1
|
Cao J, Long S, Liu H, Chen F, Liang S, Fang H, Liu Y. Constructing a prediction model for acute pancreatitis severity based on liquid neural network. Sci Rep 2025; 15:16655. [PMID: 40360617 PMCID: PMC12075669 DOI: 10.1038/s41598-025-01218-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Accepted: 05/05/2025] [Indexed: 05/15/2025] Open
Abstract
Acute pancreatitis (AP) is a common disease, and severe acute pancreatitis (SAP) has a high morbidity and mortality rate. Early recognition of SAP is crucial for prognosis. This study aimed to develop a novel liquid neural network (LNN) model for predicting SAP. This study retrospectively analyzed the data of AP patients admitted to the Second Affiliated Hospital of Guilin Medical University between January 2020 and June 2024. Data imbalance was dealt with by data preprocessing and using the synthetic minority oversampling technique (SMOTE). A new feature selection method was designed to optimize model performance. Logistic regression (LR), decision tree (DCT), random forest (RF), Extreme Gradient Boosting (XGBoost), and LNN models were built. The model's performance was evaluated by calculating the area under the receiver operating characteristic (ROC) curve (AUC) and other statistical metrics. In addition, SHapley Additive exPlanations (SHAP) analysis was used to interpret the prediction results of the LNN model. The LNN model performed best in predicting AP severity, with an AUC value of 0.9659 and accuracy, precision, recall, F1 score, and specificity higher than 0.90. SHAP analysis revealed key predictors, such as calcium level, amylase activity, and percentage of basophils, which were strongly associated with AP severity. As an emerging machine learning tool, the LNN model has demonstrated excellent performance and potential in AP severity prediction. The results of this study support the idea that LNN models can be applied to early severity assessment of AP patients in a clinical setting, which can help optimize treatment plans and improve patient prognosis.
Collapse
Affiliation(s)
- Jie Cao
- Department of Gastroenterology, The Second Affiliated Hospital of Guilin Medical University, Guilin, 541199, China
| | - Shike Long
- Guangxi University Key Laboratory of Unmanned Aircraft System Technology and Application, Guilin University of Aerospace Technology, Guilin, 541004, China
| | - Huan Liu
- Department of Gastroenterology, The Second Affiliated Hospital of Guilin Medical University, Guilin, 541199, China
| | - Fu'an Chen
- Department of Gastroenterology, The Second Affiliated Hospital of Guilin Medical University, Guilin, 541199, China
| | - Shiwei Liang
- Department of Gastroenterology, The Second Affiliated Hospital of Guilin Medical University, Guilin, 541199, China
| | - Haicheng Fang
- Department of Gastroenterology, The Second Affiliated Hospital of Guilin Medical University, Guilin, 541199, China
| | - Ying Liu
- Department of Gastroenterology, The Second Affiliated Hospital of Guilin Medical University, Guilin, 541199, China.
- Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, The Second Affiliated Hospital of Guilin Medical University, Guilin, 541199, China.
| |
Collapse
|
2
|
Pacella D, De Simone A, Pisanu A, Pellino G, Selvaggi L, Murzi V, Locci E, Ciabatti G, Mastrangelo L, Jovine E, Rottoli M, Calini G, Cardelli S, Catena F, Vallicelli C, Bova R, Vigutto G, D'Acapito F, Ercolani G, Solaini L, Biloslavo A, Germani P, Colutta C, Lepiane P, Scaramuzzo R, Occhionorelli S, Lacavalla D, Sibilla MG, Olmi S, Uccelli M, Oldani A, Giordano A, Guagni T, Perini D, Pata F, Nardo B, Paglione D, Franco G, Donadon M, Di Martino M, Di Saverio S, Cardinali L, Travaglini G, Bruzzese D, Podda M. A systematic review of the predictive factors for the recurrence of acute pancreatitis. World J Emerg Surg 2025; 20:32. [PMID: 40221742 PMCID: PMC11994023 DOI: 10.1186/s13017-025-00601-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 03/22/2025] [Indexed: 04/14/2025] Open
Abstract
PURPOSE Acute Pancreatitis (AP) is a prevalent clinical pancreatic disorder characterized by acute inflammation of the pancreas, frequently associated with biliary or alcoholic events. If not treated with cholecystectomy after the first episode, patients may experience a recurrence of AP, with consequent need for emergency surgery and increased risk of death. Analyzing the risk factors that may contribute to the recurrence of Biliary and Alcoholic Pancreatitis (BAP and AAP), future research can be driven toward new solutions for preventing and treating this pancreatic disease. METHODS A systematic review was conducted selecting studies from BiomedCentral, PubMed, Scopus and Web of Science by two independent reviewers. Publications were considered only if written in English in the time interval between January 2000 and June 2024 and investigated the risk factors for the recurrence of BAP and AAP. At the end of the selection, a quality assessment phase was conducted using the PROBAST tool. RESULTS In this systematic review, 8 articles were selected out of 6.945, involving a total sample of 11.271 patients of which 38.77% developed recurrence episodes. 37.5% of the included studies focus on recurrent acute biliary pancreatitis (RBAP), while 62.5% are dedicated to recurrent acute alcoholic pancreatitis (RAAP). The risk factors for the recurrence of AP showed a clear differentiation between the alcoholic and biliary etiology. Most of the considered studies adopted a retrospective design, characterized by a susceptibility to potential methodological biases. However, the trend indicated a more recent increase in prospective studies, together with a greater focus on identifying and understanding the possible risk factors associated with the recurrence of acute pancreatitis (RAP). This result highlighted the progress in the scientific approach toward a more rigorous and systematic assessment of the causes and dynamics that influence the recurrence of the disease. CONCLUSION Studies highlighted the importance of lifestyle factors, clinical complications, and surgical interventions that can impact the risk of biliary or alcoholic recurrent acute pancreatitis. Increased and systematic adoption of artificial intelligence-based tools could significantly impact future knowledge relating to the risks of recurrence and relative possibilities of prevention.
Collapse
Affiliation(s)
- Daniela Pacella
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Adriano De Simone
- Department of Public Health, University of Naples Federico II, Naples, Italy
- Department of Electric Engineering and Information Technologies, University of Naples Federico II, Naples, Italy
| | - Adolfo Pisanu
- Emergency Surgery Unit, Department of Surgical Science, University of Cagliari, Cagliari, Italy
| | - Gianluca Pellino
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Lucio Selvaggi
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Valentina Murzi
- Emergency Surgery Unit, Department of Surgical Science, University of Cagliari, Cagliari, Italy
| | - Eleonora Locci
- Emergency Surgery Unit, Department of Surgical Science, University of Cagliari, Cagliari, Italy
| | - Giulia Ciabatti
- Department of Medical and Surgical Science, University of Bologna, Maggiore Hospital, Bologna, Italy
| | - Laura Mastrangelo
- Department of Medical and Surgical Science, University of Bologna, Maggiore Hospital, Bologna, Italy
| | - Elio Jovine
- Department of Medical and Surgical Science, University of Bologna, Maggiore Hospital, Bologna, Italy
| | - Matteo Rottoli
- Department of Medical and Surgical Science, University of Bologna, Sant'Orsola Hospital, Bologna, Italy
- Alma Mater Studiorum, Università di Bologna, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Giacomo Calini
- Department of Medical and Surgical Science, University of Bologna, Sant'Orsola Hospital, Bologna, Italy
| | - Stefano Cardelli
- Department of Medical and Surgical Science, University of Bologna, Sant'Orsola Hospital, Bologna, Italy
- Alma Mater Studiorum, Università di Bologna, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Fausto Catena
- Department of General, Emergency and Trauma Surgery, Bufalini Hospital, Cesena, Italy
| | - Carlo Vallicelli
- Department of General, Emergency and Trauma Surgery, Bufalini Hospital, Cesena, Italy
| | - Raffaele Bova
- Department of General, Emergency and Trauma Surgery, Bufalini Hospital, Cesena, Italy
| | - Gabriele Vigutto
- Department of General, Emergency and Trauma Surgery, Bufalini Hospital, Cesena, Italy
| | - Fabrizio D'Acapito
- Department of Medical and Surgical Science, University of Bologna, Morgagni-Pierantoni Hospital Forlì, Forlì, Italy
| | - Giorgio Ercolani
- Department of Medical and Surgical Science, University of Bologna, Morgagni-Pierantoni Hospital Forlì, Forlì, Italy
| | - Leonardo Solaini
- Department of Medical and Surgical Science, University of Bologna, Morgagni-Pierantoni Hospital Forlì, Forlì, Italy
| | - Alan Biloslavo
- Department of General Surgery, Azienda Sanitaria Universitaria Giuliano Isontina, University of Trieste, Trieste, Italy
| | - Paola Germani
- Department of General Surgery, Azienda Sanitaria Universitaria Giuliano Isontina, University of Trieste, Trieste, Italy
| | - Camilla Colutta
- Department of General Surgery, Azienda Sanitaria Universitaria Giuliano Isontina, University of Trieste, Trieste, Italy
| | - Pasquale Lepiane
- Department of Surgery, San Paolo Hospital Civitavecchia, Rome, Italy
| | - Rosa Scaramuzzo
- Department of Surgery, San Paolo Hospital Civitavecchia, Rome, Italy
| | - Savino Occhionorelli
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Domenico Lacavalla
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Maria Grazia Sibilla
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Stefano Olmi
- Department of General Surgery, San Donato Hospital Zingonia, Bergamo, Italy
| | - Matteo Uccelli
- Department of General Surgery, San Donato Hospital Zingonia, Bergamo, Italy
| | - Alberto Oldani
- Department of General Surgery, San Donato Hospital Zingonia, Bergamo, Italy
| | - Alessio Giordano
- Department of Emergency Surgery, Careggi Hospital, Firenze, Italy
| | - Tommaso Guagni
- Department of Emergency Surgery, Careggi Hospital, Firenze, Italy
| | - Davina Perini
- Department of Emergency Surgery, Careggi Hospital, Firenze, Italy
| | - Francesco Pata
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Bruno Nardo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Daniele Paglione
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Giusi Franco
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Matteo Donadon
- Department of Health Science, University of Piemonte Orientale, Ospedale Maggiore della Carità, Novara, Italy
| | - Marcello Di Martino
- Department of Health Science, University of Piemonte Orientale, Ospedale Maggiore della Carità, Novara, Italy
| | - Salomone Di Saverio
- Department of Surgery, Madonna del Soccorso Hospital, San Benedetto del Tronto, Italy
| | - Luca Cardinali
- Department of Surgery, Madonna del Soccorso Hospital, San Benedetto del Tronto, Italy
| | - Grazia Travaglini
- Department of Surgery, Madonna del Soccorso Hospital, San Benedetto del Tronto, Italy
| | - Dario Bruzzese
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Mauro Podda
- Emergency Surgery Unit, Department of Surgical Science, University of Cagliari, Cagliari, Italy.
