal models for knee osteoarthritis. ARTHRITIS 2012; 2012:764621. [PMID: 23326663 PMCID: PMC3541554 DOI: 10.1155/2012/764621] [Citation(s) in RCA: 145] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Revised: 11/08/2012] [Accepted: 11/26/2012] [Indexed: 11/18/2022]
Abstract
Knee osteoarthritis remains a tremendous public health concern, both in terms of health-related quality of life and financial burden of disease. Translational research is a critical step towards understanding and mitigating the long-term effects of this disease process. Animal models provide practical and clinically relevant ways to study both the natural history and response to treatment of knee osteoarthritis. Many factors including size, cost, and method of inducing osteoarthritis are important considerations for choosing an appropriate animal model. Smaller animals are useful because of their ease of use and cost, while larger animals are advantageous because of their anatomical similarity to humans. This evidence-based review will compare and contrast several different animal models for knee osteoarthritis. Our goal is to inform the clinician about current research models, in order to facilitate the transfer of knowledge from the "bench" to the "bedside."
Collapse
|
47
|
Kim HN, Kim YR, Jang JY, Shin HK, Choi BT. Electroacupuncture Confers Antinociceptive Effects via Inhibition of Glutamate Transporter Downregulation in Complete Freund's Adjuvant-Injected Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2012; 2012:643973. [PMID: 22956975 PMCID: PMC3432559 DOI: 10.1155/2012/643973] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 07/04/2012] [Accepted: 07/06/2012] [Indexed: 11/17/2022]
Abstract
When we evaluated changes of glial fibrillary acidic protein (GFAP) and two glutamate transporter (GTs) by immunohistochemistry, expression of GFAP showed a significant increase in complete Freund's adjuvant (CFA)-injected rats; however, this expression was strongly inhibited by electroacupuncture (EA) stimulation. Robust downregulation of glutamate-aspartate transporter (GLAST) and glutamate transporter-1 (GLT-1) was observed in CFA-injected rats; however, EA stimulation resulted in recovery of this expression. Double-labeling staining showed co-localization of a large proportion of GLAST or GLT-1 with GFAP. Using Western blot, we confirmed protein expression of two GTs, but no differences in the mRNA content of these GTs were observed. Because EA treatment resulted in strong inhibition of CFA-induced proteasome activities, we examined the question of whether thermal sensitivities and GTs expression could be regulated by proteasome inhibitor MG132. CFA-injected rats co-treated with EA and MG132 showed a significantly longer thermal sensitivity, compared with CFA-injected rats with or without MG132. Both EA and MG132 blocked CFA-induced GLAST and GLT-1 downregulation within the spinal cord. These results provide evidence for involvement of GLAST and GLT-1 in response to activation of spinal astrocytes in an EA antinociceptive effect. Antinociceptive effect of EA may be induced via proteasome-mediated regulation of spinal GTs.
Collapse
Affiliation(s)
- Ha-Neui Kim
- Division of Meridian and Structural Medicine, School of Korean Medicine, Pusan National University, Gyeongnam 626-870, Republic of Korea
| | - Yu-Ri Kim
- Division of Meridian and Structural Medicine, School of Korean Medicine, Pusan National University, Gyeongnam 626-870, Republic of Korea
| | - Ji-Yeon Jang
- Division of Meridian and Structural Medicine, School of Korean Medicine, Pusan National University, Gyeongnam 626-870, Republic of Korea
| | - Hwa-Kyoung Shin
- Division of Meridian and Structural Medicine, School of Korean Medicine, Pusan National University, Gyeongnam 626-870, Republic of Korea
| | - Byung-Tae Choi
- Division of Meridian and Structural Medicine, School of Korean Medicine, Pusan National University, Gyeongnam 626-870, Republic of Korea
| |
Collapse
|
48
|
Abstract
A key feature of osteoarthritis and rheumatoid arthritis is the loss of articular cartilage. Cartilage breakdown is mediated by complex interactions of proinflammatory cytokines, such as IL-1, inflammatory mediators, including nitric oxide and prostaglandin E2, and proteases, including matrix metalloproteinases and aggrecanases, such as ADAMTS-4 and -5. Cannabinoids have been shown to reduce joint damage in animal models of arthritis. They have also been shown to prevent IL-1-induced matrix breakdown of collagen and proteoglycan, indicating that cannabinoids may mediate chondroprotective effects. Cannabinoids produce their effects via several cannabinoid receptors and it is important to identify the key cannabinoids and their receptors that are involved in chondroprotection. This review aims to outline the current and future prospects of cannabinoids as anti-arthritic therapeutics, in terms of their ability to prevent cartilage breakdown.
Collapse
|