1
|
Gupta J, Menon Y, Kumar S, Jain CK. Vaccine Designing Technology against Leishmaniasis: Current Challenges and Implication. Curr Drug Discov Technol 2025; 22:e240524230315. [PMID: 38798212 DOI: 10.2174/0115701638291767240513113400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/29/2024] [Accepted: 03/20/2024] [Indexed: 05/29/2024]
Abstract
Leishmaniasis, a debilitating disease caused by protozoan parasites of the genus Leishmania and transmitted by the bite of a female sandfly, continues to present significant challenges despite ongoing research and collaboration in vaccine development. The intricate interaction between the parasite's life cycle stages and the host's immunological response, namely the promastigote and amastigote forms, adds complexity to vaccine design. The quest for a potent vaccine against Leishmaniasis demands a comprehensive understanding of the immune mechanisms that confer long-lasting protection, which necessitates extensive research efforts. In this pursuit, innovative approaches such as reverse vaccinology and computer-aided design offer promising avenues for unraveling the intricacies of host-pathogen interactions and identifying effective vaccine candidates. However, numerous obstacles, including limited treatment options, the need for sustained antigenic presence, and the prevalence of co-infections, particularly with HIV, impede progress. Nevertheless, through persistent research endeavours and collaborative initiatives, the goal of developing a highly efficacious vaccine against Leishmaniasis can be achieved, offering hope through the latest Omics data development with immunoinformatics approaches for effective vaccine design for the prevention of this disease.
Collapse
Affiliation(s)
- Jyoti Gupta
- Department of Biotechnology, Jaypee Institute of Information Technology, A-10, Sector-62, Noida, 201309, India
| | - Yukta Menon
- Department of Biotechnology, Jaypee Institute of Information Technology, A-10, Sector-62, Noida, 201309, India
| | - Subodh Kumar
- Department of Medical Laboratory Technology, School of Allied Health Science, Delhi Pharmaceutical Sciences and Research University, Sector-3, Pushp Vihar, MB Road, Saket, New Delhi, 110017, India
| | - Chakresh Kumar Jain
- Department of Biotechnology, Jaypee Institute of Information Technology, A-10, Sector-62, Noida, 201309, India
| |
Collapse
|
2
|
Margaroni M, Agallou M, Tsanaktsidou E, Kammona O, Kiparissides C, Karagouni E. Immunoinformatics Approach to Design a Multi-Epitope Nanovaccine against Leishmania Parasite: Elicitation of Cellular Immune Responses. Vaccines (Basel) 2023; 11:304. [PMID: 36851182 PMCID: PMC9960668 DOI: 10.3390/vaccines11020304] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
Leishmaniasis is a vector-borne disease caused by an intracellular parasite of the genus Leishmania with different clinical manifestations that affect millions of people worldwide, while the visceral form may be fatal if left untreated. Since the available chemotherapeutic agents are not satisfactory, vaccination emerges as the most promising strategy for confronting leishmaniasis. In the present study, a reverse vaccinology approach was adopted to design a pipeline starting from proteome analysis of three different Leishmania species and ending with the selection of a pool of MHCI- and MHCII-binding epitopes. Epitopes from five parasite proteins were retrieved and fused to construct a multi-epitope chimeric protein, named LeishChim. Immunoinformatics analyses indicated that LeishChim was a stable, non-allergenic and immunogenic protein that could bind strongly onto MHCI and MHCII molecules, suggesting it as a potentially safe and effective vaccine candidate. Preclinical evaluation validated the in silico prediction, since the LeishChim protein, encapsulated simultaneously with monophosphoryl lipid A (MPLA) into poly(D,L-lactide-co-glycolide) (PLGA) nanoparticles, elicited specific cellular immune responses when administered to BALB/c mice. These were characterized by the development of memory CD4+ T cells, as well as IFNγ- and TNFα-producing CD4+ and CD8+ T cells, supporting the potential of LeishChim as a vaccine candidate.
Collapse
Affiliation(s)
- Maritsa Margaroni
- Immunology of Infection Laboratory, Hellenic Pasteur Institute, 125 21 Athens, Greece
| | - Maria Agallou
- Immunology of Infection Laboratory, Hellenic Pasteur Institute, 125 21 Athens, Greece
| | - Evgenia Tsanaktsidou
- Chemical Process & Energy Resources Institute, Centre for Research and Technology Hellas, 57 001 Thessaloniki, Greece
| | - Olga Kammona
- Chemical Process & Energy Resources Institute, Centre for Research and Technology Hellas, 57 001 Thessaloniki, Greece
| | - Costas Kiparissides
- Chemical Process & Energy Resources Institute, Centre for Research and Technology Hellas, 57 001 Thessaloniki, Greece
- Department of Chemical Engineering, Aristotle University of Thessaloniki, 54 124 Thessaloniki, Greece
| | - Evdokia Karagouni
- Immunology of Infection Laboratory, Hellenic Pasteur Institute, 125 21 Athens, Greece
| |
Collapse
|
3
|
Chang KP, Reynolds JM, Liu Y, He JJ. Leishmaniac Quest for Developing a Novel Vaccine Platform. Is a Roadmap for Its Advances Provided by the Mad Dash to Produce Vaccines for COVID-19? Vaccines (Basel) 2022; 10:vaccines10020248. [PMID: 35214706 PMCID: PMC8874365 DOI: 10.3390/vaccines10020248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/27/2022] [Accepted: 01/31/2022] [Indexed: 02/04/2023] Open
Abstract
“Bugs as drugs” in medicine encompasses the use of microbes to enhance the efficacy of vaccination, such as the delivery of vaccines by Leishmania—the protozoan etiological agent of leishmaniasis. This novel approach is appraised in light of the successful development of vaccines for Covid-19. All relevant aspects of this pandemic are summarized to provide the necessary framework in contrast to leishmaniasis. The presentation is in a side-by-side matching format with particular emphasis on vaccines. The comparative approach makes it possible to highlight the timeframe of the vaccine workflows condensed by the caveats of pandemic urgency and, at the same time, provides the background of Leishmania behind its use as a vaccine carrier. Previous studies in support of the latter are summarized as follows. Leishmaniasis confers life-long immunity on patients after cure, suggesting the effective vaccination is achievable with whole-cell Leishmania. A new strategy was developed to inactivate these cells in vitro, rendering them non-viable, hence non-disease causing, albeit retaining their immunogenicity and adjuvanticity. This was achieved by installing a dual suicidal mechanism in Leishmania for singlet oxygen (1O2)-initiated inactivation. In vitro cultured Leishmania were genetically engineered for cytosolic accumulation of UV-sensitive uroporphyrin I and further loaded endosomally with a red light-sensitive cationic phthalocyanine. Exposing these doubly dye-loaded Leishmania to light triggers intracellular production of highly reactive but extremely short-lived 1O2, resulting in their rapid and complete inactivation. Immunization of susceptible animals with such inactivated Leishmania elicited immunity to protect them against experimental leishmaniasis. Significantly, the inactivated Leishmania was shown to effectively deliver transgenically add-on ovalbumin (OVA) to antigen-presenting cells (APC), wherein OVA epitopes were processed appropriately for presentation with MHC molecules to activate epitope-specific CD8+ T cells. Application of this approach to deliver cancer vaccine candidates, e.g., enolase-1, was shown to suppress tumor development in mouse models. A similar approach is predicted to elicit lasting immunity against infectious diseases, including complementation of the spike protein-based vaccines in use for COVID-19. This pandemic is devastating, but brings to light the necessity of considering many facets of the disease in developing vaccination programs. Closer collaboration is essential among those in diverse disciplinary areas to provide the roadmap toward greater success in the future. Highlighted herein are several specific issues of vaccinology and new approaches worthy of consideration due to the pandemic.
