1
|
Wu M, An R, Zhou N, Chen Y, Cai H, Yan Q, Wang R, Luo Q, Yu L, Chen L, Du J. Toxoplasma gondii CDPK3 Controls the Intracellular Proliferation of Parasites in Macrophages. Front Immunol 2022; 13:905142. [PMID: 35757711 PMCID: PMC9226670 DOI: 10.3389/fimmu.2022.905142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 05/16/2022] [Indexed: 11/30/2022] Open
Abstract
Interferon-γ (IFN-γ)-activated macrophages restrain the replication of intracellular parasites and disrupt the integrity of vacuolar pathogens. The growth of the less virulent type II strain of Toxoplasma gondii (such as ME49) was strongly inhibited by IFN-γ-activated murine macrophages. However, the mechanism of resistance is poorly understood. Immunity-related GTPases (IRGs) as well as guanylate-binding proteins (GBPs) contributed to this antiparasitic effect. Previous studies showed the cassette of autophagy-related proteins including Atg7, Atg3, and Atg12-Atg5-Atg16L1 complex, plays crucial roles in the proper targeting of IFN-γ effectors onto the parasitophorous vacuole (PV) membrane of Toxoplasma gondii and subsequent control of parasites. TgCDPK3 is a calcium dependent protein kinase, located on the parasite periphery, plays a crucial role in parasite egress. Herein, we show that the less virulent strain CDPK3 (ME49, type II) can enhance autophagy activation and interacts with host autophagy proteins Atg3 and Atg5. Infection with CDPK3-deficient ME49 strain resulted in decreased localization of IRGs and GBPs around PV membrane. In vitro proliferation and plaque assays showed that CDPK3-deficient ME49 strain replicated significantly more quickly than wild-type parasites. These data suggested that TgCDPK3 interacts with the host Atg3 and Atg5 to promote the localization of IRGs and GBPs around PV membrane and inhibits the intracellular proliferation of parasites, which is beneficial to the less virulent strain of Toxoplasma gondii long-term latency in host cells.
Collapse
Affiliation(s)
- Minmin Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.,The Research Center for Infectious Diseases, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.,The Provincial Key Laboratory of Zoonoses of High Institutions of Anhui, Anhui Medical University, Hefei, China.,The Key Laboratory of Microbiology and Parasitology of Anhui Province, Anhui Medical University, Hefei, China
| | - Ran An
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.,The Research Center for Infectious Diseases, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.,The Provincial Key Laboratory of Zoonoses of High Institutions of Anhui, Anhui Medical University, Hefei, China.,The Key Laboratory of Microbiology and Parasitology of Anhui Province, Anhui Medical University, Hefei, China
| | - Nan Zhou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.,The Research Center for Infectious Diseases, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.,The Provincial Key Laboratory of Zoonoses of High Institutions of Anhui, Anhui Medical University, Hefei, China.,The Key Laboratory of Microbiology and Parasitology of Anhui Province, Anhui Medical University, Hefei, China
| | - Ying Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.,The Research Center for Infectious Diseases, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.,The Provincial Key Laboratory of Zoonoses of High Institutions of Anhui, Anhui Medical University, Hefei, China.,School of Nursing, Anhui Medical University, Hefei, China
| | - Haijian Cai
- The Research Center for Infectious Diseases, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.,The Provincial Key Laboratory of Zoonoses of High Institutions of Anhui, Anhui Medical University, Hefei, China
| | - Qi Yan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.,The Research Center for Infectious Diseases, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.,The Provincial Key Laboratory of Zoonoses of High Institutions of Anhui, Anhui Medical University, Hefei, China.,The Key Laboratory of Microbiology and Parasitology of Anhui Province, Anhui Medical University, Hefei, China
| | - Ru Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.,The Research Center for Infectious Diseases, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.,The Provincial Key Laboratory of Zoonoses of High Institutions of Anhui, Anhui Medical University, Hefei, China.,The Key Laboratory of Microbiology and Parasitology of Anhui Province, Anhui Medical University, Hefei, China