| |
Collapse
|
3
|
Kong N, Chang P, Shulman IA, Haq U, Amini M, Nguyen D, Khan F, Narala R, Sharma N, Wang D, Thompson T, Sadik J, Breze C, Whitcomb DC, Buxbaum JL. Machine Learning-Guided Fluid Resuscitation for Acute Pancreatitis Improves Outcomes. Clin Transl Gastroenterol 2025; 16:e00825. [PMID: 39851257 PMCID: PMC12020695 DOI: 10.14309/ctg.0000000000000825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 01/13/2025] [Indexed: 01/26/2025] Open
Abstract
INTRODUCTION Ariel Dynamic Acute Pancreatitis Tracker (ADAPT) is an artificial intelligence tool using mathematical algorithms to predict severity and manage fluid resuscitation needs based on the physiologic parameters of individual patients. Our aim was to assess whether adherence to ADAPT fluid recommendations vs standard management impacted clinical outcomes in a large prospective cohort. METHODS We analyzed patients consecutively admitted to the Los Angeles General Medical Center between June 2015 and November 2022 whose course was richly characterized by capturing more than 100 clinical variables. We inputted these data into the ADAPT system to generate resuscitation fluid recommendations and compared with the actual fluid resuscitation within the first 24 hours from presentation. The primary outcome was the difference in organ failure in those who were over-resuscitated (>500 mL) vs adequately resuscitated (within 500 mL) with respect to the ADAPT fluid recommendation. Additional outcomes included intensive care unit admission, systemic inflammatory response syndrome (SIRS) at 48 hours, local complications, and pancreatitis severity. RESULTS Among the 1,083 patients evaluated using ADAPT, 700 were over-resuscitated, 196 were adequately resuscitated, and 187 were under-resuscitated. Adjusting for pancreatitis etiology, gender, and SIRS at admission, over-resuscitation was associated with increased respiratory failure (odd ratio [OR] 2.73, 95% confidence interval [CI] 1.06-7.03) as well as intensive care unit admission (OR 2.40, 1.41-4.11), more than 48 hours of hospital length of stay (OR 1.87, 95% CI 1.19-2.94), SIRS at 48 hours (OR 1.73, 95% CI 1.08-2.77), and local pancreatitis complications (OR 2.93, 95% CI 1.23-6.96). DISCUSSION Adherence to ADAPT fluid recommendations reduces respiratory failure and other adverse outcomes compared with conventional fluid resuscitation strategies for acute pancreatitis. This validation study demonstrates the potential role of dynamic machine learning tools in acute pancreatitis management.
Collapse
Affiliation(s)
- Niwen Kong
- Division of Gastroenterology, Department of Medicine, University of Southern California, Los Angeles, California, USA;
| | - Patrick Chang
- Division of Gastroenterology, Department of Medicine, University of Southern California, Los Angeles, California, USA;
| | - Ira A. Shulman
- Department of Pathology, University of Southern California, Los Angeles, California, USA;
| | - Ubayd Haq
- Division of Gastroenterology, Department of Medicine, University of Southern California, Los Angeles, California, USA;
| | - Maziar Amini
- Division of Gastroenterology, Department of Medicine, University of Southern California, Los Angeles, California, USA;
| | - Denis Nguyen
- Division of Gastroenterology, Department of Medicine, University of Southern California, Los Angeles, California, USA;
| | - Farhaad Khan
- Division of Gastroenterology, Department of Medicine, University of Southern California, Los Angeles, California, USA;
| | - Rachan Narala
- Division of Gastroenterology, Department of Medicine, University of Southern California, Los Angeles, California, USA;
| | - Nisha Sharma
- Division of Gastroenterology, Department of Medicine, University of Southern California, Los Angeles, California, USA;
| | - Daniel Wang
- Division of Gastroenterology, Department of Medicine, University of Southern California, Los Angeles, California, USA;
| | - Tiana Thompson
- Division of Gastroenterology, Department of Medicine, University of Southern California, Los Angeles, California, USA;
| | - Jonathan Sadik
- Division of Gastroenterology, Department of Medicine, University of Southern California, Los Angeles, California, USA;
| | - Cameron Breze
- Ariel Precision Medicine, Pittsburgh, Pennsylvania, USA;
| | - David C. Whitcomb
- Ariel Precision Medicine, Pittsburgh, Pennsylvania, USA;
- Division of Gastroenterology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
| | - James L. Buxbaum
- Division of Gastroenterology, Department of Medicine, University of Southern California, Los Angeles, California, USA;
| |
Collapse
|
4
|
López Gordo S, Ramirez-Maldonado E, Fernandez-Planas MT, Bombuy E, Memba R, Jorba R. AI and Machine Learning for Precision Medicine in Acute Pancreatitis: A Narrative Review. MEDICINA (KAUNAS, LITHUANIA) 2025; 61:629. [PMID: 40282920 PMCID: PMC12028668 DOI: 10.3390/medicina61040629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 03/15/2025] [Accepted: 03/24/2025] [Indexed: 04/29/2025]
Abstract
Acute pancreatitis (AP) presents a significant clinical challenge due to its wide range of severity, from mild cases to life-threatening complications such as severe acute pancreatitis (SAP), necrosis, and multi-organ failure. Traditional scoring systems, such as Ranson and BISAP, offer foundational tools for risk stratification but often lack early precision. This review aims to explore the transformative role of artificial intelligence (AI) and machine learning (ML) in AP management, focusing on their applications in diagnosis, severity prediction, complication management, and treatment optimization. A comprehensive analysis of recent studies was conducted, highlighting ML models such as XGBoost, neural networks, and multimodal approaches. These models integrate clinical, laboratory, and imaging data, including radiomics features, and are useful in diagnostic and prognostic accuracy in AP. Special attention was given to models addressing SAP, complications like acute kidney injury and acute respiratory distress syndrome, mortality, and recurrence. AI-based models achieved higher AUC values than traditional models in predicting acute pancreatitis outcomes. XGBoost reached an AUC of 0.93 for early SAP prediction, higher than BISAP (AUC 0.74) and APACHE II (AUC 0.81). PrismSAP, integrating multimodal data, achieved the highest AUC of 0.916. AI models also demonstrated superior accuracy in mortality prediction (AUC 0.975) and ARDS detection (AUC 0.891) AI and ML represent a transformative advance in AP management, facilitating personalized treatment, early risk stratification, and allowing resource utilization to be optimized. By addressing challenges such as model generalizability, ethical considerations, and clinical adoption, AI has the potential to significantly improve patient outcomes and redefine AP care standards globally.
Collapse
Affiliation(s)
- Sandra López Gordo
- General and Digestive Surgery Department, Maresme Health Consortium, 08304 Mataro, Spain
- Unit of Human Anatomy and Embriology, Department of Morphological Sciences, Faculty of Medicine, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Elena Ramirez-Maldonado
- General and Digestive Surgery Department, Universitary Hospital of Tarragona Joan XXIII, 43005 Tarragona, Spain
- Biomedicine Department, Rovira i Virgili University, 43007 Tarragona, Spain
| | | | - Ernest Bombuy
- General and Digestive Surgery Department, Maresme Health Consortium, 08304 Mataro, Spain
| | - Robert Memba
- General and Digestive Surgery Department, Universitary Hospital of Tarragona Joan XXIII, 43005 Tarragona, Spain
- Biomedicine Department, Rovira i Virgili University, 43007 Tarragona, Spain
| | - Rosa Jorba
- General and Digestive Surgery Department, Universitary Hospital of Tarragona Joan XXIII, 43005 Tarragona, Spain
- Biomedicine Department, Rovira i Virgili University, 43007 Tarragona, Spain
| |
Collapse
|
5
|
Critelli B, Hassan A, Lahooti I, Noh L, Park JS, Tong K, Lahooti A, Matzko N, Adams JN, Liss L, Quion J, Restrepo D, Nikahd M, Culp S, Lacy-Hulbert A, Speake C, Buxbaum J, Bischof J, Yazici C, Evans-Phillips A, Terp S, Weissman A, Conwell D, Hart P, Ramsey M, Krishna S, Han S, Park E, Shah R, Akshintala V, Windsor JA, Mull NK, Papachristou G, Celi LA, Lee P. A systematic review of machine learning-based prognostic models for acute pancreatitis: Towards improving methods and reporting quality. PLoS Med 2025; 22:e1004432. [PMID: 39992936 PMCID: PMC11870378 DOI: 10.1371/journal.pmed.1004432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 02/28/2025] [Accepted: 01/07/2025] [Indexed: 02/26/2025] Open
Abstract
BACKGROUND An accurate prognostic tool is essential to aid clinical decision-making (e.g., patient triage) and to advance personalized medicine. However, such a prognostic tool is lacking for acute pancreatitis (AP). Increasingly machine learning (ML) techniques are being used to develop high-performing prognostic models in AP. However, methodologic and reporting quality has received little attention. High-quality reporting and study methodology are critical for model validity, reproducibility, and clinical implementation. In collaboration with content experts in ML methodology, we performed a systematic review critically appraising the quality of methodology and reporting of recently published ML AP prognostic models. METHODS/FINDINGS Using a validated search strategy, we identified ML AP studies from the databases MEDLINE and EMBASE published between January 2021 and December 2023. We also searched pre-print servers medRxiv, bioRxiv, and arXiv for pre-prints registered between January 2021 and December 2023. Eligibility criteria included all retrospective or prospective studies that developed or validated new or existing ML models in patients with AP that predicted an outcome following an episode of AP. Meta-analysis was considered if there was homogeneity in the study design and in the type of outcome predicted. For risk of bias (ROB) assessment, we used the Prediction Model Risk of Bias Assessment Tool. Quality of reporting was assessed using the Transparent Reporting of a Multivariable Prediction Model of Individual Prognosis or Diagnosis-Artificial Intelligence (TRIPOD+AI) statement that defines standards for 27 items that should be reported in publications using ML prognostic models. The search strategy identified 6,480 publications of which 30 met the eligibility criteria. Studies originated from China (22), the United States (4), and other (4). All 30 studies developed a new ML model and none sought to validate an existing ML model, producing a total of 39 new ML models. AP severity (23/39) or mortality (6/39) were the most common outcomes predicted. The mean area under the curve for all models and endpoints was 0.91 (SD 0.08). The ROB was high for at least one domain in all 39 models, particularly for the analysis domain (37/39 models). Steps were not taken to minimize over-optimistic model performance in 27/39 models. Due to heterogeneity in the study design and in how the outcomes were defined and determined, meta-analysis was not performed. Studies reported on only 15/27 items from TRIPOD+AI standards, with only 7/30 justifying sample size and 13/30 assessing data quality. Other reporting deficiencies included omissions regarding human-AI interaction (28/30), handling low-quality or incomplete data in practice (27/30), sharing analytical codes (25/30), study protocols (25/30), and reporting source data (19/30). CONCLUSIONS There are significant deficiencies in the methodology and reporting of recently published ML based prognostic models in AP patients. These undermine the validity, reproducibility, and implementation of these prognostic models despite their promise of superior predictive accuracy. REGISTRATION Research Registry (reviewregistry1727).
