1
|
Yamazaki A, Tanaka Y, Watanabe K, Sato M, Kawazu SI, Kita K, Inoue N, van Rensburg HDJ, N'Da DD, Suganuma K. Prophylactic activity of orally administered dry-heat-sterilized Acremonium egyptiacum against Trypanosoma congolense-induced animal African trypanosomosis. Acta Trop 2024; 254:107185. [PMID: 38494059 DOI: 10.1016/j.actatropica.2024.107185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/08/2024] [Accepted: 03/10/2024] [Indexed: 03/19/2024]
Abstract
Animal African trypanosomosis (AAT) is an important global disease of livestock that causes economic losses of up to 4.5 billion US dollars per year. Thus, eliminating AAT in endemic countries will improve agricultural productivity and economic growth. To prevent AAT, vector control and the development of prophylactic drugs are crucial. Ascofuranone (AF) is a bioactive fungal compound with proven in vitro trypanocidal potency and in vivo treatment efficacy. However, the complex stereoselective synthesis of AF has prevented its cost-effective industrial production. Recently, a genetically modified strain of Acremonium egyptiacum fungus that produces a high yield of AF was developed. Therefore, we hypothesized that the oral administration of the AF-producing fungus itself may be effective against AAT. Hence, this study aimed to evaluate the prophylactic activity of orally administered dry-heat-sterilized A. egyptiacum against Trypanosoma congolense IL3000 infection using a mouse model. The survival rate was significantly prolonged (p = 0.009), and parasitemia was suppressed in all AF-fungus-treated groups (Group 1-9) compared with that in the untreated control group (Group 10). Hence, the trypanocidal activity of AF was retained after dry-heat-sterilization of the AF-producing fungus and that its oral administration effectively prevented AAT. Since AAT is endemic to rural areas with underdeveloped veterinary infrastructure, dry-heat-sterilized A. egyptiacum would be the most cost-effective potential treatment for AAT.
Collapse
Affiliation(s)
- Ai Yamazaki
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada, Obihiro, Hokkaido, 080-8555, Japan
| | - Yusuke Tanaka
- Department of Functional Anatomy and Neuroscience, Asahikawa Medical University, Asahikawa, Hokkaido, 078-8510, Japan
| | - Kenichi Watanabe
- Research Center for Global Agromedicine, Obihiro University of Agriculture and Veterinary Medicine, Inada, Obihiro, Hokkaido 080-8555, Japan; Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Inada, Obihiro, Hokkaido 080-8555, Japan
| | - Mayu Sato
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Inada, Obihiro, Hokkaido 080-8555, Japan
| | - Shin-Ichiro Kawazu
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada, Obihiro, Hokkaido, 080-8555, Japan
| | - Kiyoshi Kita
- School of Tropical Medicine and Global Health, Nagasaki University, Sakamoto, Nagasaki 852-8523, Japan
| | - Noboru Inoue
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada, Obihiro, Hokkaido, 080-8555, Japan
| | - Helena D Janse van Rensburg
- Centre of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences, North-West University, Potchefstroom 2520, South Africa
| | - David D N'Da
- Centre of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences, North-West University, Potchefstroom 2520, South Africa
| | - Keisuke Suganuma
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada, Obihiro, Hokkaido, 080-8555, Japan; Research Center for Global Agromedicine, Obihiro University of Agriculture and Veterinary Medicine, Inada, Obihiro, Hokkaido 080-8555, Japan.
| |
Collapse
|
2
|
Suganuma K, Mochabo KM, Chemuliti JK, Kiyoshi K, Noboru I, Kawazu SI. Ascofuranone antibiotic is a promising trypanocidal drug for nagana. Onderstepoort J Vet Res 2024; 91:e1-e6. [PMID: 38426744 PMCID: PMC11005941 DOI: 10.4102/ojvr.v91i1.2115] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 11/22/2023] [Accepted: 11/28/2023] [Indexed: 03/02/2024] Open
Abstract
Trypanosomosis is a disease complex which affects both humans and animals in sub-Saharan Africa, transmitted by the tsetse fly and distributed within the tsetse belt of Africa. But some trypanosome species, for example, Trypanosoma brucei evansi, T. vivax, T. theileri and T. b. equiperdum are endemic outside the tsetse belt of Africa transmitted by biting flies, for example, Tabanus and Stomoxys, or venereal transmission, respectively. Trypanocidal drugs remain the principal method of animal trypanosomosis control in most African countries. However, there is a growing concern that their effectiveness may be severely curtailed by widespread drug resistance. A minimum number of six male cattle calves were recruited for the study. They were randomly grouped into two (T. vivax and T. congolense groups) of three calves each. One calf per group served as a control while two calves were treatment group. They were inoculated with 105 cells/mL parasites in phosphate buffered solution (PBS) in 2 mL. When parasitaemia reached 1 × 107.8 cells/mL trypanosomes per mL in calves, treatment was instituted with 20 mL (25 mg/kg in 100 kg calf) ascofuranone (AF) for treatment calves, while the control ones were administered a placebo (20 mL PBS) intramuscularly. This study revealed that T. vivax was successfully cleared by AF but the T. congolense group was not cleared effectively.Contribution: There is an urgent need to develop new drugs which this study sought to address. It is suggested that the AF compound can be developed further to be a sanative drug for T. vivax in non-tsetse infested areas like South Americas.
Collapse
Affiliation(s)
- Keisuke Suganuma
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro.
| | | | | | | | | | | |
Collapse
|
3
|
Gao H, Zhou L, Zhang P, Wang Y, Qian X, Liu Y, Wu G. Filamentous Fungi-Derived Orsellinic Acid-Sesquiterpene Meroterpenoids: Fungal Sources, Chemical Structures, Bioactivities, and Biosynthesis. PLANTA MEDICA 2023; 89:1110-1124. [PMID: 37225133 DOI: 10.1055/a-2099-4932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Fungi-derived polyketide-terpenoid hybrids are important meroterpenoid natural products that possess diverse structure scaffolds with a broad spectrum of bioactivities. Herein, we focus on an ever-increasing group of meroterpenoids, orsellinic acid-sesquiterpene hybrids comprised of biosynthetic start unit orsellinic acid coupling to a farnesyl group or/and its modified cyclic products. The review entails the search of China National Knowledge Infrastructure (CNKI), Web of Science, Science Direct, Google Scholar, and PubMed databases up to June 2022. The key terms include "orsellinic acid", "sesquiterpene", "ascochlorin", "ascofuranone", and "Ascochyta viciae", which are combined with the structures of "ascochlorin" and "ascofuranone" drawn by the Reaxys and Scifinder databases. In our search, these orsellinic acid-sesquiterpene hybrids are mainly produced by filamentous fungi. Ascochlorin was the first compound reported in 1968 and isolated from filamentous fungus Ascochyta viciae (synonym: Acremonium egyptiacum; Acremonium sclerotigenum); to date, 71 molecules are discovered from various filamentous fungi inhabiting in a variety of ecological niches. As typical representatives of the hybrid molecules, the biosynthetic pathway of ascofuranone and ascochlorin are discussed. The group of meroterpenoid hybrids exhibits a broad arrange of bioactivities, as highlighted by targeting hDHODH (human dihydroorotate dehydrogenase) inhibition, antitrypanosomal, and antimicrobial activities. This review summarizes the findings related to the structures, fungal sources, bioactivities, and their biosynthesis from 1968 to June 2022.
Collapse
Affiliation(s)
- Hua Gao
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, People's Republic of China
| | - Luning Zhou
- Key Laboratory of Marine Drugs, Chinese Ministry of Education; School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, People's Republic of China
| | - Peng Zhang
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah, United States
| | - Ying Wang
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, People's Republic of China
| | - Xuan Qian
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, People's Republic of China
| | - Yujia Liu
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, People's Republic of China
| | - Guangwei Wu
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, People's Republic of China
| |
Collapse
|
4
|
Yamazaki A, Suganuma K, Tanaka Y, Watanabe K, Kawazu SI, Kita K, Inoue N. Efficacy of oral administration of ascofuranone with and without glycerol against Trypanosoma congolense. Exp Parasitol 2023; 252:108588. [PMID: 37499895 DOI: 10.1016/j.exppara.2023.108588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/28/2023] [Accepted: 07/23/2023] [Indexed: 07/29/2023]
Abstract
In many developing countries, trypanosomosis in animals results in the reduction of livestock productivity. Since trypanosomosis is endemic to rural areas where medical and veterinary infrastructure is underdeveloped, development of affordable and easy-to-maintain drugs for treatment and prophylaxis against trypanosomosis is necessary. To this end, in this study, we evaluated the efficacy of oral administration of ascofuranone (AF), with and without glycerol (GOL), against trypanosomosis, using a mouse model. We used T. congolense IL3000, the most virulent animal-infecting trypanosome, and BALB/c mice in this study. Eight mice were assigned to either of Groups 1-7: non-infected, untreated, AF 10, 20, 30, 50, and 100 mg/kg with or without GOL, respectively. In the experiment with AF administered with GOL, survival rates were 0% in Group 2 (untreated) and Group 3 (AF 10 mg/kg), 37.5% in Group 4 (AF 20 mg/kg) and Group 5 (AF 30 mg/kg), 50% in Group 6 (AF 50 mg/kg), and 100% in Group 7 (AF 100 mg/kg). In groups in which AF was administered without GOL, survival rates were 0% in Group 2 (untreated), Group 3 (AF 10 mg/kg), Group 4 (AF 20 mg/kg), Group 5 (AF 30 mg/kg), and Group 6 (AF 50 mg/kg), and 12.5% in Group 7 (AF 100 mg/kg), with one mouse surviving till the end of the observation period. The results of the analysis showed that survival rates were significantly higher in all groups (Groups 3-7) than in the untreated group (Group 2) (p < 0.05). Furthermore, a comparison of groups with or without GOL at the same AF concentration revealed that the survival rate was significantly higher in the group treated with GOL. These results suggest that the treatment efficacy of AF against animal trypanosomosis caused by T. congolense is greater when co-administered with GOL, and that oral administration of AF could be a new therapeutic strategy for animal African trypanosomosis.