Collapse
|
4
|
Mina JGM, Denny PW. Everybody needs sphingolipids, right! Mining for new drug targets in protozoan sphingolipid biosynthesis. Parasitology 2018; 145:134-147. [PMID: 28637533 PMCID: PMC5964470 DOI: 10.1017/s0031182017001081] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 05/15/2017] [Accepted: 05/18/2017] [Indexed: 12/18/2022]
Abstract
Sphingolipids (SLs) are an integral part of all eukaryotic cellular membranes. In addition, they have indispensable functions as signalling molecules controlling a myriad of cellular events. Disruption of either the de novo synthesis or the degradation pathways has been shown to have detrimental effects. The earlier identification of selective inhibitors of fungal SL biosynthesis promised potent broad-spectrum anti-fungal agents, which later encouraged testing some of those agents against protozoan parasites. In this review we focus on the key enzymes of the SL de novo biosynthetic pathway in protozoan parasites of the Apicomplexa and Kinetoplastidae, outlining the divergence and interconnection between host and pathogen metabolism. The druggability of the SL biosynthesis is considered, alongside recent technology advances that will enable the dissection and analyses of this pathway in the parasitic protozoa. The future impact of these advances for the development of new therapeutics for both globally threatening and neglected infectious diseases is potentially profound.
Collapse
Affiliation(s)
- John G M Mina
- Department of Biosciences,Lower Mountjoy,Stockton Road,Durham DH1 3LE,UK
| | - P W Denny
- Department of Biosciences,Lower Mountjoy,Stockton Road,Durham DH1 3LE,UK
| |
Collapse
|
5
|
Vakili B, Nezafat N, Hatam GR, Zare B, Erfani N, Ghasemi Y. Proteome-scale identification of Leishmania infantum for novel vaccine candidates: A hierarchical subtractive approach. Comput Biol Chem 2017; 72:16-25. [PMID: 29291591 DOI: 10.1016/j.compbiolchem.2017.12.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Revised: 11/16/2017] [Accepted: 12/18/2017] [Indexed: 01/06/2023]
Abstract
Vaccines are one of the most significant achievements in medical science. However, vaccine design is still challenging at all stages. The selection of antigenic peptides as vaccine candidates is the first and most important step for vaccine design. Experimental selection of antigenic peptides for the design of vaccines is a time-consuming, labor-intensive and expensive procedure. More recently, in the light of computer-aided biotechnology and reverse vaccinology, the precise selection of antigenic peptides and rational vaccine design against many pathogens have developed. In this study, the whole proteome of Leishmania infantum was analyzed using a pipeline of algorithms. From the set of 8045 proteins of L. infantum, sixteen novel antigenic proteins were derived using a hierarchical proteome subtractive analysis. These novel vaccine targets can be utilized as top candidates for designing the new prophylactic or therapeutic vaccines against visceral leishmaniasis. Significantly, all the sixteen novel vaccine candidates are non-allergen antigenic proteins that have not been used for the design of vaccines against visceral leishmaniasis until now.
Collapse
Affiliation(s)
- Bahareh Vakili
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Navid Nezafat
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Gholam Reza Hatam
- Basic Sciences in Infectious Diseases Research Center, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Bijan Zare
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nasrollah Erfani
- Institute for Cancer Research (ICR), School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Younes Ghasemi
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran; Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
6
|
Mendes-Sousa AF, do Vale VF, Silva NCS, Guimaraes-Costa AB, Pereira MH, Sant'Anna MRV, Oliveira F, Kamhawi S, Ribeiro JMC, Andersen JF, Valenzuela JG, Araujo RN. The Sand Fly Salivary Protein Lufaxin Inhibits the Early Steps of the Alternative Pathway of Complement by Direct Binding to the Proconvertase C3b-B. Front Immunol 2017; 8:1065. [PMID: 28912782 PMCID: PMC5583147 DOI: 10.3389/fimmu.2017.01065] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 08/16/2017] [Indexed: 02/03/2023] Open
Abstract
Saliva of the blood feeding sand fly Lutzomyia longipalpis was previously shown to inhibit the alternative pathway (AP) of the complement system. Here, we have identified Lufaxin, a protein component in saliva, as the inhibitor of the AP. Lufaxin inhibited the deposition of C3b, Bb, Properdin, C5b, and C9b on agarose-coated plates in a dose-dependent manner. It also inhibited the activation of factor B in normal serum, but had no effect on the components of the membrane attack complex. Surface plasmon resonance (SPR) experiments demonstrated that Lufaxin stabilizes the C3b-B proconvertase complex when passed over a C3b surface in combination with factor B. Lufaxin was also shown to inhibit the activation of factor B by factor D in a reconstituted C3b-B, but did not inhibit the activation of C3 by reconstituted C3b-Bb. Proconvertase stabilization does not require the presence of divalent cations, but addition of Ni2+ increases the stability of complexes formed on SPR surfaces. Stabilization of the C3b-B complex to prevent C3 convertase formation (C3b-Bb formation) is a novel mechanism that differs from previously described strategies used by other organisms to inhibit the AP of the host complement system.
Collapse
Affiliation(s)
- Antonio F Mendes-Sousa
- Physiology of Hematophagous Insects Laboratory, Department of Parasitology, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.,Campus Senador Helvídio Nunes de Barros, Universidade Federal do Piauí, Picos, Piauí, Brazil
| | - Vladimir Fazito do Vale
- Physiology of Hematophagous Insects Laboratory, Department of Parasitology, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.,Laboratory of Simuliids and Onchocerciasis, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Naylene C S Silva
- Physiology of Hematophagous Insects Laboratory, Department of Parasitology, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Anderson B Guimaraes-Costa
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States
| | - Marcos H Pereira
- Physiology of Hematophagous Insects Laboratory, Department of Parasitology, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mauricio R V Sant'Anna
- Physiology of Hematophagous Insects Laboratory, Department of Parasitology, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fabiano Oliveira
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States
| | - Shaden Kamhawi
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States
| | - José M C Ribeiro
- Vector Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States
| | - John F Andersen
- Vector Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States
| | - Jesus G Valenzuela
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States
| | - Ricardo N Araujo
- Physiology of Hematophagous Insects Laboratory, Department of Parasitology, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
7
|
Margaroni M, Agallou M, Athanasiou E, Kammona O, Kiparissides C, Gaitanaki C, Karagouni E. Vaccination with poly(D,L-lactide-co-glycolide) nanoparticles loaded with soluble Leishmania antigens and modified with a TNFα-mimicking peptide or monophosphoryl lipid A confers protection against experimental visceral leishmaniasis. Int J Nanomedicine 2017; 12:6169-6184. [PMID: 28883727 PMCID: PMC5574665 DOI: 10.2147/ijn.s141069] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Visceral leishmaniasis (VL) persists as a major public health problem, and since the existing chemotherapy is far from satisfactory, development of an effective vaccine emerges as the most appropriate strategy for confronting VL. The development of an effective vaccine relies on the selection of the appropriate antigen and also the right adjuvant and/or delivery vehicle. In the present study, the protective efficacy of poly(D,L-lactide-co-glycolide) (PLGA) nanoparticles (NPs), which were surface-modified with a TNFα-mimicking eight-amino-acid peptide (p8) and further functionalized by encapsulating soluble Leishmania infantum antigens (sLiAg) and monophosphoryl lipid A (MPLA), a TLR4 ligand, was evaluated against challenge with L. infantum parasites in BALB/c mice. Vaccination with these multifunctionalized PLGA nanoformulations conferred significant protection against parasite infection in vaccinated mice. In particular, vaccination with PLGA-sLiAg-MPLA or p8-PLGA-sLiAg NPs resulted in almost complete elimination of the parasite in the spleen for up to 4 months post-challenge. Parasite burden reduction was accompanied by antigen-specific humoral and cellular immune responses. Specifically, injection with PLGA-sLiAg-MPLA raised exclusively anti-sLiAg IgG1 antibodies post-vaccination, while in p8-PLGA-sLiAg-vaccinated mice, no antibody production was detected. However, 4 months post-challenge, in mice vaccinated with all the multifunctionalized NPs, antibody class switching towards IgG2a subtype was observed. The study of cellular immune responses revealed the increased proliferation capacity of spleen cells against sLiAg, consisting of IFNγ-producing CD4+ and CD8+ T cells. Importantly, the activation of CD8+ T cells was exclusively attributed to vaccination with PLGA NPs surface-modified with the p8 peptide. Moreover, characterization of cytokine production in vaccinated-infected mice revealed that protection was accompanied by significant increase of IFNγ and lower levels of IL-4 and IL-10 in protected mice when compared to control infected group. Conclusively, the above nanoformulations hold promise for future vaccination strategies against VL.