Collapse
Affiliation(s)
- Brian Critelli
- Department of Gastroenterology and Hepatology, Weill Cornell Medical College, New York, New York, United States of America
| | - Amier Hassan
- Department of Gastroenterology and Hepatology, Weill Cornell Medical College, New York, New York, United States of America
| | - Ila Lahooti
- Department of Gastroenterology and Hepatology, Ohio State University Wexner Medical Center, Columbus, Ohio, United States of America
| | - Lydia Noh
- Northeast Ohio Medical School, Rootstown, Ohio, United States of America
| | - Jun Sung Park
- Department of Gastroenterology and Hepatology, Ohio State University Wexner Medical Center, Columbus, Ohio, United States of America
| | - Kathleen Tong
- Department of Gastroenterology and Hepatology, Ohio State University Wexner Medical Center, Columbus, Ohio, United States of America
| | - Ali Lahooti
- Department of Gastroenterology and Hepatology, Weill Cornell Medical College, New York, New York, United States of America
| | - Nathan Matzko
- Department of Gastroenterology and Hepatology, Weill Cornell Medical College, New York, New York, United States of America
| | - Jan Niklas Adams
- Department of Process and Data Science, Rheinisch-Westfälische Technische Hochschule Aachen University, Aachen, Germany
| | - Lukas Liss
- Department of Process and Data Science, Rheinisch-Westfälische Technische Hochschule Aachen University, Aachen, Germany
| | - Justin Quion
- Department of Computational Physiology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - David Restrepo
- Department of Computational Physiology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Melica Nikahd
- Department of Bioinformatics, Ohio State University Wexner Medical Center, Columbus, Ohio, United States of America
| | - Stacey Culp
- Department of Bioinformatics, Ohio State University Wexner Medical Center, Columbus, Ohio, United States of America
| | - Adam Lacy-Hulbert
- Department of Systems Immunology, Benaroya Research Institute at Virginia Mason, Seattle, Washington, United States of America
| | - Cate Speake
- Department of Interventional Immunology, Benaroya Research Institute at Virginia Mason, Seattle, Washington, United States of America
| | - James Buxbaum
- Department of Gastroenterology, University of Southern California, Los Angeles, California, United States of America
| | - Jason Bischof
- Department of Emergency Medicine, Ohio State University Wexner Medical Center, Columbus, Ohio, United States of America
| | - Cemal Yazici
- Department of Gastroenterology, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Anna Evans-Phillips
- Department of Gastroenterology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States of America
| | - Sophie Terp
- Department of Emergency Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Alexandra Weissman
- Department of Emergency Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States of America
| | - Darwin Conwell
- Department of Medicine, University of Kentucky, Lexington, Kentucky, United States of America
| | - Philip Hart
- Department of Gastroenterology and Hepatology, Ohio State University Wexner Medical Center, Columbus, Ohio, United States of America
| | - Mitchell Ramsey
- Department of Gastroenterology and Hepatology, Ohio State University Wexner Medical Center, Columbus, Ohio, United States of America
| | - Somashekar Krishna
- Department of Gastroenterology and Hepatology, Ohio State University Wexner Medical Center, Columbus, Ohio, United States of America
| | - Samuel Han
- Department of Gastroenterology and Hepatology, Ohio State University Wexner Medical Center, Columbus, Ohio, United States of America
| | - Erica Park
- Department of Gastroenterology and Hepatology, Ohio State University Wexner Medical Center, Columbus, Ohio, United States of America
| | - Raj Shah
- Department of Gastroenterology and Hepatology, Ohio State University Wexner Medical Center, Columbus, Ohio, United States of America
| | - Venkata Akshintala
- Department of Gastroenterology, Johns Hopkins Medical Center, Baltimore, Maryland, United States of America
| | - John A. Windsor
- Department of Surgical and Translational Research Centre, University of Auckland, Auckland, New Zealand
| | - Nikhil K. Mull
- Department of Hospital Medicine and Penn Medicine Center for Evidence-based Practice, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Georgios Papachristou
- Department of Gastroenterology and Hepatology, Ohio State University Wexner Medical Center, Columbus, Ohio, United States of America
| | - Leo Anthony Celi
- Department of Computational Physiology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Critical Care, Beth Israel Medical Center, Boston, Massachusetts, United States of America
| | - Peter Lee
- Department of Gastroenterology and Hepatology, Ohio State University Wexner Medical Center, Columbus, Ohio, United States of America
| |
Collapse
|
6
|
Tan Z, Li G, Zheng Y, Li Q, Cai W, Tu J, Jin S. Advances in the clinical application of machine learning in acute pancreatitis: a review. Front Med (Lausanne) 2025; 11:1487271. [PMID: 39839637 PMCID: PMC11747317 DOI: 10.3389/fmed.2024.1487271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 12/16/2024] [Indexed: 01/23/2025] Open
Abstract
Traditional disease prediction models and scoring systems for acute pancreatitis (AP) are often inadequate in providing concise, reliable, and effective predictions regarding disease progression and prognosis. As a novel interdisciplinary field within artificial intelligence (AI), machine learning (ML) is increasingly being applied to various aspects of AP, including severity assessment, complications, recurrence rates, organ dysfunction, and the timing of surgical intervention. This review focuses on recent advancements in the application of ML models in the context of AP.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Senjun Jin
- Emergency and Critical Care Center, Department of Emergency Medicine, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China
| |
Collapse
|
7
|
Özdede M, Batur A, Aksoy AE. Improved outcome prediction in acute pancreatitis with generated data and advanced machine learning algorithms. Turk J Emerg Med 2025; 25:32-40. [PMID: 39882088 PMCID: PMC11774427 DOI: 10.4103/tjem.tjem_161_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/30/2024] [Accepted: 10/31/2024] [Indexed: 01/31/2025] Open
Abstract
OBJECTIVES Traditional scoring systems have been widely used to predict acute pancreatitis (AP) severity but have limitations in predictive accuracy. This study investigates the use of machine learning (ML) algorithms to improve predictive accuracy in AP. METHODS A retrospective study was conducted using data from 101 AP patients in a tertiary hospital in Türkiye. Data were preprocessed, and synthetic data were generated with Gaussian noise addition and balanced with the ADASYN algorithm, resulting in 250 cases. Supervised ML models, including random forest (RF) and XGBoost (XGB), were trained, tested, and validated against traditional clinical scores (Ranson's, modified Glasgow, and BISAP) using area under the curve (AUC), F1 score, and recall. RESULTS RF outperformed XGB with an AUC of 0.89, F1 score of 0.82, and recall of 0.82. BISAP showed balanced performance (AUC = 0.70, F1 = 0.44, and recall = 0.85), whereas the Glasgow criteria had the highest recall but lower precision (AUC = 0.70, F1 = 0.38, and recall = 0.95). Ranson's admission criteria were the least effective (AUC = 0.53, F1 = 0.42, and recall = 0.39), probable because it lacked the 48th h features. CONCLUSION ML models, especially RF, significantly outperform traditional clinical scores in predicting adverse outcomes in AP, suggesting that integrating ML into clinical practice could improve prognostic assessments.
Collapse
Affiliation(s)
- Murat Özdede
- Department of Internal Medicine, Faculty of Medicine, Hacettepe University, Ankara, Türkiye
| | - Ali Batur
- Department of Emergency Medicine, Faculty of Medicine, Hacettepe University, Ankara, Türkiye
| | - Alp Eren Aksoy
- Department of Emergency Medicine, Faculty of Medicine, Hacettepe University, Ankara, Türkiye
| |
Collapse
|
8
|
Zhang B, Xu H, Xiao Q, Wei W, Ma Y, Chen X, Gu J, Zhang J, Lang L, Ma Q, Han L. Machine learning predictive model for aspiration risk in early enteral nutrition patients with severe acute pancreatitis. Heliyon 2024; 10:e40236. [PMID: 39654732 PMCID: PMC11626782 DOI: 10.1016/j.heliyon.2024.e40236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 10/21/2024] [Accepted: 11/06/2024] [Indexed: 12/12/2024] Open
Abstract
Background The aim of this study was to build and validate a risk prediction model for aspiration in severe acute pancreatitis patients receiving early enteral nutrition (EN) by identifying risk factors for aspiration in these patients. Methods The risk factors for aspiration were analyzed to build a prediction model based on the data collected from 339 patients receiving enteral nutrition. Subsequently, we used six machine learning algorithms and the model was validated by the area under the curve. Results In this study, the collected data were divided into two groups: a training cohort and a validation cohort. The results showed that 28.31 % (77) of patients had aspiration and 71.69 % (195) of patients had non-aspiration in training cohort. Moreover, age, consciousness, mechanical ventilation, aspiration history, nutritional risk and number of comorbidities were included as predictive factors for aspiration in patients receiving EN. The XGBoost model is the best of all machine learning models, with an AUROC of 0.992 and an F1 value of 0.902. The specificity and accuracy of XGBoost are higher than those of traditional logistic regression. Conclusion In accordance with the predictive factors, XGBoost model, characterized by excellent discrimination and high accuracy, can be used to clinically identify severe acute pancreatitis patients with a high risk of enteral nutrition aspiration. Relevance to clinical practice This study contributed to the development of a predictive model for early enteral nutrition aspiration in severe acute pancreatitis patients during hospitalization that can be shared with medical staff and patients in the future. No patient or public contribution This is a retrospective cohort study, and no patient or public contribution was required to design or undertake this research.