Collapse
Affiliation(s)
- Ai Yamazaki
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada, Obihiro, Hokkaido, 080-8555, Japan.
| | - Keisuke Suganuma
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada, Obihiro, Hokkaido, 080-8555, Japan; Research Center for Global Agromedicine, Obihiro University of Agriculture and Veterinary Medicine, Inada, Obihiro, Hokkaido, 080-8555, Japan.
| | - Yusuke Tanaka
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Inada, Obihiro, Hokkaido, 080-8555, Japan.
| | - Kenichi Watanabe
- Research Center for Global Agromedicine, Obihiro University of Agriculture and Veterinary Medicine, Inada, Obihiro, Hokkaido, 080-8555, Japan; Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Inada, Obihiro, Hokkaido, 080-8555, Japan.
| | - Shin-Ichiro Kawazu
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada, Obihiro, Hokkaido, 080-8555, Japan.
| | - Kiyoshi Kita
- School of Tropical Medicine and Global Health, Nagasaki University, Sakamoto, Nagasaki, 852-8523, Japan; Department of Host-Defense Biochemistry, Institute of Tropical Medicine, Nagasaki University, Nagasaki, 852-8523, Japan.
| | - Noboru Inoue
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada, Obihiro, Hokkaido, 080-8555, Japan.
| |
Collapse
|
5
|
Danazumi AU, Ishmam IT, Idris S, Izert MA, Balogun EO, Górna MW. Targeted protein degradation might present a novel therapeutic approach in the fight against African trypanosomiasis. Eur J Pharm Sci 2023; 186:106451. [PMID: 37088149 PMCID: PMC11032742 DOI: 10.1016/j.ejps.2023.106451] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/11/2023] [Accepted: 04/20/2023] [Indexed: 04/25/2023]
Abstract
African trypanosomiasis (AT) is a hemoparasitic disease caused by infection with African trypanosomes and it is prevalent in many sub-Saharan African countries, affecting both humans and domestic animals. The disease is transmitted mostly by haematophagous insects of the genus Glossina while taking blood meal, in the process spreading the parasites from an infected animal to an uninfected animal. The disease is fatal if untreated, and the available drugs are generally ineffective and resulting in toxicities. Therefore, it is still pertinent to explore novel methods and targets for drug discovery. Proteolysis-targeting chimeras (PROTACs) present a new strategy for development of therapeutic molecules that mimic cellular proteasomal-mediated protein degradation to target proteins involved in different disease types. PROTACs have been used to degrade proteins involved in various cancers, neurodegenerative diseases, and immune disorders with remarkable success. Here, we highlight the problems associated with the current treatments for AT, discuss the concept of PROTACs and associated targeted protein degradation (TPD) approaches, and provide some insights on the future potential for the use of these emerging technologies (PROTACs and TPD) for the development of new generation of anti-Trypanosoma drugs and the first "TrypPROTACs".
Collapse
Affiliation(s)
- Ammar Usman Danazumi
- Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw, Warsaw, Poland; Faculty of Chemistry, Warsaw University of Technology, Warsaw, Poland; Department of Biochemistry, Ahmadu Bello University, Zaria, Nigeria
| | | | - Salisu Idris
- Department of Biochemistry, Ahmadu Bello University, Zaria, Nigeria
| | - Matylda Anna Izert
- Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw, Warsaw, Poland
| | - Emmanuel Oluwadare Balogun
- Department of Biochemistry, Ahmadu Bello University, Zaria, Nigeria; African Centre of Excellence for Neglected Tropical Diseases and Forensic Biotechnology, Ahmadu Bello University, Zaria, Nigeria.
| | - Maria Wiktoria Górna
- Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw, Warsaw, Poland.
| |
Collapse
|
6
|
Enkai S, Kouguchi H, Inaoka DK, Shiba T, Hidaka M, Matsuyama H, Sakura T, Yagi K, Kita K. Killing Two Birds with One Stone: Discovery of Dual Inhibitors of Oxygen and Fumarate Respiration in Zoonotic Parasite, Echinococcus multilocularis. Antimicrob Agents Chemother 2023; 67:e0142822. [PMID: 36840588 PMCID: PMC10019194 DOI: 10.1128/aac.01428-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
Ascofuranone (AF), a meroterpenoid isolated from various filamentous fungi, including Acremonium egyptiacum, has been reported as a potential lead candidate for drug development against parasites and cancer. In this study, we demonstrated that AF and its derivatives are potent anthelminthic agents, particularly against Echinococcus multilocularis, which is the causative agent of alveolar echinococcosis. We measured the inhibitory activities of AF and its derivatives on the mitochondrial aerobic and anaerobic respiratory systems of E. multilocularis larvae. Several derivatives inhibited complex II (succinate:quinone reductase [SQR]; IC50 = 0.037 to 0.135 μM) and also complex I to III (NADH:cytochrome c reductase; IC50 = 0.008 to 0.401 μM), but not complex I (NADH:quinone reductase), indicating that mitochondrial complexes II and III are the targets. In particular, complex II inhibition in the anaerobic pathway was notable because E. multilocularis employs NADH:fumarate reductase (fumarate respiration), in addition to NADH oxidase (oxygen respiration), resulting in complete shutdown of ATP synthesis by oxidative phosphorylation. A structure-activity relationship study of E. multilocularis complex II revealed that the functional groups of AF are essential for inhibition. Binding mode prediction of AF derivatives to complex II indicated potential hydrophobic and hydrogen bond interactions between AF derivatives and amino acid residues within the quinone binding site. Ex vivo culture assays revealed that AF derivatives progressively reduced the viability of protoscoleces under both aerobic and anaerobic conditions. These findings confirm that AF and its derivatives are the first dual inhibitors of fumarate and oxygen respiration in E. multilocularis and are potential lead compounds in the development of anti-echinococcal drugs.
Collapse
Affiliation(s)
- Shigehiro Enkai
- Department of Pediatrics, Teikyo University School of Medicine, Tokyo, Japan
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan
| | - Hirokazu Kouguchi
- Department of Infectious Diseases, Hokkaido Institute of Public Health, Sapporo, Hokkaido, Japan
| | - Daniel Ken Inaoka
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan
- Department of Molecular Infection Dynamics, Shionogi Global Infectious Diseases Division, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tomoo Shiba
- Department of Applied Biology, Graduate School of Science Technology, Kyoto Institute of Technology, Kyoto, Japan
| | - Masahito Hidaka
- Department of Infectious Diseases, Hokkaido Institute of Public Health, Sapporo, Hokkaido, Japan
| | - Hiroyuki Matsuyama
- Department of Infectious Diseases, Hokkaido Institute of Public Health, Sapporo, Hokkaido, Japan
| | - Takaya Sakura
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan
- Department of Molecular Infection Dynamics, Shionogi Global Infectious Diseases Division, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
| | - Kinpei Yagi
- Department of Infectious Diseases, Hokkaido Institute of Public Health, Sapporo, Hokkaido, Japan
- Laboratory of Parasitology, Department of Disease Control Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Kiyoshi Kita
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Host-Defense Biochemistry, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
| |
Collapse
|
7
|
Targeting the alternative oxidase (AOX) for human health and food security, a pharmaceutical and agrochemical target or a rescue mechanism? Biochem J 2022; 479:1337-1359. [PMID: 35748702 PMCID: PMC9246349 DOI: 10.1042/bcj20180192] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/23/2022] [Accepted: 06/07/2022] [Indexed: 11/25/2022]
Abstract
Some of the most threatening human diseases are due to a blockage of the mitochondrial electron transport chain (ETC). In a variety of plants, fungi, and prokaryotes, there is a naturally evolved mechanism for such threats to viability, namely a bypassing of the blocked portion of the ETC by alternative enzymes of the respiratory chain. One such enzyme is the alternative oxidase (AOX). When AOX is expressed, it enables its host to survive life-threatening conditions or, as in parasites, to evade host defenses. In vertebrates, this mechanism has been lost during evolution. However, we and others have shown that transfer of AOX into the genome of the fruit fly and mouse results in a catalytically engaged AOX. This implies that not only is the AOX a promising target for combating human or agricultural pathogens but also a novel approach to elucidate disease mechanisms or, in several cases, potentially a therapeutic cure for human diseases. In this review, we highlight the varying functions of AOX in their natural hosts and upon xenotopic expression, and discuss the resulting need to develop species-specific AOX inhibitors.
Collapse
|
8
|
Zíková A. Mitochondrial adaptations throughout the Trypanosoma brucei life cycle. J Eukaryot Microbiol 2022; 69:e12911. [PMID: 35325490 DOI: 10.1111/jeu.12911] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/18/2022] [Accepted: 03/18/2022] [Indexed: 12/01/2022]
Abstract
The unicellular parasite Trypanosoma brucei has a digenetic life cycle that alternates between a mammalian host and an insect vector. During programmed development, this extracellular parasite encounters strikingly different environments that determine its energy metabolism. Functioning as a bioenergetic, biosynthetic, and signaling center, the single mitochondrion of T. brucei is drastically remodeled to support the dynamic cellular demands of the parasite. This manuscript will provide an up-to-date overview of how the distinct T. brucei developmental stages differ in their mitochondrial metabolic and bioenergetic pathways, with a focus on the electron transport chain, proline oxidation, TCA cycle, acetate production, and ATP generation. Although mitochondrial metabolic rewiring has always been simply viewed as a consequence of the differentiation process, the possibility that certain mitochondrial activities reinforce parasite differentiation will be explored.
Collapse
Affiliation(s)
- Alena Zíková
- Biology Centre CAS, Institute of Parasitology, University of South Bohemia, Faculty of Science, České Budějovice, Czech Republic
| |
Collapse
|
9
|
Shiomi K. Antiparasitic antibiotics from Japan. Parasitol Int 2021; 82:102298. [PMID: 33548522 DOI: 10.1016/j.parint.2021.102298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 12/19/2020] [Accepted: 01/27/2021] [Indexed: 11/29/2022]
Abstract
Antibiotics are microbial secondary metabolites and they are important for the treatment of infectious diseases. Japanese researchers have made a large contribution to studies of antibiotics, and they have also been important in the discovery of antiparasitic antibiotics. Satoshi Ōmura received the Nobel Prize in 2015 for the "discoveries concerning a novel therapy against infections caused by roundworm parasites", which means discovery of a new nematocidal antibiotic, avermectin. Here, I review the many antiparasitic antibiotics and their lead compounds that have been discovered for use in human and veterinary medicine.
Collapse
Affiliation(s)
- Kazuro Shiomi
- Institute of Microbial Chemistry (BIKAKEN), 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo 141-0021, Japan.
| |
Collapse
|
10
|
Rosell-Hidalgo A, Young L, Moore AL, Ghafourian T. QSAR and molecular docking for the search of AOX inhibitors: a rational drug discovery approach. J Comput Aided Mol Des 2020; 35:245-260. [PMID: 33289903 PMCID: PMC7904559 DOI: 10.1007/s10822-020-00360-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 11/12/2020] [Indexed: 11/24/2022]
Abstract
The alternative oxidase (AOX) is a monotopic diiron carboxylate protein that catalyses the oxidation of ubiquinol and the reduction of oxygen to water. Although a number of AOX inhibitors have been discovered, little is still known about the ligand–protein interaction and essential chemical characteristics of compounds required for a potent inhibition. Furthermore, owing to the rapidly growing resistance to existing inhibitors, new compounds with improved potency and pharmacokinetic properties are urgently required. In this study we used two computational approaches, ligand–protein docking and Quantitative Structure–Activity Relationships (QSAR) to investigate binding of AOX inhibitors to the enzyme and the molecular characteristics required for inhibition. Docking studies followed by protein–ligand interaction fingerprint (PLIF) analysis using the AOX enzyme and the mutated analogues revealed the importance of the residues Leu 122, Arg 118 and Thr 219 within the hydrophobic cavity. QSAR analysis, using stepwise regression analysis with experimentally obtained IC50 values as the response variable, resulted in a multiple regression model with a good prediction accuracy. The model highlighted the importance of the presence of hydrogen bonding acceptor groups on specific positions of the aromatic ring of ascofuranone derivatives, acidity of the compounds, and a large linker group on the compounds on the inhibitory effect of AOX.
