3
|
Liu M, Ma L, An W, Yang Y, Liu J, Jiang H, Yuan J, Sun X, Zhu J, Yan M, Wang L, Li Z, Liao Z, Sun C. Heterozygous Spink1 c.194+2T>C mutation promotes chronic pancreatitis after acute attack in mice. Pancreatology 2024; 24:677-689. [PMID: 38763786 DOI: 10.1016/j.pan.2024.05.514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/26/2024] [Accepted: 05/06/2024] [Indexed: 05/21/2024]
Abstract
BACKGROUND & AIMS Mutations in genes, including serine protease inhibitor Kazal-type 1 (SPINK1), influence disease progression following sentinel acute pancreatitis event (SAPE) attacks. SPINK1 c.194+2T > C intron mutation is one of the main mutants of SPINK1,which leads to the impairment of SPINK1 function by causing skipping of exon 3. Research on the pathogenesis of SAPE attacks would contribute to the understanding of the outcomes of acute pancreatitis. Therefore, the aim of the study was to clarify the role of SPINK1 c.194+2T > C mutation in the CP progression after an AP attack. METHODS SAPE attacks were induced in wildtype and SPINK mutant (Spink1 c.194+2T > C) mice by cerulein injection. The mice were sacrificed at 24 h, 14 d, 28 d, and 42 d post-SAPE. Data-independent acquisition (DIA) proteomic analysis was performed for the identification of differentially expressed protein in the pancreatic tissues. Functional analyses were performed using THP-1 and HPSCs. RESULTS Following SAPE attack, the Spink1 c.194+2T > C mutant mice exhibited a more severe acute pancreatitis phenotype within 24 h. In the chronic phase, the chronic pancreatitis phenotype was more severe in the Spink1 c.194+2T > C mutant mice after SAPE. Proteomic analysis revealed elevated IL-33 level in Spink1 c.194+2T > C mutant mice. Further in vitro analyses revealed that IL-33 induced M2 polarization of macrophages and activation of pancreatic stellate cells. CONCLUSION Spink1 c.194+2T > C mutation plays an important role in the prognosis of patients following SAPE. Heterozygous Spink1 c.194+2T > C mutation promotes the development of chronic pancreatitis after an acute attack in mice through elevated IL-33 level and the induction of M2 polarization in coordination with pancreatic stellate cell activation.
Collapse
Affiliation(s)
- Muyun Liu
- Department of Gastroenterology, First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China; Department of Gastroenterology, NO. 905 Hospital of PLA Navy affiliated to Naval Medical University, Shanghai, 200050, China; Shanghai Institute of Pancreatic Diseases, Shanghai, 200433, China
| | - Lizhe Ma
- Department of Gastroenterology, First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China; Shanghai Institute of Pancreatic Diseases, Shanghai, 200433, China; Department of Gastroenterology, No 988 Hospital of PLA Joint Logistics Support Force, Zhengzhou, 450000, China
| | - Wei An
- Department of Gastroenterology, First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China; Shanghai Institute of Pancreatic Diseases, Shanghai, 200433, China
| | - Yaying Yang
- Department of Pathology, Molecular Medicine and Cancer Research Center, Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing, 400016, China
| | - Juncen Liu
- Department of Gastroenterology, First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China; Shanghai Institute of Pancreatic Diseases, Shanghai, 200433, China
| | - Hui Jiang
- Shanghai Institute of Pancreatic Diseases, Shanghai, 200433, China; Department of Pathology, First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China
| | - Jihang Yuan
- Department of Medical Genetics, Naval Medical University, Shanghai, 200433, China
| | - Xiaoru Sun
- Department of Gastroenterology, First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China; Shanghai Institute of Pancreatic Diseases, Shanghai, 200433, China
| | - Jingyi Zhu
- Department of Gastroenterology, First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China; Shanghai Institute of Pancreatic Diseases, Shanghai, 200433, China
| | - Maoyun Yan
- Department of Gastroenterology, First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China; Shanghai Institute of Pancreatic Diseases, Shanghai, 200433, China
| | - Luowei Wang
- Department of Gastroenterology, First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China; Shanghai Institute of Pancreatic Diseases, Shanghai, 200433, China
| | - Zhaoshen Li
- Department of Gastroenterology, First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China; Shanghai Institute of Pancreatic Diseases, Shanghai, 200433, China
| | - Zhuan Liao
- Department of Gastroenterology, First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China; Shanghai Institute of Pancreatic Diseases, Shanghai, 200433, China.
| | - Chang Sun
- Department of Gastroenterology, First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China; Shanghai Institute of Pancreatic Diseases, Shanghai, 200433, China.