Collapse
Affiliation(s)
- Bo Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Xi'an Jiaotong University, NO.277 Yanta West Road, Xi'an, China
| | - Huanqing Xu
- School of Medical Information Engineering, Anhui University of Traditional Chinese Medicine, Hefei, Anhui Province, China
| | - Qigui Xiao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Xi'an Jiaotong University, NO.277 Yanta West Road, Xi'an, China
| | - Wanzhen Wei
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Xi'an Jiaotong University, NO.277 Yanta West Road, Xi'an, China
| | - Yifei Ma
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Xi'an Jiaotong University, NO.277 Yanta West Road, Xi'an, China
| | - Xinlong Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Xi'an Jiaotong University, NO.277 Yanta West Road, Xi'an, China
| | - Jingtao Gu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Xi'an Jiaotong University, NO.277 Yanta West Road, Xi'an, China
| | - Jiaoqiong Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Xi'an Jiaotong University, NO.277 Yanta West Road, Xi'an, China
| | - Lan Lang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Xi'an Jiaotong University, NO.277 Yanta West Road, Xi'an, China
| | - Qingyong Ma
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Xi'an Jiaotong University, NO.277 Yanta West Road, Xi'an, China
| | - Liang Han
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Xi'an Jiaotong University, NO.277 Yanta West Road, Xi'an, China
| |
Collapse
|
9
|
Li X, Tian Y, Li S, Wu H, Wang T. Interpretable prediction of 30-day mortality in patients with acute pancreatitis based on machine learning and SHAP. BMC Med Inform Decis Mak 2024; 24:328. [PMID: 39501235 PMCID: PMC11539846 DOI: 10.1186/s12911-024-02741-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 10/24/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND Severe acute pancreatitis (SAP) can be fatal if left unrecognized and untreated. The purpose was to develop a machine learning (ML) model for predicting the 30-day all-cause mortality risk in SAP patients and to explain the most important predictors. METHODS This research utilized six ML methods, including logistic regression (LR), k-nearest neighbors(KNN), support vector machines (SVM), naive Bayes (NB), random forests(RF), and extreme gradient boosting(XGBoost), to construct six predictive models for SAP. An extensive evaluation was conducted to determine the most effective model and then the Shapley Additive exPlanations (SHAP) method was applied to visualize key variables. Utilizing the optimized model, stratified predictions were made for patients with SAP. Further, the study employed multivariable Cox regression analysis and Kaplan-Meier survival curves, along with subgroup analysis, to explore the relationship between the machine learning-based score and 30-day mortality. RESULTS Through LASSO regression and recursive feature elimination (RFE), 25 optimal feature variables are selected. The XGBoost model performed best, with an area under the curve (AUC) of 0.881, a sensitivity of 0.5714, a specificity of 0.9651 and an F1 score of 0.64. The first six most important feature variables were the use of vasopressor, high Charlson comorbidity index, low blood oxygen saturation, history of malignant tumor, hyperglycemia and high APSIII score. Based on the optimal threshold of 0.62, patients were divided into high and low-risk groups, and the 30-day survival rate in the high-risk group decreased significantly. COX regression analysis further confirmed the positive correlation between high-risk scores and 30-day mortality. In the subgroup analysis, the model showed good risk stratification ability in patients with different gender, renal replacement therapy and with or without a history of malignant tumor, but it was not effective in predicting peripheral vascular disease. CONCLUSIONS the XGBoost model effectively predicts the severity of SAP, serving as a valuable tool for clinicians to identify SAP early.
Collapse
Affiliation(s)
- Xiaojing Li
- Department of Emergency, the Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518033, China
| | - Yueqin Tian
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, No. 600, Tianhe Road, Guangzhou, 510630, Guangdong, China
| | - Shuangmei Li
- Department of Emergency, the Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518033, China
| | - Haidong Wu
- Department of Emergency, the Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518033, China.
| | - Tong Wang
- Department of Emergency, the Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518033, China.
| |
Collapse
|
10
|
Ansari MS, Jain D, Budhiraja S. Machine-learning prediction models for any blood component transfusion in hospitalized dengue patients. Hematol Transfus Cell Ther 2024; 46 Suppl 5:S13-S23. [PMID: 37996385 PMCID: PMC11670722 DOI: 10.1016/j.htct.2023.09.2365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/17/2023] [Accepted: 09/05/2023] [Indexed: 11/25/2023] Open
Abstract
BACKGROUND Blood component transfusions are a common and often necessary medical practice during the epidemics of dengue. Transfusions are required for patients when they developed severe dengue fever or thrombocytopenia of 10×109/L or less. This study therefore investigated the risk factors, performance and effectiveness of eight different machine-learning algorithms to predict blood component transfusion requirements in confirmed dengue cases admitted to hospital. The objective was to study the risk factors that can help to predict blood component transfusion needs. METHODS Eight predictive models were developed based on retrospective data from a private group of hospitals in India. A python package SHAP (SHapley Additive exPlanations) was used to explain the output of the "XGBoost" model. RESULTS Sixteen vital variables were finally selected as having the most significant effects on blood component transfusion prediction. The XGBoost model presented significantly better predictive performance (area under the curve: 0.793; 95 % confidence interval: 0.699-0.795) than the other models. CONCLUSION Predictive modelling techniques can be utilized to streamline blood component preparation procedures and can help in the triage of high-risk patients and readiness of caregivers to provide blood component transfusions when required. This study demonstrates the potential of multilayer algorithms to reasonably predict any blood component transfusion needs which may help healthcare providers make more informed decisions regarding patient care.
Collapse
Affiliation(s)
- Md Shahid Ansari
- Department of Clinical Data Analytics, Max Super Speciality Hospital, New Delhi, India
| | - Dinesh Jain
- Department of Clinical Data Analytics, Max Super Speciality Hospital, New Delhi, India.
| | - Sandeep Budhiraja
- Department of Internal Medicine, Max Super Speciality Hospital, New Delhi, India
| |
Collapse
|
11
|
Rocca A, Brunese MC, Santone A, Varriano G, Viganò L, Caiazzo C, Vallone G, Brunese L, Romano L, Di Serafino M. Radiomics and 256-slice-dual-energy CT in the automated diagnosis of mild acute pancreatitis: the innovation of formal methods and high-resolution CT. LA RADIOLOGIA MEDICA 2024; 129:1444-1453. [PMID: 39214954 PMCID: PMC11480164 DOI: 10.1007/s11547-024-01878-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024]
Abstract
INTRODUCTION Acute pancreatitis (AP) is a common disease, and several scores aim to assess its prognosis. Our study aims to automatically recognize mild AP from computed tomography (CT) images in patients with acute abdominal pain but uncertain diagnosis from clinical and serological data through Radiomic model based on formal methods (FMs). METHODS We retrospectively reviewed the CT scans acquired with Dual Source 256-slice CT scanner (Somatom Definition Flash; Siemens Healthineers, Erlangen, Germany) of 80 patients admitted to the radiology unit of Antonio Cardarelli hospital (Naples) with acute abdominal pain. Patients were divided into 2 groups: 40 underwent showed a healthy pancreatic gland, and 40 affected by four different grades (CTSI 0, 1, 2, 3) of mild pancreatitis at CT without clear clinical presentation or biochemical findings. Segmentation was manually performed. Radiologists identified 6 patients with a high expression of diseases (CTSI 3) to formulate a formal property (Rule) to detect AP in the testing set automatically. Once the rule was formulated, and Model Checker classified 70 patients into "healthy" or "unhealthy". RESULTS The model achieved: accuracy 81%, precision 78% and recall 81%. Combining FMs results with radiologists agreement, and applying the mode in clinical practice, the global accuracy would have been 100%. CONCLUSIONS Our model was reliable to automatically detect mild AP at primary diagnosis even in uncertain presentation and it will be tested prospectively in clinical practice.
Collapse
Affiliation(s)
- Aldo Rocca
- Department of Medicine and Health Science "V. Tiberio", University of Molise, Campobasso, Italy.
| | - Maria Chiara Brunese
- Department of Medicine and Health Science "V. Tiberio", University of Molise, Campobasso, Italy.
- Department of Precision Medicine, University of Campania "L. Vanvitelli", Naples, Italy.
| | - Antonella Santone
- Department of Medicine and Health Science "V. Tiberio", University of Molise, Campobasso, Italy
| | - Giulia Varriano
- Department of Medicine and Health Science "V. Tiberio", University of Molise, Campobasso, Italy
| | - Luca Viganò
- Hepatobiliary Unit, Department of Minimally Invasive General and Oncologic Surgery, Humanitas Gavazzeni University Hospital, Bergamo, Italy
| | - Corrado Caiazzo
- Department of Medicine and Health Science "V. Tiberio", University of Molise, Campobasso, Italy
| | - Gianfranco Vallone
- Department of Medicine and Health Science "V. Tiberio", University of Molise, Campobasso, Italy
| | - Luca Brunese
- Department of Medicine and Health Science "V. Tiberio", University of Molise, Campobasso, Italy
| | - Luigia Romano
- Department of General and Emergency Radiology, AORN "Antonio Cardarelli", Naples, Italy
| | - Marco Di Serafino
- Department of Medicine and Health Science "V. Tiberio", University of Molise, Campobasso, Italy
- Department of General and Emergency Radiology, AORN "Antonio Cardarelli", Naples, Italy
| |
Collapse
|
12
|
Adelson RP, Garikipati A, Zhou Y, Ciobanu M, Tawara K, Barnes G, Singh NP, Mao Q, Das R. Machine Learning Approach with Harmonized Multinational Datasets for Enhanced Prediction of Hypothyroidism in Patients with Type 2 Diabetes. Diagnostics (Basel) 2024; 14:1152. [PMID: 38893680 PMCID: PMC11172278 DOI: 10.3390/diagnostics14111152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 05/24/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Type 2 diabetes (T2D) is a global health concern with increasing prevalence. Comorbid hypothyroidism (HT) exacerbates kidney, cardiac, neurological and other complications of T2D; these risks can be mitigated pharmacologically upon detecting HT. The current HT standard of care (SOC) screening in T2D is infrequent, delaying HT diagnosis and treatment. We present a first-to-date machine learning algorithm (MLA) clinical decision tool to classify patients as low vs. high risk for developing HT comorbid with T2D; the MLA was developed using readily available patient data from harmonized multinational datasets. The MLA was trained on data from NIH All of US (AoU) and UK Biobank (UKBB) (Combined dataset) and achieved a high negative predictive value (NPV) of 0.989 and an AUROC of 0.762 in the Combined dataset, exceeding AUROCs for the models trained on AoU or UKBB alone (0.666 and 0.622, respectively), indicating that increasing dataset diversity for MLA training improves performance. This high-NPV automated tool can supplement SOC screening and rule out T2D patients with low HT risk, allowing for the prioritization of lab-based testing for at-risk patients. Conversely, an MLA output that designates a patient to be at risk of developing HT allows for tailored clinical management and thereby promotes improved patient outcomes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Qingqing Mao
- Montera, Inc. dba Forta, 548 Market St, PMB 89605, San Francisco, CA 94104-5401, USA; (R.P.A.); (A.G.); (Y.Z.); (M.C.); (K.T.); (G.B.); (N.P.S.); (R.D.)