Collapse
Affiliation(s)
- Alicia Rosell-Hidalgo
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9QG, UK
| | - Luke Young
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9QG, UK
| | - Anthony L Moore
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9QG, UK
| | - Taravat Ghafourian
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9QG, UK. .,School of Life Sciences, Faculty of Creative Arts, Technologies and Science, University of Bedfordshire, Luton, Bedfordshire, LU1 3JU, UK.
| |
Collapse
|
11
|
Enkai S, Inaoka DK, Kouguchi H, Irie T, Yagi K, Kita K. Mitochondrial complex III in larval stage of Echinococcus multilocularis as a potential chemotherapeutic target and in vivo efficacy of atovaquone against primary hydatid cysts. Parasitol Int 2019; 75:102004. [PMID: 31678356 DOI: 10.1016/j.parint.2019.102004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 10/22/2019] [Accepted: 10/23/2019] [Indexed: 12/20/2022]
Abstract
Echinococcus multilocularis employs aerobic and anaerobic respiration pathways for its survival in the specialized environment of the host. Under anaerobic conditions, fumarate respiration has been identified as a promising target for drug development against E. multilocularis larvae, although the relevance of oxidative phosphorylation in its survival remains unclear. Here, we focused on the inhibition of mitochondrial cytochrome bc1 complex (complex III) and evaluated aerobic respiratory activity using mitochondrial fractions from E. multilocularis protoscoleces. An enzymatic assay revealed that the mitochondrial fractions possessed NADH-cytochrome c reductase (mitochondrial complexes I and III) and succinate-cytochrome c reductase (mitochondrial complexes II and III) activities in the aerobic pathway. Enzymatic analysis showed that atovaquone, a commercially available anti-malarial drug, inhibited mitochondrial complex III at 1.5 nM (IC50). In addition, culture experiments revealed the ability of atovaquone to kill protoscoleces under aerobic conditions, but not under anaerobic conditions, indicating that protoscoleces altered their respiration system to oxidative phosphorylation or fumarate respiration depending on the oxygen supply. Furthermore, combined administration of atovaquone with atpenin A5, a quinone binding site inhibitor of complex II, completely killed protoscoleces in the culture. Thus, inhibition of both complex II and complex III was essential for strong antiparasitic effect on E. multilocularis. Additionally, we demonstrated that oral administration of atovaquone significantly reduced primary alveolar hydatid cyst development in the mouse liver, compared with the untreated control, indicating that complex III is a promising target for development of anti-echinococcal drug.
Collapse
Affiliation(s)
- Shigehiro Enkai
- School of Tropical Medicine and Global Health, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan.
| | - Daniel Ken Inaoka
- School of Tropical Medicine and Global Health, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan; Department of Host-Defense Biochemistry, Institute of tropical Medicine (NEKKEN), Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Hirokazu Kouguchi
- Department of Infectious Diseases, Hokkaido Institute of Public Health, N19 W12, Kita-Ku, Sapporo, Hokkaido 060-0819, Japan
| | - Takao Irie
- Department of Infectious Diseases, Hokkaido Institute of Public Health, N19 W12, Kita-Ku, Sapporo, Hokkaido 060-0819, Japan
| | - Kinpei Yagi
- Department of Infectious Diseases, Hokkaido Institute of Public Health, N19 W12, Kita-Ku, Sapporo, Hokkaido 060-0819, Japan
| | - Kiyoshi Kita
- School of Tropical Medicine and Global Health, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan; Department of Host-Defense Biochemistry, Institute of tropical Medicine (NEKKEN), Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| |
Collapse
|
12
|
Balogun EO, Inaoka DK, Shiba T, Tsuge C, May B, Sato T, Kido Y, Nara T, Aoki T, Honma T, Tanaka A, Inoue M, Matsuoka S, Michels PAM, Watanabe YI, Moore AL, Harada S, Kita K. Discovery of trypanocidal coumarins with dual inhibition of both the glycerol kinase and alternative oxidase of Trypanosoma brucei brucei. FASEB J 2019; 33:13002-13013. [PMID: 31525300 DOI: 10.1096/fj.201901342r] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
African trypanosomiasis, sleeping sickness in humans or nagana in animals, is a potentially fatal neglected tropical disease and a threat to 65 million human lives and 100 million small and large livestock animals in sub-Saharan Africa. Available treatments for this devastating disease are few and have limited efficacy, prompting the search for new drug candidates. Simultaneous inhibition of the trypanosomal glycerol kinase (TGK) and trypanosomal alternative oxidase (TAO) is considered a validated strategy toward the development of new drugs. Our goal is to develop a TGK-specific inhibitor for coadministration with ascofuranone (AF), the most potent TAO inhibitor. Here, we report on the identification of novel compounds with inhibitory potency against TGK. Importantly, one of these compounds (compound 17) and its derivatives (17a and 17b) killed trypanosomes even in the absence of AF. Inhibition kinetics revealed that derivative 17b is a mixed-type and competitive inhibitor for TGK and TAO, respectively. Structural data revealed the molecular basis of this dual inhibitory action, which, in our opinion, will aid in the successful development of a promising drug to treat trypanosomiasis. Although the EC50 of compound 17b against trypanosome cells was 1.77 µM, it had no effect on cultured human cells, even at 50 µM.-Balogun, E. O., Inaoka, D. K., Shiba, T., Tsuge, C., May, B., Sato, T., Kido, Y., Nara, T., Aoki, T., Honma, T., Tanaka, A., Inoue, M., Matsuoka, S., Michels, P. A. M., Watanabe, Y.-I., Moore, A. L., Harada, S., Kita, K. Discovery of trypanocidal coumarins with dual inhibition of both the glycerol kinase and alternative oxidase of Trypanosoma brucei brucei.
Collapse
Affiliation(s)
- Emmanuel Oluwadare Balogun
- Department of Biochemistry, Ahmadu Bello University, Zaria, Nigeria.,Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Daniel Ken Inaoka
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,School of Tropical Medicine and Global Health Nagasaki University, Nagasaki, Japan.,Department of Molecular Infection Dynamics, Shionogi Global Infectious Disease Division, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
| | - Tomoo Shiba
- Department of Applied Biology, Graduate School of Science and Technology, Kyoto Institute of Technology, Kyoto, Japan
| | - Chiaki Tsuge
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Benjamin May
- Biochemistry and Medicine, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Tomohiro Sato
- Systems and Structural Biology Center, Riken, Yokohama, Japan
| | - Yasutoshi Kido
- Department of Biochemistry, Ahmadu Bello University, Zaria, Nigeria.,Department of Parasitology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Takeshi Nara
- Department of Molecular and Cellular Parasitology, Juntendo University School of Medicine, Tokyo, Japan
| | - Takashi Aoki
- Department of Molecular and Cellular Parasitology, Juntendo University School of Medicine, Tokyo, Japan
| | - Teruki Honma
- Systems and Structural Biology Center, Riken, Yokohama, Japan
| | - Akiko Tanaka
- Systems and Structural Biology Center, Riken, Yokohama, Japan
| | - Masayuki Inoue
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Shigeru Matsuoka
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Paul A M Michels
- Centre for Immunity, Infection, and Evolution School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom.,Centre for Translational and Chemical Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Yoh-Ichi Watanabe
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Anthony L Moore
- Biochemistry and Medicine, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Shigeharu Harada
- Department of Applied Biology, Graduate School of Science and Technology, Kyoto Institute of Technology, Kyoto, Japan
| | - Kiyoshi Kita
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,School of Tropical Medicine and Global Health Nagasaki University, Nagasaki, Japan.,Department of Molecular Infection Dynamics, Shionogi Global Infectious Disease Division, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
| |
Collapse
|
13
|
Shiba T, Inaoka DK, Takahashi G, Tsuge C, Kido Y, Young L, Ueda S, Balogun EO, Nara T, Honma T, Tanaka A, Inoue M, Saimoto H, Harada S, Moore AL, Kita K. Insights into the ubiquinol/dioxygen binding and proton relay pathways of the alternative oxidase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2019; 1860:375-382. [PMID: 30910528 DOI: 10.1016/j.bbabio.2019.03.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 03/20/2019] [Indexed: 12/21/2022]
Abstract
The alternative oxidase (AOX) is a monotopic diiron carboxylate protein which catalyzes the four-electron reduction of dioxygen to water by ubiquinol. Although we have recently determined the crystal structure of Trypanosoma brucei AOX (TAO) in the presence and absence of ascofuranone (AF) derivatives (which are potent mixed type inhibitors) the mechanism by which ubiquinol and dioxygen binds to TAO remain inconclusive. In this article, ferulenol was identified as the first competitive inhibitor of AOX which has been used to probe the binding of ubiquinol. Surface plasmon resonance reveals that AF is a quasi-irreversible inhibitor of TAO whilst ferulenol binding is completely reversible. The structure of the TAO-ferulenol complex, determined at 2.7 Å, provided insights into ubiquinol binding and has also identified a potential dioxygen molecule bound in a side-on conformation to the diiron center for the first time.
