1
|
Yuan L, Liu Y, Fan L, Sun C, Ran S, Huang K, Shen Y. Identification of Potential Hub Genes Related to Acute Pancreatitis and Chronic Pancreatitis via Integrated Bioinformatics Analysis and In Vitro Analysis. Mol Biotechnol 2025; 67:1188-1200. [PMID: 38520499 DOI: 10.1007/s12033-024-01118-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 02/02/2024] [Indexed: 03/25/2024]
Abstract
Acute pancreatitis (AP) and chronic pancreatitis (CP) are considered to be two separate pancreatic diseases in most studies, but some clinical retrospective analyses in recent years have found some degree of correlation between the two in actual treatment, however, the exact association is not clear. In this study, bioinformatics analysis was utilized to examine microarray sequencing data in mice, with the aim of elucidating the critical signaling pathways and genes involved in the progression from AP to CP. Differential gene expression analyses on murine transcriptomes were conducted using the R programming language and the R/Bioconductor package. Additionally, gene network analysis was performed using the STRING database to predict correlations among genes in the context of pancreatic diseases. Functional enrichment and gene ontology pathways common to both diseases were identified using Metascape. The hub genes were screened in the cytoscape algorithm, and the mRNA levels of the hub genes were verified in mice pancreatic tissues of AP and CP. Then the drugs corresponding to the hub genes were obtained in the drug-gene relationship. A set of hub genes, including Jun, Cd44, Epcam, Spp1, Anxa2, Hsp90aa1, and Cd9, were identified through analysis, demonstrating their pivotal roles in the progression from AP to CP. Notably, these genes were found to be enriched in the Helper T-cell factor (Th17) signaling pathway. Up-regulation of these genes in both AP and CP mouse models was validated through quantitative real-time polymerase chain reaction (qRT-PCR) results. The significance of the Th17 signaling pathway in the transition from AP to CP was underscored by our findings. Specifically, the essential genes driving this progression were identified as Jun, Cd44, Epcam, Spp1, Anxa2, Hsp90aa1, and Cd9. Crucial insights into the molecular mechanisms underlying pancreatitis progression were provided by this research, offering promising avenues for the development of targeted therapeutic interventions.
Collapse
Affiliation(s)
- Lu Yuan
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Yiyuan Liu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Lingyan Fan
- Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Medical Group), Qingdao, 266042, China
| | - Cai Sun
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Sha Ran
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Kuilong Huang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Yan Shen
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China.
| |
Collapse
|
2
|
Wei X, Weng Z, Xu X, Yao J. Exploration of a miRNA-mRNA network shared between acute pancreatitis and Epstein-Barr virus infection by integrated bioinformatics analysis. PLoS One 2024; 19:e0311130. [PMID: 39546499 PMCID: PMC11567522 DOI: 10.1371/journal.pone.0311130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/10/2024] [Indexed: 11/17/2024] Open
Abstract
Acute pancreatitis (AP) stands out as a primary cause of hospitalization within gastrointestinal ailments, attributed to diverse factors, including Epstein-Barr virus (EBV) infection. Nevertheless, the common miRNAs and genes shared between AP and EBV infection remain unclear. In the present study, four datasets GSE194331, GSE42455, GSE45918 and GSE109220 were selected and downloaded from the Gene Expression Omnibus (GEO) database. Differential expression analysis was performed to screen for differentially expressed genes (DEGs) and differentially expressed miRNAs (DEMs). Target genes of overlapping DEMs were predicted, and intersections with overlapping DEGs were used to construct a miRNA-mRNA network. In addition, the enrichment analysis, drug prediction, diagnostic accuracy assessment, competitive endogenous RNA (ceRNA) network construction, transcription factor (TF)-miRNA-mRNA network construction, and immune cell infiltration analysis were also carried out. We found a total of 111 genes and 8 miRNAs shared between AP and EBV infection. A miRNA-mRNA network was constructed, which comprised 5 miRNAs and 10 genes exhibiting robust diagnostic performance. Histone deacetylase (HDAC) inhibitor was identified as a novel therapeutic intervention from drug prediction analysis. The results of immune cell infiltration analysis revealed that a consistent and significant difference could be found on activated B cell in AP and EBV-infected individuals in comparison to the controls. Taken together, our work, for the first time, revealed a miRNA-mRNA network shared between AP and EBV infection, thereby enriching a deeper comprehension of the intricate molecular mechanisms and potential therapeutic targets entwined in these two pathological conditions.
Collapse
Affiliation(s)
- Xing Wei
- Department of Infectious Disease, The Nantong First People’s Hospital and The Affiliated Hospital 2 of Nantong University, Nantong, China
| | - Zhen Weng
- MOE Engineering Center of Hematological Disease, Soochow University, Suzhou, China
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Xia Xu
- Department of Gastroenterology, The Second People’s Hospital of Nantong and The Affiliated Rehabilitation Hospital of Nantong University, Nantong, China
| | - Jian Yao
- Department of Infectious Disease, The Nantong First People’s Hospital and The Affiliated Hospital 2 of Nantong University, Nantong, China
| |
Collapse
|
3
|
Xu Y, Song J, Gao J, Zhang H. Identification of Biomarkers Associated with Oxidative Stress and Immune Cells in Acute Pancreatitis. J Inflamm Res 2024; 17:4077-4091. [PMID: 38948197 PMCID: PMC11214539 DOI: 10.2147/jir.s459044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 06/14/2024] [Indexed: 07/02/2024] Open
Abstract
Purpose Oxidative stress promotes disease progression by stimulating the humoral and cellular immune responses. However, the molecular mechanisms underlying oxidative stress and immune responses in acute pancreatitis (AP) have not been extensively studied. Patients and Methods We analyzed the GSE194331 dataset and oxidative stress-related genes (OSRGs). We identified differentially expressed immune cell-associated OSRGs (DE-ICA-OSRGs) by overlapping key module genes from weighted gene co-expression network analysis, OSRGs, and DEGs between AP and normal samples. Functional enrichment analysis was performed to investigate the functions of DE-ICA-OSRGs. We then filtered diagnostic genes using receiver operating characteristic curves and investigated their molecular mechanisms using single-gene set enrichment analysis (GSEA). We also explored the correlation between diagnostic genes and differential immune cells. Finally, we constructed a transcription factor-microRNA-messenger RNA (TF-miRNA-mRNA) network of biomarkers. Results In this study, three DE-ICA-OSRGs (ARG1, NME8 and VNN1) were filtered by overlapping key module genes, OSRGs and DEGs. Functional enrichment results revealed that DE-ICA-OSRGs were involved in the cellular response to reactive oxygen species and arginine biosynthesis. Latterly, a total of two diagnostic genes (ARG1 and VNN1) were derived and their expression was higher in the AP group than in the normal group. The single-gene GSEA enrichment results revealed that diagnostic genes were mainly enriched in macroautophagy and Toll-like receptor signaling pathways. Correlation analysis revealed that CD8 T cells, resting memory T CD4 cells, and resting NK cells were negatively correlated with ARG1, and neutrophils were positively correlated with ARG1, which was consistent with that of VNN1. The TF-miRNA-mRNA regulatory network included 11 miRNAs, 2 mRNAs, 10 transcription factors (TFs), and 26 pairs of regulatory relationships, like NFKB1-has-miR-2909-VNN1. Conclusion In this study, two immune cell oxidative stress-related AP diagnostic genes (ARG1 and VNN1) were screened to offer a new reference for the diagnosis of patients with AP.
Collapse
Affiliation(s)
- Yuan Xu
- Department of Gastroenterology, Dongying People’s Hospital(Dongying Hospital of Shandong Provincial Hospital Group), Dongying, Shandong, People’s Republic of China
| | - Jie Song
- Department of Gastroenterology, Dongying People’s Hospital(Dongying Hospital of Shandong Provincial Hospital Group), Dongying, Shandong, People’s Republic of China
| | - Jie Gao
- Department of Gastroenterology, Dongying People’s Hospital(Dongying Hospital of Shandong Provincial Hospital Group), Dongying, Shandong, People’s Republic of China
| | - Hongjing Zhang
- Community Health Service Center in Hekou District, Dongying, Shandong, People’s Republic of China
| |
Collapse
|
4
|
Zheng P, Li XY, Yang XY, Wang H, Ding L, He C, Wan JH, Ke HJ, Lu NH, Li NS, Zhu Y. Comparative transcriptomic analysis reveals the molecular changes of acute pancreatitis in experimental models. World J Gastroenterol 2024; 30:2038-2058. [PMID: 38681131 PMCID: PMC11045495 DOI: 10.3748/wjg.v30.i14.2038] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/19/2024] [Accepted: 03/01/2024] [Indexed: 04/12/2024] Open
Abstract
BACKGROUND Acute pancreatitis (AP) encompasses a spectrum of pancreatic inflammatory conditions, ranging from mild inflammation to severe pancreatic necrosis and multisystem organ failure. Given the challenges associated with obtaining human pancreatic samples, research on AP predominantly relies on animal models. In this study, we aimed to elucidate the fundamental molecular mechanisms underlying AP using various AP models. AIM To investigate the shared molecular changes underlying the development of AP across varying severity levels. METHODS AP was induced in animal models through treatment with caerulein alone or in combination with lipopolysaccharide (LPS). Additionally, using Ptf1α to drive the specific expression of the hM3 promoter in pancreatic acinar cells transgenic C57BL/6J- hM3/Ptf1α(cre) mice were administered Clozapine N-oxide to induce AP. Subsequently, we conducted RNA sequencing of pancreatic tissues and validated the expression of significantly different genes using the Gene Expression Omnibus (GEO) database. RESULTS Caerulein-induced AP showed severe inflammation and edema, which were exacerbated when combined with LPS and accompanied by partial pancreatic tissue necrosis. Compared with the control group, RNA sequencing analysis revealed 880 significantly differentially expressed genes in the caerulein model and 885 in the caerulein combined with the LPS model. Kyoto Encyclopedia of Genes and Genomes enrichment analysis and Gene Set Enrichment Analysis indicated substantial enrichment of the TLR and NOD-like receptor signaling pathway, TLR signaling pathway, and NF-κB signaling pathway, alongside elevated levels of apoptosis-related pathways, such as apoptosis, P53 pathway, and phagosome pathway. The significantly elevated genes in the TLR and NOD-like receptor signaling pathways, as well as in the apoptosis pathway, were validated through quantitative real-time PCR experiments in animal models. Validation from the GEO database revealed that only MYD88 concurred in both mouse pancreatic tissue and human AP peripheral blood, while TLR1, TLR7, RIPK3, and OAS2 genes exhibited marked elevation in human AP. The genes TUBA1A and GADD45A played significant roles in apoptosis within human AP. The transgenic mouse model hM3/Ptf1α(cre) successfully validated significant differential genes in the TLR and NOD-like receptor signaling pathways as well as the apoptosis pathway, indicating that these pathways represent shared pathological processes in AP across different models. CONCLUSION The TLR and NOD receptor signaling pathways play crucial roles in the inflammatory progression of AP, notably the MYD88 gene. Apoptosis holds a central position in the necrotic processes of AP, with TUBA1A and GADD45A genes exhibiting prominence in human AP.