| | | |
Collapse
|
13
|
Qian R, Zhuang J, Xie J, Cheng H, Ou H, Lu X, Ouyang Z. Predictive value of machine learning for the severity of acute pancreatitis: A systematic review and meta-analysis. Heliyon 2024; 10:e29603. [PMID: 38655348 PMCID: PMC11035062 DOI: 10.1016/j.heliyon.2024.e29603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 04/02/2024] [Accepted: 04/10/2024] [Indexed: 04/26/2024] Open
Abstract
Background Predicting the severity of acute pancreatitis (AP) early poses a challenge in clinical practice. While there are well-established clinical scoring tools, their actual predictive performance remains uncertain. Various studies have explored the application of machine-learning methods for early AP prediction. However, a more comprehensive evidence-based assessment is needed to determine their predictive accuracy. Hence, this systematic review and meta-analysis aimed to evaluate the predictive accuracy of machine learning in assessing the severity of AP. Methods PubMed, EMBASE, Cochrane Library, and Web of Science were systematically searched until December 5, 2023. The risk of bias in eligible studies was assessed using the Prediction Model Risk of Bias Assessment Tool (PROBAST). Subgroup analyses, based on different machine learning types, were performed. Additionally, the predictive accuracy of mainstream scoring tools was summarized. Results This systematic review ultimately included 33 original studies. The pooled c-index in both the training and validation sets was 0.87 (95 % CI: 0.84-0.89) and 0.88 (95 % CI: 0.86-0.90), respectively. The sensitivity in the training set was 0.81 (95 % CI: 0.77-0.84), and in the validation set, it was 0.79 (95 % CI: 0.71-0.85). The specificity in the training set was 0.84 (95 % CI: 0.78-0.89), and in the validation set, it was 0.90 (95 % CI: 0.86-0.93). The primary model incorporated was logistic regression; however, its predictive accuracy was found to be inferior to that of neural networks, random forests, and xgboost. The pooled c-index of the APACHE II, BISAP, and Ranson were 0.74 (95 % CI: 0.68-0.80), 0.77 (95 % CI: 0.70-0.85), and 0.74 (95 % CI: 0.68-0.79), respectively. Conclusions Machine learning demonstrates excellent accuracy in predicting the severity of AP, providing a reference for updating or developing a straightforward clinical prediction tool.
Collapse
Affiliation(s)
- Rui Qian
- Department of Gastroenterology, Shenzhen Bao'an Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen 518000, China
| | - Jiamei Zhuang
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518033, China
| | - Jianjun Xie
- Department of Gastroenterology, Shenzhen Bao'an Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen 518000, China
| | - Honghui Cheng
- Department of Gastroenterology, Shenzhen Bao'an Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen 518000, China
| | - Haiya Ou
- Department of Gastroenterology, Shenzhen Bao'an Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen 518000, China
| | - Xiang Lu
- Department of Plumonary and Critical Care Medicine, Shenzhen Bao'an Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen 518000, China
| | - Zichen Ouyang
- Department of Hepatology, Shenzhen Bao'an Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen 518000, China
| |
Collapse
|
14
|
Yin M, Lin J, Wang Y, Liu Y, Zhang R, Duan W, Zhou Z, Zhu S, Gao J, Liu L, Liu X, Gu C, Huang Z, Xu X, Xu C, Zhu J. Development and validation of a multimodal model in predicting severe acute pancreatitis based on radiomics and deep learning. Int J Med Inform 2024; 184:105341. [PMID: 38290243 DOI: 10.1016/j.ijmedinf.2024.105341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 12/16/2023] [Accepted: 01/14/2024] [Indexed: 02/01/2024]
Abstract
OBJECTIVE Aim to establish a multimodal model for predicting severe acute pancreatitis (SAP) using machine learning (ML) and deep learning (DL). METHODS In this multicentre retrospective study, patients diagnosed with acute pancreatitis at admission were enrolled from January 2017 to December 2021. Clinical information within 24 h and CT scans within 72 h of admission were collected. First, we trained Model α based on clinical features selected by least absolute shrinkage and selection operator analysis. Second, radiomics features were extracted from 3D-CT scans and Model β was developed on the features after dimensionality reduction using principal component analysis. Third, Model γ was trained on 2D-CT images. Lastly, a multimodal model, namely PrismSAP, was constructed based on aforementioned features in the training set. The predictive accuracy of PrismSAP was verified in the validation and internal test sets and further validated in the external test set. Model performance was evaluated using area under the curve (AUC), accuracy, sensitivity, specificity, recall, precision and F1-score. RESULTS A total of 1,221 eligible patients were randomly split into a training set (n = 864), a validation set (n = 209) and an internal test set (n = 148). Data of 266 patients were for external testing. In the external test set, PrismSAP performed best with the highest AUC of 0.916 (0.873-0.960) among all models [Model α: 0.709 (0.618-0.800); Model β: 0.749 (0.675-0.824); Model γ: 0.687 (0.592-0.782); MCTSI: 0.778 (0.698-0.857); RANSON: 0.642 (0.559-0.725); BISAP: 0.751 (0.668-0.833); SABP: 0.710 (0.621-0.798)]. CONCLUSION The proposed multimodal model outperformed any single-modality models and traditional scoring systems.
Collapse
Affiliation(s)
- Minyue Yin
- Department of Gastroenterology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China; Suzhou Clinical Centre of Digestive Diseases, Suzhou, Jiangsu 215006, China
| | - Jiaxi Lin
- Department of Gastroenterology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China; Suzhou Clinical Centre of Digestive Diseases, Suzhou, Jiangsu 215006, China
| | - Yu Wang
- Department of Gastroenterology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China; Department of General Surgery, Jintan Hospital Affiliated to Jiangsu University, Changzhou, Jiangsu 213299, China
| | - Yuanjun Liu
- School of Computer Science and Technology, Soochow University, Suzhou, Jiangsu 215006, China
| | - Rufa Zhang
- Department of Gastroenterology, Changshu Hospital Affiliated to Soochow University, Changshu No. 1 People's Hospital, Suzhou, Jiangsu 215500, China
| | - Wenbin Duan
- Department of Hepatobiliary Surgery, the People's Hospital of Hunan Province, Changsha, Hunan 410002, China
| | - Zhirun Zhou
- Department of Obstetrics and Gynaecology, the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
| | - Shiqi Zhu
- Department of Gastroenterology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China; Suzhou Clinical Centre of Digestive Diseases, Suzhou, Jiangsu 215006, China
| | - Jingwen Gao
- Department of Gastroenterology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China; Suzhou Clinical Centre of Digestive Diseases, Suzhou, Jiangsu 215006, China
| | - Lu Liu
- Department of Gastroenterology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China; Suzhou Clinical Centre of Digestive Diseases, Suzhou, Jiangsu 215006, China
| | - Xiaolin Liu
- Department of Gastroenterology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China; Suzhou Clinical Centre of Digestive Diseases, Suzhou, Jiangsu 215006, China
| | - Chenqi Gu
- Department of Radiology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Zhou Huang
- Department of Radiology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Xiaodan Xu
- Department of Gastroenterology, Changshu Hospital Affiliated to Soochow University, Changshu No. 1 People's Hospital, Suzhou, Jiangsu 215500, China.
| | - Chunfang Xu
- Department of Gastroenterology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China; Suzhou Clinical Centre of Digestive Diseases, Suzhou, Jiangsu 215006, China.
| | - Jinzhou Zhu
- Department of Gastroenterology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China; Suzhou Clinical Centre of Digestive Diseases, Suzhou, Jiangsu 215006, China; Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin 150000, China.
| |
Collapse
|
15
|
Ali H, Inayat F, Dhillon R, Patel P, Afzal A, Wilkinson C, Rehman AU, Anwar MS, Nawaz G, Chaudhry A, Awan JR, Afzal MS, Samanta J, Adler DG, Mohan BP. Predicting the risk of early intensive care unit admission for patients hospitalized with acute pancreatitis using supervised machine learning. Proc AMIA Symp 2024; 37:437-447. [PMID: 38628340 PMCID: PMC11018057 DOI: 10.1080/08998280.2024.2326371] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/17/2024] [Accepted: 02/19/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND Acute pancreatitis (AP) is a complex and life-threatening disease. Early recognition of factors predicting morbidity and mortality is crucial. We aimed to develop and validate a pragmatic model to predict the individualized risk of early intensive care unit (ICU) admission for patients with AP. METHODS The 2019 Nationwide Readmission Database was used to identify patients hospitalized with a primary diagnosis of AP without ICU admission. A matched comparison cohort of AP patients with ICU admission within 7 days of hospitalization was identified from the National Inpatient Sample after 1:N propensity score matching. The least absolute shrinkage and selection operator (LASSO) regression was used to select predictors and develop an ICU acute pancreatitis risk (IAPR) score validated by 10-fold cross-validation. RESULTS A total of 1513 patients hospitalized for AP were included. The median age was 50.0 years (interquartile range: 39.0-63.0). The three predictors that were selected included hypoxia (area under the curve [AUC] 0.78), acute kidney injury (AUC 0.72), and cardiac arrhythmia (AUC 0.61). These variables were used to develop a nomogram that displayed excellent discrimination (AUC 0.874) (bootstrap bias-corrected 95% confidence interval 0.824-0.876). There was no evidence of miscalibration (test statistic = 2.88; P = 0.09). For high-risk patients (total score >6 points), the sensitivity was 68.94% and the specificity was 92.66%. CONCLUSIONS This supervised machine learning-based model can help recognize high-risk AP hospitalizations. Clinicians may use the IAPR score to identify patients with AP at high risk of ICU admission within the first week of hospitalization.