Collapse
Affiliation(s)
- Tomoo Shiba
- Department of Applied Biology, Graduate School of Science and Technology, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan.
| | - Daniel Ken Inaoka
- School of Tropical Medicine and Global Health, Nagasaki University, Sakamoto 1-12-4, Nagasaki 852-8523, Japan; Department of Host-Defense Biochemistry, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Sakamoto 1-12-4, Nagasaki 852-8523, Japan; Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Hongo 7-3-1, Tokyo 113-0033, Japan.
| | - Gen Takahashi
- Department of Applied Biology, Graduate School of Science and Technology, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan
| | - Chiaki Tsuge
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Hongo 7-3-1, Tokyo 113-0033, Japan
| | - Yasutoshi Kido
- School of Tropical Medicine and Global Health, Nagasaki University, Sakamoto 1-12-4, Nagasaki 852-8523, Japan; Department of Parasitology, Graduate School of Medicine, Osaka City University, Abeno-ku, Asahimachi 1-4-3, Osaka 545-8585, Japan
| | - Luke Young
- Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9QG, UK
| | - Satoshi Ueda
- Department of Applied Biology, Graduate School of Science and Technology, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan
| | - Emmanuel Oluwadare Balogun
- Department of Applied Biology, Graduate School of Science and Technology, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan; Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Hongo 7-3-1, Tokyo 113-0033, Japan; Department of Biochemistry, Ahmadu Bello University, Zaria 2222, Nigeria
| | - Takeshi Nara
- Department of Molecular and Cellular Parasitology, Juntendo University School of Medicine, Bunkyo-ku, Hongo 2-1-1, Tokyo, 113-8421, Japan
| | - Teruki Honma
- Systems and Structural Biology Center, RIKEN, Tsurumi, Suehiro 1-7-22, Yokohama, Kanagawa 230-0045, Japan
| | - Akiko Tanaka
- Systems and Structural Biology Center, RIKEN, Tsurumi, Suehiro 1-7-22, Yokohama, Kanagawa 230-0045, Japan
| | - Masayuki Inoue
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Hongo 7-3-1, Tokyo 113-0033, Japan
| | - Hiroyuki Saimoto
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Koyamacho-Minami 4, Tottori 680-8552, Japan
| | - Shigeharu Harada
- Department of Applied Biology, Graduate School of Science and Technology, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan
| | - Anthony L Moore
- Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9QG, UK
| | - Kiyoshi Kita
- School of Tropical Medicine and Global Health, Nagasaki University, Sakamoto 1-12-4, Nagasaki 852-8523, Japan; Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Hongo 7-3-1, Tokyo 113-0033, Japan; Department of Host-Defense Biochemistry, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Sakamoto 1-12-4, Nagasaki 852-8523, Japan
| |
Collapse
|
14
|
Ebiloma GU, Balogun EO, Cueto-Díaz EJ, de Koning HP, Dardonville C. Alternative oxidase inhibitors: Mitochondrion-targeting as a strategy for new drugs against pathogenic parasites and fungi. Med Res Rev 2019; 39:1553-1602. [PMID: 30693533 DOI: 10.1002/med.21560] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/07/2018] [Accepted: 12/08/2018] [Indexed: 12/11/2022]
Abstract
The alternative oxidase (AOX) is a ubiquitous terminal oxidase of plants and many fungi, catalyzing the four-electron reduction of oxygen to water alongside the cytochrome-based electron transfer chain. Unlike the classical electron transfer chain, however, the activity of AOX does not generate adenosine triphosphate but has functions such as thermogenesis and stress response. As it lacks a mammalian counterpart, it has been investigated intensely in pathogenic fungi. However, it is in African trypanosomes, which lack cytochrome-based respiration in their infective stages, that trypanosome alternative oxidase (TAO) plays the central and essential role in their energy metabolism. TAO was validated as a drug target decades ago and among the first inhibitors to be identified was salicylhydroxamic acid (SHAM), which produced the expected trypanocidal effects, especially when potentiated by coadministration with glycerol to inhibit anaerobic energy metabolism as well. However, the efficacy of this combination was too low to be of practical clinical use. The antibiotic ascofuranone (AF) proved a much stronger TAO inhibitor and was able to cure Trypanosoma vivax infections in mice without glycerol and at much lower doses, providing an important proof of concept milestone. Systematic efforts to improve the SHAM and AF scaffolds, aided with the elucidation of the TAO crystal structure, provided detailed structure-activity relationship information and reinvigorated the drug discovery effort. Recently, the coupling of mitochondrion-targeting lipophilic cations to TAO inhibitors has dramatically improved drug targeting and trypanocidal activity while retaining target protein potency. These developments appear to have finally signposted the way to preclinical development of TAO inhibitors.
Collapse
Affiliation(s)
- Godwin U Ebiloma
- Department of Applied Biology, Graduate School of Science and Technology, Kyoto Institute of Technology, Kyoto, Japan.,Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Emmanuel O Balogun
- Department of Biochemistry, Ahmadu Bello University, Zaria, Nigeria.,Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | | | - Harry P de Koning
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | | |
Collapse
|
15
|
Meco-Navas A, Ebiloma GU, Martín-Domínguez A, Martínez-Benayas I, Cueto-Díaz EJ, Alhejely AS, Balogun EO, Saito M, Matsui M, Arai N, Shiba T, Harada S, de Koning HP, Dardonville C. SAR of 4-Alkoxybenzoic Acid Inhibitors of the Trypanosome Alternative Oxidase. ACS Med Chem Lett 2018; 9:923-928. [PMID: 30258542 DOI: 10.1021/acsmedchemlett.8b00282] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 07/31/2018] [Indexed: 11/30/2022] Open
Abstract
The SAR of 4-hydroxybenzaldehyde inhibitors of the trypanosome alternative oxidase (TAO), a critical enzyme for the respiration of bloodstream forms of trypanosomes, was investigated. Replacing the aldehyde group with a methyl ester resulted in a 10-fold increase in TAO inhibition and activity against T. brucei. Remarkably, two analogues containing the 2-hydroxy-6-methyl scaffold (9e and 16e) displayed single digit nanomolar TAO inhibition, which constitute the most potent 4-alkoxybenzoic acid derivatives described to date. 9e was 50-times more potent against TAO and 10-times more active against T. brucei compared to its benzaldehyde analogue 1. The farnesyl derivative 16e was as potent a TAO inhibitor as ascofuranone with IC50 = 3.1 nM. Similar to ascofuranone derivatives, the 2-hydroxy and 6-methyl groups seemed essential for low nanomolar TAO inhibition of acid derivatives, suggesting analogous binding interactions with the TAO active site.
Collapse
Affiliation(s)
- Alejandro Meco-Navas
- Instituto de Química Médica, IQM-CSIC, Juan de la Cierva 3, E-28006 Madrid, Spain
| | - Godwin U. Ebiloma
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
- Department of Applied Biology, Kyoto Institute of Technology, Kyoto 606-8585, Japan
| | - Ana Martín-Domínguez
- Instituto de Química Médica, IQM-CSIC, Juan de la Cierva 3, E-28006 Madrid, Spain
| | | | | | - Amani Saud Alhejely
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | | | - Machi Saito
- Department of Applied Biology, Kyoto Institute of Technology, Kyoto 606-8585, Japan
| | - Miho Matsui
- Department of Applied Biology, Kyoto Institute of Technology, Kyoto 606-8585, Japan
| | - Natsumi Arai
- Department of Applied Biology, Kyoto Institute of Technology, Kyoto 606-8585, Japan
| | - Tomoo Shiba
- Department of Applied Biology, Kyoto Institute of Technology, Kyoto 606-8585, Japan
| | - Shigeharu Harada
- Department of Applied Biology, Kyoto Institute of Technology, Kyoto 606-8585, Japan
| | - Harry P. de Koning
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | | |
Collapse
|
16
|
Melarsoprol Resistance in African Trypanosomiasis. Trends Parasitol 2018; 34:481-492. [DOI: 10.1016/j.pt.2018.04.002] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 04/03/2018] [Accepted: 04/04/2018] [Indexed: 01/06/2023]
|
17
|
Lenzi J, Costa TM, Alberton MD, Goulart JAG, Tavares LBB. Medicinal fungi: a source of antiparasitic secondary metabolites. Appl Microbiol Biotechnol 2018; 102:5791-5810. [PMID: 29749562 DOI: 10.1007/s00253-018-9048-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 04/18/2018] [Accepted: 04/20/2018] [Indexed: 11/25/2022]
Abstract
Regions with a tropical climate are frequently affected by endemic diseases caused by pathogenic parasites. More than one billion people worldwide are exposed directly to tropical parasites. The literature cites several antiparasitic metabolites obtained from medicinal plants or via synthetic pathways. However, fungi produce a diversity of metabolites that play important biological roles in human well-being. Thus, they are considered a potential source of novel natural agents for exploitation in the pharmaceutical industry. In this brief review article, we will provide an overview of the current situation regarding antiparasitic molecules derived from filamentous fungi, in particular, those which are effective against protozoan parasites, such as Plasmodium, Trypanosoma, and Leishmania, vectors of some neglected tropical diseases. Diseases and parasitic agents are described and classified, and the antiparasitic properties of natural compounds produced by the fungi of the phyla Basidiomycota and Ascomycota are reviewed herein, in order to explore a topic only sparsely addressed in the scientific literature.
Collapse
Affiliation(s)
- Juliana Lenzi
- Environmental Engineering Postgraduate, Regional University of Blumenau, Itoupava Seca,, Blumenau, Santa Catarina, CEP 89030-080, Brazil
| | - Tania Maria Costa
- Department of Chemical Engineering, Federal University of Santa Catarina, Trindade,, Florianópolis, Santa Catarina, CEP 88040-900, Brazil
| | - Michele Debiasi Alberton
- Environmental Engineering Postgraduate, Regional University of Blumenau, Itoupava Seca,, Blumenau, Santa Catarina, CEP 89030-080, Brazil
| | - Juliane Araújo Greinert Goulart
- Environmental Engineering Postgraduate, Regional University of Blumenau, Itoupava Seca,, Blumenau, Santa Catarina, CEP 89030-080, Brazil
| | - Lorena Benathar Ballod Tavares
- Environmental Engineering Postgraduate, Regional University of Blumenau, Itoupava Seca,, Blumenau, Santa Catarina, CEP 89030-080, Brazil.
| |
Collapse
|
18
|
West RA, Cunningham T, Pennicott LE, Rao SPS, Ward SE. Toward More Drug Like Inhibitors of Trypanosome Alternative Oxidase. ACS Infect Dis 2018; 4:592-604. [PMID: 29353481 DOI: 10.1021/acsinfecdis.7b00218] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
New tools are required to ensure the adequate control of the neglected tropical disease human African trypanosomiasis. Annual reports of infection have recently fallen to fewer than 5000 cases per year; however, current therapies are hard to administer and have safety concerns and, hence, are far from ideal. Trypanosome alternative oxidase is an exciting target for controlling the infection; it is unique to the parasite, and inhibition of this enzyme with the natural product ascofuranone has shown to clear in vivo infections. We report the synthesis and associated structure activity relationships of inhibitors based upon this natural product with correlation to T. b. brucei growth inhibition in an attempt to generate molecules that possess improved physicochemical properties and potential for use as new treatments for human African trypanosomiasis.