Collapse
Affiliation(s)
- Maritsa Margaroni
- Laboratory of Cellular Immunology, Department of Microbiology, Hellenic Pasteur Institute.,Department of Animal and Human Physiology, School of Biology, National and Kapodistrian University of Athens, Athens
| | - Maria Agallou
- Laboratory of Cellular Immunology, Department of Microbiology, Hellenic Pasteur Institute
| | - Evita Athanasiou
- Laboratory of Cellular Immunology, Department of Microbiology, Hellenic Pasteur Institute
| | - Olga Kammona
- Chemical Process & Energy Resources Institute, Centre for Research and Technology Hellas
| | - Costas Kiparissides
- Chemical Process & Energy Resources Institute, Centre for Research and Technology Hellas.,Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Catherine Gaitanaki
- Department of Animal and Human Physiology, School of Biology, National and Kapodistrian University of Athens, Athens
| | - Evdokia Karagouni
- Laboratory of Cellular Immunology, Department of Microbiology, Hellenic Pasteur Institute
| |
Collapse
|
8
|
The Challenge of Stability in High-Throughput Gene Expression Analysis: Comprehensive Selection and Evaluation of Reference Genes for BALB/c Mice Spleen Samples in the Leishmania infantum Infection Model. PLoS One 2016; 11:e0163219. [PMID: 27668434 PMCID: PMC5036817 DOI: 10.1371/journal.pone.0163219] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 09/06/2016] [Indexed: 11/23/2022] Open
Abstract
The interaction of Leishmania with BALB/c mice induces dramatic changes in transcriptome patterns in the parasite, but also in the target organs (spleen, liver…) due to its response against infection. Real-time quantitative PCR (qPCR) is an interesting approach to analyze these changes and understand the immunological pathways that lead to protection or progression of disease. However, qPCR results need to be normalized against one or more reference genes (RG) to correct for non-specific experimental variation. The development of technical platforms for high-throughput qPCR analysis, and powerful software for analysis of qPCR data, have acknowledged the problem that some reference genes widely used due to their known or suspected “housekeeping” roles, should be avoided due to high expression variability across different tissues or experimental conditions. In this paper we evaluated the stability of 112 genes using three different algorithms: geNorm, NormFinder and RefFinder in spleen samples from BALB/c mice under different experimental conditions (control and Leishmania infantum-infected mice). Despite minor discrepancies in the stability ranking shown by the three methods, most genes show very similar performance as RG (either good or poor) across this massive data set. Our results show that some of the genes traditionally used as RG in this model (i.e. B2m, Polr2a and Tbp) are clearly outperformed by others. In particular, the combination of Il2rg + Itgb2 was identified among the best scoring candidate RG for every group of mice and every algorithm used in this experimental model. Finally, we have demonstrated that using “traditional” vs rationally-selected RG for normalization of gene expression data may lead to loss of statistical significance of gene expression changes when using large-scale platforms, and therefore misinterpretation of results. Taken together, our results highlight the need for a comprehensive, high-throughput search for the most stable reference genes in each particular experimental model.
Collapse
|
9
|
Lima BSS, Fialho LC, Pires SF, Tafuri WL, Andrade HM. Immunoproteomic and bioinformatic approaches to identify secreted Leishmania amazonensis, L. braziliensis, and L. infantum proteins with specific reactivity using canine serum. Vet Parasitol 2016; 223:115-9. [PMID: 27198787 DOI: 10.1016/j.vetpar.2016.04.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 03/21/2016] [Accepted: 04/18/2016] [Indexed: 10/21/2022]
Abstract
Leishmania spp have a wide range of hosts, and each host can harbor several Leishmania species. Dogs, for example, are frequently infected by Leishmania infantum, where they constitute its main reservoir, but they also serve as hosts for L. braziliensis and L. amazonensis. Serological tests for antibody detection are valuable tools for diagnosis of L. infantum infection due to the high levels of antibodies induced, unlike what is observed in L. amazonensis and L. braziliensis infections. Likewise, serology-based antigen-detection can be useful as an approach to diagnose any Leishmania species infection using different corporal fluid samples. Immunogenic and secreted proteins constitute powerful targets for diagnostic methods in antigen detection. As such, we performed immunoproteomic (2-DE, western blot and mass spectrometry) and bioinformatic screening to search for reactive and secreted proteins from L. amazonensis, L. braziliensis, and L. infantum. Twenty-eight non-redundant proteins were identified, among which, six were reactive only in L. amazonensis extracts, 10 in L. braziliensis extracts, and seven in L. infantum extracts. After bioinformatic analysis, seven proteins were predicted to be secreted, two of which were reactive only in L. amazonensis extracts (52kDa PDI and the glucose-regulated protein 78), one in L. braziliensis extracts (pyruvate dehydrogenase E1 beta subunit) and three in L. infantum extracts (two conserved hypothetical proteins and elongation factor 1-beta). We propose that proteins can be suitable targets for diagnostic methods based on antigen detection.
Collapse
Affiliation(s)
- B S S Lima
- Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Parasitologia, 31279-910 Belo Horizonte, Minas Gerais, Brazil.
| | - L C Fialho
- Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Parasitologia, 31279-910 Belo Horizonte, Minas Gerais, Brazil.
| | - S F Pires
- Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Parasitologia, 31279-910 Belo Horizonte, Minas Gerais, Brazil.
| | - W L Tafuri
- Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Patologia, 31279-910 Belo Horizonte, Minas Gerais, Brazil.
| | - H M Andrade
- Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Parasitologia, 31279-910 Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
10
|
Higa LH, Arnal L, Vermeulen M, Perez AP, Schilrreff P, Mundiña-Weilenmann C, Yantorno O, Vela ME, Morilla MJ, Romero EL. Ultradeformable Archaeosomes for Needle Free Nanovaccination with Leishmania braziliensis Antigens. PLoS One 2016; 11:e0150185. [PMID: 26934726 PMCID: PMC4774928 DOI: 10.1371/journal.pone.0150185] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 02/10/2016] [Indexed: 12/21/2022] Open
Abstract
Total antigens from Leishmania braziliensis promastigotes, solubilized with sodium cholate (dsLp), were formulated within ultradeformable nanovesicles (dsLp-ultradeformable archaeosomes, (dsLp-UDA), and dsLp-ultradeformable liposomes (dsLp-UDL)) and topically administered to Balb/c mice. Ultradeformable nanovesicles can penetrate the intact stratum corneum up to the viable epidermis, with no aid of classical permeation enhancers that can damage the barrier function of the skin. Briefly, 100 nm unilamellar dsLp-UDA (soybean phosphatidylcholine: Halorubrum tebenquichense total polar lipids (TPL): sodium cholate, 3:3:1 w:w) of -31.45 mV Z potential, containing 4.84 ± 0.53% w/w protein/lipid dsLp, 235 KPa Young modulus were prepared. In vitro, dsLp-UDA was extensively taken up by J774A1 and bone marrow derive cells, and the only that induced an immediate secretion of IL-6, IL-12p40 and TNF-α, followed by IL-1β, by J774A1 cells. Such extensive uptake is a key feature of UDA ascribed to the highly negatively charged archaeolipids of the TPL, which are recognized by a receptor specialized in uptake and not involved in downstream signaling. Despite dsLp alone was also immunostimulatory on J774A1 cells, applied twice a week on consecutive days along 7 weeks on Balb/c mice, it raised no measurable response unless associated to UDL or UDA. The highest systemic response, IgGa2 mediated, 1 log lower than im dsLp Al2O3, was elicited by dsLp-UDA. Such findings suggest that in vivo, UDL and UDA acted as penetration enhancers for dsLp, but only dsLp-UDA, owed to its pronounced uptake by APC, succeeded as topical adjuvants. The actual TPL composition, fully made of sn2,3 ether linked saturated archaeolipids, gives the UDA bilayer resistance against chemical, physical and enzymatic attacks that destroy ordinary phospholipids bilayers. Together, these properties make UDA a promising platform for topical drug targeted delivery and vaccination, that may be of help for countries with a deficient healthcare system.