| | - Qingli Luo
- The Provincial Key Laboratory of Zoonoses of High Institutions of Anhui, Anhui Medical University, Hefei, China.,The Key Laboratory of Microbiology and Parasitology of Anhui Province, Anhui Medical University, Hefei, China
| | - Li Yu
- The Research Center for Infectious Diseases, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.,The Provincial Key Laboratory of Zoonoses of High Institutions of Anhui, Anhui Medical University, Hefei, China.,The Key Laboratory of Microbiology and Parasitology of Anhui Province, Anhui Medical University, Hefei, China
| | - Lijian Chen
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jian Du
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.,The Research Center for Infectious Diseases, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.,The Provincial Key Laboratory of Zoonoses of High Institutions of Anhui, Anhui Medical University, Hefei, China.,The Key Laboratory of Microbiology and Parasitology of Anhui Province, Anhui Medical University, Hefei, China
| |
Collapse
|
2
|
Villalobo A, González-Muñoz M, Berchtold MW. Proteins with calmodulin-like domains: structures and functional roles. Cell Mol Life Sci 2019; 76:2299-2328. [PMID: 30877334 PMCID: PMC11105222 DOI: 10.1007/s00018-019-03062-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 02/26/2019] [Accepted: 03/07/2019] [Indexed: 12/21/2022]
Abstract
The appearance of modular proteins is a widespread phenomenon during the evolution of proteins. The combinatorial arrangement of different functional and/or structural domains within a single polypeptide chain yields a wide variety of activities and regulatory properties to the modular proteins. In this review, we will discuss proteins, that in addition to their catalytic, transport, structure, localization or adaptor functions, also have segments resembling the helix-loop-helix EF-hand motifs found in Ca2+-binding proteins, such as calmodulin (CaM). These segments are denoted CaM-like domains (CaM-LDs) and play a regulatory role, making these CaM-like proteins sensitive to Ca2+ transients within the cell, and hence are able to transduce the Ca2+ signal leading to specific cellular responses. Importantly, this arrangement allows to this group of proteins direct regulation independent of other Ca2+-sensitive sensor/transducer proteins, such as CaM. In addition, this review also covers CaM-binding proteins, in which their CaM-binding site (CBS), in the absence of CaM, is proposed to interact with other segments of the same protein denoted CaM-like binding site (CLBS). CLBS are important regulatory motifs, acting either by keeping these CaM-binding proteins inactive in the absence of CaM, enhancing the stability of protein complexes and/or facilitating their dimerization via CBS/CLBS interaction. The existence of proteins containing CaM-LDs or CLBSs substantially adds to the enormous versatility and complexity of Ca2+/CaM signaling.
Collapse
Affiliation(s)
- Antonio Villalobo
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Arturo Duperier 4, 28029, Madrid, Spain.
- Instituto de Investigaciones Sanitarias, Hospital Universitario La Paz, Edificio IdiPAZ, Paseo de la Castellana 261, 28046, Madrid, Spain.
| | - María González-Muñoz
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Arturo Duperier 4, 28029, Madrid, Spain
| | - Martin W Berchtold
- Department of Biology, University of Copenhagen, 13 Universitetsparken, 2100, Copenhagen, Denmark.
| |
Collapse
|
3
|
Abstract
Toxoplasma gondii is a highly prevalent protozoon that can infect all warm-blooded animals, including humans. It is frequently used as an Apicomplexan parasite model in
research. In this review, the invasion mechanism of T. gondii is described as a representative Apicomplexan parasite. The invasion machinery of T. gondii
consists of the moving junction and the glideosome, which is a specific motor system for Apicomplexan parasites. I provide details about the moving junction, parasite-secreted proteins and
host adhesion receptors, the glideosome, and calcium signaling, which generates the power for the gliding mobility of T. gondii. A detailed understanding of parasite
invasion can be useful for the development of new effective drugs to inhibit this event and disrupt the Apicomplexan life cycle.