Collapse
Affiliation(s)
- Ryan A. West
- Sussex Drug Discovery Centre, University of Sussex, Brighton, BN1 9QJ, United Kingdom
| | - Thomas Cunningham
- Sussex Drug Discovery Centre, University of Sussex, Brighton, BN1 9QJ, United Kingdom
| | - Lewis E. Pennicott
- Sussex Drug Discovery Centre, University of Sussex, Brighton, BN1 9QJ, United Kingdom
| | - Srinivasa P. S. Rao
- Novartis Institutes for Tropical Diseases, 5300 Chiron Way, Emeryville, California 94608-2916, United States
| | - Simon E. Ward
- Sussex Drug Discovery Centre, University of Sussex, Brighton, BN1 9QJ, United Kingdom
- Medicines Discovery Institute, Cardiff University, Park Place, Cardiff, CF10 3AT, United Kingdom
| |
Collapse
|
19
|
Ebiloma GU, Ayuga TD, Balogun EO, Gil LA, Donachie A, Kaiser M, Herraiz T, Inaoka DK, Shiba T, Harada S, Kita K, de Koning HP, Dardonville C. Inhibition of trypanosome alternative oxidase without its N-terminal mitochondrial targeting signal (ΔMTS-TAO) by cationic and non-cationic 4-hydroxybenzoate and 4-alkoxybenzaldehyde derivatives active against T. brucei and T. congolense. Eur J Med Chem 2018; 150:385-402. [PMID: 29544150 DOI: 10.1016/j.ejmech.2018.02.075] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 02/22/2018] [Accepted: 02/23/2018] [Indexed: 11/28/2022]
Abstract
African trypanosomiasis is a neglected parasitic disease that is still of great public health relevance, and a severe impediment to agriculture in endemic areas. The pathogens possess certain unique metabolic features that can be exploited for the development of new drugs. Notably, they rely on an essential, mitochondrially-localized enzyme, Trypanosome Alternative Oxidase (TAO) for their energy metabolism, which is absent in the mammalian hosts and therefore an attractive target for the design of safe drugs. In this study, we cloned, expressed and purified the physiologically relevant form of TAO, which lacks the N-terminal 25 amino acid mitochondrial targeting sequence (ΔMTS-TAO). A new class of 32 cationic and non-cationic 4-hydroxybenzoate and 4-alkoxybenzaldehyde inhibitors was designed and synthesized, enabling the first structure-activity relationship studies on ΔMTS-TAO. Remarkably, we obtained compounds with enzyme inhibition values (IC50) as low as 2 nM, which were efficacious against wild type and multidrug-resistant strains of T. brucei and T. congolense. The inhibitors 13, 15, 16, 19, and 30, designed with a mitochondrion-targeting lipophilic cation tail, displayed trypanocidal potencies comparable to the reference drugs pentamidine and diminazene, and showed no cross-resistance with the critical diamidine and melaminophenyl arsenical classes of trypanocides. The cationic inhibitors 15, 16, 19, 20, and 30 were also much more selective (900 - 344,000) over human cells than the non-targeted neutral derivatives (selectivity >8-fold). A preliminary in vivo study showed that modest doses of 15 and 16 reduced parasitaemia of mice infected with T. b. rhodesiense (STIB900). These compounds represent a promising new class of potent and selective hits against African trypanosomes.
Collapse
Affiliation(s)
- Godwin U Ebiloma
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom; Department of Biochemistry, Kogi State University, Anyigba, Nigeria
| | - Teresa Díaz Ayuga
- Instituto de Química Médica, IQM-CSIC, Juan de la Cierva 3, E-28006 Madrid, Spain
| | - Emmanuel O Balogun
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Japan; Department of Biochemistry, Ahmadu Bello University, Zaria 2222, Nigeria
| | - Lucía Abad Gil
- Instituto de Química Médica, IQM-CSIC, Juan de la Cierva 3, E-28006 Madrid, Spain
| | - Anne Donachie
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Marcel Kaiser
- Swiss Tropical and Public Health Institute, Socinstrasse, 57, CH-4002 Basel, Switzerland
| | - Tomás Herraiz
- Instituto de Ciencia y Tecnología de Alimentos y Nutrición, ICTAN-CSIC, Juan de la Cierva 3, E-28006 Madrid, Spain
| | - Daniel K Inaoka
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Japan; School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, 852-8523, Japan
| | - Tomoo Shiba
- Department of Applied Biology, Kyoto Institute of Technology, Kyoto 606-8585, Japan
| | - Shigeharu Harada
- Department of Applied Biology, Kyoto Institute of Technology, Kyoto 606-8585, Japan
| | - Kiyoshi Kita
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Japan; School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, 852-8523, Japan
| | - Harry P de Koning
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom.
| | | |
Collapse
|
20
|
Structural insights into the alternative oxidases: are all oxidases made equal? Biochem Soc Trans 2017; 45:731-740. [PMID: 28620034 DOI: 10.1042/bst20160178] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/08/2017] [Accepted: 03/10/2017] [Indexed: 01/15/2023]
Abstract
The alternative oxidases (AOXs) are ubiquinol-oxidoreductases that are members of the diiron carboxylate superfamily. They are not only ubiquitously distributed within the plant kingdom but also found in increasing numbers within the fungal, protist, animal and prokaryotic kingdoms. Although functions of AOXs are highly diverse in general, they tend to play key roles in thermogenesis, stress tolerance (through the management of radical oxygen species) and the maintenance of mitochondrial and cellular energy homeostasis. The best structurally characterised AOX is from Trypanosoma brucei In this review, we compare the structure of AOXs, created using homology modelling, from many important species in an attempt to explain differences in activity and sensitivity to AOX inhibitors. We discuss the implications of these findings not only for future structure-based drug design but also for the design of novel AOXs for gene therapy.
Collapse
|
21
|
Expression, purification, and crystallization of type 1 isocitrate dehydrogenase from Trypanosoma brucei brucei. Protein Expr Purif 2017. [PMID: 28642005 DOI: 10.1016/j.pep.2017.06.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Isocitrate dehydrogenases (IDHs) are metabolic enzymes that catalyze the oxidative decarboxylation of isocitrate to α-ketoglutarate. Depending on the electron acceptor and subcellular localization, these enzymes are classified as NADP+-dependent IDH1 in the cytosol or peroxisomes, NADP+-dependent IDH2 and NAD+-dependent IDH3 in mitochondria. Trypanosoma brucei is a protozoan parasite that causes African sleeping sickness in humans and Nagana disease in animals. Here, for the first time, a putative glycosomal T. brucei type 1 IDH (TbIDH1) was expressed in Escherichia coli and purified for crystallographic study. Surprisingly, the putative NADP+-dependent TbIDH1 has higher activity with NAD+ compared with NADP+ as electron acceptor, a unique characteristic among known eukaryotic IDHs which encouraged us to crystallize TbIDH1 for future biochemical and structural studies. Methods of expression and purification of large amounts of recombinant TbIDH1 with improved solubility to facilitate protein crystallization are presented.
Collapse
|
22
|
Jeacock L, Baker N, Wiedemar N, Mäser P, Horn D. Aquaglyceroporin-null trypanosomes display glycerol transport defects and respiratory-inhibitor sensitivity. PLoS Pathog 2017; 13:e1006307. [PMID: 28358927 PMCID: PMC5388498 DOI: 10.1371/journal.ppat.1006307] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 04/11/2017] [Accepted: 03/22/2017] [Indexed: 11/19/2022] Open
Abstract
Aquaglyceroporins (AQPs) transport water and glycerol and play important roles in drug-uptake in pathogenic trypanosomatids. For example, AQP2 in the human-infectious African trypanosome, Trypanosoma brucei gambiense, is responsible for melarsoprol and pentamidine-uptake, and melarsoprol treatment-failure has been found to be due to AQP2-defects in these parasites. To further probe the roles of these transporters, we assembled a T. b. brucei strain lacking all three AQP-genes. Triple-null aqp1-2-3 T. b. brucei displayed only a very moderate growth defect in vitro, established infections in mice and recovered effectively from hypotonic-shock. The aqp1-2-3 trypanosomes did, however, display glycerol uptake and efflux defects. They failed to accumulate glycerol or to utilise glycerol as a carbon-source and displayed increased sensitivity to salicylhydroxamic acid (SHAM), octyl gallate or propyl gallate; these inhibitors of trypanosome alternative oxidase (TAO) can increase intracellular glycerol to toxic levels. Notably, disruption of AQP2 alone generated cells with glycerol transport defects. Consistent with these findings, AQP2-defective, melarsoprol-resistant clinical isolates were sensitive to the TAO inhibitors, SHAM, propyl gallate and ascofuranone, relative to melarsoprol-sensitive reference strains. We conclude that African trypanosome AQPs are dispensable for viability and osmoregulation but they make important contributions to drug-uptake, glycerol-transport and respiratory-inhibitor sensitivity. We also discuss how the AQP-dependent inverse sensitivity to melarsoprol and respiratory inhibitors described here might be exploited.
Collapse
Affiliation(s)
- Laura Jeacock
- The Wellcome Trust Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee, United Kingdom
| | - Nicola Baker
- The Wellcome Trust Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee, United Kingdom
| | - Natalie Wiedemar
- Parasite Chemotherapy Unit, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Pascal Mäser
- Parasite Chemotherapy Unit, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - David Horn
- The Wellcome Trust Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee, United Kingdom
| |
Collapse
|
23
|
Fueyo González FJ, Ebiloma GU, Izquierdo García C, Bruggeman V, Sánchez Villamañán JM, Donachie A, Balogun EO, Inaoka DK, Shiba T, Harada S, Kita K, de Koning HP, Dardonville C. Conjugates of 2,4-Dihydroxybenzoate and Salicylhydroxamate and Lipocations Display Potent Antiparasite Effects by Efficiently Targeting the Trypanosoma brucei and Trypanosoma congolense Mitochondrion. J Med Chem 2017; 60:1509-1522. [PMID: 28112515 DOI: 10.1021/acs.jmedchem.6b01740] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We investigated a chemical strategy to boost the trypanocidal activity of 2,4-dihydroxybenzoic acid (2,4-DHBA)- and salicylhydroxamic acid (SHAM)-based trypanocides with triphenylphosphonium and quinolinium lipophilic cations (LC). Three series of LC conjugates were synthesized that were active in the submicromolar (5a-d and 10d-f) to low nanomolar (6a-f) range against wild-type and multidrug resistant strains of African trypanosomes (Trypanosoma brucei brucei and T. congolense). This represented an improvement in trypanocidal potency of at least 200-fold, and up to >10 000-fold, compared with that of non-LC-coupled parent compounds 2,4-DHBA and SHAM. Selectivity over human cells was >500 and reached >23 000 for 6e. Mechanistic studies showed that 6e did not inhibit the cell cycle but affected parasite respiration in a dose-dependent manner. Inhibition of trypanosome alternative oxidase and the mitochondrial membrane potential was also studied for selected compounds. We conclude that effective mitochondrial targeting greatly potentiated the activity of these series of compounds.