Collapse
Affiliation(s)
- Leticia H. Higa
- Nanomedicine Research Program, Departamento de Ciencia y Tecnologia, Universidad Nacional de Quilmes. Roque Saenz Peña 352, Bernal, Argentina B1876BXD
| | - Laura Arnal
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Universidad Nacional de La Plata-CONICET, Sucursal 4 Casilla de Correo 16, 1900 La Plata, Argentina
| | - Mónica Vermeulen
- Instituto de Estudios de la Inmunidad Humoral (IDEHU), CONICET-UBA, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires. Junin 956, 4° piso, 1113, Buenos Aires, Argentina
| | - Ana Paula Perez
- Nanomedicine Research Program, Departamento de Ciencia y Tecnologia, Universidad Nacional de Quilmes. Roque Saenz Peña 352, Bernal, Argentina B1876BXD
| | - Priscila Schilrreff
- Nanomedicine Research Program, Departamento de Ciencia y Tecnologia, Universidad Nacional de Quilmes. Roque Saenz Peña 352, Bernal, Argentina B1876BXD
| | | | - Osvaldo Yantorno
- Facultad de Ciencias Exactas, Centro de Investigación y Desarrollo de Fermentaciones Industriales (CINDEFI), UNLP. 50 No. 227, 1900 La Plata, Argentina
| | - María Elena Vela
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Universidad Nacional de La Plata-CONICET, Sucursal 4 Casilla de Correo 16, 1900 La Plata, Argentina
| | - María José Morilla
- Nanomedicine Research Program, Departamento de Ciencia y Tecnologia, Universidad Nacional de Quilmes. Roque Saenz Peña 352, Bernal, Argentina B1876BXD
| | - Eder Lilia Romero
- Nanomedicine Research Program, Departamento de Ciencia y Tecnologia, Universidad Nacional de Quilmes. Roque Saenz Peña 352, Bernal, Argentina B1876BXD
- * E-mail:
| |
Collapse
|
11
|
Iniguez EA, Perez A, Maldonado RA, Skouta R. Novel arylalkylamine compounds exhibits potent selective antiparasitic activity against Leishmania major. Bioorg Med Chem Lett 2015; 25:5315-20. [PMID: 26410073 PMCID: PMC4654408 DOI: 10.1016/j.bmcl.2015.09.041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 09/14/2015] [Accepted: 09/16/2015] [Indexed: 10/23/2022]
Abstract
Leishmania major (L. major) is a protozoan parasite causal agent of Leishmaniasis. It is estimated that 12 million people are currently infected and around 2 million infections occur each year. Current treatments suffer of high toxicity for the patient, low efficacy toward the parasite, high cost, and are losing effectiveness due to parasite resistance. Discovering novel small molecule with high specificity/selectivity and drug-like properties for anti-leishmanial activity remains a significant challenge. The purpose of this study is to communicate the design and synthesis strategies of novel chemical compounds based of the arylalkylamine scaffold with selective toxicity towards L. major and less toxicity to human cells in vitro. Here, we have developed a structure activity relationship (SAR) study of arylalkylamine AA1 in order to study their anti-parasitic effect in L. major. Overall, 27 arylalkylamine compounds derived from AA1 were synthesized and purified by silica gel column chromatography. The purity of each analog was confirmed by spectroscopic methods ((1)H, (13)C NMR and LC/MS). Among these analogs, the compound AA9 showed the best toxic activity on L. major (LD50=3.34 μM), which represents a 9 fold higher lethality as compared with its parental AA1 (Fer-1) compound (LD50=28.75 μM). In addition, AA9 showed no significant toxicity at 80 μM on U20S Human Osteoblasts, Raw 264.7 Macrophages or intraperitoneal macrophages. In summary, our combined SAR study and biological evaluation data of AA1-AA27 compounds allow the identification of novel arylalkylamine compound AA9 that exhibits potent cytotoxicity against L. major promastigote with minimum toxic effect on human cells.
Collapse
Affiliation(s)
- Eva A Iniguez
- Department of Biological Sciences, University of Texas at El Paso, 500 W. University Ave., El Paso, TX 79902, USA
| | - Andrea Perez
- Department of Chemistry, University of Texas at El Paso, 500 W. University Ave., El Paso, TX 79902, USA
| | - Rosa A Maldonado
- Department of Biological Sciences, University of Texas at El Paso, 500 W. University Ave., El Paso, TX 79902, USA; Border Biomedical Research Center, University of Texas at El Paso, 500 W. University Ave., El Paso, TX 79902, USA.
| | - Rachid Skouta
- Department of Biological Sciences, University of Texas at El Paso, 500 W. University Ave., El Paso, TX 79902, USA; Department of Chemistry, University of Texas at El Paso, 500 W. University Ave., El Paso, TX 79902, USA; Border Biomedical Research Center, University of Texas at El Paso, 500 W. University Ave., El Paso, TX 79902, USA.
| |
Collapse
|
12
|
Katebi A, Gholami E, Taheri T, Zahedifard F, Habibzadeh S, Taslimi Y, Shokri F, Papadopoulou B, Kamhawi S, Valenzuela JG, Rafati S. Leishmania tarentolae secreting the sand fly salivary antigen PpSP15 confers protection against Leishmania major infection in a susceptible BALB/c mice model. Mol Immunol 2015; 67:501-11. [PMID: 26298575 DOI: 10.1016/j.molimm.2015.08.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 06/18/2015] [Accepted: 08/02/2015] [Indexed: 12/01/2022]
Abstract
Cutaneous leishmaniasis is a zoonotic, vector-borne disease causing a major health problem in several countries. No vaccine is available and there are limitations associated with the current therapeutic regimens. Immune responses to sand fly saliva have been shown to protect against Leishmania infection. A cellular immune response to PpSP15, a protein from the sand fly Phlebotomus papatasi, was sufficient to control Leishmania major infection in mice. This work presents data supporting the vaccine potency of recombinant live non-pathogenic Leishmania (L.) tarentolae secreting PpSP15 in mice and its potential as a new vaccine strategy against L. major. We generated a recombinant L. tarentolae-PpSP15 strain delivered in the presence of CpG ODN and evaluated its immunogenicity and protective immunity against L. major infection in BALB/c mice. In parallel, different vaccination modalities using PpSP15 as the target antigen were compared. Humoral and cellular immune responses were evaluated before and at three and eight weeks after challenge. Footpad swelling and parasite load were assessed at eight and eleven weeks post-challenge. Our results show that vaccination with L. tarentolae-PpSP15 in combination with CpG as a prime-boost modality confers strong protection against L. major infection that was superior to other vaccination modalities used in this study. This approach represents a novel and promising vaccination strategy against Old World cutaneous leishmaniasis.
Collapse
Affiliation(s)
- A Katebi
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran; Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - E Gholami
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| | - T Taheri
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| | - F Zahedifard
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| | - S Habibzadeh
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| | - Y Taslimi
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| | - F Shokri
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - B Papadopoulou
- Research Center in Infectious Diseases, CHU de Québec Research Center and Department of Microbiology, Infectious Disease and Immunology, Laval University, Quebec (QC), Canada University, Quebec (QC), Canada
| | - S Kamhawi
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20852, USA
| | - J G Valenzuela
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20852, USA
| | - S Rafati
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
13
|
Soto M, Corvo L, Garde E, Ramírez L, Iniesta V, Bonay P, Gómez-Nieto C, González VM, Martín ME, Alonso C, Coelho EAF, Barral A, Barral-Netto M, Iborra S. Coadministration of the Three Antigenic Leishmania infantum Poly (A) Binding Proteins as a DNA Vaccine Induces Protection against Leishmania major Infection in BALB/c Mice. PLoS Negl Trop Dis 2015; 9:e0003751. [PMID: 25955652 PMCID: PMC4425485 DOI: 10.1371/journal.pntd.0003751] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 04/11/2015] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Highly conserved intracellular proteins from Leishmania have been described as antigens in natural and experimental infected mammals. The present study aimed to evaluate the antigenicity and prophylactic properties of the Leishmania infantum Poly (A) binding proteins (LiPABPs). METHODOLOGY/PRINCIPAL FINDINGS Three different members of the LiPABP family have been described. Recombinant tools based on these proteins were constructed: recombinant proteins and DNA vaccines. The three recombinant proteins were employed for coating ELISA plates. Sera from human and canine patients of visceral leishmaniasis and human patients of mucosal leishmaniasis recognized the three LiPABPs. In addition, the protective efficacy of a DNA vaccine based on the combination of the three Leishmania PABPs has been tested in a model of progressive murine leishmaniasis: BALB/c mice infected with Leishmania major. The induction of a Th1-like response against the LiPABP family by genetic vaccination was able to down-regulate the IL-10 predominant responses elicited by parasite LiPABPs after infection in this murine model. This modulation resulted in a partial protection against L. major infection. LiPABP vaccinated mice showed a reduction on the pathology that was accompanied by a decrease in parasite burdens, in antibody titers against Leishmania antigens and in the IL-4 and IL-10 parasite-specific mediated responses in comparison to control mice groups immunized with saline or with the non-recombinant plasmid. CONCLUSION/SIGNIFICANCE The results presented here demonstrate for the first time the prophylactic properties of a new family of Leishmania antigenic intracellular proteins, the LiPABPs. The redirection of the immune response elicited against the LiPABP family (from IL-10 towards IFN-γ mediated responses) by genetic vaccination was able to induce a partial protection against the development of the disease in a highly susceptible murine model of leishmaniasis.