Collapse
Affiliation(s)
- Kentaro Kato
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan
| |
Collapse
|
4
|
Haubrich BA, Swinney DC. Enzyme Activity Assays for Protein Kinases: Strategies to Identify Active Substrates. Curr Drug Discov Technol 2016; 13:2-15. [PMID: 26768716 DOI: 10.2174/1570163813666160115125930] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 01/13/2016] [Accepted: 01/13/2016] [Indexed: 11/22/2022]
Abstract
Protein kinases are an important class of enzymes and drug targets. New opportunities to discover medicines for neglected diseases can be leveraged by the extensive kinase tools and knowledge created in targeting human kinases. A valuable tool for kinase drug discovery is an enzyme assay that measures catalytic function. The functional assay can be used to identify inhibitors, estimate affinity, characterize molecular mechanisms of action (MMOAs) and evaluate selectivity. However, establishing an enzyme assay for a new kinases requires identification of a suitable substrate. Identification of a new kinase's endogenous physiologic substrate and function can be extremely costly and time consuming. Fortunately, most kinases are promiscuous and will catalyze the phosphotransfer from ATP to alternative substrates with differing degrees of catalytic efficiency. In this manuscript we review strategies and successes in the identification of alternative substrates for kinases from organisms responsible for many of the neglected tropical diseases (NTDs) towards the goal of informing strategies to identify substrates for new kinases. Approaches for establishing a functional kinase assay include measuring auto-activation and use of generic substrates and peptides. The most commonly used generic substrates are casein, myelin basic protein, and histone. Sequence homology modeling can provide insights into the potential substrates and the requirement for activation. Empirical approaches that can identify substrates include screening of lysates (which may also help identify native substrates) and use of peptide arrays. All of these approaches have been used with a varying degree of success to identify alternative substrates.
Collapse
Affiliation(s)
- Brad A Haubrich
- Institute for Rare and Neglected Diseases Drug Discovery, 897 Independence Ave, Suite 2C, Mountain View, CA 94043, USA.
| | | |
Collapse
|
5
|
Kato K, Sugi T, Takemae H, Takano R, Gong H, Ishiwa A, Horimoto T, Akashi H. Characterization of a Toxoplasma gondii calcium calmodulin-dependent protein kinase homolog. Parasit Vectors 2016; 9:405. [PMID: 27444499 PMCID: PMC4957278 DOI: 10.1186/s13071-016-1676-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 06/30/2016] [Indexed: 12/04/2022] Open
Abstract
Background Toxoplasma gondii is an obligate intracellular parasite of the phylum Apicomplexa and a major pathogen of animals and immunocompromised humans, in whom it causes encephalitis. Understanding the mechanism of tachyzoite invasion is important for the discovery of new drug targets and may serve as a model for the study of other apicomplexan parasites. We previously showed that Plasmodium falciparum expresses a homolog of human calcium calmodulin-dependent protein kinase (CaMK) that is important for host cell invasion. In this study, to identify novel targets for the treatment of Toxoplasma gondii infection (another apicomplexan parasite), we sought to identify a CaMK-like protein in the T. gondii genome and to characterize its role in the life-cycle of this parasite. Methods An in vitro kinase assay was performed to assess the phosphorylation activities of a novel CaMK-like protein in T. gondii by using purified proteins with various concentrations of calcium, calmodulin antagonists, or T. gondii glideosome proteins. Indirect immunofluorescence microscopy was performed to detect the localization of this protein kinase by using the antibodies against this protein and organellar maker proteins of T. gondii. Results We identified a novel CaMK homolog in T. gondii, T. gondii CaMK-related kinase (TgCaMKrk), which exhibits calmodulin-independent autophosphorylation and substrate phosphorylation activity. However, calmodulin antagonists had no effect on its kinase activity. In T. gondii-infected cells, TgCaMKrk localized to the apical ends of extracellular and intracellular tachyzoites. TgCaMKrk phosphorylated TgGAP45 for phosphorylation in vitro. Conclusions Our data improve our understanding of T. gondii motility and infection, the interaction between parasite protein kinases and glideosomes, and drug targets for protozoan diseases.