Collapse
Affiliation(s)
- Hassam Ali
- Department of Gastroenterology, East Carolina University Brody School of Medicine, Greenville, North Carolina, USA
| | - Faisal Inayat
- Department of Internal Medicine, Allama Iqbal Medical College, Lahore, Punjab, Pakistan
| | - Rubaid Dhillon
- Department of Gastroenterology, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Pratik Patel
- Department of Gastroenterology, Mather Hospital and Hofstra University Zucker School of Medicine, Port Jefferson, New York, USA
| | - Arslan Afzal
- Department of Gastroenterology, East Carolina University Brody School of Medicine, Greenville, North Carolina, USA
| | - Christin Wilkinson
- Department of Gastroenterology, East Carolina University Brody School of Medicine, Greenville, North Carolina, USA
| | - Attiq Ur Rehman
- Department of Hepatology, Geisinger Wyoming Valley Medical Center, Wilkes-Barre, Pennsylvania, USA
| | - Muhammad Sajeel Anwar
- Department of Internal Medicine, UHS Wilson Medical Center, Johnson City, New York, USA
| | - Gul Nawaz
- Department of Internal Medicine, Allama Iqbal Medical College, Lahore, Punjab, Pakistan
| | | | - Junaid Rasul Awan
- Department of Internal Medicine, Allama Iqbal Medical College, Lahore, Punjab, Pakistan
| | - Muhammad Sohaib Afzal
- Department of Internal Medicine, Louisiana State University Health, Shreveport, Louisiana, USA
| | - Jayanta Samanta
- Department of Gastroenterology, Post Graduate Institute of Medical Research and Education, Chandigarh, Punjab, India
| | - Douglas G. Adler
- Center for Advanced Therapeutic Endoscopy, Porter Adventist Hospital, Centura Health, Denver, Colorado, USA
| | - Babu P. Mohan
- Department of Gastroenterology and Hepatology, University of Utah School of Medicine, Salt Lake City, Utah, USA
| |
Collapse
|
16
|
Adelson RP, Garikipati A, Maharjan J, Ciobanu M, Barnes G, Singh NP, Dinenno FA, Mao Q, Das R. Machine Learning Approach for Improved Longitudinal Prediction of Progression from Mild Cognitive Impairment to Alzheimer's Disease. Diagnostics (Basel) 2023; 14:13. [PMID: 38201322 PMCID: PMC10795823 DOI: 10.3390/diagnostics14010013] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/08/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024] Open
Abstract
Mild cognitive impairment (MCI) is cognitive decline that can indicate future risk of Alzheimer's disease (AD). We developed and validated a machine learning algorithm (MLA), based on a gradient-boosted tree ensemble method, to analyze phenotypic data for individuals 55-88 years old (n = 493) diagnosed with MCI. Data were analyzed within multiple prediction windows and averaged to predict progression to AD within 24-48 months. The MLA outperformed the mini-mental state examination (MMSE) and three comparison models at all prediction windows on most metrics. Exceptions include sensitivity at 18 months (MLA and MMSE each achieved 0.600); and sensitivity at 30 and 42 months (MMSE marginally better). For all prediction windows, the MLA achieved AUROC ≥ 0.857 and NPV ≥ 0.800. With averaged data for the 24-48-month lookahead timeframe, the MLA outperformed MMSE on all metrics. This study demonstrates that machine learning may provide a more accurate risk assessment than the standard of care. This may facilitate care coordination, decrease healthcare expenditures, and maintain quality of life for patients at risk of progressing from MCI to AD.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Qingqing Mao
- Montera, Inc. dba Forta, 548 Market St, PMB 89605, San Francisco, CA 94104-5401, USA; (R.P.A.); (A.G.); (J.M.); (M.C.); (G.B.); (N.P.S.); (F.A.D.); (R.D.)
| | | |
Collapse
|
17
|
Hu JX, Zhao CF, Wang SL, Tu XY, Huang WB, Chen JN, Xie Y, Chen CR. Acute pancreatitis: A review of diagnosis, severity prediction and prognosis assessment from imaging technology, scoring system and artificial intelligence. World J Gastroenterol 2023; 29:5268-5291. [PMID: 37899784 PMCID: PMC10600804 DOI: 10.3748/wjg.v29.i37.5268] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/31/2023] [Accepted: 09/14/2023] [Indexed: 09/25/2023] Open
Abstract
Acute pancreatitis (AP) is a potentially life-threatening inflammatory disease of the pancreas, with clinical management determined by the severity of the disease. Diagnosis, severity prediction, and prognosis assessment of AP typically involve the use of imaging technologies, such as computed tomography, magnetic resonance imaging, and ultrasound, and scoring systems, including Ranson, Acute Physiology and Chronic Health Evaluation II, and Bedside Index for Severity in AP scores. Computed tomography is considered the gold standard imaging modality for AP due to its high sensitivity and specificity, while magnetic resonance imaging and ultrasound can provide additional information on biliary obstruction and vascular complications. Scoring systems utilize clinical and laboratory parameters to classify AP patients into mild, moderate, or severe categories, guiding treatment decisions, such as intensive care unit admission, early enteral feeding, and antibiotic use. Despite the central role of imaging technologies and scoring systems in AP management, these methods have limitations in terms of accuracy, reproducibility, practicality and economics. Recent advancements of artificial intelligence (AI) provide new opportunities to enhance their performance by analyzing vast amounts of clinical and imaging data. AI algorithms can analyze large amounts of clinical and imaging data, identify scoring system patterns, and predict the clinical course of disease. AI-based models have shown promising results in predicting the severity and mortality of AP, but further validation and standardization are required before widespread clinical application. In addition, understanding the correlation between these three technologies will aid in developing new methods that can accurately, sensitively, and specifically be used in the diagnosis, severity prediction, and prognosis assessment of AP through complementary advantages.
Collapse
Affiliation(s)
- Jian-Xiong Hu
- Intensive Care Unit, The Affiliated Hospital of Putian University, Putian 351100, Fujian Province, China
| | - Cheng-Fei Zhao
- School of Pharmacy and Medical Technology, Putian University, Putian 351100, Fujian Province, China
- Key Laboratory of Pharmaceutical Analysis and Laboratory Medicine, Putian University, Putian 351100, Fujian Province, China
| | - Shu-Ling Wang
- Department of Critical Care Medicine, Fujian Medical University Union Hospital, Fuzhou 350001, Fujian Province, China
| | - Xiao-Yan Tu
- Department of Critical Care Medicine, Fujian Medical University Union Hospital, Fuzhou 350001, Fujian Province, China
| | - Wei-Bin Huang
- Department of Critical Care Medicine, Fujian Medical University Union Hospital, Fuzhou 350001, Fujian Province, China
| | - Jun-Nian Chen
- Department of Critical Care Medicine, Fujian Medical University Union Hospital, Fuzhou 350001, Fujian Province, China
| | - Ying Xie
- School of Mechanical, Electrical and Information Engineering, Putian University, Putian 351100, Fujian Province, China
| | - Cun-Rong Chen
- Department of Critical Care Medicine, Fujian Medical University Union Hospital, Fuzhou 350001, Fujian Province, China
| |
Collapse
|
18
|
Li JN, Mu D, Zheng SC, Tian W, Wu ZY, Meng J, Wang RF, Zheng TL, Zhang YL, Windsor J, Lu GT, Wu D. Machine learning improves prediction of severity and outcomes of acute pancreatitis: a prospective multi-center cohort study. SCIENCE CHINA. LIFE SCIENCES 2023; 66:1934-1937. [PMID: 37209250 DOI: 10.1007/s11427-022-2333-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 03/21/2023] [Indexed: 05/22/2023]
Affiliation(s)
- Jia-Ning Li
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Dong Mu
- Department of Gastroenterology, General Hospital of Western Theater Command, Chengdu, 610083, China
| | - Shi-Cheng Zheng
- Department of Gastroenterology, West China Longquan Hospital Sichuan University, Chengdu, 610100, China
| | - Wei Tian
- Department of Gastroenterology, Fangshan Liangxiang Hospital of Beijing, Beijing, 102400, China
| | - Zuo-Yan Wu
- Department of Gastroenterology, The Sixth Hospital of Beijing, Beijing, 100048, China
| | - Jie Meng
- Department of Gastroenterology, Affiliated Hospital of Hebei University, Baoding, 071030, China
| | - Rui-Feng Wang
- Department of Gastroenterology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Tian-Lei Zheng
- Artificial Intelligence Unit, Department of Medical Equipment Management, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221004, China
| | - Yue-Lun Zhang
- Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - John Windsor
- Surgical and Translational Research Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, Auckland, 1142, New Zealand
| | - Guo-Tao Lu
- Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225003, China.
| | - Dong Wu
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China.