Collapse
Affiliation(s)
- Pan Zheng
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Xue-Yang Li
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Xiao-Yu Yang
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Huan Wang
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Ling Ding
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Cong He
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Jian-Hua Wan
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Hua-Jing Ke
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Nong-Hua Lu
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Nian-Shuang Li
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Yin Zhu
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| |
Collapse
|
5
|
Swaminathan G, Saito T, Husain SZ. Exploiting open source omics data to advance pancreas research. JOURNAL OF PANCREATOLOGY 2024; 7:21-27. [PMID: 38524857 PMCID: PMC10959533 DOI: 10.1097/jp9.0000000000000173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 02/03/2024] [Indexed: 03/26/2024] Open
Abstract
The "omics" revolution has transformed the biomedical research landscape by equipping scientists with the ability to interrogate complex biological phenomenon and disease processes at an unprecedented level. The volume of "big" data generated by the different omics studies such as genomics, transcriptomics, proteomics, and metabolomics has led to the concurrent development of computational tools to enable in silico analysis and aid data deconvolution. Considering the intensive resources and high costs required to generate and analyze big data, there has been centralized, collaborative efforts to make the data and analysis tools freely available as "Open Source," to benefit the wider research community. Pancreatology research studies have contributed to this "big data rush" and have additionally benefitted from utilizing the open source data as evidenced by the increasing number of new research findings and publications that stem from such data. In this review, we briefly introduce the evolution of open source omics data, data types, the "FAIR" guiding principles for data management and reuse, and centralized platforms that enable free and fair data accessibility, availability, and provide tools for omics data analysis. We illustrate, through the case study of our own experience in mining pancreatitis omics data, the power of repurposing open source data to answer translationally relevant questions in pancreas research.
Collapse
Affiliation(s)
- Gayathri Swaminathan
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA
| | - Toshie Saito
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA
| | - Sohail Z. Husain
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA
| |
Collapse
|
6
|
Gao Y, Mi N, Wu W, Zhao Y, Fan F, Liao W, Ming Y, Guan W, Bai C. Transfer of inflammatory mitochondria via extracellular vesicles from M1 macrophages induces ferroptosis of pancreatic beta cells in acute pancreatitis. J Extracell Vesicles 2024; 13:e12410. [PMID: 38320981 PMCID: PMC10847061 DOI: 10.1002/jev2.12410] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 12/22/2023] [Accepted: 01/08/2024] [Indexed: 02/08/2024] Open
Abstract
Extracellular vesicles (EVs) exert a significant influence not only on the pathogenesis of diseases but also on their therapeutic interventions, contingent upon the variances observed in their originating cells. Mitochondria can be transported between cells via EVs to promote pathological changes. In this study, we found that EVs derived from M1 macrophages (M1-EVs), which encapsulate inflammatory mitochondria, can penetrate pancreatic beta cells. Inflammatory mitochondria fuse with the mitochondria of pancreatic beta cells, resulting in lipid peroxidation and mitochondrial disruption. Furthermore, fragments of mitochondrial DNA (mtDNA) are released into the cytosol, activating the STING pathway and ultimately inducing apoptosis. The potential of adipose-derived stem cell (ADSC)-released EVs in suppressing M1 macrophage reactions shows promise. Subsequently, ADSC-EVs were utilized and modified with an F4/80 antibody to specifically target macrophages, aiming to treat ferroptosis of pancreatic beta cells in vivo. In summary, our data further demonstrate that EVs secreted from M1 phenotype macrophages play major roles in beta cell ferroptosis, and the modified ADSC-EVs exhibit considerable potential for development as a vehicle for targeted delivery to macrophages.
Collapse
Affiliation(s)
- Yuhua Gao
- Precision Medicine Laboratory for Chronic Non‐communicable Diseases of Shandong Province, Institute of Precision MedicineJining Medical UniversityJiningShandongChina
- Institute of Animal SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Ningning Mi
- College of Animal Science and Technology, College of Veterinary MedicineZhejiang A&F UniversityLin'anChina
| | - Wenxiang Wu
- Precision Medicine Laboratory for Chronic Non‐communicable Diseases of Shandong Province, Institute of Precision MedicineJining Medical UniversityJiningShandongChina
| | - Yuxuan Zhao
- Precision Medicine Laboratory for Chronic Non‐communicable Diseases of Shandong Province, Institute of Precision MedicineJining Medical UniversityJiningShandongChina
| | - Fangzhou Fan
- Precision Medicine Laboratory for Chronic Non‐communicable Diseases of Shandong Province, Institute of Precision MedicineJining Medical UniversityJiningShandongChina
| | - Wangwei Liao
- Precision Medicine Laboratory for Chronic Non‐communicable Diseases of Shandong Province, Institute of Precision MedicineJining Medical UniversityJiningShandongChina
| | - Yongliang Ming
- Precision Medicine Laboratory for Chronic Non‐communicable Diseases of Shandong Province, Institute of Precision MedicineJining Medical UniversityJiningShandongChina
| | - Weijun Guan
- College of Animal Science and Technology, College of Veterinary MedicineZhejiang A&F UniversityLin'anChina
| | - Chunyu Bai
- Precision Medicine Laboratory for Chronic Non‐communicable Diseases of Shandong Province, Institute of Precision MedicineJining Medical UniversityJiningShandongChina
- Institute of Animal SciencesChinese Academy of Agricultural SciencesBeijingChina
| |
Collapse
|
7
|
Tian X, Wei J. Sestrin 2 protects human lens epithelial cells from oxidative stress and apoptosis induced by hydrogen peroxide by regulating the mTOR/Nrf2 pathway. Int J Immunopathol Pharmacol 2024; 38:3946320241234741. [PMID: 38379215 PMCID: PMC10880533 DOI: 10.1177/03946320241234741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 02/07/2024] [Indexed: 02/22/2024] Open
Abstract
OBJECTIVE We aimed to explore the effect and potential mechanism of Sestrin 2 (SESN2) in human lens epithelial cells (HLECs). METHODS To mimic the oxidative stress environment, SAR01/04 cells were treated with 200 μM hydrogen peroxide (H2O2) for 24 h. Cell viability and apoptosis were checked by cell counting kit-8 and flow cytometry. Western blot was taken to check the protein changes of SESN2, B-cell lymphoma-2 (Bcl-2), Bcl-2-associated X (Bax), mechanistic target of rapamycin (mTOR), phosphorylated (p)-mTOR, ribosomal protein S6 kinase B1 (p70S6K), p-p70S6K, and nuclear factor erythroid 2-related factor 2 (Nrf2). Superoxide dismutase (SOD), catalase (CAT), malondialdehyde (MDA), and reactive oxygen species (ROS) were detected via the corresponding reagent kit. The levels of interleukin (IL)-1β, IL-18, and tumor necrosis factor (TNF)-α were measured using enzyme-linked immunosorbent assay. RESULTS SESN2 was down-regulated in cataract lens tissue and up-regulated in SAR01/04 cells treated with H2O2. Under treatment of H2O2, up-regulation of SESN2 improved cell viability, enhanced the activity of SOD and CAT, inhibited cell apoptosis, and reduced the levels of MDA, ROS, IL-1β, IL-18, and TNF-α, while down-regulation of SESN2 caused the contrary effects. Further bioinformatics analysis suggested that SESN2 regulated the mTOR signaling pathway. Treatment of H2O2 inhibited p-mTOR and p-p70S6K protein expression, while overexpression of SESN2 increased p-mTOR and p-p70S6K protein expression in the H2O2 group and down-regulation of SESN2 further decreased p-mTOR and p-p70S6K protein expression in the H2O2 group. Additionally, H2O2 increased Nrf2 protein expression, and overexpression of SESN2 further increased Nrf2 protein expression in the H2O2 group. Importantly, rapamycin (an inhibitor of mTOR signaling pathway) and knockdown of Nrf2 reversed the promotive effects of SESN2 on cell viability and the inhibitive effects of SESN2 on cell apoptosis, oxidative stress, and inflammatory reaction. CONCLUSION SESN2 protected HLECs damage induced by H2O2, which was related to the activation of mTOR/Nrf2 pathway.
Collapse
Affiliation(s)
- Xiao Tian
- Department of Ophthalmology, Jinan Aier Eye Hospital, Jinan, China
| | - Jie Wei
- Department of Ophthalmology, No. 960 Hospital of PLA Joint Logistic Support Force, Jinan, China
| |
Collapse
|
8
|
Shao Y, Wu W, Fan F, Liu H, Ming Y, Liao W, Bai C, Gao Y. Extracellular Vesicle Content Changes Induced by Melatonin Promote Functional Recovery of Pancreatic Beta Cells in Acute Pancreatitis. J Inflamm Res 2023; 16:6397-6413. [PMID: 38161354 PMCID: PMC10757806 DOI: 10.2147/jir.s430916] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/14/2023] [Indexed: 01/03/2024] Open
Abstract
Aim Acute pancreatitis is an inflammatory disorder of the pancreas, which causes abnormal activation of immune cells. The macrophages were accumulated in pancreas and infiltrated into islets during the AP process to induce abnormal glucose metabolism. However, the role of macrophages in abnormal glucose metabolism remains understood. Extracellular vesicles act in the regulation of intercellular function, but whether EVs secreted by macrophages contribute to β cell failure and apoptosis in AP is unclear. Based on this, the aim of this study was to reveal the role of macrophages-EVs in AP and develop a treatment for symptoms of hyperglycemia in AP. Methods The AP model was established and treated by various doses of melatonin to analyze the therapeutic effect. The accumulation and polarization of macrophages in the AP pancreas were observed, and the β cells were incubated with pancreatic derived EVs to analyze the role in β cell failure and apoptosis. Results The results showed that macrophages were recruited and polarized to M1 phenotype macrophages in the pancreas of AP mice, which obtained inflammatory EVs that contained specific miRNAs to induce β cell failure and apoptosis. Then, the EVs derived from M1 macrophages triggered β cell failure and apoptosis. Melatonin prevented polarization of macrophages to the M1 phenotype in vivo, which reduced the secretion of inflammatory EVs, changed the abundance of miRNAs in EVs, and therefore decreased inflammatory EV-mediated β cell failure and apoptosis. Conclusion Our results demonstrate that similar to 20S proteasome inhibitor MG132, analyses indicated that melatonin prevented degradation of IκBα through the ubiquitylation pathway to restrict p50 subunits to the cytoplasm of macrophages, inhibited activation of the NF-κB pathway to downregulate the transcription of specific miRNAs, and reduced miRNA transport into EVs.