| |
Collapse
|
4
|
Ma C, He Y, Wang H, Chang X, Qi C, Feng Y, Cai X, Bai M, Wang X, Zhao B, Dong W. Understanding the toxicity mechanism of gelsemine in zebrafish. Comp Biochem Physiol C Toxicol Pharmacol 2024; 280:109886. [PMID: 38447648 DOI: 10.1016/j.cbpc.2024.109886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/29/2024] [Accepted: 03/02/2024] [Indexed: 03/08/2024]
Abstract
Gelsemium elegans (GE), also known as Duanchangcao, is a plant associated with toxic symptoms related to the abdomen; however, the toxicity caused by GE remains unknown. Gelsemine (GEL) is an alkaloid extracted from GE and is one of the most toxic alkaloids. This study used zebrafish as an animal model and employed high-throughput gene sequencing to identify genes and signaling pathways related to GEL toxicity. Exposure to GEL negatively impacted heart rate, swim bladder development, and activity in zebrafish larvae. Transcriptomics data revealed the enrichment of inflammatory and phagocyte signaling pathways. RT-PCR analysis revealed a decrease in the expression of pancreas-related genes, including the pancreatic coagulation protease (Ctr) family, such as Ctrl, Ctrb 1, and Ctrc, due to GEL exposure. Furthermore, GEL exposure significantly reduced Ctrb1 protein expression while elevating trypsin and serum amylase activities in zebrafish larvae. GEL also resulted in a decrease in pancreas-associated fluorescence area and an increase in neutrophil-related fluorescence area in transgenic zebrafish. This study revealed that GEL toxicity in zebrafish larvae is related to acute pancreatic inflammation.
Collapse
Affiliation(s)
- Chenglong Ma
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, Inner Mongolia 028000, China; School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China; State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing 100850, China
| | - Yanan He
- School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China; State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing 100850, China
| | - Huan Wang
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, Inner Mongolia 028000, China; State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing 100850, China
| | - Xu Chang
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, Inner Mongolia 028000, China
| | - Chelimuge Qi
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, Inner Mongolia 028000, China; Department of agriculture and animal husbandry, XING AN VOCATIONAL AND TECHNICAL COLLEGE, Horqin Right Wing Front Banner, Inner Mongolia 137400, China
| | - Yuanzhou Feng
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing 100850, China
| | - Xiaoxu Cai
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, Inner Mongolia 028000, China
| | - Meirong Bai
- Key Laboratory of Mongolian Medicine Research and Development Engineering, Ministry of Education, Tongliao, Inner Mongolia 028000, China
| | - Xueyan Wang
- School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China.
| | - Baoquan Zhao
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing 100850, China.
| | - Wu Dong
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, Inner Mongolia 028000, China.
| |
Collapse
|
5
|
Masson E, Zou WB, Pu N, Rebours V, Génin E, Wu H, Lin JH, Wang YC, Abrantes A, Aguilera Munoz L, Albouys J, Alric L, Amiot X, Archambeaud I, Audiau S, Bastide L, Baudon J, Bellaiche G, Bellon S, Bertrand V, Bideau K, Billiemaz K, Billioud C, Bonnefoy S, Borderon C, Bournet B, Breton E, Brugel M, Buscail L, Cadiot G, Camus M, Causse X, Chamouard P, Chaput U, Cholet F, Ciocan DM, Clavel C, Coffin B, Coimet-Berger L, Creveaux I, Culetto A, Daboussi O, Mestier LDE, Degand T, D'Engremont C, Denis B, Dermine S, Desgrippes R, D'Aubigny AD, Enaud R, Fabre A, Gargot D, Gelsi E, Gentilcore E, Gincul R, Ginglinger-Favre E, Giovannini M, Gomercic C, Gondran H, Grainville T, Grandval P, Grasset D, Grimaldi S, Grimbert S, Hagege H, Heissat S, Hentic O, Herber-Mayne A, Hervouet M, Hoibian S, Jacques J, Jais B, Kaassis M, Koch S, Lacaze E, Lacroute J, Lamireau T, Laurent L, Guillou XLE, Rhun MLE, Leblanc S, Levy P, Lievre A, Lorenzo D, Maire F, Marcel K, Matias C, Mauillon J, Morgant S, Moussata D, Muller N, Nambot S, Napoleon B, Olivier A, Pagenault M, Pelletier AL, Pennec O, Pinard F, Pioche M, Prost B, et alMasson E, Zou WB, Pu N, Rebours V, Génin E, Wu H, Lin JH, Wang YC, Abrantes A, Aguilera Munoz L, Albouys J, Alric L, Amiot X, Archambeaud I, Audiau S, Bastide L, Baudon J, Bellaiche G, Bellon S, Bertrand V, Bideau K, Billiemaz K, Billioud C, Bonnefoy S, Borderon C, Bournet B, Breton E, Brugel M, Buscail L, Cadiot G, Camus M, Causse X, Chamouard P, Chaput U, Cholet F, Ciocan DM, Clavel C, Coffin B, Coimet-Berger