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
19
|
Maharjan J, Garikipati A, Dinenno FA, Ciobanu M, Barnes G, Browning E, DeCurzio J, Mao Q, Das R. Machine learning determination of applied behavioral analysis treatment plan type. Brain Inform 2023; 10:7. [PMID: 36862316 PMCID: PMC9981822 DOI: 10.1186/s40708-023-00186-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 02/06/2023] [Indexed: 03/03/2023] Open
Abstract
BACKGROUND Applied behavioral analysis (ABA) is regarded as the gold standard treatment for autism spectrum disorder (ASD) and has the potential to improve outcomes for patients with ASD. It can be delivered at different intensities, which are classified as comprehensive or focused treatment approaches. Comprehensive ABA targets multiple developmental domains and involves 20-40 h/week of treatment. Focused ABA targets individual behaviors and typically involves 10-20 h/week of treatment. Determining the appropriate treatment intensity involves patient assessment by trained therapists, however, the final determination is highly subjective and lacks a standardized approach. In our study, we examined the ability of a machine learning (ML) prediction model to classify which treatment intensity would be most suited individually for patients with ASD who are undergoing ABA treatment. METHODS Retrospective data from 359 patients diagnosed with ASD were analyzed and included in the training and testing of an ML model for predicting comprehensive or focused treatment for individuals undergoing ABA treatment. Data inputs included demographics, schooling, behavior, skills, and patient goals. A gradient-boosted tree ensemble method, XGBoost, was used to develop the prediction model, which was then compared against a standard of care comparator encompassing features specified by the Behavior Analyst Certification Board treatment guidelines. Prediction model performance was assessed via area under the receiver-operating characteristic curve (AUROC), sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV). RESULTS The prediction model achieved excellent performance for classifying patients in the comprehensive versus focused treatment groups (AUROC: 0.895; 95% CI 0.811-0.962) and outperformed the standard of care comparator (AUROC 0.767; 95% CI 0.629-0.891). The prediction model also achieved sensitivity of 0.789, specificity of 0.808, PPV of 0.6, and NPV of 0.913. Out of 71 patients whose data were employed to test the prediction model, only 14 misclassifications occurred. A majority of misclassifications (n = 10) indicated comprehensive ABA treatment for patients that had focused ABA treatment as the ground truth, therefore still providing a therapeutic benefit. The three most important features contributing to the model's predictions were bathing ability, age, and hours per week of past ABA treatment. CONCLUSION This research demonstrates that the ML prediction model performs well to classify appropriate ABA treatment plan intensity using readily available patient data. This may aid with standardizing the process for determining appropriate ABA treatments, which can facilitate initiation of the most appropriate treatment intensity for patients with ASD and improve resource allocation.
Collapse
Affiliation(s)
- Jenish Maharjan
- Montera Inc. dba Forta, 548 Market St, San Francisco, CA PMB 89605 USA
| | - Anurag Garikipati
- Montera Inc. dba Forta, 548 Market St, San Francisco, CA PMB 89605 USA
| | - Frank A. Dinenno
- Montera Inc. dba Forta, 548 Market St, San Francisco, CA PMB 89605 USA
| | - Madalina Ciobanu
- Montera Inc. dba Forta, 548 Market St, San Francisco, CA PMB 89605 USA
| | - Gina Barnes
- Montera Inc. dba Forta, 548 Market St, San Francisco, CA PMB 89605 USA
| | - Ella Browning
- Montera Inc. dba Forta, 548 Market St, San Francisco, CA PMB 89605 USA
| | - Jenna DeCurzio
- Montera Inc. dba Forta, 548 Market St, San Francisco, CA PMB 89605 USA
| | - Qingqing Mao
- Montera Inc. dba Forta, 548 Market St, San Francisco, CA, PMB 89605, USA.
| | - Ritankar Das
- Montera Inc. dba Forta, 548 Market St, San Francisco, CA PMB 89605 USA
| |
Collapse
|
20
|
Early prediction of the severe course, survival, and ICU requirements in acute pancreatitis by artificial intelligence. Pancreatology 2023; 23:176-186. [PMID: 36610872 DOI: 10.1016/j.pan.2022.12.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 11/20/2022] [Accepted: 12/12/2022] [Indexed: 01/09/2023]
Abstract
OBJECTIVE To evaluate the success of artificial intelligence for early prediction of severe course, survival, and intensive care unit(ICU) requirement in patients with acute pancreatitis(AP). METHODS Retrospectively, 1334 patients were included the study. Severity is determined according to the Revised Atlanta Classification(RAC). The success of machine learning(ML) method was evaluated by 13 simple demographic, clinical, etiologic, and laboratory features obtained on ER admission. Additionally, it was evaluated whether Balthazar-computerized tomography severity index(CTSI) at 48-h contributed to success. The dataset was split into two parts, 90% for ML(of which 70% for learning and 30% for testing) and 10% for validation and 5-fold stratified sampling has been utilized. Variable Importance was used in the selection of features during training phase of machine. The Gradient Boost Algorithm trained the machine by KNIME analytics platform. SMOTE has been applied to increase the minority classes for training. The combined effects of the measured features were examined by multivariate logistic regression analysis and reciever operating curve curves of the prediction and confidence of the target variables were obtained. RESULTS Accuracy values for the early estimation of Atlanta severity score, ICU requirement, and survival were found as 88.20%, 98.25%, and 92.77% respectively. When Balthazar-CTSI score is used, results were found as 91.02%, 92.25%, and 98% respectively. CONCLUSIONS The ML method we used successfully predicted the severe course, ICU requirement and survival, with promising accuracy values of over 88%. If 48-h Balthazar-CTSI is included in the calculation, the severity score and survival rates increase even more.
Collapse
|
21
|
Application of Machine Learning for Cardiovascular Disease Risk Prediction. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2023. [DOI: 10.1155/2023/9418666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
Cardiovascular diseases (CVDs) are a common cause of heart failure globally. The need to explore possible ways to tackle the disease necessitated this study. The study designed a machine learning model for cardiovascular disease risk prediction in accordance with a dataset that contains 11 features which may be used to forecast the disease. The dataset from Kaggle on cardiovascular disease includes approximately 70,000 patient records that were used to determine the outcome. Compared to the UCI dataset, the Kaggle dataset has many more training and validation records. Models created using neural networks, random forests, Bayesian networks, C5.0, and QUEST were compared for this dataset. On training and testing data sets, the results acquired a high accuracy (99.1 percent), which is significantly superior to previous methods. Ahead-of-time detection and diagnosis of cardiac disease, as well as better treatment outcomes, are strong possibilities for the suggested prediction model. Additionally, it may help patients better manage their illness or life forms in order to increase their chances of recovery/survival. The result showed greater accuracy and promising signs that machine-learning algorithms can indeed assist in early identification of the disease and improvement of the treatment outcome.
Collapse
|
22
|
Han X, Geng J, Zhang XX, Zhao L, Wang J, Guo WL. Using machine learning models to predict acute pancreatitis in children with pancreaticobiliary maljunction. Surg Today 2023; 53:316-321. [PMID: 35943628 DOI: 10.1007/s00595-022-02571-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/02/2022] [Indexed: 11/24/2022]
Abstract
PURPOSE To develop a model to identify risk factors and predictors of acute pancreatitis in children with pancreaticobiliary maljunction (PBM). METHODS We screened consecutive PBM patients treated at two centers between January, 2015 and July, 2021. For machine learning, the cohort was divided randomly at a 6:4 ratio to a training dataset and a validation dataset. Three parallel models were developed using logistic regression (LR), a support vector machine (SVM), and extreme gradient boosting (XGBoost), respectively. Model performance was judged primarily based on the area under the receiver operating curves (AUC). RESULTS A total of 99 patients were included in the analysis, 17 of whom suffered acute pancreatitis and 82 did not. The XGBoost (AUC = 0.814) and SVM (AUC = 0.813) models produced similar performance in the validation dataset; both outperformed the LR model (AUC = 0.805). Based on the SHapley Additive exPlanation values, the most important variable in both the XGBoost and SVM models were age, protein plugs, and white blood cell count. CONCLUSIONS Machine learning models, especially XGBoost and SVM, could be used to predict acute pancreatitis in children with PBM. The most important contributing factor to the models were age, protein plugs, and white blood cell count.
Collapse
Affiliation(s)
- Xiao Han
- Department of Radiology, Children's Hospital of Soochow University, Suzhou, 215025, China
| | - Jia Geng
- Clinical Laboratory, 3rd Hospital of Yulin, Yulin, 719000, China
| | - Xin-Xian Zhang
- Department of Radiology, Xuzhou Children's Hospital, Xuzhou, 221002, China
| | - Lian Zhao
- Department of Radiology, Children's Hospital of Soochow University, Suzhou, 215025, China
| | - Jian Wang
- Pediatric Surgery, Children's Hospital of Soochow University, Suzhou, 215025, China
| | - Wan-Liang Guo
- Department of Radiology, Children's Hospital of Soochow University, Suzhou, 215025, China.
| |
Collapse
|
23
|
Yuan L, Ji M, Wang S, Wen X, Huang P, Shen L, Xu J. Machine learning model identifies aggressive acute pancreatitis within 48 h of admission: a large retrospective study. BMC Med Inform Decis Mak 2022; 22:312. [PMID: 36447180 PMCID: PMC9707001 DOI: 10.1186/s12911-022-02066-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 11/23/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Acute pancreatitis (AP) with critical illness is linked to increased morbidity and mortality. Current risk scores to identify high-risk AP patients have certain limitations. OBJECTIVE To develop and validate a machine learning tool within 48 h after admission for predicting which patients with AP will develop critical illness based on ubiquitously available clinical, laboratory, and radiologic variables. METHODS 5460 AP patients were enrolled. Clinical, laboratory, and imaging variables were collected within 48 h after hospital admission. Least Absolute Shrinkage Selection Operator with bootstrap method was employed to select the most informative variables. Five different machine learning models were constructed to predictive likelihood of critical illness, and the optimal model (APCU) was selected. External cohort was used to validate APCU. APCU and other risk scores were compared using multivariate analysis. Models were evaluated by area under the curve (AUC). The decision curve analysis was employed to evaluate the standardized net benefit. RESULTS Xgboost was constructed and selected as APCU, involving age, comorbid disease, mental status, pulmonary infiltrates, procalcitonin (PCT), neutrophil percentage (Neu%), ALT/AST, ratio of albumin and globulin, cholinesterase, Urea, Glu, AST and serum total cholesterol. The APCU performed excellently in discriminating AP risk in internal cohort (AUC = 0.95) and external cohort (AUC = 0.873). The APCU was significant for biliogenic AP (OR = 4.25 [2.08-8.72], P < 0.001), alcoholic AP (OR = 3.60 [1.67-7.72], P = 0.001), hyperlipidemic AP (OR = 2.63 [1.28-5.37], P = 0.008) and tumor AP (OR = 4.57 [2.14-9.72], P < 0.001). APCU yielded the highest clinical net benefit, comparatively. CONCLUSION Machine learning tool based on ubiquitously available clinical variables accurately predicts the development of AP, optimizing the management of AP.