Collapse
Affiliation(s)
- Yuming Shao
- Institute of Forensic Medicine and Laboratory Medicine, Jining Medical University, Forensic Science Center of Jining Medical University, Jining, Shandong, 272067, People’s Republic of China
| | - Wenxiang Wu
- Precision Medicine Laboratory for Chronic Non-Communicable Diseases of Shandong Province, Institute of Precision Medicine, Jining Medical University, Jining, Shandong, 272067, People’s Republic of China
| | - Fangzhou Fan
- Precision Medicine Laboratory for Chronic Non-Communicable Diseases of Shandong Province, Institute of Precision Medicine, Jining Medical University, Jining, Shandong, 272067, People’s Republic of China
| | - Haifeng Liu
- Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining, Shandong, 272067, People’s Republic of China
| | - Yongliang Ming
- Precision Medicine Laboratory for Chronic Non-Communicable Diseases of Shandong Province, Institute of Precision Medicine, Jining Medical University, Jining, Shandong, 272067, People’s Republic of China
| | - Wangwei Liao
- Precision Medicine Laboratory for Chronic Non-Communicable Diseases of Shandong Province, Institute of Precision Medicine, Jining Medical University, Jining, Shandong, 272067, People’s Republic of China
| | - Chunyu Bai
- Precision Medicine Laboratory for Chronic Non-Communicable Diseases of Shandong Province, Institute of Precision Medicine, Jining Medical University, Jining, Shandong, 272067, People’s Republic of China
| | - Yuhua Gao
- Precision Medicine Laboratory for Chronic Non-Communicable Diseases of Shandong Province, Institute of Precision Medicine, Jining Medical University, Jining, Shandong, 272067, People’s Republic of China
| |
Collapse
|
9
|
Zhan Y, Chen C, Wu Z, Zhou F, Yu X. miR-455-3p ameliorates pancreatic acinar cell injury by targeting Slc2a1. PeerJ 2023; 11:e15612. [PMID: 37404474 PMCID: PMC10317017 DOI: 10.7717/peerj.15612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 06/01/2023] [Indexed: 07/06/2023] Open
Abstract
Objective With the number of patients with acute pancreatitis (AP) increasing year by year, it is pressing to explore new key genes and markers for the treatment of AP. miR-455-3p/solute carrier family 2 member 1 (Slc2a1) obtained through bioinformatics analysis may participate in the progression of AP. Materials and Methods The C57BL/6 mouse model of AP was constructed for subsequent studies. Through bioinformatics analysis, the differentially expressed genes related to AP were screened and hub genes were identified. A caerulein-induced AP animal model was constructed to detect the pathological changes of mouse pancreas by HE staining. The concentrations of amylase and lipase were measured. Primary mouse pancreatic acinar cells were isolated and subjected to microscopy to observe their morphology. The enzymatic activities of trypsin and amylase were detected. The secretion of inflammatory cytokines in mouse were measured with the ELISA kits of TNF-α, IL-6 and IL-1β to determine pancreatic acinar cell damage. A binding site between the Slc2a1 3' UTR region and the miR-455-3p sequence was verified by dual-luciferase reporter assay. The expression of miR-455-3p was quantified by qRT-PCR, and Slc2a1 were detected by western blot. Results A total of five (Fyn, Gadd45a, Sdc1, Slc2a1, and Src) were identified by bioinformatics analysis, and miR-455-3p/Slc2a1 were further studied. HE staining results showed that the AP models were successfully established by caerulein induction. In mice with AP, the expression of miR-455-3p was reduced, while that of Slc2a1 was increased. In the caerulein-induced cell model, the expression of Slc2a1 was significantly reduced after intervention of miR-455-3p mimics, whereas increased after miR-455-3p inhibitor treatment. miR-455-3p decreased the secretion of inflammatory cytokines in the cell supernatant, reduced the activity of trypsin and amylase, and alleviated the cell damage induced by caerulein. In addition, Slc2a1 3'UTR region was bound by miR-455-3p, and its protein expression was also regulated. Conclusion miR-455-3p alleviated caerulein-induced mouse pancreatic acinar cell damage by regulating the expression of Slc2a1.
Collapse
Affiliation(s)
- Yinchu Zhan
- Department of Hepatopancreatobiliary Surgery, The Second People’s Hospital of Quzhou, Quzhou, Zhejiang, China
| | - Chenlin Chen
- Department of Hepatopancreatobiliary Surgery, The Second People’s Hospital of Quzhou, Quzhou, Zhejiang, China
| | - Zhiqiang Wu
- Department of Hepatopancreatobiliary Surgery, The Second People’s Hospital of Quzhou, Quzhou, Zhejiang, China
| | - Feng Zhou
- Department of Hepatopancreatobiliary Surgery, The Second People’s Hospital of Quzhou, Quzhou, Zhejiang, China
| | - Xinping Yu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| |
Collapse
|
10
|
Mice with double knockout of Egr-1 and RCAN1 exhibit reduced inflammation during Pseudomonas aeruginosa lung infection. Immunobiology 2023; 228:152377. [PMID: 36933529 DOI: 10.1016/j.imbio.2023.152377] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/26/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023]
Abstract
Pseudomonas aeruginosa represents one of the major opportunistic pathogens, which causes nosocomial infections in immunocompromised individuals. The molecular mechanisms controlling the host immune response to P. aeruginosa infections are not completely understood. In our previous study, early growth response 1 (Egr-1) and regulator of calcineurin 1 (RCAN1) were found to positively and negatively regulate the inflammatory responses, respectively, during P. aeruginosa pulmonary infection, and both of them had an impact on activating NF-κB pathway. Herein, we examined the inflammatory responses of Egr-1/RCAN1 double knockout mice using a mouse model of P. aeruginosa acute pneumonia. As a result, the Egr-1/RCAN1 double knockout mice showed reduced production of proinflammatory cytokines (IL-1β, IL-6, TNF and MIP-2), diminished inflammatory cell infiltration and decreased mortality, which were similar to those of Egr-1-deficienct mice but different from those of RCAN1-deficient mice. In vitro studies demonstrated that Egr-1 mRNA transcription preceded RCAN1 isoform 4 (RCAN1.4) mRNA transcription in macrophages, and the macrophages with Egr-1 deficiency exhibited decreased RCAN1.4 mRNA levels upon P. aeruginosa LPS stimulation. Moreover, Egr-1/RCAN1 double-deficient macrophages had reduced NF-κB activation compared to RCAN1-deficient macrophages. Taken together, Egr-1 predominates over RCAN1 in regulating inflammation during P. aeruginosa acute lung infection, which influences RCAN1.4 gene expression.
Collapse
|
11
|
Tsai CY, Saito T, Sarangdhar M, Abu-El-Haija M, Wen L, Lee B, Yu M, Lipata DA, Manohar M, Barakat MT, Contrepois K, Tran TH, Theoret Y, Bo N, Ding Y, Stevenson K, Ladas EJ, Silverman LB, Quadro L, Anthony TG, Jegga AG, Husain SZ. A systems approach points to a therapeutic role for retinoids in asparaginase-associated pancreatitis. Sci Transl Med 2023; 15:eabn2110. [PMID: 36921036 PMCID: PMC10205044 DOI: 10.1126/scitranslmed.abn2110] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/22/2023] [Indexed: 03/17/2023]
Abstract
Among drug-induced adverse events, pancreatitis is life-threatening and results in substantial morbidity. A prototype example is the pancreatitis caused by asparaginase, a crucial drug used to treat acute lymphoblastic leukemia (ALL). Here, we used a systems approach to identify the factors affecting asparaginase-associated pancreatitis (AAP). Connectivity Map analysis of the transcriptomic data showed that asparaginase-induced gene signatures were potentially reversed by retinoids (vitamin A and its analogs). Analysis of a large electronic health record database (TriNetX) and the U.S. Federal Drug Administration Adverse Events Reporting System demonstrated a reduction in AAP risk with concomitant exposure to vitamin A. Furthermore, we performed a global metabolomic screening of plasma samples from 24 individuals with ALL who developed pancreatitis (cases) and 26 individuals with ALL who did not develop pancreatitis (controls), before and after a single exposure to asparaginase. Screening from this discovery cohort revealed that plasma carotenoids were lower in the cases than in controls. This finding was validated in a larger external cohort. A 30-day dietary recall showed that the cases received less dietary vitamin A than the controls did. In mice, asparaginase administration alone was sufficient to reduce circulating and hepatic retinol. Based on these data, we propose that circulating retinoids protect against pancreatic inflammation and that asparaginase reduces circulating retinoids. Moreover, we show that AAP is more likely to develop with reduced dietary vitamin A intake. The systems approach taken for AAP provides an impetus to examine the role of dietary vitamin A supplementation in preventing or treating AAP.