Collapse
Affiliation(s)
- Kentaro Kato
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, 080-8555, Japan. .,Department of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.
| | - Tatsuki Sugi
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, 080-8555, Japan.,Department of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Hitoshi Takemae
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, 080-8555, Japan.,Department of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Ryo Takano
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, 080-8555, Japan
| | - Haiyan Gong
- Department of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Akiko Ishiwa
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, 080-8555, Japan.,Department of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Taisuke Horimoto
- Department of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Hiroomi Akashi
- Department of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| |
Collapse
|
6
|
Kato K. Evaluation of the enzyme activity of protozoan protein kinases by using an in vitro kinase assay. Parasitol Int 2016; 65:510-513. [PMID: 27425601 DOI: 10.1016/j.parint.2016.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 06/30/2016] [Accepted: 07/13/2016] [Indexed: 10/21/2022]
Abstract
The life cycles of parasites are more complicated than those of other biological species. Protein kinases (PKs) encoded by parasites are the main triggers of life stage conversions. Phosphorylation by cellular PKs regulates important cellular processes, and the protozoan genome contains many PKs. Some PK inhibitors inhibit specific parasite life cycle event. In this report, I present a practical approach to expressing and purifying protozoan PKs by using a wheat germ cell-free protein synthesis system and I assess the phosphorylation activities of protozoan PKs by using an in vitro kinase assay.
Collapse
Affiliation(s)
- Kentaro Kato
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan.
| |
Collapse
|
7
|
Abstract
Calcium ion signaling regulates central aspects of the biology controlling stage and life cycle transitions of apicomplexan parasites. In the current issue of Infection and Immunity, Long and coworkers (S. Long, Q. Wang, and L. D. Sibley, Infect Immun 84:1262-1273, 2016, http://dx.doi.org/10.1128/IAI.01173-15) describe a powerful genetic system enabling reliable serial genetic dissection of a large gene family encoding novel calcium-dependent protein kinases (CDPKs) that provides new insights into the roles of CDPKs during Toxoplasma gondii infection.
Collapse
|
8
|
Gaji RY, Johnson DE, Treeck M, Wang M, Hudmon A, Arrizabalaga G. Phosphorylation of a Myosin Motor by TgCDPK3 Facilitates Rapid Initiation of Motility during Toxoplasma gondii egress. PLoS Pathog 2015; 11:e1005268. [PMID: 26544049 PMCID: PMC4636360 DOI: 10.1371/journal.ppat.1005268] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Accepted: 10/20/2015] [Indexed: 12/20/2022] Open
Abstract
Members of the family of calcium dependent protein kinases (CDPK’s) are abundant in certain pathogenic parasites and absent in mammalian cells making them strong drug target candidates. In the obligate intracellular parasite Toxoplasma gondii TgCDPK3 is important for calcium dependent egress from the host cell. Nonetheless, the specific substrate through which TgCDPK3 exerts its function during egress remains unknown. To close this knowledge gap we applied the proximity-based protein interaction trap BioID and identified 13 proteins that are either near neighbors or direct interactors of TgCDPK3. Among these was Myosin A (TgMyoA), the unconventional motor protein greatly responsible for driving the gliding motility of this parasite, and whose phosphorylation at serine 21 by an unknown kinase was previously shown to be important for motility and egress. Through a non-biased peptide array approach we determined that TgCDPK3 can specifically phosphorylate serines 21 and 743 of TgMyoA in vitro. Complementation of the TgmyoA null mutant, which exhibits a delay in egress, with TgMyoA in which either S21 or S743 is mutated to alanine failed to rescue the egress defect. Similarly, phosphomimetic mutations in the motor protein overcome the need for TgCDPK3. Moreover, extracellular Tgcdpk3 mutant parasites have motility defects that are complemented by expression of S21+S743 phosphomimetic of TgMyoA. Thus, our studies establish that phosphorylation of TgMyoA by TgCDPK3 is responsible for initiation of motility and parasite egress from the host-cell and provides mechanistic insight into how this unique kinase regulates the lytic cycle of Toxoplasma gondii. Toxoplasma gondii can cause severe disease and death in the immunocompromised and in those infected congenitally. Due to limitations of existing drugs there is a need for studying proteins that are unique and essential to the parasite. We recently established that TgCDPK3, a member of a family of calcium dependent protein kinase present in plants and some parasites but absent in human cells, regulates parasite egress from the host cell. While it has been hypothesized that TgCDPK3 controls rapid exit from the host by phosphorylating proteins needed for activating motility, the particular substrates of this kinase remained unknown. We have now applied an interaction trap system to identify the proteins that are modified by this kinase, which include a parasite motor protein Myosin A (TgMyoA). We show that TgCDPK3 specifically phosphorylates TgMyoA and this phosphorylation is important for parasite egress and motility.