L, Creveaux I, Culetto A, Daboussi O, Mestier LDE, Degand T, D'Engremont C, Denis B, Dermine S, Desgrippes R, D'Aubigny AD, Enaud R, Fabre A, Gargot D, Gelsi E, Gentilcore E, Gincul R, Ginglinger-Favre E, Giovannini M, Gomercic C, Gondran H, Grainville T, Grandval P, Grasset D, Grimaldi S, Grimbert S, Hagege H, Heissat S, Hentic O, Herber-Mayne A, Hervouet M, Hoibian S, Jacques J, Jais B, Kaassis M, Koch S, Lacaze E, Lacroute J, Lamireau T, Laurent L, Guillou XLE, Rhun MLE, Leblanc S, Levy P, Lievre A, Lorenzo D, Maire F, Marcel K, Matias C, Mauillon J, Morgant S, Moussata D, Muller N, Nambot S, Napoleon B, Olivier A, Pagenault M, Pelletier AL, Pennec O, Pinard F, Pioche M, Prost B, Queneherve L, Rebours V, Reboux N, Rekik S, Riachi G, Rohmer B, Roquelaure B, Hezode IR, Rostain F, Saurin JC, Servais L, Stan-Iuga R, Subtil C, Texier C, Thomassin L, Tougeron D, Tsakiris L, Valats JC, Vuitton L, Wallenhorst T, Wangerme M, Zanaldi H, Zerbib F. Classification of PRSS1 variants responsible for chronic pancreatitis: An expert perspective from the Franco-Chinese GREPAN study group. Pancreatology 2023; 23:491-506. [PMID: 37581535 DOI: 10.1016/j.pan.2023.04.004] [Show More Authors] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/06/2023] [Accepted: 04/13/2023] [Indexed: 08/16/2023]
Abstract
BACKGROUND PRSS1 was the first reported chronic pancreatitis (CP) gene. The existence of both gain-of-function (GoF) and gain-of-proteotoxicity (GoP) pathological PRSS1 variants, together with the fact that PRSS1 variants have been identified in CP subtypes spanning the range from monogenic to multifactorial, has made the classification of PRSS1 variants very challenging. METHODS All currently reported PRSS1 variants (derived primarily from two databases) were manually reviewed with respect to their clinical genetics, functional analysis and population allele frequency. They were classified by variant type and pathological mechanism within the framework of our recently proposed ACMG/AMP guidelines-based seven-category system. RESULTS The total number of distinct germline PRSS1 variants included for analysis was 100, comprising 3 copy number variants (CNVs), 12 5' and 3' variants, 19 intronic variants, 5 nonsense variants, 1 frameshift deletion variant, 6 synonymous variants, 1 in-frame duplication, 3 gene conversions and 50 missense variants. Based upon a combination of clinical genetic and functional analysis, population data and in silico analysis, we classified 26 variants (all 3 CNVs, the in-frame duplication, all 3 gene conversions and 19 missense) as "pathogenic", 3 variants (missense) as "likely pathogenic", 5 variants (four missense and one promoter) as "predisposing", 13 variants (all missense) as "unknown significance", 2 variants (missense) as "likely benign", and all remaining 51 variants as "benign". CONCLUSIONS We describe an expert classification of the 100 PRSS1 variants reported to date. The results have immediate implications for reclassifying many ClinVar-registered PRSS1 variants as well as providing optimal guidelines/standards for reporting PRSS1 variants.
Collapse
Affiliation(s)
- Emmanuelle Masson
- Univ Brest, Inserm, EFS, UMR 1078, GGB, F-29200, Brest, France; Service de Génétique Médicale et de Biologie de la Reproduction, CHRU Brest, F-29200, Brest, France
| | - Wen-Bin Zou
- Department of Gastroenterology, Changhai Hospital, The Secondary Military Medical University, Shanghai, China; Shanghai Institute of Pancreatic Diseases, Shanghai, China
| | - Na Pu
- Univ Brest, Inserm, EFS, UMR 1078, GGB, F-29200, Brest, France; Department of Critical Care Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Vinciane Rebours
- Pancreatology and Digestive Oncology Department, Beaujon Hospital, APHP - Clichy, Université Paris Cité, Paris, France
| | - Emmanuelle Génin
- Univ Brest, Inserm, EFS, UMR 1078, GGB, F-29200, Brest, France; Service de Génétique Médicale et de Biologie de la Reproduction, CHRU Brest, F-29200, Brest, France
| | - Hao Wu
- Department of Gastroenterology, Changhai Hospital, The Secondary Military Medical University, Shanghai, China; Shanghai Institute of Pancreatic Diseases, Shanghai, China
| | - Jin-Huan Lin
- Department of Gastroenterology, Changhai Hospital, The Secondary Military Medical University, Shanghai, China; Shanghai Institute of Pancreatic Diseases, Shanghai, China
| | - Yuan-Chen Wang
- Department of Gastroenterology, Changhai Hospital, The Secondary Military Medical University, Shanghai, China; Shanghai Institute of Pancreatic Diseases, Shanghai, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Marc Hervouet
- Hôpital d'instruction des armées Percy, Clamart, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|