Collapse
Affiliation(s)
- Cheng-Yu Tsai
- Division of Pediatric Gastroenterology, Department of Pediatrics, Stanford University, Palo Alto, CA, 94304, USA
| | - Toshie Saito
- Division of Pediatric Gastroenterology, Department of Pediatrics, Stanford University, Palo Alto, CA, 94304, USA
| | - Mayur Sarangdhar
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45229, USA
- Division of Oncology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
| | - Maisam Abu-El-Haija
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
- Division of Pediatric Gastroenterology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Li Wen
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100006, China
| | - Bomi Lee
- Division of Pediatric Gastroenterology, Department of Pediatrics, Stanford University, Palo Alto, CA, 94304, USA
| | - Mang Yu
- Division of Pediatric Gastroenterology, Department of Pediatrics, Stanford University, Palo Alto, CA, 94304, USA
| | - Den A. Lipata
- Division of Pediatric Gastroenterology, Department of Pediatrics, Stanford University, Palo Alto, CA, 94304, USA
| | - Murli Manohar
- Division of Pediatric Gastroenterology, Department of Pediatrics, Stanford University, Palo Alto, CA, 94304, USA
| | - Monique T. Barakat
- Division of Pediatric Gastroenterology, Department of Pediatrics, Stanford University, Palo Alto, CA, 94304, USA
- Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University, Palo Alto, CA, 94304, USA
| | - Kévin Contrepois
- Department of Genetics, School of Medicine, Stanford University, Palo Alto, CA, 94304, USA
| | - Thai Hoa Tran
- Division of Pediatric Hematology Oncology, Charles-Bruneau Cancer Center, CHU Sainte-Justine, Montreal, QC, H3T 1C5, Canada
| | - Yves Theoret
- Département Clinique de Médecine de Laboratoire, Secteur Pharmacologie Clinique, Optilab Montréal - CHU Sainte-Justine, Montreal, H3T 1C5, Canada
| | - Na Bo
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Ying Ding
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Kristen Stevenson
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA, 02115, USA
| | - Elena J. Ladas
- Division of Pediatric Hematology/Oncology/Stem Cell Transplant, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Institute of Human Nutrition, Columbia University, New York, NY, 10032, USA
| | - Lewis B. Silverman
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, 02115, USA
- Division of Pediatric Hematology-Oncology, Boston, Children’s Hospital, Boston, MA, 02115, USA
| | - Loredana Quadro
- Department of Food Science, Rutgers Center for Lipid Research and the New Jersey Institute for Food, Nutrition and Health, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Tracy G. Anthony
- Department of Nutritional Sciences and the New Jersey Institute for Food, Nutrition and Health, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Anil G. Jegga
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
| | - Sohail Z. Husain
- Division of Pediatric Gastroenterology, Department of Pediatrics, Stanford University, Palo Alto, CA, 94304, USA
| |
Collapse
|
12
|
He L, Wang L, Hou H. Bicarbonated Ringer's solution improves L-arg-induced acute pancreatitis in rats via the NF-κB and Nrf2 pathways. Scand J Gastroenterol 2023; 58:276-285. [PMID: 36124782 DOI: 10.1080/00365521.2022.2118553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE Bicarbonated Ringer's solution (BRS), as a new generation of crystalline fluid, has been widely used for intravenous fluid resuscitation in patients with shock diseases. The purpose of our study is to investigate the intervention effects and potential mechanisms of BRS on L-arg-induced AP in rats. METHODS The AP model was induced by intraperitoneal injection of 20% L-arg. BRS was infused immediately following the previous L-arg injection. The pancreatic tissue was harvested for histological examination. The serum levels of amylase and lipase activity, lactic acid, proinflammatory and anti-inflammatory cytokines were determined. The peroxide and antioxidant activities in the pancreatic tissue were measured. The protein and mRNA levels of nuclear factor-κB, TNF-α, nuclear factor erythroid 2-related Factor 2 and heme oxygenase-1 were determined by Western blot and quantitative reverse transcription PCR analysis. RESULTS Pancreatic tissue injuries were obviously alleviated, with a significant increase in normal acinar cells after BRS treatment. The serum levels of amylase, lipase, lactic acid, IL-1β and TNF-α were significantly decreased, while IL-10 was obviously increased by inhibiting the NF-κB pathway and TNF-α. Moreover, Nrf2 pathway and HO-1 were promoted by BRS treatment, which resulted in significantly reduced malondialdehyde and reactive oxygen species levels. In contrast, antioxidant activities, including glutathione peroxidase and so on, were markedly increased after BRS treatment. CONCLUSIONS Bicarbonated Ringer's solution improves L-arg-induced acute pancreatitis in rats through the NF-κB and Nrf2 pathways, indicating that BRS holds promise as a priority in fluid resuscitation to treat acute pancreatitis.
Collapse
Affiliation(s)
- Liang He
- Department of Hepatobiliary Surgery, The Second Hospital of Anhui Medical University, Hefei, PR China
| | - Lei Wang
- Department of Hepatobiliary Surgery, The Second Hospital of Anhui Medical University, Hefei, PR China
| | - Hui Hou
- Department of Hepatobiliary Surgery, The Second Hospital of Anhui Medical University, Hefei, PR China
| |
Collapse
|
13
|
Identification of AP-1 as a Critical Regulator of Glutathione Peroxidase 4 (GPX4) Transcriptional Suppression and Acinar Cell Ferroptosis in Acute Pancreatitis. Antioxidants (Basel) 2022; 12:antiox12010100. [PMID: 36670963 PMCID: PMC9854988 DOI: 10.3390/antiox12010100] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/24/2022] [Accepted: 12/29/2022] [Indexed: 01/03/2023] Open
Abstract
Glutathione peroxidase 4 (GPX4)-dependent ferroptosis in pancreatic acinar cells plays a critical role in acute pancreatitis (AP). However, potential upstream regulators of GPX4 are not well defined. Here, we observed a marked reduction in acinar GPX4 expression and ferroptotic cell death in mice with cerulein-induced AP. To determine the critical factors involved in acinar cell ferroptosis, pancreas transcriptome data from an AP mouse model were analyzed and overlapped with predicted transcription factors of Gpx4, and an upregulated transcription factor active protein 1 (AP-1) protein, Jun, was identified. The administration of a specific ferroptosis inhibitor liproxstatin-1 alleviated AP pathology and significantly decreased Jun levels. Bioinformatic analysis indicated that the Gpx4 promoter contains a putative AP-1 binding site. Jun binds directly to the Gpx4 promoter and inhibits Gpx4 transcription under pancreatic conditions. AP-1 inhibition by a selective inhibitor SR11302 reversed GPX4 reduction and ameliorated AP pathology in a GPX4-dependent manner. Collectively, our study demonstrates that the downregulation of GPX4 by AP-1 is critical in the aggravation of acinar cell ferroptosis during the progression of AP. Strategies targeting the AP-1/GPX4 axis may be potentially effective for the prevention and treatment of AP.
Collapse
|
14
|
Li JW, Zhang YM, Zhao CJ, Zhao M, Huang YH. Determination of the components of danyikangtai powder into the plasma and its pharmacodynamic study. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2022:1-14. [PMID: 36327877 DOI: 10.1080/10286020.2022.2134013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
Danyikangtai powder has a definite therapeutic effect on pancreatitis. However, the internal mechanism is unclear. The purpose of this experiment is to quickly identify the blood components of danyikangtai powder and evaluate its efficacy. 25 blood components were identified by comparing the components with the same mass spectrometry information from in vivo and in vitro samples. The AR42J cells of the pancreatitis model were treated with drug-containing plasma, and the drug efficacy was evaluated by investigating the amylase release rate. This study provides a scientific reference for its pharmacological research and rational clinical application.
Collapse
Affiliation(s)
- Jing-Wei Li
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yu-Meng Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Chun-Jie Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Min Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yi-He Huang
- School of Public Health, Shenyang Medical College, Shenyang 110034, China
| |
Collapse
|
15
|
Keratin 8 Is an Inflammation-Induced and Prognosis-Related Marker for Pancreatic Adenocarcinoma. DISEASE MARKERS 2022; 2022:8159537. [PMID: 35958278 PMCID: PMC9359862 DOI: 10.1155/2022/8159537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/22/2022] [Accepted: 07/04/2022] [Indexed: 11/26/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the highest-grade malignancies in the world. More effective biomarkers and treatment plans are necessary to improve the diagnosis rate and clinical outcome. The oncogenesis of PDAC is influenced by several factors, including chronic pancreatitis (CP). Keratin 8 (KRT8) is an important member of the keratin protein family and plays a role in regulating the cellular response to stress stimuli and mediating inflammatory reactions. However, the role of KRT8 in pancreatitis and PDAC is still poorly understood. Here we assessed the differentially expressed genes (DEGs) by bioinformatic methods with expression profiles available online for a caerulein-induced mouse model and human PDAC tissue. The prognostic value was evaluated by Kaplan–Meier analysis and Cox regression analysis. The diagnostic value was evaluated by Receiver Operating Characteristic analysis (ROC). The function of the genes was predicted by protein-protein interaction analysis, correlation analysis, and GO analysis. The conclusion was further validated in rat pancreatitis model, human tissue, and PDAC cell lines, including immunohistochemical staining (IHC), CCK-8 assay, wound healing assay, and flow cytometry. KRT8 was found to be upregulated in murine pancreatitis tissue, human CP tissue, and human PDAC tissue. High expression of KRT8 had a negative impact on the prognosis of PDAC patients. KRT8 was predicted to be involved in the regulation of the migration and viability of PDAC cells, which was validated in PDAC cell lines. Knockdown of KRT8 impaired the migration and proliferation and induced apoptosis in PDAC cell lines. In conclusion, keratin 8 is an inflammation-induced molecule and could serve as a diagnostic and prognostic marker for PDAC patients. More studies are needed for further validation from the perspective of precision and individualized medicine.
Collapse
|
16
|
Zhao X, Xu M, Tang Y, Xie D, Wang Y, Chen M. Changes in miroRNA-103 expression in wound margin tissue are related to wound healing of diabetes foot ulcers. Int Wound J 2022; 20:467-483. [PMID: 35837786 PMCID: PMC9885465 DOI: 10.1111/iwj.13895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/25/2022] [Accepted: 06/28/2022] [Indexed: 02/03/2023] Open
Abstract
To investigate the relationship between small noncoding microRNA-103 (miR-103) and wound healing of diabetic foot ulcers (DFU) and the underlying molecular mechanism, forty type 2 diabetes mellitus with DFU (DFU group), and 20 patients with a chronic skin ulcer of lower limbs and normal glucose tolerance (SUC group) were included. Quantitative real-time PCR method was used to determine miR-103 expression levels in the wound margin tissue of subjects, and to analyse the relationship between the expression of miR-103 and DFU wound healing. In vitro experiments were also performed to understand the effect of miR-103 on the high glucose-induced injury of normal human dermal fibroblasts (NHDFs) cells. The results showed that the miR-103 expression level in the DFU group was significantly higher than that in the SUC group [5.81 (2.25-9.36) vs 2.08 (1.15-5.72)] (P < 0.05). The expression level of miR-103 in the wound margin tissue of DFU was negatively correlated with the healing rate of foot ulcers after four weeks (P = 0.037). In vitro experiments revealed that miR-103 could inhibit the proliferation and migration of NHDF cells and promote the apoptosis of NHDF cells by targeted regulation of regulator of calcineurin 1 (RCAN1) gene expression in a high glucose environment. Down-regulation of miR-103 could alleviate high glucose-induced NHDF cell injury by promoting RCAN1 expression. Therefore, the increased expression of miR-103 is involved in the functional damage of NHDF cells induced by high-glucose conditions, which is related to poor wound healing of DFU. These research findings will provide potential targets for the diagnosis and treatment of chronic skin wounds in diabetes.