Collapse
Affiliation(s)
| | - Godwin U Ebiloma
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow , Glasgow G12 8TA, United Kingdom.,Department of Biochemistry, Kogi State University , Anyigba 1008, Nigeria
| | | | - Victor Bruggeman
- Instituto de Química Médica, IQM-CSIC , Juan de la Cierva 3, E-28006 Madrid, Spain
| | | | - Anne Donachie
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow , Glasgow G12 8TA, United Kingdom
| | - Emmanuel Oluwadare Balogun
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo , Tokyo 113-0033, Japan.,Department of Biochemistry, Ahmadu Bello University , Zaria 2222, Nigeria
| | - Daniel Ken Inaoka
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo , Tokyo 113-0033, Japan.,School of Tropical Medicine and Global Health, Nagasaki University , Nagasaki, 852-8523, Japan
| | - Tomoo Shiba
- Department of Applied Biology, Kyoto Institute of Technology , Kyoto 606-8585, Japan
| | - Shigeharu Harada
- Department of Applied Biology, Kyoto Institute of Technology , Kyoto 606-8585, Japan
| | - Kiyoshi Kita
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo , Tokyo 113-0033, Japan.,School of Tropical Medicine and Global Health, Nagasaki University , Nagasaki, 852-8523, Japan
| | - Harry P de Koning
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow , Glasgow G12 8TA, United Kingdom
| | | |
Collapse
|
24
|
Abstract
SUMMARYNew drugs against Trypanosoma brucei, the causative agent of Human African Trypanosomiasis, are urgently needed to replace the highly toxic and largely ineffective therapies currently used. The trypanosome alternative oxidase (TAO) is an essential and unique mitochondrial protein in these parasites and is absent from mammalian mitochondria, making it an attractive drug target. The structure and function of the protein are now well characterized, with several inhibitors reported in the literature, which show potential as clinical drug candidates. In this review, we provide an update on the functional activity and structural aspects of TAO. We then discuss TAO inhibitors reported to date, problems encountered with in vivo testing of these compounds, and discuss the future of TAO as a therapeutic target.
Collapse
|
25
|
The Open Form Inducer Approach for Structure-Based Drug Design. PLoS One 2016; 11:e0167078. [PMID: 27893848 PMCID: PMC5125662 DOI: 10.1371/journal.pone.0167078] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 11/08/2016] [Indexed: 01/07/2023] Open
Abstract
Many open form (OF) structures of drug targets were obtained a posteriori by analysis of co-crystals with inhibitors. Therefore, obtaining the OF structure of a drug target a priori will accelerate development of potent inhibitors. In addition to its small active site, Trypanosoma cruzi dihydroorotate dehydrogenase (TcDHODH) is fully functional in its monomeric form, making drug design approaches targeting the active site and protein-protein interactions unrealistic. Therefore, a novel a priori approach was developed to determination the TcDHODH active site in OF. This approach consists of generating an "OF inducer" (predicted in silico) to bind the target and cause steric repulsion with flexible regions proximal to the active site that force it open. We provide the first proof-of-concept of this approach by predicting and crystallizing TcDHODH in complex with an OF inducer, thereby obtaining the OF a priori with its subsequent use in designing potent and selective inhibitors. Fourteen co-crystal structures of TcDHODH with the designed inhibitors are presented herein. This approach has potential to encourage drug design against diseases where the molecular targets are such difficult proteins possessing small AS volume. This approach can be extended to study open/close conformation of proteins in general, the identification of allosteric pockets and inhibitors for other drug targets where conventional drug design approaches are not applicable, as well as the effective exploitation of the increasing number of protein structures deposited in Protein Data Bank.
Collapse
|
26
|
Abstract
To date approximately 100 000 fungal species are known although far more than one million are expected. The variety of species and the diversity of their habitats, some of them less exploited, allow the conclusion that fungi continue to be a rich source of new metabolites. Besides the conventional fungal isolates, an increasing interest in endophytic and in marine-derived fungi has been noticed. In addition new screening strategies based on innovative chemical, biological, and genetic approaches have led to novel fungal metabolites in recent years. The present review focuses on new fungal natural products published from 2009 to 2013 highlighting the originality of the structures and their biological potential. Furthermore synthetic products based on fungal metabolites as well as new developments in the uses or the biological activity of known compounds or new derivatives are discussed.
Collapse
Affiliation(s)
- Anja Schueffler
- Institut für Biotechnologie und Wirkstoff-Forschung (Institute of Biotechnology and Drug Research), Erwin-Schroedinger-Str. 56, 67663 Kaiserslautern, Germany.
| | | |
Collapse
|
27
|
Drug discovery and human African trypanosomiasis: a disease less neglected? Future Med Chem 2014; 5:1801-41. [PMID: 24144414 DOI: 10.4155/fmc.13.162] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Human African trypanosomiasis (HAT) has been neglected for a long time. The most recent drug to treat this disease, eflornithine, was approved by the US FDA in 2000. Current treatments exhibit numerous problematic side effects and are often ineffective against the debilitating CNS resident stage of the disease. Fortunately, several partnerships and initiatives have been formed over the last 20 years in an effort to eradicate HAT, along with a number of other neglected diseases. This has led to an increasing number of foundations and research institutions that are currently working on the development of new drugs for HAT and tools with which to diagnose and treat patients. New biochemical pathways as therapeutic targets are emerging, accompanied by increasing numbers of new antitrypanosomal compound classes. The future looks promising that this collaborative approach will facilitate eagerly awaited breakthroughs in the treatment of HAT.
Collapse
|
28
|
The double-edged sword in pathogenic trypanosomatids: the pivotal role of mitochondria in oxidative stress and bioenergetics. BIOMED RESEARCH INTERNATIONAL 2014; 2014:614014. [PMID: 24800243 PMCID: PMC3988864 DOI: 10.1155/2014/614014] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 02/17/2014] [Indexed: 11/17/2022]
Abstract
The pathogenic trypanosomatids Trypanosoma brucei, Trypanosoma cruzi, and Leishmania spp. are the causative agents of African trypanosomiasis, Chagas disease, and leishmaniasis, respectively. These diseases are considered to be neglected tropical illnesses that persist under conditions of poverty and are concentrated in impoverished populations in the developing world. Novel efficient and nontoxic drugs are urgently needed as substitutes for the currently limited chemotherapy. Trypanosomatids display a single mitochondrion with several peculiar features, such as the presence of different energetic and antioxidant enzymes and a specific arrangement of mitochondrial DNA (kinetoplast DNA). Due to mitochondrial differences between mammals and trypanosomatids, this organelle is an excellent candidate for drug intervention. Additionally, during trypanosomatids' life cycle, the shape and functional plasticity of their single mitochondrion undergo profound alterations, reflecting adaptation to different environments. In an uncoupling situation, the organelle produces high amounts of reactive oxygen species. However, these species role in parasite biology is still controversial, involving parasite death, cell signalling, or even proliferation. Novel perspectives on trypanosomatid-targeting chemotherapy could be developed based on better comprehension of mitochondrial oxidative regulation processes.
Collapse
|
29
|
Young L, May B, Pendlebury-Watt A, Shearman J, Elliott C, Albury MS, Shiba T, Inaoka DK, Harada S, Kita K, Moore AL. Probing the ubiquinol-binding site of recombinant Sauromatum guttatum alternative oxidase expressed in E. coli membranes through site-directed mutagenesis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:1219-25. [PMID: 24530866 DOI: 10.1016/j.bbabio.2014.01.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 01/23/2014] [Accepted: 01/28/2014] [Indexed: 11/16/2022]
Abstract
In the present paper we have investigated the effect of mutagenesis of a number of highly conserved residues (R159, D163, L177 and L267) which we have recently shown to line the hydrophobic inhibitor/substrate cavity in the alternative oxidases (AOXs). Measurements of respiratory activity in rSgAOX expressed in Escherichia coli FN102 membranes indicate that all mutants result in a decrease in maximum activity of AOX and in some cases (D163 and L177) a decrease in the apparent Km (O2). Of particular importance was the finding that when the L177 and L267 residues, which appear to cause a bottleneck in the hydrophobic cavity, are mutated to alanine the sensitivity to AOX antagonists is reduced. When non-AOX anti-malarial inhibitors were also tested against these mutants widening the bottleneck through removal of isobutyl side chain allowed access of these bulkier inhibitors to the active-site and resulted in inhibition. Results are discussed in terms of how these mutations have altered the way in which the AOX's catalytic cycle is controlled and since maximum activity is decreased we predict that such mutations result in an increase in the steady state level of at least one O2-derived AOX intermediate. Such mutations should therefore prove to be useful in future stopped-flow and electron paramagnetic resonance experiments in attempts to understand the catalytic cycle of the alternative oxidase which may prove to be important in future rational drug design to treat diseases such as trypanosomiasis. Furthermore since single amino acid mutations in inhibitor/substrate pockets have been found to be the cause of multi-drug resistant strains of malaria, the decrease in sensitivity to main AOX antagonists observed in the L-mutants studied in this report suggests that an emergence of drug resistance to trypanosomiasis may also be possible. Therefore we suggest that the design of future AOX inhibitors should have structures that are less reliant on the orientation by the two-leucine residues. This article is part of a Special Issue entitled: 18th European Bioenergetic Conference.
Collapse
Affiliation(s)
- Luke Young
- Biochemistry and Molecular Sciences, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
| | - Benjamin May
- Biochemistry and Molecular Sciences, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
| | - Alice Pendlebury-Watt
- Biochemistry and Molecular Sciences, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
| | - Julia Shearman
- Biochemistry and Molecular Sciences, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
| | - Catherine Elliott
- Biochemistry and Molecular Sciences, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
| | - Mary S Albury
- Biochemistry and Molecular Sciences, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
| | - Tomoo Shiba
- Department of Applied Biology, Graduate School of Science and Technology, Kyoto Institute of Technology, Kyoto 606-8585, Japan
| | - Daniel Ken Inaoka
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Shigeharu Harada
- Department of Applied Biology, Graduate School of Science and Technology, Kyoto Institute of Technology, Kyoto 606-8585, Japan
| | - Kiyoshi Kita
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Anthony L Moore
- Biochemistry and Molecular Sciences, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK.
| |
Collapse
|
30
|
Balogun EO, Inaoka DK, Shiba T, Kido Y, Nara T, Aoki T, Honma T, Tanaka A, Inoue M, Matsuoka S, Michels PA, Harada S, Kita K. Biochemical characterization of highly active Trypanosoma brucei gambiense glycerol kinase, a promising drug target. J Biochem 2013; 154:77-84. [DOI: 10.1093/jb/mvt037] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
31
|
Shiba T, Kido Y, Sakamoto K, Inaoka DK, Tsuge C, Tatsumi R, Takahashi G, Balogun EO, Nara T, Aoki T, Honma T, Tanaka A, Inoue M, Matsuoka S, Saimoto H, Moore AL, Harada S, Kita K. Structure of the trypanosome cyanide-insensitive alternative oxidase. Proc Natl Acad Sci U S A 2013; 110:4580-5. [PMID: 23487766 PMCID: PMC3607012 DOI: 10.1073/pnas.1218386110] [Citation(s) in RCA: 135] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In addition to haem copper oxidases, all higher plants, some algae, yeasts, molds, metazoans, and pathogenic microorganisms such as Trypanosoma brucei contain an additional terminal oxidase, the cyanide-insensitive alternative oxidase (AOX). AOX is a diiron carboxylate protein that catalyzes the four-electron reduction of dioxygen to water by ubiquinol. In T. brucei, a parasite that causes human African sleeping sickness, AOX plays a critical role in the survival of the parasite in its bloodstream form. Because AOX is absent from mammals, this protein represents a unique and promising therapeutic target. Despite its bioenergetic and medical importance, however, structural features of any AOX are yet to be elucidated. Here we report crystal structures of the trypanosomal alternative oxidase in the absence and presence of ascofuranone derivatives. All structures reveal that the oxidase is a homodimer with the nonhaem diiron carboxylate active site buried within a four-helix bundle. Unusually, the active site is ligated solely by four glutamate residues in its oxidized inhibitor-free state; however, inhibitor binding induces the ligation of a histidine residue. A highly conserved Tyr220 is within 4 Å of the active site and is critical for catalytic activity. All structures also reveal that there are two hydrophobic cavities per monomer. Both inhibitors bind to one cavity within 4 Å and 5 Å of the active site and Tyr220, respectively. A second cavity interacts with the inhibitor-binding cavity at the diiron center. We suggest that both cavities bind ubiquinol and along with Tyr220 are required for the catalytic cycle for O2 reduction.