Collapse
Affiliation(s)
- Manuel Soto
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Departamento de Biología Molecular, Universidad Autónoma de Madrid, Madrid, Spain
| | - Laura Corvo
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Departamento de Biología Molecular, Universidad Autónoma de Madrid, Madrid, Spain
| | - Esther Garde
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Departamento de Biología Molecular, Universidad Autónoma de Madrid, Madrid, Spain
| | - Laura Ramírez
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Departamento de Biología Molecular, Universidad Autónoma de Madrid, Madrid, Spain
| | - Virginia Iniesta
- LeishmanCeres Laboratory (GLP Compliance Certified), Parasitology Unit. Veterinary Faculty, University of Extremadura, Cáceres, Spain
| | - Pedro Bonay
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Departamento de Biología Molecular, Universidad Autónoma de Madrid, Madrid, Spain
| | - Carlos Gómez-Nieto
- LeishmanCeres Laboratory (GLP Compliance Certified), Parasitology Unit. Veterinary Faculty, University of Extremadura, Cáceres, Spain
| | - Víctor M. González
- Departamento de Bioquímica-Investigación, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Hospital Ramón y Cajal, Madrid, Spain
| | - M. Elena Martín
- Departamento de Bioquímica-Investigación, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Hospital Ramón y Cajal, Madrid, Spain
| | - Carlos Alonso
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Departamento de Biología Molecular, Universidad Autónoma de Madrid, Madrid, Spain
| | - Eduardo A. F. Coelho
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Departamento de Patologia Clínica, COLTEC, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Aldina Barral
- Centro de Pesquisas Gonçalo Moniz (Fundação Oswaldo Cruz-FIOCRUZ), Salvador, Bahia, Brazil
| | - Manoel Barral-Netto
- Centro de Pesquisas Gonçalo Moniz (Fundação Oswaldo Cruz-FIOCRUZ), Salvador, Bahia, Brazil
| | - Salvador Iborra
- Immunobiology of Inflammation Laboratory, Department of Vascular Biology and Inflammation, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| |
Collapse
|
14
|
Jain K, Jain NK. Vaccines for visceral leishmaniasis: A review. J Immunol Methods 2015; 422:1-12. [PMID: 25858230 DOI: 10.1016/j.jim.2015.03.017] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Revised: 02/21/2015] [Accepted: 03/28/2015] [Indexed: 01/09/2023]
Abstract
Visceral leishmaniasis, which is also known as Kala-Azar, is one of the most severely neglected tropical diseases recognized by the World Health Organization (WHO). The threat of this debilitating disease continues due to unavailability of promising drug therapy or human vaccine. An extensive research is undergoing to develop a promising vaccine to prevent this devastating disease. In this review we compiled the findings of recent research with a view to facilitate knowledge on experimental vaccinology for visceral leishmaniasis. Various killed or attenuated parasite based first generation vaccines, second generation vaccines based on antigenic protein or recombinant protein, and third generation vaccines derived from antigen-encoding DNA plasmids including heterologous prime-boost Leishmania vaccine have been examined for control and prevention of visceral leishmaniasis. Vaccines based on recombinant protein and antigen-encoding DNA plasmids have given promising results and few vaccines including Leishmune®, Leishtec, and CaniLeish® have been licensed for canine visceral leishmaniasis. A systematic investigation of these vaccine candidates can lead to development of promising vaccine for human visceral leishmaniasis, most probably in the near future.
Collapse
Affiliation(s)
- Keerti Jain
- Pharmaceutical Nanotechnology Research Laboratory, ISF College of Pharmacy, Moga, Punjab 142001, India.
| | - N K Jain
- Pharmaceutical Nanotechnology Research Laboratory, ISF College of Pharmacy, Moga, Punjab 142001, India.
| |
Collapse
|
15
|
Abstract
Leishmania spp. are parasitic protozoa endemic in tropical and subtropical regions and the causative agent of leishmaniasis, a collection of syndromes whose clinical manifestations vary according to host and pathogen factors. Leishmania spp. are inoculated into the mammalian host by the bite of an infected sand fly, whereupon they are taken up by phagocytosis, convert into the replicative amastigote stage within macrophages, reproduce, spread to new macrophages and cause disease manifestations. A curative response against leishmaniasis depends in the classical activation of macrophages and the IL-12-dependent onset of an adaptive type 1 response characterized by the production of IFN-γ. Emerging evidence suggests that neutrophils, dendritic cells and other immune cells can serve as either temporary or stable hosts for Leishmania spp. Furthermore, it is becoming apparent that the initial interactions of the parasite with resident or early recruited immune cells can shape both the macrophage response and the type of adaptive immune response being induced. In this review, we compile a growing number of studies demonstrating how the earliest interactions of Leishmania spp. with eosinophils and mast cells influence the macrophage response to infection and the development of the adaptive immune response, hence, determining the ultimate outcome of infection.
Collapse
|
16
|
Sayonara DMV, Maria ADF, Priscila VG, Glauce SBV, Maria JT. In vitro and in vivo evaluation of quinones from Auxemma oncocalyx Taub. on Leishmania braziliensis. ACTA ACUST UNITED AC 2015. [DOI: 10.5897/jmpr2014.5141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
17
|
Ashok D, Acha-Orbea H. Timing is everything: dendritic cell subsets in murine Leishmania infection. Trends Parasitol 2014; 30:499-507. [DOI: 10.1016/j.pt.2014.08.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 08/07/2014] [Accepted: 08/08/2014] [Indexed: 02/02/2023]
|
18
|
Colhone MC, Silva-Jardim I, Stabeli RG, Ciancaglini P. Nanobiotechnologic approach to a promising vaccine prototype for immunisation against leishmaniasis: a fast and effective method to incorporate GPI-anchored proteins of Leishmania amazonensis into liposomes. J Microencapsul 2014; 32:143-50. [PMID: 25265060 DOI: 10.3109/02652048.2014.958203] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Liposomes are known to be a potent adjuvant for a wide range of antigens, as well as appropriate antigen carriers for antibody generation response in vivo. In addition, liposomes are effective vehicles for peptides and proteins, thus enhancing their immunogenicity. Considering these properties of liposomes and the antigenicity of the Leishmania membrane proteins, we evaluated if liposomes carrying glycosylphosphatidylinositol (GPI)-anchored proteins of Leishmania amazonensis promastigotes could induce protective immunity in BALB/c mice. To assay protective immunity, BALB/c mice were intraperitoneally injected with liposomes, GPI-protein extract (EPSGPI) as well as with the proteoliposomes carrying GPI-proteins. Mice inoculated with EPSGPI and total protein present in constitutive proteoliposomes displayed a post-infection protection of about 70% and 90%, respectively. The liposomes are able to work as adjuvant in the EPSGPI protection. These systems seem to be a promising vaccine prototype for immunisation against leishmaniasis.