Collapse
Affiliation(s)
- Xiaotong Zhao
- Department of Endocrinologythe First Affiliated Hospital of Anhui Medical UniversityHefeiPeople's Republic of China
| | - Murong Xu
- Department of Endocrinologythe First Affiliated Hospital of Anhui Medical UniversityHefeiPeople's Republic of China
| | - Ying Tang
- Department of Endocrinologythe First Affiliated Hospital of Anhui Medical UniversityHefeiPeople's Republic of China
| | - Dandan Xie
- Department of Endocrinologythe First Affiliated Hospital of Anhui Medical UniversityHefeiPeople's Republic of China
| | - Youmin Wang
- Department of Endocrinologythe First Affiliated Hospital of Anhui Medical UniversityHefeiPeople's Republic of China
| | - Mingwei Chen
- Department of Endocrinologythe First Affiliated Hospital of Anhui Medical UniversityHefeiPeople's Republic of China
| |
Collapse
|
17
|
Costamagna A, Natalini D, Camacho Leal MDP, Simoni M, Gozzelino L, Cappello P, Novelli F, Ambrogio C, Defilippi P, Turco E, Giovannetti E, Hirsch E, Cabodi S, Martini M. Docking Protein p130Cas Regulates Acinar to Ductal Metaplasia During Pancreatic Adenocarcinoma Development and Pancreatitis. Gastroenterology 2022; 162:1242-1255.e11. [PMID: 34922945 DOI: 10.1053/j.gastro.2021.12.242] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 11/18/2021] [Accepted: 12/12/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Acinar to ductal metaplasia is the prerequisite for the initiation of Kras-driven pancreatic ductal adenocarcinoma (PDAC), and candidate genes regulating this process are emerging from genome-wide association studies. The adaptor protein p130Cas emerged as a potential PDAC susceptibility gene and a Kras-synthetic lethal interactor in pancreatic cell lines; however, its role in PDAC development has remained largely unknown. METHODS Human PDAC samples and murine KrasG12D-dependent pancreatic cancer models of increasing aggressiveness were used. p130Cas was conditionally ablated in pancreatic cancer models to investigate its role during Kras-induced tumorigenesis. RESULTS We found that high expression of p130Cas is frequently detected in PDAC and correlates with higher histologic grade and poor prognosis. In a model of Kras-driven PDAC, loss of p130Cas inhibits tumor development and potently extends median survival. Deletion of p130Cas suppresses acinar-derived tumorigenesis and progression by means of repressing PI3K-AKT signaling, even in the presence of a worsening condition like pancreatitis. CONCLUSIONS Our observations finally demonstrated that p130Cas acts downstream of Kras to boost the PI3K activity required for acinar to ductal metaplasia and subsequent tumor initiation. This demonstrates an unexpected driving role of p130Cas downstream of Kras through PI3K/AKT, thus indicating a rational therapeutic strategy of targeting the PI3K pathway in tumors with high expression of p130Cas.
Collapse
Affiliation(s)
- Andrea Costamagna
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, Turin, Italy.
| | - Dora Natalini
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, Turin, Italy
| | - Maria Del Pilar Camacho Leal
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, Turin, Italy
| | - Matilde Simoni
- IRCCS Ospedale San Raffaele, Preclinical Models of Cancer Unit, Milan, Italy
| | - Luca Gozzelino
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, Turin, Italy
| | - Paola Cappello
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, Turin, Italy; Laboratory of Tumor Immunology, Center for Experimental Research and Medical Studies, Città della Salute e della Scienza di Torino, University of Torino, Torino, Italy
| | - Francesco Novelli
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, Turin, Italy; Laboratory of Tumor Immunology, Center for Experimental Research and Medical Studies, Città della Salute e della Scienza di Torino, University of Torino, Torino, Italy
| | - Chiara Ambrogio
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, Turin, Italy
| | - Paola Defilippi
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, Turin, Italy.
| | - Emilia Turco
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, Turin, Italy.
| | - Elisa Giovannetti
- Cancer Pharmacology Laboratory, AIRC-Start-Up, Fondazione Pisana per la Scienza, San Giuliano Terme, Pisa, Italy; Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam, The Netherlands
| | - Emilio Hirsch
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, Turin, Italy
| | - Sara Cabodi
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, Turin, Italy.
| | - Miriam Martini
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, Turin, Italy.
| |
Collapse
|
18
|
Pădureanu V, Florescu DN, Pădureanu R, Ghenea AE, Gheonea DI, Oancea CN. Role of antioxidants and oxidative stress in the evolution of acute pancreatitis (Review). Exp Ther Med 2022; 23:197. [PMID: 35126700 PMCID: PMC8794551 DOI: 10.3892/etm.2022.11120] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 10/29/2021] [Indexed: 11/06/2022] Open
Abstract
Acute pancreatitis (AP) is a severe disease with a high prevalence and 3 to 15% mortality worldwide, which can represent an important challenge for the physician. Oxidative stress and antioxidants are involved in AP progression. The mechanisms responsible for the onset and progression of AP are still poorly understood. Previous studies have highlighted the important contribution of antioxidants and oxidative stress in AP. The existence of a relationship between oxidative stress and antioxidants in AP is unquestionable, although a more accurate understanding of the mechanistic pathways involved is required to create a solid basis for potential prevention or treatment strategies. Further investigation is needed to clarify the role of antioxidant status and the severity of AP and to determine the association between oxidative stress and pancreatic enzyme activities. Antioxidant therapy may represent an interesting option for the management of patients with AP, although additional information about the effectiveness of this potential treatment is required.
Collapse
Affiliation(s)
- Vlad Pădureanu
- Department of Internal Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Dan Nicolae Florescu
- Department of Gastroenterology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Rodica Pădureanu
- Department of Internal Medicine, Emergency Clinical County Hospital of Craiova, 200642 Craiova, Romania
| | - Alice Elena Ghenea
- Department of Bacteriology-Virology-Parasitology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Dan Ionuț Gheonea
- Department of Gastroenterology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Carmen Nicoleta Oancea
- Department of Analytical Chemistry, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| |
Collapse
|
19
|
Hu C, Yin L, Chen Z, Waldron RT, Lugea A, Lin Y, Zhai X, Wen L, Han YP, Pandol SJ, Deng L, Xia Q. The unique pancreatic stellate cell gene expression signatures are associated with the progression from acute to chronic pancreatitis. Comput Struct Biotechnol J 2021; 19:6375-6385. [PMID: 34938413 PMCID: PMC8649580 DOI: 10.1016/j.csbj.2021.11.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 11/16/2021] [Accepted: 11/20/2021] [Indexed: 02/05/2023] Open
Abstract
Early recognition of chronic pancreatitis (CP) is still lacking. In the setting of CP injury, activated pancreatic stellate cell (PSC) is the central mediator of pancreatic fibrosis. We systematically define highly and uniquely expressed PSC genes and show that these genes are enriched in pancreatic diseases. Unresolved or recurrent injury causes dysregulation of biological process following AP, which would cause CP. We demonstrated subset genes that may be associated with the progression from AP to CP. Furthermore, SPARC was identified as a candidate marker for the disease progression. Increased expression of SPARC and canonical PSC genes were verified during AP recovery, especially in recurrent AP mice models.
Chronic pancreatitis (CP) is characterized by irreversible fibro-inflammatory changes induced by pancreatic stellate cell (PSC). Unresolved or recurrent injury causes dysregulation of biological process following AP, which would cause CP. Here, we systematically identify genes whose expressions are unique to PSC by comparing transcriptome profiles among total pancreas, pancreatic stellate, acinar, islet and immune cells. We then identified candidate genes and correlated them with the pancreatic disease continuum by performing intersection analysis among total PSC and activated PSC genes, and genes persistently differentially expressed during acute pancreatitis (AP) recovery. Last, we examined the association between candidate genes and AP, and substantiated their potential as biomarkers in experimental AP and recurrent AP (RAP) models. A total of 68 genes were identified as highly and uniquely expressed in PSC. The PSC signatures were highly enriched with extracellular matrix remodeling genes and were significantly enriched in AP pancreas compared to healthy control tissues. Among PSC signature genes that comprised a fibrotic phenotype, 10 were persistently differentially expressed during AP recovery. SPARC was determined as a candidate marker for the pancreatic disease continuum, which was not only persistently differentially expressed even five days after AP injury, but also highly expressed in two clinical datasets of CP. Sparc was also validated as highly elevated in RAP compared to AP mice. This work highlights the unique transcriptional profiles of PSC. These PSC signatures’ expression may help to identify patients with high risk of AP progression to CP.
Collapse
Affiliation(s)
- Cheng Hu
- Department and Laboratory of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Center and West China-Liverpool Biomedical Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Liyuan Yin
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Zhiyao Chen
- Department and Laboratory of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Center and West China-Liverpool Biomedical Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Richard T Waldron
- Department of Medicine and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States.,Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Aurelia Lugea
- Department of Medicine and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States.,Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Yiyun Lin
- Graduate School of Biomedical Sciences, UT MD Anderson Cancer Center, University of Texas, Houston, TX, United States
| | - Xiaoqian Zhai
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Li Wen
- Department of Gastroenterology and Shanghai Key Laboratory of Pancreatic Disease, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuan-Ping Han
- Center for Growth, Metabolism and Aging, College of Life Sciences, Sichuan University, Chengdu, China
| | - Stephen J Pandol
- Department of Medicine and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States.,Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Lihui Deng
- Department and Laboratory of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Center and West China-Liverpool Biomedical Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Qing Xia
- Department and Laboratory of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Center and West China-Liverpool Biomedical Research Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
20
|
Song YD, Liu YY, Li DJ, Yang SJ, Wang QF, Liu YN, Li MK, Mei CP, Cui HN, Chen SY, Zhu CJ. Galangin ameliorates severe acute pancreatitis in mice by activating the nuclear factor E2-related factor 2/heme oxygenase 1 pathway. Biomed Pharmacother 2021; 144:112293. [PMID: 34634559 DOI: 10.1016/j.biopha.2021.112293] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/24/2021] [Accepted: 10/05/2021] [Indexed: 02/07/2023] Open
Abstract
Acute pancreatitis (AP) is a common serious acute condition of the digestive system that remains a clinical challenge. Severe acute pancreatitis (SAP) in particular is characterized by high morbidity and mortality. The present study was designed to investigate the protective effect of Galangin (Gal), a natural flavonol obtained from lesser galangal, on L-arginine-induced SAP in mice and in AR42J cells. Amylase and lipase activities were measured and the histopathology of the pancreas, lung, and kidney was evaluated. Inflammation and oxidative stress were assessed using ELISA, western blotting, RT-PCR, and immunohistochemistry. Gal was shown to reduce proinflammatory cytokine production and reactive oxygen species (ROS) generation in vivo and in vitro. L-arginine treatment reduced the expression of components of the nuclear factor E2-related factor 2 (Nrf2) signaling pathway and the downstream protein heme oxygenase-1 (HO-1) in mice, whereas Gal increased their expression. Furthermore, the Nrf2/HO-1 pathway inhibitor brusatol prevented the anti-inflammatory and antioxidant effects of Gal in mice with SAP. Taken together, our results imply that Gal has protective effects in L-arginine-induced SAP that are induced by the upregulation of the Nrf2/HO-1 pathway, which has anti-inflammatory and antioxidant effects. Thus, Gal may represent a promising treatment for SAP.