Collapse
Affiliation(s)
- Lei Yuan
- School of Automation, Nanjing University of Information Science and Technology, Nanjing, China
- Department of Information Center, Wuhan University Renmin Hospital, Wuhan, Hubei China
- Institute for AI in Medicine, School of Artificial Intelligence, Nanjing University of Information Science and Technology, NanJing, China
| | - Mengyao Ji
- Department of Gastroenterology, Wuhan University Renmin Hospital, Wuhan, Hubei China
| | - Shuo Wang
- Department of Gastroenterology, Wuhan University Renmin Hospital, Wuhan, Hubei China
| | - Xinyu Wen
- Department of Gastroenterology, Wuhan University Renmin Hospital, Wuhan, Hubei China
| | - Pingxiao Huang
- Department of Gastroenterology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei China
| | - Lei Shen
- Department of Gastroenterology, Wuhan University Renmin Hospital, Wuhan, Hubei China
| | - Jun Xu
- School of Automation, Nanjing University of Information Science and Technology, Nanjing, China
- Institute for AI in Medicine, School of Artificial Intelligence, Nanjing University of Information Science and Technology, NanJing, China
| |
Collapse
|
24
|
Szatmary P, Grammatikopoulos T, Cai W, Huang W, Mukherjee R, Halloran C, Beyer G, Sutton R. Acute Pancreatitis: Diagnosis and Treatment. Drugs 2022; 82:1251-1276. [PMID: 36074322 PMCID: PMC9454414 DOI: 10.1007/s40265-022-01766-4] [Citation(s) in RCA: 228] [Impact Index Per Article: 76.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2022] [Indexed: 11/11/2022]
Abstract
Acute pancreatitis is a common indication for hospital admission, increasing in incidence, including in children, pregnancy and the elderly. Moderately severe acute pancreatitis with fluid and/or necrotic collections causes substantial morbidity, and severe disease with persistent organ failure causes significant mortality. The diagnosis requires two of upper abdominal pain, amylase/lipase ≥ 3 ×upper limit of normal, and/or cross-sectional imaging findings. Gallstones and ethanol predominate while hypertriglyceridaemia and drugs are notable among many causes. Serum triglycerides, full blood count, renal and liver function tests, glucose, calcium, transabdominal ultrasound, and chest imaging are indicated, with abdominal cross-sectional imaging if there is diagnostic uncertainty. Subsequent imaging is undertaken to detect complications, for example, if C-reactive protein exceeds 150 mg/L, or rarer aetiologies. Pancreatic intracellular calcium overload, mitochondrial impairment, and inflammatory responses are critical in pathogenesis, targeted in current treatment trials, which are crucially important as there is no internationally licenced drug to treat acute pancreatitis and prevent complications. Initial priorities are intravenous fluid resuscitation, analgesia, and enteral nutrition, and when necessary, critical care and organ support, parenteral nutrition, antibiotics, pancreatic exocrine and endocrine replacement therapy; all may have adverse effects. Patients with local complications should be referred to specialist tertiary centres to guide further management, which may include drainage and/or necrosectomy. The impact of acute pancreatitis can be devastating, so prevention or reduction of the risk of recurrence and progression to chronic pancreatitis with an increased risk of pancreas cancer requires proactive management that should be long term for some patients.
Collapse
Affiliation(s)
- Peter Szatmary
- Liverpool Pancreatitis Research Group, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK.,Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK.,Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK
| | - Tassos Grammatikopoulos
- Paediatric Liver, GI and Nutrition Centre, King's College Hospital NHS Foundation Trust, London, UK
| | - Wenhao Cai
- Liverpool Pancreatitis Research Group, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK.,Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK.,West China Centre of Excellence for Pancreatitis and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Huang
- West China Centre of Excellence for Pancreatitis and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, China
| | - Rajarshi Mukherjee
- Liverpool Pancreatitis Research Group, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK.,Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK.,Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool , UK
| | - Chris Halloran
- Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK.,Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK
| | - Georg Beyer
- Department of Medicine II, University Hospital, LMU Munich, Munich, Germany
| | - Robert Sutton
- Liverpool Pancreatitis Research Group, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK. .,Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK. .,Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK.
| |
Collapse
|
25
|
Hong W, Lu Y, Zhou X, Jin S, Pan J, Lin Q, Yang S, Basharat Z, Zippi M, Goyal H. Usefulness of Random Forest Algorithm in Predicting Severe Acute Pancreatitis. Front Cell Infect Microbiol 2022; 12:893294. [PMID: 35755843 PMCID: PMC9226542 DOI: 10.3389/fcimb.2022.893294] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/29/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND AND AIMS This study aimed to develop an interpretable random forest model for predicting severe acute pancreatitis (SAP). METHODS Clinical and laboratory data of 648 patients with acute pancreatitis were retrospectively reviewed and randomly assigned to the training set and test set in a 3:1 ratio. Univariate analysis was used to select candidate predictors for the SAP. Random forest (RF) and logistic regression (LR) models were developed on the training sample. The prediction models were then applied to the test sample. The performance of the risk models was measured by calculating the area under the receiver operating characteristic (ROC) curves (AUC) and area under precision recall curve. We provide visualized interpretation by using local interpretable model-agnostic explanations (LIME). RESULTS The LR model was developed to predict SAP as the following function: -1.10-0.13×albumin (g/L) + 0.016 × serum creatinine (μmol/L) + 0.14 × glucose (mmol/L) + 1.63 × pleural effusion (0/1)(No/Yes). The coefficients of this formula were utilized to build a nomogram. The RF model consists of 16 variables identified by univariate analysis. It was developed and validated by a tenfold cross-validation on the training sample. Variables importance analysis suggested that blood urea nitrogen, serum creatinine, albumin, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, calcium, and glucose were the most important seven predictors of SAP. The AUCs of RF model in tenfold cross-validation of the training set and the test set was 0.89 and 0.96, respectively. Both the area under precision recall curve and the diagnostic accuracy of the RF model were higher than that of both the LR model and the BISAP score. LIME plots were used to explain individualized prediction of the RF model. CONCLUSIONS An interpretable RF model exhibited the highest discriminatory performance in predicting SAP. Interpretation with LIME plots could be useful for individualized prediction in a clinical setting. A nomogram consisting of albumin, serum creatinine, glucose, and pleural effusion was useful for prediction of SAP.
Collapse
Affiliation(s)
- Wandong Hong
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yajing Lu
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaoying Zhou
- School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Shengchun Jin
- School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jingyi Pan
- School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Qingyi Lin
- School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Shaopeng Yang
- School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Zarrin Basharat
- Jamil-ur-Rahman Center for Genome Research, Dr. Panjwani Centre for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Maddalena Zippi
- Unit of Gastroenterology and Digestive Endoscopy, Sandro Pertini Hospital, Rome, Italy
| | - Hemant Goyal
- Department of Medicine, The Wright Center for Graduate Medical Education, Scranton, PA, United States
| |
Collapse
|
26
|
Dutta AK. Predicting severity of acute pancreatitis: Emerging role of artificial intelligence. CLINICAL AND TRANSLATIONAL DISCOVERY 2022; 2. [DOI: 10.1002/ctd2.80] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 05/17/2022] [Indexed: 01/03/2025]
Affiliation(s)
- Amit Kumar Dutta
- Department of Gastrointestinal Sciences Christian Medical College and Hospital Vellore Tamil Nadu India
| |
Collapse
|
27
|
Laterre PF, Collienne C. Improving the management of severe acute pancreatitis: The new guidelines from the French Society of Anaesthesia and Intensive Care Medicine. Anaesth Crit Care Pain Med 2022; 41:101103. [PMID: 35715021 DOI: 10.1016/j.accpm.2022.101103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Pierre-François Laterre
- Department of Critical Care Medicine, St Luc University Hospital, UCLouvain, Brussels, Belgium.
| | - Christine Collienne
- Department of Critical Care Medicine, St Luc University Hospital, UCLouvain, Brussels, Belgium
| |
Collapse
|
28
|
Thapa R, Garikipati A, Shokouhi S, Hurtado M, Barnes G, Hoffman J, Calvert J, Katzmann L, Mao Q, Das R. Usability of Electronic Health records in Predicting Short-term falls: Machine learning Applications in Senior Care Facilities (Preprint). JMIR Aging 2021; 5:e35373. [PMID: 35363146 PMCID: PMC9015781 DOI: 10.2196/35373] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/16/2022] [Accepted: 02/07/2022] [Indexed: 11/23/2022] Open
Abstract
Background Short-term fall prediction models that use electronic health records (EHRs) may enable the implementation of dynamic care practices that specifically address changes in individualized fall risk within senior care facilities. Objective The aim of this study is to implement machine learning (ML) algorithms that use EHR data to predict a 3-month fall risk in residents from a variety of senior care facilities providing different levels of care. Methods This retrospective study obtained EHR data (2007-2021) from Juniper Communities’ proprietary database of 2785 individuals primarily residing in skilled nursing facilities, independent living facilities, and assisted living facilities across the United States. We assessed the performance of 3 ML-based fall prediction models and the Juniper Communities’ fall risk assessment. Additional analyses were conducted to examine how changes in the input features, training data sets, and prediction windows affected the performance of these models. Results The Extreme Gradient Boosting model exhibited the highest performance, with an area under the receiver operating characteristic curve of 0.846 (95% CI 0.794-0.894), specificity of 0.848, diagnostic odds ratio of 13.40, and sensitivity of 0.706, while achieving the best trade-off in balancing true positive and negative rates. The number of active medications was the most significant feature associated with fall risk, followed by a resident’s number of active diseases and several variables associated with vital signs, including diastolic blood pressure and changes in weight and respiratory rates. The combination of vital signs with traditional risk factors as input features achieved higher prediction accuracy than using either group of features alone. Conclusions This study shows that the Extreme Gradient Boosting technique can use a large number of features from EHR data to make short-term fall predictions with a better performance than that of conventional fall risk assessments and other ML models. The integration of routinely collected EHR data, particularly vital signs, into fall prediction models may generate more accurate fall risk surveillance than models without vital signs. Our data support the use of ML models for dynamic, cost-effective, and automated fall predictions in different types of senior care facilities.
Collapse
|