Collapse
Affiliation(s)
- Marcelle Carolina Colhone
- Departamento Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto (FFCLRP), Universidade de São Paulo , Ribeirão Preto, São Paulo , Brazil
| | | | | | | |
Collapse
|
19
|
Epitope mapping of the HSP83.1 protein of Leishmania braziliensis discloses novel targets for immunodiagnosis of tegumentary and visceral clinical forms of leishmaniasis. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2014; 21:949-59. [PMID: 24807053 DOI: 10.1128/cvi.00151-14] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Gold standard serological diagnostic methods focus on antigens that elicit a strong humoral immune response that is specific to a certain pathogen. In this study, we used bioinformatics approaches to identify linear B-cell epitopes that are conserved among Leishmania species but are divergent from the host species Homo sapiens and Canis familiaris and from Trypanosoma cruzi, the parasite that causes Chagas disease, to select potential targets for the immunodiagnosis of leishmaniasis. Using these criteria, we selected heat shock protein 83.1 of Leishmania braziliensis for this study. We predicted three linear B-cell epitopes in its sequence. These peptides and the recombinant heat shock protein 83.1 (rHSP83.1) were tested in enzyme-linked immunosorbent assays (ELISAs) against serum samples from patients with tegumentary leishmaniasis (TL) and visceral leishmaniasis (VL) and from dogs infected with Leishmania infantum (canine VL [CVL]). Our data show that rHSP83.1 is a promising target in the diagnosis of TL. We also identified specific epitopes derived from HSP83.1 that can be used in the diagnosis of human TL (peptide 3), both human and canine VL (peptides 1 and 3), and all TL, VL, and CVL clinical manifestations (peptide 3). Receiver operating characteristic (ROC) curves confirmed the superior performance of rHSP83.1 and peptides 1 and 3 compared to that of the soluble L. braziliensis antigen and the reference test kit for the diagnosis of CVL in Brazil (EIE-LVC kit; Bio-Manguinhos, Fiocruz). Our study thus provides proof-of-principle evidence of the feasibility of using bioinformatics to identify novel targets for the immunodiagnosis of parasitic diseases using proteins that are highly conserved throughout evolution.
Collapse
|
20
|
Geraci NS, Mukbel RM, Kemp MT, Wadsworth MN, Lesho E, Stayback GM, Champion MM, Bernard MA, Abo-Shehada M, Coutinho-Abreu IV, Ramalho-Ortigão M, Hanafi HA, Fawaz EY, El-Hossary SS, Wortmann G, Hoel DF, McDowell MA. Profiling of human acquired immunity against the salivary proteins of Phlebotomus papatasi reveals clusters of differential immunoreactivity. Am J Trop Med Hyg 2014; 90:923-938. [PMID: 24615125 PMCID: PMC4015589 DOI: 10.4269/ajtmh.13-0130] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Phlebotomus papatasi sand flies are among the primary vectors of Leishmania major parasites from Morocco to the Indian subcontinent and from southern Europe to central and eastern Africa. Antibody-based immunity to sand fly salivary gland proteins in human populations remains a complex contextual problem that is not yet fully understood. We profiled the immunoreactivities of plasma antibodies to sand fly salivary gland sonicates (SGSs) from 229 human blood donors residing in different regions of sand fly endemicity throughout Jordan and Egypt as well as 69 US military personnel, who were differentially exposed to P. papatasi bites and L. major infections in Iraq. Compared with plasma from control region donors, antibodies were significantly immunoreactive to five salivary proteins (12, 26, 30, 38, and 44 kDa) among Jordanian and Egyptian donors, with immunoglobulin G4 being the dominant anti-SGS isotype. US personnel were significantly immunoreactive to only two salivary proteins (38 and 14 kDa). Using k-means clustering, donors were segregated into four clusters distinguished by unique immunoreactivity profiles to varying combinations of the significantly immunogenic salivary proteins. SGS-induced cellular proliferation was diminished among donors residing in sand fly-endemic regions. These data provide a clearer picture of human immune responses to sand fly vector salivary constituents.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Mary Ann McDowell
- * Address correspondence to Mary Ann McDowell, Eck Institute for Global Health, University of Notre Dame, 215 Galvin Life Sciences, Notre Dame, IN 46556. E-mail:
| |
Collapse
|
21
|
Bento DB, de Souza B, Steckert AV, Dias RO, Leffa DD, Moreno SE, Petronilho F, de Andrade VM, Dal-Pizzol F, Romão PR. Oxidative stress in mice treated with antileishmanial meglumine antimoniate. Res Vet Sci 2013; 95:1134-41. [PMID: 24012348 DOI: 10.1016/j.rvsc.2013.08.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 08/05/2013] [Accepted: 08/12/2013] [Indexed: 11/17/2022]
Abstract
In order to improve the understanding of the toxicity of pentavalent antimony (Sb(V)), we investigated the acute effects of meglumine antimoniate (MA) on the oxidative stress in heart, liver, kidney, spleen and brain tissue of mice. Levels of lipoperoxidation and protein carbonylation were measured to evaluate the oxidative status, whereas superoxide dismutase/catalase activity and glutathione levels were recorded to examine the antioxidative status. We observed that MA caused significant protein carbonylation in the heart, spleen and brain tissue. Increased lipoperoxidation was found in the liver and brain tissue. An imbalance between superoxide dismutase and catalase activities could be observed in heart, liver, spleen and brain tissue. Our results suggest that MA causes oxidative stress in several vital organs of mice. This indicates that the production of highly reactive oxygen and nitrogen species induced by MA might be involved in some of its toxic adverse effects.
Collapse
Affiliation(s)
- D B Bento
- Laboratório de Biologia Celular e Molecular, Unidade Acadêmica de Ciências da Saúde, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Souza AP, Soto M, Costa JML, Boaventura VS, de Oliveira CI, Cristal JR, Barral-Netto M, Barral A. Towards a more precise serological diagnosis of human tegumentary leishmaniasis using Leishmania recombinant proteins. PLoS One 2013; 8:e66110. [PMID: 23776617 PMCID: PMC3680450 DOI: 10.1371/journal.pone.0066110] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Accepted: 05/07/2013] [Indexed: 11/29/2022] Open
Abstract
Background Exposure to Leishmania induces a humoral immune response that can be used as a marker of parasite exposure. Methodology/Principal Findings Herein, ELISA was used to screen sera from patients with Tegumentary Leishmaniasis (TL) against different L. infantum-chagasi-derived recombinant proteins (rHSP70, rH2A, rH2B, rH3, rH4 and rKMP11). Among the recombinant proteins, rHSP70 and rH2A showed the best reactivity against human sera obtained from endemic areas of TL. Receiver-Operator Characteristics (ROC) curve analysis was used to identify the effectiveness of these proteins for serodiagnosis of TL. ROC curves confirmed the superior performance of rHSP70 and rH2A, in comparison to the other tested recombinant proteins. Additionally, we evaluated the specificity of the response to rHSP70 and rH2A by testing sera obtained from patients with Chagas' disease, Tuberculosis, Leprosy or Systemic Lupus Erythematosus. In this case, rHSP70 displayed an increased ability to discriminate diseases, in comparison to SLA. Conclusion Our results raise possibility of using rHSP70 for the serodiagnosis of TL
Collapse
Affiliation(s)
- Ana Paula Souza
- Centro de Pesquisas Gonçalo Moniz (CPqGM), Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Bahia, Brazil
| | - Manuel Soto
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Departamento de Biología Molecular, Universidad Autónoma de Madrid, Madrid, Spain
| | - Jackson M. L. Costa
- Centro de Pesquisas Gonçalo Moniz (CPqGM), Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Bahia, Brazil
| | - Viviane S. Boaventura
- Centro de Pesquisas Gonçalo Moniz (CPqGM), Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Bahia, Brazil
- Faculdade de Medicina da Bahia, Universidade Federal da Bahia (UFBA), Salvador, Bahia, Brazil
| | - Camila I. de Oliveira
- Centro de Pesquisas Gonçalo Moniz (CPqGM), Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Bahia, Brazil
- Faculdade de Medicina da Bahia, Universidade Federal da Bahia (UFBA), Salvador, Bahia, Brazil
- Instituto Nacional de Ciência e Tecnologia de Investigação em Imunologia (iii-INCT), Salvador, Bahia, Brazil
| | - Juqueline R. Cristal
- Centro de Pesquisas Gonçalo Moniz (CPqGM), Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Bahia, Brazil
| | - Manoel Barral-Netto
- Centro de Pesquisas Gonçalo Moniz (CPqGM), Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Bahia, Brazil
- Faculdade de Medicina da Bahia, Universidade Federal da Bahia (UFBA), Salvador, Bahia, Brazil
- Instituto Nacional de Ciência e Tecnologia de Investigação em Imunologia (iii-INCT), Salvador, Bahia, Brazil
| | - Aldina Barral
- Centro de Pesquisas Gonçalo Moniz (CPqGM), Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Bahia, Brazil
- Faculdade de Medicina da Bahia, Universidade Federal da Bahia (UFBA), Salvador, Bahia, Brazil
- Instituto Nacional de Ciência e Tecnologia de Investigação em Imunologia (iii-INCT), Salvador, Bahia, Brazil
- * E-mail:
| |
Collapse
|
23
|
Vaccination with L. infantum chagasi nucleosomal histones confers protection against new world cutaneous leishmaniasis caused by Leishmania braziliensis. PLoS One 2012; 7:e52296. [PMID: 23284976 PMCID: PMC3527524 DOI: 10.1371/journal.pone.0052296] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Accepted: 11/12/2012] [Indexed: 01/21/2023] Open
Abstract
Background Nucleosomal histones are intracellular proteins that are highly conserved among Leishmania species. After parasite destruction or spontaneous lysis, exposure to these proteins elicits a strong host immune response. In the present study, we analyzed the protective capability of Leishmania infantum chagasi nucleosomal histones against L. braziliensis infection using different immunization strategies. Methodology/Principal Findings BALB/c mice were immunized with either a plasmid DNA cocktail (DNA) containing four Leishmania nucleosomal histones or with the DNA cocktail followed by the corresponding recombinant proteins plus CpG (DNA/Protein). Mice were later challenged with L. braziliensis, in the presence of sand fly saliva. Lesion development, parasite load and the cellular immune response were analyzed five weeks after challenge. Immunization with either DNA alone or with DNA/Protein was able to inhibit lesion development. This finding was highlighted by the absence of infected macrophages in tissue sections. Further, parasite load at the infection site and in the draining lymph nodes was also significantly lower in vaccinated animals. This outcome was associated with increased expression of IFN-γ and down regulation of IL-4 at the infection site. Conclusion The data presented here demonstrate the potential use of L. infantum chagasi nucleosomal histones as targets for the development of vaccines against infection with L. braziliensis, as shown by the significant inhibition of disease development following a live challenge.