Collapse
Affiliation(s)
- Yao-Dong Song
- Department of Emergency, The First Affiliated Hospital of Zhengzhou University, 1 Eastern Jianshe Road, Zhengzhou 450052, Henan, China; Key Laboratory of Hepatobiliary and Panccreatic Surgery and Digestive Organ Transplantation of Henan Province, China; Henan Medical Key Laboratory of Emergency and Trauma Research, China
| | - Yan-Yan Liu
- Department of Emergency, The First Affiliated Hospital of Zhengzhou University, 1 Eastern Jianshe Road, Zhengzhou 450052, Henan, China; Key Laboratory of Hepatobiliary and Panccreatic Surgery and Digestive Organ Transplantation of Henan Province, China; Henan Medical Key Laboratory of Emergency and Trauma Research, China
| | - De-Jian Li
- Department of Emergency, The First Affiliated Hospital of Zhengzhou University, 1 Eastern Jianshe Road, Zhengzhou 450052, Henan, China; Key Laboratory of Hepatobiliary and Panccreatic Surgery and Digestive Organ Transplantation of Henan Province, China; Henan Medical Key Laboratory of Emergency and Trauma Research, China
| | - Shu-Jun Yang
- Department of Emergency, The First Affiliated Hospital of Zhengzhou University, 1 Eastern Jianshe Road, Zhengzhou 450052, Henan, China; Key Laboratory of Hepatobiliary and Panccreatic Surgery and Digestive Organ Transplantation of Henan Province, China; Henan Medical Key Laboratory of Emergency and Trauma Research, China
| | - Qiao-Fang Wang
- Department of Emergency, The First Affiliated Hospital of Zhengzhou University, 1 Eastern Jianshe Road, Zhengzhou 450052, Henan, China; Key Laboratory of Hepatobiliary and Panccreatic Surgery and Digestive Organ Transplantation of Henan Province, China; Henan Medical Key Laboratory of Emergency and Trauma Research, China
| | - Yan-Na Liu
- Department of Emergency, The First Affiliated Hospital of Zhengzhou University, 1 Eastern Jianshe Road, Zhengzhou 450052, Henan, China; Key Laboratory of Hepatobiliary and Panccreatic Surgery and Digestive Organ Transplantation of Henan Province, China; Henan Medical Key Laboratory of Emergency and Trauma Research, China
| | - Meng-Ke Li
- Department of Emergency, The First Affiliated Hospital of Zhengzhou University, 1 Eastern Jianshe Road, Zhengzhou 450052, Henan, China; Key Laboratory of Hepatobiliary and Panccreatic Surgery and Digestive Organ Transplantation of Henan Province, China; Henan Medical Key Laboratory of Emergency and Trauma Research, China
| | - Chao-Peng Mei
- Department of Emergency, The First Affiliated Hospital of Zhengzhou University, 1 Eastern Jianshe Road, Zhengzhou 450052, Henan, China; Key Laboratory of Hepatobiliary and Panccreatic Surgery and Digestive Organ Transplantation of Henan Province, China; Henan Medical Key Laboratory of Emergency and Trauma Research, China
| | - Hu-Ning Cui
- Department of Emergency, The First Affiliated Hospital of Zhengzhou University, 1 Eastern Jianshe Road, Zhengzhou 450052, Henan, China; Key Laboratory of Hepatobiliary and Panccreatic Surgery and Digestive Organ Transplantation of Henan Province, China; Henan Medical Key Laboratory of Emergency and Trauma Research, China
| | - San-Yang Chen
- Department of Emergency, The First Affiliated Hospital of Zhengzhou University, 1 Eastern Jianshe Road, Zhengzhou 450052, Henan, China; Key Laboratory of Hepatobiliary and Panccreatic Surgery and Digestive Organ Transplantation of Henan Province, China; Henan Medical Key Laboratory of Emergency and Trauma Research, China.
| | - Chang-Ju Zhu
- Department of Emergency, The First Affiliated Hospital of Zhengzhou University, 1 Eastern Jianshe Road, Zhengzhou 450052, Henan, China; Key Laboratory of Hepatobiliary and Panccreatic Surgery and Digestive Organ Transplantation of Henan Province, China; Henan Medical Key Laboratory of Emergency and Trauma Research, China.
| |
Collapse
|
21
|
Inhibition of hypoxia-inducible factor-1α alleviates acinar cell necrosis in a mouse model of acute pancreatitis. Biochem Biophys Res Commun 2021; 572:72-79. [PMID: 34358966 DOI: 10.1016/j.bbrc.2021.07.043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/09/2021] [Accepted: 07/12/2021] [Indexed: 12/20/2022]
Abstract
Hypoxia-inducible factor-1α (Hif1α) is activated in hypoxia and is closely related to oxidative stress, immunity and cell metabolism. Recently, it is reported that Hif1α is involved in atherosclerosis, ischemia-reperfusion (I/R) injury, alcoholic liver disease and pancreatic tumors. In this study, we found that Hif1 signal pathway is significantly changed in pancreas of acute pancreatitis (AP) mice. Meanwhile, we verified that the high expression of Hif1α injured pancreatic tissues of cerulean-induced AP mice, which prompting that Hif1α participated in the progress of histopathology on AP. We applied a Hif1α inhibitor PX478 and observed that it could alleviate histological injury of pancreas as well as the levels of serum amylase, lipase and proinflammatory cytokine in the murine model of AP induced by caerulein. In addition, PX478 could reduce the formation of necrosome (RIP3 and p-MLKL) and the generation of reactive oxygen species (ROS) in AP mice. Correspondingly, we further confirmed the effectiveness of PX478 in vitro and found that inhibiting Hif1α could mitigated the necrosis of pancreatic acinar cells via reducing the RIP3 and p-MLKL expression and the ROS production. In conclusion, inhibiting Hif1α could protect against acinar cells necrosis in AP, which may provide a new target for the prevention and treatment of AP clinically.
Collapse
|
22
|
Zhao H, Jiang S. MiR-204-5p Performs a Protective Effect on Cerulein-Induced Rat Pancreatic Acinar Cell AR42J Cell Damage by Targeting Tyrosine 3-Monooxygenase/Tryptophan 5-Monooxygenase Activation Protein Gamma and Regulating PI3K/Hippo Pathways. Pancreas 2021; 50:243-250. [PMID: 33565802 DOI: 10.1097/mpa.0000000000001748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVE This research plans to address the function of miR-204-5p/tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein gamma (YWHAG) in cerulein-induced acute pancreatitis (AP). METHODS Rat pancreatic acinar cell AR42J was stimulated by 100 nmol/L of cerulein to mimic the situation in AP. Gene Expression Omnibus database was used to select differentially expressed genes. StarBase database and Kyoto Encyclopedia of Genes and Genomes enrichment analysis were used to select the target genes of miR-204-5p, which were further affirmed by dual luciferase assay. The biological behaviors of AR42J cells were measured by cell proliferation and flow cytometry assays. Quantitative real-time polymerase chain reaction and western blot assays were executed to assess YWHAG expression. The secretion of C-C Motif Chemokine Ligand 2/Timp metallopeptidase inhibitor 1 in AR42J cells was evaluated by enzyme-linked immunosorbent assay. The protein expression of YAP1/p-YAP1/PI3K/p-PI3K was measured by western blot. RESULTS miR-204-5p expression was profoundly reduced in cerulein-induced AP model. YWHAG was upregulated in cerulein-induced AP model and related to C-C Motif Chemokine Ligand 2/Timp1. In addition to the negative association between miR-204-5p and YWHAG, the alleviation impact of miR-204-5p mimic on cerulein-induced AR42J cell damage was blocked by YWHAG overexpression and PI3K/Hippo signaling pathways activation. CONCLUSIONS These observations indicated that the alleviation impact of miR-204-5p on cerulein-induced AR42J cell damage was mediated via YWHAG and PI3K/Hippo signaling pathways.
Collapse
Affiliation(s)
- Hongbo Zhao
- From the Department of Gastroenterology, Central Hospital of Shanxian, Heze
| | - Shaolian Jiang
- Department of Gastroenterology, The Second People's Hospital of Jingmen, Jingmen, China
| |
Collapse
|
23
|
Wang B J, Wang S, Xiao M, Zhang J, Wang A J, Guo Y, Tang Y, Gu J. Regulatory mechanisms of Sesn2 and its role in multi-organ diseases. Pharmacol Res 2020; 164:105331. [PMID: 33285232 DOI: 10.1016/j.phrs.2020.105331] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/20/2020] [Accepted: 11/21/2020] [Indexed: 02/07/2023]
Abstract
Sestrin2 (Sesn2) is a powerful anti-oxidant that can prevent acute and chronic diseases. The role of Sesn2 has been thoroughly reviewed in liver, nervous system, and immune system diseases. However, there is a limited number of reviews that have summarized the effects of Sesn2 in heart and vascular diseases, and very less literature-based information is available on involvement of Sesn2 in renal and respiratory pathologies. This review summarizes the latest research on Sesn2 in multi-organ stress responses, with a particular focus on the protective role of Sesn2 in cardiovascular, respiratory, and renal diseases, emphasizing the potential therapeutic benefit of targeting Sesn2 in stress-related diseases.