Collapse
Affiliation(s)
- Tomoo Shiba
- Department of Biomedical Chemistry, Graduate School of Medicine, and
| | - Yasutoshi Kido
- Department of Biomedical Chemistry, Graduate School of Medicine, and
| | | | - Daniel Ken Inaoka
- Department of Biomedical Chemistry, Graduate School of Medicine, and
| | - Chiaki Tsuge
- Department of Biomedical Chemistry, Graduate School of Medicine, and
| | - Ryoko Tatsumi
- Department of Biomedical Chemistry, Graduate School of Medicine, and
| | - Gen Takahashi
- Department of Applied Biology, Graduate School of Science and Technology, Kyoto Institute of Technology, Kyoto 606-8585, Japan
| | - Emmanuel Oluwadare Balogun
- Department of Biomedical Chemistry, Graduate School of Medicine, and
- Department of Applied Biology, Graduate School of Science and Technology, Kyoto Institute of Technology, Kyoto 606-8585, Japan
- Department of Biochemistry, Ahmadu Bello University, Zaria 2222, Nigeria
| | - Takeshi Nara
- Department of Molecular and Cellular Parasitology, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | - Takashi Aoki
- Department of Molecular and Cellular Parasitology, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | - Teruki Honma
- Systems and Structural Biology Center, RIKEN, Tsurumi, Yokohama 230-0045, Japan;
| | - Akiko Tanaka
- Systems and Structural Biology Center, RIKEN, Tsurumi, Yokohama 230-0045, Japan;
| | - Masayuki Inoue
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Shigeru Matsuoka
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Hiroyuki Saimoto
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Tottori 680-8552, Japan; and
| | - Anthony L. Moore
- Biochemistry and Molecular Biology, School of Life Sciences, University of Sussex, Brighton BN1 9QG, United Kingdom
| | - Shigeharu Harada
- Department of Applied Biology, Graduate School of Science and Technology, Kyoto Institute of Technology, Kyoto 606-8585, Japan
| | - Kiyoshi Kita
- Department of Biomedical Chemistry, Graduate School of Medicine, and
| |
Collapse
|
32
|
Moore AL, Shiba T, Young L, Harada S, Kita K, Ito K. Unraveling the heater: new insights into the structure of the alternative oxidase. ANNUAL REVIEW OF PLANT BIOLOGY 2013; 64:637-63. [PMID: 23638828 DOI: 10.1146/annurev-arplant-042811-105432] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The alternative oxidase is a membrane-bound ubiquinol oxidase found in the majority of plants as well as many fungi and protists, including pathogenic organisms such as Trypanosoma brucei. It catalyzes a cyanide- and antimycin-A-resistant oxidation of ubiquinol and the reduction of oxygen to water, short-circuiting the mitochondrial electron-transport chain prior to proton translocation by complexes III and IV, thereby dramatically reducing ATP formation. In plants, it plays a key role in cellular metabolism, thermogenesis, and energy homeostasis and is generally considered to be a major stress-induced protein. We describe recent advances in our understanding of this protein's structure following the recent successful crystallization of the alternative oxidase from T. brucei. We focus on the nature of the active site and ubiquinol-binding channels and propose a mechanism for the reduction of oxygen to water based on these structural insights. We also consider the regulation of activity at the posttranslational and retrograde levels and highlight challenges for future research.
Collapse
Affiliation(s)
- Anthony L Moore
- Biochemistry and Molecular Biology, School of Life Sciences, University of Sussex, Brighton BN1 9QG, United Kingdom.
| | | | | | | | | | | |
Collapse
|
33
|
Saimoto H, Kido Y, Haga Y, Sakamoto K, Kita K. Pharmacophore identification of ascofuranone, potent inhibitor of cyanide-insensitive alternative oxidase of Trypanosoma brucei. ACTA ACUST UNITED AC 2012. [DOI: 10.1093/jb/mvs135] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
34
|
Mitochondria and Trypanosomatids: Targets and Drugs. Pharm Res 2011; 28:2758-70. [DOI: 10.1007/s11095-011-0586-3] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Accepted: 09/07/2011] [Indexed: 01/20/2023]
|
35
|
Opperdoes FR, De Jonckheere JF, Tielens AG. Naegleria gruberi metabolism. Int J Parasitol 2011; 41:915-24. [DOI: 10.1016/j.ijpara.2011.04.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Revised: 03/30/2011] [Accepted: 04/23/2011] [Indexed: 01/08/2023]
|
36
|
OHASHI-SUZUKI M, YABU Y, OHSHIMA S, NAKAMURA K, KIDO Y, SAKAMOTO K, KITA K, OHTA N, SUZUKI T. Differential Kinetic Activities of Glycerol Kinase among African Trypanosome Species: Phylogenetic and Therapeutic Implications. J Vet Med Sci 2011; 73:615-21. [DOI: 10.1292/jvms.10-0481] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Mitsuko OHASHI-SUZUKI
- Department of International Health Development, Division of Public Health, Graduate School of Tokyo Medical and Dental University
| | | | - Shigeru OHSHIMA
- Department of Core Laboratory, Nagoya City University Graduate School of Medical Sciences
| | - Kosuke NAKAMURA
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo
| | - Yasutoshi KIDO
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo
| | - Kimitoshi SAKAMOTO
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo
| | - Kiyoshi KITA
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo
| | - Nobuo OHTA
- Department of International Health Development, Division of Public Health, Graduate School of Tokyo Medical and Dental University
| | - Takashi SUZUKI
- Department of International Health Development, Division of Public Health, Graduate School of Tokyo Medical and Dental University
| |
Collapse
|
37
|
Nakamura K, Fujioka S, Fukumoto S, Inoue N, Sakamoto K, Hirata H, Kido Y, Yabu Y, Suzuki T, Watanabe YI, Saimoto H, Akiyama H, Kita K. Trypanosome alternative oxidase, a potential therapeutic target for sleeping sickness, is conserved among Trypanosoma brucei subspecies. Parasitol Int 2010; 59:560-4. [PMID: 20688188 DOI: 10.1016/j.parint.2010.07.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2010] [Revised: 07/17/2010] [Accepted: 07/23/2010] [Indexed: 11/16/2022]
Abstract
Trypanosoma brucei rhodesiense and T. b. gambiense are known causes of human African trypanosomiasis (HAT), or "sleeping sickness," which is deadly if untreated. We previously reported that a specific inhibitor of trypanosome alternative oxidase (TAO), ascofuranone, quickly kills African trypanosomes in vitro and cures mice infected with another subspecies, non-human infective T. b. brucei, in in vivo trials. As an essential factor for trypanosome survival, TAO is a promising drug target due to the absence of alternative oxidases in the mammalian host. This study found TAO expression in HAT-causing trypanosomes; its amino acid sequence was identical to that in non-human infective T. b. brucei. The biochemical understanding of the TAO including its 3 dimensional structure and inhibitory compounds against TAO could therefore be applied to all three T. brucei subspecies in search of a cure for HAT. Our in vitro study using T. b. rhodesiense confirmed the effectiveness of ascofuranone (IC(50) value: 1 nM) to eliminate trypanosomes in human infective strain cultures.
Collapse
Affiliation(s)
- Kosuke Nakamura
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Tokyo 113-0033, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Kido Y, Sakamoto K, Nakamura K, Harada M, Suzuki T, Yabu Y, Saimoto H, Yamakura F, Ohmori D, Moore A, Harada S, Kita K. Purification and kinetic characterization of recombinant alternative oxidase from Trypanosoma brucei brucei. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:443-50. [DOI: 10.1016/j.bbabio.2009.12.021] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2009] [Revised: 12/23/2009] [Accepted: 12/25/2009] [Indexed: 10/20/2022]
|
39
|
Balogun EO, Inaoka DK, Kido Y, Shiba T, Nara T, Aoki T, Honma T, Tanaka A, Inoue M, Matsuoka S, Michels PAM, Harada S, Kita K. Overproduction, purification, crystallization and preliminary X-ray diffraction analysis of Trypanosoma brucei gambiense glycerol kinase. Acta Crystallogr Sect F Struct Biol Cryst Commun 2010; 66:304-8. [PMID: 20208167 PMCID: PMC2833043 DOI: 10.1107/s1744309110000369] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2009] [Accepted: 01/05/2010] [Indexed: 11/10/2022]
Abstract
In the bloodstream forms of human trypanosomes, glycerol kinase (GK; EC 2.7.1.30) is one of the nine glycosomally compartmentalized enzymes that are essential for energy metabolism. In this study, a recombinant Trypanosoma brucei gambiense GK (rTbgGK) with an N-terminal cleavable His(6) tag was overexpressed, purified to homogeneity and crystallized by the sitting-drop vapour-diffusion method using PEG 400 as a precipitant. A complete X-ray diffraction data set to 2.75 A resolution indicated that the crystals belonged to the orthorhombic space group P2(1)2(1)2(1), with unit-cell parameters a = 63.84, b = 121.50, c = 154.59 A. The presence of two rTbgGK molecules in the asymmetric unit gives a Matthews coefficient (V(M)) of 2.5 A(3) Da(-1), corresponding to 50% solvent content.