Collapse
|
24
|
Nascimento IP, Leite LCC. Recombinant vaccines and the development of new vaccine strategies. Braz J Med Biol Res 2012; 45:1102-11. [PMID: 22948379 PMCID: PMC3854212 DOI: 10.1590/s0100-879x2012007500142] [Citation(s) in RCA: 214] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 08/22/2012] [Indexed: 11/22/2022] Open
Abstract
Vaccines were initially developed on an empirical basis, relying mostly on attenuation or inactivation of pathogens. Advances in immunology, molecular biology, biochemistry, genomics, and proteomics have added new perspectives to the vaccinology field. The use of recombinant proteins allows the targeting of immune responses focused against few protective antigens. There are a variety of expression systems with different advantages, allowing the production of large quantities of proteins depending on the required characteristics. Live recombinant bacteria or viral vectors effectively stimulate the immune system as in natural infections and have intrinsic adjuvant properties. DNA vaccines, which consist of non-replicating plasmids, can induce strong long-term cellular immune responses. Prime-boost strategies combine different antigen delivery systems to broaden the immune response. In general, all of these strategies have shown advantages and disadvantages, and their use will depend on the knowledge of the mechanisms of infection of the target pathogen and of the immune response required for protection. In this review, we discuss some of the major breakthroughs that have been achieved using recombinant vaccine technologies, as well as new approaches and strategies for vaccine development, including potential shortcomings and risks.
Collapse
Affiliation(s)
- I P Nascimento
- Centro de Biotecnologia, Instituto Butantan, São Paulo, SP, Brasil
| | | |
Collapse
|
25
|
Domínguez-Bernal G, Horcajo P, Orden JA, De La Fuente R, Herrero-Gil A, Ordóñez-Gutiérrez L, Carrión J. Mitigating an undesirable immune response of inherent susceptibility to cutaneous leishmaniosis in a mouse model: the role of the pathoantigenic HISA70 DNA vaccine. Vet Res 2012; 43:59. [PMID: 22876751 PMCID: PMC3503552 DOI: 10.1186/1297-9716-43-59] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Accepted: 07/18/2012] [Indexed: 02/05/2023] Open
Abstract
Leishmania major is the major cause of cutaneous leishmaniosis (CL) outside of the Americas. In the present study we have cloned six Leishmania genes (H2A, H2B, H3, H4, A2 and HSP70) into the eukaryotic expression vector pCMVβ-m2a, resulting in pCMV-HISA70m2A, which encodes all six pathoantigenic proteins as a single polyprotein. This expression plasmid has been evaluated as a novel vaccine candidate in the BALB/c mouse model of CL. The DNA vaccine shifted the immune response normally induced by L. major infection away from a Th2-specific pathway to one of basal susceptibility. Immunization with pCMV-HISA70m2A dramatically reduced footpad lesions and lymph node parasite burdens relative to infected control mice. Complete absence of visceral parasite burden was observed in all 12 immunized animals but not in any of the 24 control mice. Moreover, vaccinated mice produced large amounts of IFN-γ, IL-17 and NO at 7 weeks post-infection (pi), and they showed lower arginase activity at the site of infection, lower IL-4 production and a weaker humoral immune response than infected control mice. Taken together, these results demonstrate the ability of the HISA70 vaccine to shift the murine immune response to L. major infection away from an undesirable, Th2-specific pathway to a less susceptible-like pathway involving Th1 and Th17 cytokine profiles.
Collapse
Affiliation(s)
- Gustavo Domínguez-Bernal
- Department of Animal Health, Veterinary Faculty, Complutense University of Madrid, 28040, Madrid, Spain.
| | | | | | | | | | | | | |
Collapse
|
26
|
Siqueira-Neto JL, Moon S, Jang J, Yang G, Lee C, Moon HK, Chatelain E, Genovesio A, Cechetto J, Freitas-Junior LH. An image-based high-content screening assay for compounds targeting intracellular Leishmania donovani amastigotes in human macrophages. PLoS Negl Trop Dis 2012; 6:e1671. [PMID: 22720099 PMCID: PMC3373640 DOI: 10.1371/journal.pntd.0001671] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Accepted: 04/19/2012] [Indexed: 11/19/2022] Open
Abstract
Leishmaniasis is a tropical disease threatening 350 million people from endemic regions. The available drugs for treatment are inadequate, with limitations such as serious side effects, parasite resistance or high cost. Driven by this need for new drugs, we developed a high-content, high-throughput image-based screening assay targeting the intracellular amastigote stage of different species of Leishmania in infected human macrophages. The in vitro infection protocol was adapted to a 384-well-plate format, enabling acquisition of a large amount of readouts by automated confocal microscopy. The reading method was based on DNA staining and required the development of a customized algorithm to analyze the images, which enabled the use of non-modified parasites. The automated analysis generated parameters used to quantify compound activity, including infection ratio as well as the number of intracellular amastigote parasites and yielded cytotoxicity information based on the number of host cells. Comparison of this assay with one that used the promastigote form to screen 26,500 compounds showed that 50% of the hits selected against the intracellular amastigote were not selected in the promastigote screening. These data corroborate the idea that the intracellular amastigote form of the parasite is the most appropriate to be used in primary screening assay for Leishmania.