Collapse
Affiliation(s)
- Jie Wang B
- School of Nursing, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Shudong Wang
- Department of Cardiology at the First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Mengjie Xiao
- School of Nursing, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Jingjing Zhang
- Department of Cardiology at the First Hospital of China Medical University, Department of Cardiology at the People's Hospital of Liaoning Province, Shenyang, Liaoning, 110016, China
| | - Jie Wang A
- School of Nursing, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Yuanfang Guo
- School of Nursing, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Yufeng Tang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, 250014, China
| | - Junlian Gu
- School of Nursing, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
24
|
Ro SH, Fay J, Cyuzuzo CI, Jang Y, Lee N, Song HS, Harris EN. SESTRINs: Emerging Dynamic Stress-Sensors in Metabolic and Environmental Health. Front Cell Dev Biol 2020; 8:603421. [PMID: 33425907 PMCID: PMC7794007 DOI: 10.3389/fcell.2020.603421] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 11/12/2020] [Indexed: 12/21/2022] Open
Abstract
Proper timely management of various external and internal stresses is critical for metabolic and redox homeostasis in mammals. In particular, dysregulation of mechanistic target of rapamycin complex (mTORC) triggered from metabolic stress and accumulation of reactive oxygen species (ROS) generated from environmental and genotoxic stress are well-known culprits leading to chronic metabolic disease conditions in humans. Sestrins are one of the metabolic and environmental stress-responsive groups of proteins, which solely have the ability to regulate both mTORC activity and ROS levels in cells, tissues and organs. While Sestrins are originally reported as one of several p53 target genes, recent studies have further delineated the roles of this group of stress-sensing proteins in the regulation of insulin sensitivity, glucose and fat metabolism, and redox-function in metabolic disease and aging. In this review, we discuss recent studies that investigated and manipulated Sestrins-mediated stress signaling pathways in metabolic and environmental health. Sestrins as an emerging dynamic group of stress-sensor proteins are drawing a spotlight as a preventive or therapeutic mechanism in both metabolic stress-associated pathologies and aging processes at the same time.
Collapse
Affiliation(s)
- Seung-Hyun Ro
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Julianne Fay
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Cesar I Cyuzuzo
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Yura Jang
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, United States.,Department of Neurology, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Naeun Lee
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Hyun-Seob Song
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE, United States.,Department of Food Science and Technology, Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Edward N Harris
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, United States
| |
Collapse
|
25
|
Mesna Alleviates Cerulein-Induced Acute Pancreatitis by Inhibiting the Inflammatory Response and Oxidative Stress in Experimental Rats. Dig Dis Sci 2020; 65:3583-3591. [PMID: 32088797 DOI: 10.1007/s10620-020-06072-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 01/12/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND Acute pancreatitis (AP) is a sudden inflammation of the pancreas that may be life-threatening disease with high mortality rates, particularly in the presence of systemic inflammatory response and multiple organ failure. Oxidative stress has been shown to be involved in the pathophysiology of acute pancreatitis. AIM This study is designed to investigate the possible effect of mesna on an experimental model of cerulein-induced acute pancreatitis. METHODS Animals were divided into five groups: Group 1 served as a control group given the saline; group II (mesna group) received mesna at a dose of (100 mg/kg per dose, i.p.) four times; group III (acute pancreatitis group) received cerulein at a dose of (20 µg/kg/dose, s.c.) four times with 1-h intervals; group VI, cerulein + mesna, was treated with mesna at a dose of (100 mg/kg, i.p.) 15 min before each cerulein injection. RESULTS Animals with acute pancreatitis showed elevated serum amylase and lipase levels. Biochemical parameters showed increased pancreatic tumor necrosis factors-α (TNF-α) and interleukin-1β (IL-1β) levels. A disturbance in oxidative stress markers was evident by elevated pancreatic lipid peroxides (TBARS) and decline in pancreatic antioxidants' concentrations including reduced glutathione (GSH); superoxide dismutase (SOD); and glutathione peroxidase (GSH-Px). Histological examination confirmed pancreatic injury. Pre-treatment with mesna was able to abolish the changes in pancreatic enzymes, oxidative stress markers (TBARS, SOD, GSH and GSH-Px), pancreatic inflammatory markers (TNF-α, IL-1β) as well as histological changes. CONCLUSIONS Mesna mitigates AP by alleviating pancreatic oxidative stress damage and inhibiting inflammation.
Collapse
|
26
|
Lloret A, Monllor P, Fuchsberger T, Giraldo E, Perluigi M, Vina J. Increased basal antioxidant levels in RCAN1 - deficient mice lowers oxidative injury after acute paraquat insult. Free Radic Res 2020; 54:442-454. [PMID: 32686528 DOI: 10.1080/10715762.2020.1798002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
RCAN1 is an inhibitor of the phosphatase calcineurin, which is involved in the regulation of oxidative stress and apoptosis, among other important cell processes. Here we have used RCAN1 deficient mice (RCAN1-/-) to elucidate its role after an acute oxidative insult such as paraquat injection. We have observed that RCAN1-/- mice show less oxidative damage than wildtype (WT) mice after treatment. Under basal conditions, RCAN1-/- animals express more calcineurin, heme oxygenase-1, Nrf2, and catalase compared to WT mice (controls). This may explain the less severe effect of paraquat treatment on RCAN1-/- mice compared to WT. We showed that oxidative stress is involved in the early stages of apoptosis, thus we determined the apoptotic effector BAD and found that decreases in RCAN1-/- mice after treatment with paraquat compared with WT in similar experimental conditions. Our results suggest that RCAN1 may be involved in the balance between oxidant and antioxidant species production in vivo.
Collapse
Affiliation(s)
- Ana Lloret
- Freshage Research Group, Department of Physiology, University of Valencia, CIBERFES-ISCIII, INCLIVA, Valencia, Spain
| | - Paloma Monllor
- Freshage Research Group, Department of Physiology, University of Valencia, CIBERFES-ISCIII, INCLIVA, Valencia, Spain
| | - Tanja Fuchsberger
- Freshage Research Group, Department of Physiology, University of Valencia, CIBERFES-ISCIII, INCLIVA, Valencia, Spain
| | - Esther Giraldo
- Freshage Research Group, Department of Physiology, University of Valencia, CIBERFES-ISCIII, INCLIVA, Valencia, Spain.,Department of Biotechnology, Universitat Politècnica de València, Valencia, Spain.,The Principe Felipe Research Center, Valencia, Spain
| | - Marzia Perluigi
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | - Jose Vina
- Freshage Research Group, Department of Physiology, University of Valencia, CIBERFES-ISCIII, INCLIVA, Valencia, Spain
| |
Collapse
|
27
|
Li X, Chan LWC, Li X, Liu C, Yang G, Gao J, Dai M, Wang Y, Xie Z, Liu J, Zhou F, Zheng T, Feng D, Guo S, Li H, Sun K, Yang S. Obesity-Induced Regulator of Calcineurin 1 Overexpression Leads to β-Cell Failure Through Mitophagy Pathway Inhibition. Antioxid Redox Signal 2020; 32:413-428. [PMID: 31822118 DOI: 10.1089/ars.2019.7806] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Aims: Type 2 diabetes (T2D) is associated with pancreatic β-cell dysfunction, manifested by reduced glucose-stimulated insulin secretion (GSIS). The regulator of calcineurin 1 (RCAN1) in islets is an endogenous inhibitor of calcium-activated protein phosphatase. Previous studies have indicated that global RCAN1 overexpression under high nutrient stress is involved in insulin resistance in T2D. However, the specific role and mechanism of this gene's overexpression in pancreatic β-cells have not been thoroughly elucidated to date. Results: In this study, we showed that mice overexpressing islet-specific RCAN1 exhibited a prediabetic phenotype with markedly reduced GSIS under nutrient stress. Overexpression of RCAN1 increased the autophagy-associated DNA methylation level of Beclin-1 suppressing the induction of autophagy, affected the protein kinase B, and downregulated the activation of mammalian target of rapamycin, leading to Miro1-mediated mitophagy deficiency. Furthermore, the exacerbated impairment of autophagy induction and mitophagy flux failures induced β-cell apoptosis, resulting in GSIS impairment, lipid imbalance, and NOD-like receptor 3 proinflammation under high nutrient stress in mice. Innovation: Our present data identify a detrimental effect of RCAN1 overexpression on Miro1-mediated mitophagy deficiency and β-cell dysfunction in high-fat diet-fed RCAN1 overexpressing mice. Conclusion: Our results revealed that strategies targeting RCAN1 in vivo may provide a therapeutic target to enhance β-cell mitophagy quality and may determine the crucial factor in T2D development.
Collapse
Affiliation(s)
- Xujun Li
- ABSL-3 Laboratory at the Center for Animal Experiment, Institute of Animal Model for Human Disease, Wuhan University School of Medicine, Wuhan, People's Republic of China
| | - Lawrence W C Chan
- Department of Health Technology and Informatics, Hong Kong Polytechnic University, Hong Kong, Hong Kong
| | - Xianyu Li
- Department of Pathophysiology, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, People's Republic of China
| | - Chunyan Liu
- ABSL-3 Laboratory at the Center for Animal Experiment, Institute of Animal Model for Human Disease, Wuhan University School of Medicine, Wuhan, People's Republic of China
| | - Guohua Yang
- Demonstration Center for Experimental Basic Medicine Education, School of Basic Medical Science, Wuhan University, Wuhan, People's Republic of China
| | - Jianfeng Gao
- ABSL-3 Laboratory at the Center for Animal Experiment, Institute of Animal Model for Human Disease, Wuhan University School of Medicine, Wuhan, People's Republic of China
| | - Ming Dai
- ABSL-3 Laboratory at the Center for Animal Experiment, Institute of Animal Model for Human Disease, Wuhan University School of Medicine, Wuhan, People's Republic of China
| | - Yunxin Wang
- School of Medical Technology, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Zhiwen Xie
- School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Junli Liu
- Shanghai Diabetes Research Institute, Shanghai JiaoTong University Affiliated 6th People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, People's Republic of China
| | - Fuling Zhou
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Tian Zheng
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Du Feng
- Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Shaodong Guo
- Department of Nutrition and Food Science, Texas A&M University, College Station, Texas
| | - Haojie Li
- Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Kai Sun
- Center for Metabolic and Degenerative Diseases, Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas
| | - Sijun Yang
- ABSL-3 Laboratory at the Center for Animal Experiment, Institute of Animal Model for Human Disease, Wuhan University School of Medicine, Wuhan, People's Republic of China
| |
Collapse
|
28
|
Loss of RE-1 silencing transcription factor accelerates exocrine damage from pancreatic injury. Cell Death Dis 2020; 11:138. [PMID: 32080178 PMCID: PMC7033132 DOI: 10.1038/s41419-020-2269-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 01/08/2020] [Accepted: 01/10/2020] [Indexed: 12/14/2022]
Abstract
Regulation of pancreas plasticity is critical for preventing injury and promoting regeneration upon tissue damage. The intricate process of pancreatic differentiation is governed by an orchestrated network of positive and negative transcription factors for appropriate gene expression. While the transcriptional repressor REST is well characterized as a silencer of neuronal genes in non-neuronal cells, the role of REST in regulating exocrine pancreas cell identity remains largely unexplored. Rest expression is increased upon injury in the mouse pancreas, such as induced acute and chronic pancreatitis and ductal adenocarcinoma. At the cellular level, Rest expression is lower in mature acinar cells compared with pancreas progenitor and ductal cells. To investigate the role of REST activity in pancreatic transdifferentiation and homeostasis, we developed a novel mouse model (Cre/RESTfl/fl) with conditional knockout (KO) of Rest expression within pancreas cells. The high Cre-mediated excision efficiency of Rest exon two KO caused decreased Rest expression and activity within the pancreas. Short-term organoid cultures of pancreatic acini to undergo acinar-to-ductal metaplasia (ADM) showed that loss of REST impedes induced ADM, while overexpression of REST increases ADM. Interestingly, REST ablation accelerated acute pancreatitis in mice treated with the cholecystokinin analog caerulein, as indicated by cellular morphology, elevated serum amylase levels and pancreatic edema. Furthermore, Cre/RESTfl/fl mice were more sensitive to acute pancreatitis injury and displayed augmented tissue damage and cellular lesions. These results suggest REST has a novel protective role against pancreatic tissue damage by acting as a regulator of exocrine cell identity.