Collapse
Affiliation(s)
- Rajshekhar Y. Gaji
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Derrick E. Johnson
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- Stark Neuroscience Research Center, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | | | - Mu Wang
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Andy Hudmon
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- Stark Neuroscience Research Center, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Gustavo Arrizabalaga
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- * E-mail:
| |
Collapse
|
9
|
Tao Q, Xiao J, Wang Y, Fang K, Li N, Hu M, Zhou Y, Zhao J. Identification of genes expressed during Toxoplasma gondii infection by in vivo-induced antigen technology (IVIAT) with positive porcine sera. J Parasitol 2014; 100:470-9. [PMID: 24646180 DOI: 10.1645/13-240.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Infection of pigs with Toxoplasma gondii is a common source of human toxoplasmosis and causes serious economic losses. In vivo-induced antigen technology (IVIAT) is an effective immunological technique to identify the antigens that a pathogen specifically expressed during infection. To discover the genes that are important in T. gondii infection of pigs, we employed IVIAT using sera from infected pigs. Fourteen antigens were identified including microneme protein 11 (MIC11), dense granule protein 5 (GRA5), 18 kDa cyclophilin (C-18), serine proteinase inhibitor (PI), calmodulin (CaM), leucine-rich repeat protein ( LRRP), D-3-phosphoglycerate dehydrogenase (D3PD), elongation factor 1-gamma (EF1), and 6 hypothetical proteins. The increased transcription levels of 5 (MIC11, GRA5, C-18, PI, and CaM) of the 14 molecules identified by IVIAT were confirmed by real-time PCR. The full length or partial proteins encoded by these 5 genes were expressed in Escherichia coli , and their immunogenicity was confirmed by Western blot analysis with positive porcine sera. Further functional studies were conducted with CaM. Suppression of CaM expression by RNA interference decreased T. gondii tachyzoites cell attachment, invasion, and egress but did not influence their replication. The proteins identified in this study are predicted to be involved in cell invasion, ion-protein binding, protein folding, biosynthesis, and metabolism. The results of the functional analysis support the hypothesis that CaM contributes to parasite pathogenesis during infection. These results may have significant implications for the discovery of candidate molecules for the development of potential therapies and preventive measures against toxoplasmosis in pigs.