Collapse
Affiliation(s)
- Emmanuel Oluwadare Balogun
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Department of Biochemistry, Ahmadu Bello University, Zaria, Nigeria
| | - Daniel Ken Inaoka
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yasutoshi Kido
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Tomoo Shiba
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takeshi Nara
- Department of Molecular and Cellular Parasitology, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | - Takashi Aoki
- Department of Molecular and Cellular Parasitology, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | - Teruki Honma
- Systems and Structural Biology Center, RIKEN, Tsurumi, Yokohama 230-0045, Japan
| | - Akiko Tanaka
- Systems and Structural Biology Center, RIKEN, Tsurumi, Yokohama 230-0045, Japan
| | - Masayuki Inoue
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Shigeru Matsuoka
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Paul A. M. Michels
- Research Unit for Tropical Diseases, de Duve Institute and Laboratory of Biochemistry, Université Catholique de Louvain, Avenue Hippocrate 74, B-1200 Brussels, Belgium
| | - Shigeharu Harada
- Department of Applied Biology, Graduate School of Science and Technology, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585, Japan
| | - Kiyoshi Kita
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
40
|
Kido Y, Shiba T, Inaoka DK, Sakamoto K, Nara T, Aoki T, Honma T, Tanaka A, Inoue M, Matsuoka S, Moore A, Harada S, Kita K. Crystallization and preliminary crystallographic analysis of cyanide-insensitive alternative oxidase from Trypanosoma brucei brucei. Acta Crystallogr Sect F Struct Biol Cryst Commun 2010; 66:275-8. [PMID: 20208159 PMCID: PMC2833035 DOI: 10.1107/s1744309109054062] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2009] [Accepted: 12/15/2009] [Indexed: 04/24/2023]
Abstract
Cyanide-insensitive alternative oxidase (AOX) is a mitochondrial membrane protein and a non-proton-pumping ubiquinol oxidase that catalyzes the four-electron reduction of dioxygen to water. In the African trypanosomes, trypanosome alternative oxidase (TAO) functions as a cytochrome-independent terminal oxidase that is essential for survival in the mammalian host; hence, the enzyme is considered to be a promising drug target for the treatment of trypanosomiasis. In the present study, recombinant TAO (rTAO) overexpressed in haem-deficient Escherichia coli was purified and crystallized at 293 K by the hanging-drop vapour-diffusion method using polyethylene glycol 400 as a precipitant. X-ray diffraction data were collected at 100 K and were processed to 2.9 A resolution with 93.1% completeness and an overall R(merge) of 9.5%. The TAO crystals belonged to the orthorhombic space group I222 or I2(1)2(1)2(1), with unit-cell parameters a = 63.11, b = 136.44, c = 223.06 A. Assuming the presence of two rTAO molecules in the asymmetric unit (2 x 38 kDa), the calculated Matthews coefficient (V(M)) was 3.2 A(3) Da(-1), which corresponds to a solvent content of 61.0%. This is the first report of a crystal of the membrane-bound diiron proteins, which include AOXs.
Collapse
Affiliation(s)
- Yasutoshi Kido
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Tomoo Shiba
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Daniel Ken Inaoka
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Kimitoshi Sakamoto
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Takeshi Nara
- Department of Molecular and Cellular Parasitology, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | - Takashi Aoki
- Department of Molecular and Cellular Parasitology, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | - Teruki Honma
- Systems and Structural Biology Center, RIKEN, Tsurumi, Yokohama 230-0045, Japan
| | - Akiko Tanaka
- Systems and Structural Biology Center, RIKEN, Tsurumi, Yokohama 230-0045, Japan
| | - Masayuki Inoue
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Shigeru Matsuoka
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Anthony Moore
- Biochemistry and Biomedical Sciences, School of Life Sciences, University of Sussex, Falmer, Brighton, England
| | - Shigeharu Harada
- Department of Applied Biology, Graduate School of Science and Technology, Kyoto Institute of Technology, Kyoto 606-8585, Japan
| | - Kiyoshi Kita
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
41
|
Abstract
Iron is almost ubiquitous in living organisms due to the utility of its redox chemistry. It is also dangerous as it can catalyse the formation of reactive free radicals - a classical double-edged sword. In this review, we examine the uptake and usage of iron by trypanosomatids and discuss how modulation of host iron metabolism plays an important role in the protective response. Trypanosomatids require iron for crucial processes including DNA replication, antioxidant defence, mitochondrial respiration, synthesis of the modified base J and, in African trypanosomes, the alternative oxidase. The source of iron varies between species. Bloodstream-form African trypanosomes acquire iron from their host by uptake of transferrin, and Leishmania amazonensis expresses a ZIP family cation transporter in the plasma membrane. In other trypanosomatids, iron uptake has been poorly characterized. Iron-withholding responses by the host can be a major determinant of disease outcome. Their role in trypanosomatid infections is becoming apparent. For example, the cytosolic sequestration properties of NRAMP1, confer resistance against leishmaniasis. Conversely, cytoplasmic sequestration of iron may be favourable rather than detrimental to Trypanosoma cruzi. The central role of iron in both parasite metabolism and the host response is attracting interest as a possible point of therapeutic intervention.
Collapse
|
42
|
Particularities of mitochondrial structure in parasitic protists (Apicomplexa and Kinetoplastida). Int J Biochem Cell Biol 2009; 41:2069-80. [PMID: 19379828 DOI: 10.1016/j.biocel.2009.04.007] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2008] [Revised: 04/07/2009] [Accepted: 04/09/2009] [Indexed: 11/20/2022]
Abstract
Without mitochondria, eukaryotic cells would depend entirely on anaerobic glycolysis for ATP generation. This also holds true for protists, both free-living and parasitic. Parasitic protists include agents of human and animal diseases that have a huge impact on world populations. In the phylum Apicomplexa, several species of Plasmodium cause malaria, whereas Toxoplasma gondii is a cosmopolite parasite found on all continents. Flagellates of the order Kinetoplastida include the genera Leishmania and Trypanosoma causative agents of human leishmaniasis and (depending on the species) African trypanosomiasis and Chagas disease. Although clearly distinct in many aspects, the members of these two groups bear a single and usually well developed mitochondrion. The single mitochondrion of Apicomplexa has a dense matrix and many cristae with a circular profile. The organelle is even more peculiar in the order Kinetoplastida, exhibiting a condensed network of DNA at a specific position, always close to the flagellar basal body. This arrangement is known as Kinetoplast and the name of the order derived from it. Kinetoplastids also bear glycosomes, peroxisomes that concentrate enzymes of the glycolytic cycle. Mitochondrial volume and activity is maximum when glycosomal is low and vice versa. In both Apicomplexa and trypanosomatids, mitochondria show particularities that are absent in other eukaryotic organisms. These peculiar features make them an attractive target for therapeutic drugs for the diseases they cause.
Collapse
|
43
|
Kita K, Shiomi K, Omura S. Advances in drug discovery and biochemical studies. Trends Parasitol 2007; 23:223-9. [PMID: 17383234 DOI: 10.1016/j.pt.2007.03.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2007] [Revised: 02/26/2007] [Accepted: 03/12/2007] [Indexed: 11/30/2022]
Abstract
Japanese researchers continue to discover new means to combat parasites and make important contributions toward developing tools for global control of parasitic diseases. Streptomyces avermectinius, the source of ivermectin, was discovered in Japan in the early 1970s and renewed and vigorous screening of microbial metabolites in recent years has led to the discovery of new antiprotozoals and anthelminthics, including antimalarial drugs. Intensive studies of parasite energy metabolism, such as NADH-fumarate reductase systems and the synthetic pathways of nucleic acids and amino acids, also contribute to the identification of novel and unique drug targets.
Collapse
Affiliation(s)
- Kiyoshi Kita
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | | | | |
Collapse
|
44
|
Ott R, Chibale K, Anderson S, Chipeleme A, Chaudhuri M, Guerrah A, Colowick N, Hill GC. Novel inhibitors of the trypanosome alternative oxidase inhibit Trypanosoma brucei brucei growth and respiration. Acta Trop 2006; 100:172-84. [PMID: 17126803 DOI: 10.1016/j.actatropica.2006.10.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2006] [Revised: 09/06/2006] [Accepted: 10/11/2006] [Indexed: 11/17/2022]
Abstract
African trypanosomiasis is a deadly disease for which few chemotherapeutic options are available. The causative agents, Trypanosoma brucei rhodesiense and T. b. gambiense, utilize a non-cytochrome, alternative oxidase (AOX) for their cellular respiration. The absence of this enzyme in mammalian cells makes it a logical target for therapeutic agents. We designed three novel compounds, ACB41, ACD15, and ACD16, and investigated their effects on trypanosome alternative oxidase (TAO) enzymatic activity, parasite respiration, and parasite growth in vitro. All three compounds contain a 2-hydroxybenzoic acid moiety, analogous to that present in SHAM, and a prenyl side chain similar to that found in ubiquinol. ACD15 and ACD16 are further differentiated by the presence of a solubility-enhancing carbohydrate moiety. Kinetic studies with purified TAO show that all three compounds competitively inhibit TAO, and two compounds, ACB41 and ACD15, have inhibition constants five- and three-fold more potent than SHAM, respectively. All three compounds inhibited the respiration and growth of continuously cultured T. b. brucei bloodstream cells in a dose-dependent manner. None of the compounds interfered with respiration of rat liver mitochondria, nor did they inhibit the growth of a continuously cultured mammalian cell line. Collectively, the results suggest we have identified a new class of compounds that are inhibitors of TAO, have trypanocidal properties in vitro, and warrant further investigation in vivo.
Collapse
Affiliation(s)
- Robert Ott
- Vanderbilt University School of Medicine, Department of Microbiology and Immunology, Nashville, TN 37232, United States
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Chaudhuri M, Ott RD, Hill GC. Trypanosome alternative oxidase: from molecule to function. Trends Parasitol 2006; 22:484-91. [PMID: 16920028 DOI: 10.1016/j.pt.2006.08.007] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2006] [Revised: 07/06/2006] [Accepted: 08/04/2006] [Indexed: 10/24/2022]
Abstract
Trypanosome alternative oxidase (TAO) is the cytochrome-independent terminal oxidase of the mitochondrial electron transport chain. TAO is a diiron protein that transfers electrons from ubiquinol to oxygen, reducing the oxygen to water. The mammalian bloodstream forms of Trypanosoma brucei depend solely on TAO for respiration. The inhibition of TAO by salicylhydroxamic acid (SHAM) or ascofuranone is trypanocidal. TAO is present at a reduced level in the procyclic form of T. brucei, where it is engaged in respiration and is also needed for developmental processes. Alternative oxidases similar to TAO have been found in a wide variety of organisms but not in mammals, thus rendering TAO an important chemotherapeutic target for African trypanosomiasis.
Collapse
Affiliation(s)
- Minu Chaudhuri
- Division of Microbial Pathogenesis and Immune Response, Department of Biomedical Sciences, Meharry Medical College, Nashville, TN 37208, USA.
| | | | | |
Collapse
|