Collapse
|
29
|
Abstract
PURPOSE OF REVIEW Novel 3D organoid culture techniques have enabled long-term expansion of pancreatic tissue. This review comprehensively summarizes and evaluates the applications of primary tissue-derived pancreatic organoids in regenerative studies, disease modelling, and personalized medicine. RECENT FINDINGS Organoids derived from human fetal and adult pancreatic tissue have been used to study pancreas development and repair. Generated adult human pancreatic organoids harbor the capacity for clonal expansion and endocrine cell formation. In addition, organoids have been generated from human pancreatic ductal adenocarcinoma in order to study tumor behavior and assess drug responses. Pancreatic organoids constitute an important translational bridge between in vitro and in vivo models, enhancing our understanding of pancreatic cell biology. Current applications for pancreatic organoid technology include studies on tissue regeneration, disease modelling, and drug screening.
Collapse
Affiliation(s)
- Jeetindra R. A. Balak
- 0000000089452978grid.10419.3dDepartment of Internal Medicine, Nephrology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Juri Juksar
- 0000 0000 9471 3191grid.419927.0Hubrecht Institute for Developmental Biology and Stem Cell Research, Utrecht, The Netherlands
| | - Françoise Carlotti
- 0000000089452978grid.10419.3dDepartment of Internal Medicine, Nephrology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Antonio Lo Nigro
- 0000 0000 9471 3191grid.419927.0Hubrecht Institute for Developmental Biology and Stem Cell Research, Utrecht, The Netherlands
| | - Eelco J. P. de Koning
- 0000000089452978grid.10419.3dDepartment of Internal Medicine, Nephrology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
- 0000 0000 9471 3191grid.419927.0Hubrecht Institute for Developmental Biology and Stem Cell Research, Utrecht, The Netherlands
| |
Collapse
|
30
|
Benitz S, Straub T, Mahajan UM, Mutter J, Czemmel S, Unruh T, Wingerath B, Deubler S, Fahr L, Cheng T, Nahnsen S, Bruns P, Kong B, Raulefs S, Ceyhan GO, Mayerle J, Steiger K, Esposito I, Kleeff J, Michalski CW, Regel I. Ring1b-dependent epigenetic remodelling is an essential prerequisite for pancreatic carcinogenesis. Gut 2019; 68:2007-2018. [PMID: 30954952 DOI: 10.1136/gutjnl-2018-317208] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 02/08/2019] [Accepted: 02/24/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS Besides well-defined genetic alterations, the dedifferentiation of mature acinar cells is an important prerequisite for pancreatic carcinogenesis. Acinar-specific genes controlling cell homeostasis are extensively downregulated during cancer development; however, the underlying mechanisms are poorly understood. Now, we devised a novel in vitro strategy to determine genome-wide dynamics in the epigenetic landscape in pancreatic carcinogenesis. DESIGN With our in vitro carcinogenic sequence, we performed global gene expression analysis and ChIP sequencing for the histone modifications H3K4me3, H3K27me3 and H2AK119ub. Followed by a comprehensive bioinformatic approach, we captured gene clusters with extensive epigenetic and transcriptional remodelling. Relevance of Ring1b-catalysed H2AK119ub in acinar cell reprogramming was studied in an inducible Ring1b knockout mouse model. CRISPR/Cas9-mediated Ring1b ablation as well as drug-induced Ring1b inhibition were functionally characterised in pancreatic cancer cells. RESULTS The epigenome is vigorously modified during pancreatic carcinogenesis, defining cellular identity. Particularly, regulatory acinar cell transcription factors are epigenetically silenced by the Ring1b-catalysed histone modification H2AK119ub in acinar-to-ductal metaplasia and pancreatic cancer cells. Ring1b knockout mice showed greatly impaired acinar cell dedifferentiation and pancreatic tumour formation due to a retained expression of acinar differentiation genes. Depletion or drug-induced inhibition of Ring1b promoted tumour cell reprogramming towards a less aggressive phenotype. CONCLUSIONS Our data provide substantial evidence that the epigenetic silencing of acinar cell fate genes is a mandatory event in the development and progression of pancreatic cancer. Targeting the epigenetic repressor Ring1b could offer new therapeutic options.
Collapse
Affiliation(s)
- Simone Benitz
- Department of Medicine II, University Hospital, LMU Munich, Munich, Germany
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Tobias Straub
- Bioinformatic Unit, Biomedical Center, Faculty of Medicine, LMU Munich, Munich, Germany
| | | | - Jurik Mutter
- Department of Medicine II, University Hospital, LMU Munich, Munich, Germany
| | - Stefan Czemmel
- Quantitative Biology Center, University of Tuebingen, Tuebingen, Germany
| | - Tatjana Unruh
- Institute of Pathology, Heinrich-Heine University and University Hospital, Duesseldorf, Germany
| | - Britta Wingerath
- Institute of Pathology, Heinrich-Heine University and University Hospital, Duesseldorf, Germany
| | - Sabrina Deubler
- Department of Surgery, Technical University Munich, Munich, Germany
| | - Lisa Fahr
- Department of Medicine II, University Hospital, LMU Munich, Munich, Germany
| | - Tao Cheng
- Department of Surgery, Technical University Munich, Munich, Germany
| | - Sven Nahnsen
- Quantitative Biology Center, University of Tuebingen, Tuebingen, Germany
| | - Philipp Bruns
- Department of Surgery, Technical University Munich, Munich, Germany
| | - Bo Kong
- Department of Surgery, Technical University Munich, Munich, Germany
| | - Susanne Raulefs
- Department of Surgery, Technical University Munich, Munich, Germany
| | - Güralp O Ceyhan
- Department of Surgery, Technical University Munich, Munich, Germany
| | - Julia Mayerle
- Department of Medicine II, University Hospital, LMU Munich, Munich, Germany
| | - Katja Steiger
- Institute of Pathology, Technical University Munich, Munich, Germany
| | - Irene Esposito
- Institute of Pathology, Heinrich-Heine-Universitat Dusseldorf, Dusseldorf, Germany
| | - Jörg Kleeff
- Department of Surgery, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Christoph W Michalski
- Department of Surgery, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Ivonne Regel
- Department of Medicine II, University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
31
|
Silva-Vaz P, Abrantes AM, Castelo-Branco M, Gouveia A, Botelho MF, Tralhão JG. Murine Models of Acute Pancreatitis: A Critical Appraisal of Clinical Relevance. Int J Mol Sci 2019; 20:E2794. [PMID: 31181644 PMCID: PMC6600324 DOI: 10.3390/ijms20112794] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 06/04/2019] [Accepted: 06/05/2019] [Indexed: 12/15/2022] Open
Abstract
Acute pancreatitis (AP) is a severe disease associated with high morbidity and mortality. Clinical studies can provide some data concerning the etiology, pathophysiology, and outcomes of this disease. However, the study of early events and new targeted therapies cannot be performed on humans due to ethical reasons. Experimental murine models can be used in the understanding of the pancreatic inflammation, because they are able to closely mimic the main features of human AP, namely their histologic glandular changes and distant organ failure. These models continue to be important research tools for the reproduction of the etiological, environmental, and genetic factors associated with the pathogenesis of this inflammatory pathology and the exploration of novel therapeutic options. This review provides an overview of several murine models of AP. Furthermore, special focus is made on the most frequently carried out models, the protocols used, and their advantages and limitations. Finally, examples are provided of the use of these models to improve knowledge of the mechanisms involved in the pathogenesis, identify new biomarkers of severity, and develop new targeted therapies.
Collapse
Affiliation(s)
- Pedro Silva-Vaz
- Health Sciences Research Centre, University of Beira Interior (CICS-UBI), 6200-506 Covilhã, Portugal.
- General Surgery Department, Unidade Local de Saúde de Castelo Branco, 6000-085 Castelo Branco, Portugal.
- Faculty of Health Sciences, University of Beira Interior, 6200-506 Covilhã, Portugal.
| | - Ana Margarida Abrantes
- Coimbra Institute for Clinical and Biomedical Research (iCBR) area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal.
- Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal.
- Biophysics and Biomathematics Institute, IBILI-Faculty of Medicine of University of Coimbra, 3000-548 Coimbra, Portugal.
| | - Miguel Castelo-Branco
- Health Sciences Research Centre, University of Beira Interior (CICS-UBI), 6200-506 Covilhã, Portugal.
- Faculty of Health Sciences, University of Beira Interior, 6200-506 Covilhã, Portugal.
| | - António Gouveia
- General Surgery Department, Unidade Local de Saúde de Castelo Branco, 6000-085 Castelo Branco, Portugal.
- Faculty of Health Sciences, University of Beira Interior, 6200-506 Covilhã, Portugal.
| | - Maria Filomena Botelho
- Coimbra Institute for Clinical and Biomedical Research (iCBR) area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal.
- Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal.
- Biophysics and Biomathematics Institute, IBILI-Faculty of Medicine of University of Coimbra, 3000-548 Coimbra, Portugal.
| | - José Guilherme Tralhão
- Coimbra Institute for Clinical and Biomedical Research (iCBR) area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal.
- Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal.
- Biophysics and Biomathematics Institute, IBILI-Faculty of Medicine of University of Coimbra, 3000-548 Coimbra, Portugal.
- Surgery Department, Centro Hospitalar e Universitário de Coimbra, 3000-075 Coimbra, Portugal.
| |
Collapse
|