Collapse
Affiliation(s)
- Jair L. Siqueira-Neto
- Center for Neglected Diseases Drug Discovery (CND3), Institut Pasteur Korea, Seongnam-si, Gyeonggi-do, South Korea
| | - Seunghyun Moon
- Image Mining Group, Institut Pasteur Korea, Seongnam-si, Gyeonggi-do, South Korea
| | - Jiyeon Jang
- Screening Technology & Pharmacology Group, Institut Pasteur Korea, Seongnam-si, Gyeonggi-do, South Korea
| | - Gyongseon Yang
- Center for Neglected Diseases Drug Discovery (CND3), Institut Pasteur Korea, Seongnam-si, Gyeonggi-do, South Korea
| | - Changbok Lee
- Image Mining Group, Institut Pasteur Korea, Seongnam-si, Gyeonggi-do, South Korea
| | - Hong Kee Moon
- Image Mining Group, Institut Pasteur Korea, Seongnam-si, Gyeonggi-do, South Korea
| | - Eric Chatelain
- Drugs for Neglected Diseases initiative (DNDi), Geneva, Switzerland
| | - Auguste Genovesio
- Image Mining Group, Institut Pasteur Korea, Seongnam-si, Gyeonggi-do, South Korea
| | - Jonathan Cechetto
- Screening Technology & Pharmacology Group, Institut Pasteur Korea, Seongnam-si, Gyeonggi-do, South Korea
| | - Lucio H. Freitas-Junior
- Center for Neglected Diseases Drug Discovery (CND3), Institut Pasteur Korea, Seongnam-si, Gyeonggi-do, South Korea
| |
Collapse
|
27
|
Santos DM, Carneiro MW, de Moura TR, Fukutani K, Clarencio J, Soto M, Espuelas S, Brodskyn C, Barral A, Barral-Netto M, de Oliveira CI. Towards development of novel immunization strategies against leishmaniasis using PLGA nanoparticles loaded with kinetoplastid membrane protein-11. Int J Nanomedicine 2012; 7:2115-27. [PMID: 22619548 PMCID: PMC3356203 DOI: 10.2147/ijn.s30093] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Vaccine development has been a priority in the fight against leishmaniases, which are vector-borne diseases caused by Leishmania protozoa. Among the different immunization strategies employed to date is inoculation of plasmid DNA coding for parasite antigens, which has a demonstrated ability to induce humoral and cellular immune responses. In this sense, inoculation of plasmid DNA encoding Leishmania kinetoplasmid membrane protein-11 (KMP-11) was able to confer protection against visceral leishmaniasis. However, recently the use of antigen delivery systems such as poly(lactic-co-glycolic acid) (PLGA) nanoparticles has also proven effective for eliciting protective immune responses. METHODS In the present work, we tested two immunization strategies with the goal of obtaining protection, in terms of lesion development and parasite load, against cutaneous leishmaniasis caused by L. braziliensis. One strategy involved immunization with plasmid DNA encoding L. infantum chagasi KMP-11. Alternatively, mice were primed with PLGA nanoparticles loaded with the recombinant plasmid DNA and boosted using PLGA nanoparticles loaded with recombinant KMP-11. RESULTS Both immunization strategies elicited detectable cellular immune responses with the presence of both proinflammatory and anti-inflammatory cytokines; mice receiving the recombinant PLGA nanoparticle formulations also demonstrated anti-KMP-11 IgG1 and IgG2a. Mice were then challenged with L. braziliensis, in the presence of sand fly saliva. Lesion development was not inhibited following either immunization strategy. However, immunization with PLGA nanoparticles resulted in a more prominent reduction in parasite load at the infection site when compared with immunization using plasmid DNA alone. This effect was associated with a local increase in interferon-gamma and in tumor necrosis factor-alpha. Both immunization strategies also resulted in a lower parasite load in the draining lymph nodes, albeit not significantly. CONCLUSION Our results encourage the pursuit of immunization strategies employing nanobased delivery systems for vaccine development against cutaneous leishmaniasis caused by L. braziliensis infection.
Collapse
Affiliation(s)
- Diego M Santos
- Centro de Pesquisas Gonçalo Moniz, FIOCRUZ, Salvador, BA, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Ciancaglini P, Simão AMS, Bolean M, Millán JL, Rigos CF, Yoneda JS, Colhone MC, Stabeli RG. Proteoliposomes in nanobiotechnology. Biophys Rev 2012; 4:67-81. [PMID: 28510001 PMCID: PMC5418368 DOI: 10.1007/s12551-011-0065-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Accepted: 12/22/2011] [Indexed: 01/08/2023] Open
Abstract
Proteoliposomes are systems that mimic lipid membranes (liposomes) to which a protein has been incorporated or inserted. During the last decade, these systems have gained prominence as tools for biophysical studies on lipid-protein interactions as well as for their biotechnological applications. Proteoliposomes have a major advantage when compared with natural membrane systems, since they can be obtained with a smaller number of lipidic (and protein) components, facilitating the design and interpretation of certain experiments. However, they have the disadvantage of requiring methodological standardization for incorporation of each specific protein, and the need to verify that the reconstitution procedure has yielded the correct orientation of the protein in the proteoliposome system with recovery of its functional activity. In this review, we chose two proteins under study in our laboratory to exemplify the steps necessary for the standardization of the reconstitution of membrane proteins in liposome systems: (1) alkaline phosphatase, a protein with a glycosylphosphatidylinositol anchor, and (2) Na,K-ATPase, an integral membrane protein. In these examples, we focus on the production of the specific proteoliposomes, as well as on their biochemical and biophysical characterization, with emphasis on studies of lipid-protein interactions. We conclude the chapter by highlighting current prospects of this technology for biotechnological applications, including the construction of nanosensors and of a multi-protein nanovesicular biomimetic to study the processes of initiation of skeletal mineralization.
Collapse
Affiliation(s)
- P Ciancaglini
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto da (FFCLRP), Universidade de São Paulo - USP, 14040-901, Ribeirão Preto, SP, Brazil.
| | - A M S Simão
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto da (FFCLRP), Universidade de São Paulo - USP, 14040-901, Ribeirão Preto, SP, Brazil
| | - M Bolean
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto da (FFCLRP), Universidade de São Paulo - USP, 14040-901, Ribeirão Preto, SP, Brazil
| | - J L Millán
- Sanford Children's Health Research Center, Sanford - Burnham Medical Research Institute, La Jolla, CA, USA
| | - C F Rigos
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto da (FFCLRP), Universidade de São Paulo - USP, 14040-901, Ribeirão Preto, SP, Brazil
| | - J S Yoneda
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto da (FFCLRP), Universidade de São Paulo - USP, 14040-901, Ribeirão Preto, SP, Brazil
| | - M C Colhone
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto da (FFCLRP), Universidade de São Paulo - USP, 14040-901, Ribeirão Preto, SP, Brazil
| | - R G Stabeli
- Centro de Estudos de Biomoléculas Aplicadas a Medicina, Núcleo de Saúde (NUSAU), Universidade Federal de Rondônia (UNIR), 76800-000, Porto Velho, RO, Brazil
- Fundação Oswaldo Cruz (Fiocruz-Rondonia), Ministério da Saúde, 76812-245, Porto Velho, RO, Brazil
| |
Collapse
|
29
|
Costa MM, Andrade HM, Bartholomeu DC, Freitas LM, Pires SF, Chapeaurouge AD, Perales J, Ferreira AT, Giusta MS, Melo MN, Gazzinelli RT. Analysis of Leishmania chagasi by 2-D Difference Gel Eletrophoresis (2-D DIGE) and Immunoproteomic: Identification of Novel Candidate Antigens for Diagnostic Tests and Vaccine. J Proteome Res 2011; 10:2172-84. [DOI: 10.1021/pr101286y] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Míriam M. Costa
- Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Bioquímica e Imunologia, 31270-910 Belo Horizonte, Minas Gerais, Brasil
| | - Hélida M. Andrade
- Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Parasitologia, 31279-910 Belo Horizonte, Minas Gerais, Brasil
| | - Daniella C. Bartholomeu
- Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Parasitologia, 31279-910 Belo Horizonte, Minas Gerais, Brasil
| | - Leandro M. Freitas
- Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Parasitologia, 31279-910 Belo Horizonte, Minas Gerais, Brasil
| | - Simone F. Pires
- Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Parasitologia, 31279-910 Belo Horizonte, Minas Gerais, Brasil
| | - Alexander D. Chapeaurouge
- Fundação Oswaldo Cruz, Instituto Oswaldo cruz, Laboratório de Toxinologia, 21040360 Rio de Janeiro, Rio de Janeiro, Brasil
| | - Jonas Perales
- Fundação Oswaldo Cruz, Instituto Oswaldo cruz, Laboratório de Toxinologia, 21040360 Rio de Janeiro, Rio de Janeiro, Brasil
| | - André T. Ferreira
- Fundação Oswaldo Cruz, Instituto Oswaldo cruz, Laboratório de Toxinologia, 21040360 Rio de Janeiro, Rio de Janeiro, Brasil
| | - Mário S. Giusta
- Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Bioquímica e Imunologia, 31270-910 Belo Horizonte, Minas Gerais, Brasil
| | - Maria N. Melo
- Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Parasitologia, 31279-910 Belo Horizonte, Minas Gerais, Brasil
| | - Ricardo T. Gazzinelli
- Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Bioquímica e Imunologia, 31270-910 Belo Horizonte, Minas Gerais, Brasil
- Centro de Pesquisas René Rachou−Fundação Oswaldo Cruz, 30190-002 Belo Horizonte, Minas Gerais, Brasil
- University of Massachusetts Medical School, Division of Infectious Diseases and Immunology, Worcester 01605-2324, Massachusetts, United States
| |
Collapse
|