Collapse
Affiliation(s)
- Qing Tao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, P. R. China
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Gong H, Kobayashi K, Sugi T, Takemae H, Ishiwa A, Recuenco FC, Murakoshi F, Xuan X, Horimoto T, Akashi H, Kato K. Characterization and binding analysis of a microneme adhesive repeat domain-containing protein from Toxoplasma gondii. Parasitol Int 2013; 63:381-8. [PMID: 24361285 DOI: 10.1016/j.parint.2013.12.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 12/05/2013] [Accepted: 12/10/2013] [Indexed: 10/25/2022]
Abstract
The intracellular parasite Toxoplasma gondii invades almost all nucleated cells, and has infected approximately 34% of the world's population to date. In order to develop effective vaccines against T. gondii infection, understanding of the role of the molecules that are involved in the invasion process is important. For this purpose, we characterized T. gondii proteins that contain microneme adhesive repeats (MARs), which are common in moving junction proteins. T. gondii MAR domain-containing protein 4a (TgMCP4a), which contains repeats of 17-22 amino acid segments at the N-terminus and three putative MAR domains at the C-terminus, is localized near the rhoptry of extracellular parasites. Following infection, TgMCP4a was detected in the parasitophorous vacuole. The recombinant Fc-TgMCP4a N-terminus protein (rTgMCP4a-1/Fc) showed binding activity to the surface proteins of Vero, 293T, and CHO cells. The recombinant GST-TgMCP4a N-terminus protein (rTgMCP4a-1/GST), which exhibited binding activity, was used to pull down the interacting factors from 293T cell lysate, and subsequent mass spectrometry analysis revealed that three types of heat shock proteins (HSPs) interacted with TgMCP4a. Transfection of a FLAG fusion protein of TgMCP4a-1 (rTgMCP4a-1/FLAG) into 293T cell and the following immunoprecipitation with anti-FLAG antibody confirmed the interactions of HSC70 with TgMCP4a. The addition of rTgMCP4a-1/GST into the culture medium significantly affected the growth of the parasite. This study hints that T. gondii may employ HSP proteins of host cell to facilitate their growth.
Collapse
Affiliation(s)
- Haiyan Gong
- Department of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 518 Ziyue Road, Minhang District, Shanghai 200241, China
| | - Kyousuke Kobayashi
- Department of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Tatsuki Sugi
- Department of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan
| | - Hitoshi Takemae
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan
| | - Akiko Ishiwa
- Department of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan
| | - Frances C Recuenco
- Department of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan
| | - Fumi Murakoshi
- Department of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan
| | - Xuenan Xuan
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan
| | - Taisuke Horimoto
- Department of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Hiroomi Akashi
- Department of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Kentaro Kato
- Department of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan.
| |
Collapse
|
11
|
Takemae H, Sugi T, Kobayashi K, Gong H, Ishiwa A, Recuenco FC, Murakoshi F, Iwanaga T, Inomata A, Horimoto T, Akashi H, Kato K. Characterization of the interaction between Toxoplasma gondii rhoptry neck protein 4 and host cellular β-tubulin. Sci Rep 2013; 3:3199. [PMID: 24217438 PMCID: PMC3824165 DOI: 10.1038/srep03199] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 10/24/2013] [Indexed: 02/02/2023] Open
Abstract
Toxoplasma rhoptry neck protein 4 (TgRON4) is a component of the moving junction macromolecular complex that plays a central role during invasion. TgRON4 is exposed on the cytosolic side of the host cell during invasion, but its molecular interactions remain unclear. Here, we identified host cellular β-tubulin as a binding partner of TgRON4, but not Plasmodium RON4. Coimmunoprecipitation studies in mammalian cells demonstrated that the C-terminal 15-kDa region of β-tubulin was sufficient for binding to TgRON4, and that a 17-kDa region in the proximal C-terminus of TgRON4 was required for binding to the C-terminal region of β-tubulin. Analysis of T. gondii-infected lysates from CHO cells expressing the TgRON4-binding region showed that the C-terminal region of β-tubulin interacted with TgRON4 at early invasion step. Our results provide evidence for a parasite-specific interaction between TgRON4 and the host cell cytoskeleton in parasite-infected cells.
Collapse
Affiliation(s)
- Hitoshi Takemae
- 1] National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan [2] Department of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Effects of dextran sulfates on the acute infection and growth stages of Toxoplasma gondii. Parasitol Res 2013; 112:4169-76. [PMID: 24096605 DOI: 10.1007/s00436-013-3608-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 09/02/2013] [Indexed: 10/26/2022]
Abstract
Toxoplasma gondii is one of the most prevalent parasites, causing toxoplasmosis in various warm-blooded animals, including humans. Because of the broad range of hosts susceptible to T. gondii, it had been postulated that a universal component of the host cell surface, such as glycosaminoglycans (GAGs), may act as a receptor for T. gondii infection. Carruthers et al. (Infect Immun 68:4005-4011, 2000) showed that soluble GAGs have also been shown to disrupt parasite binding to human fibroblasts. Therefore, we investigated the inhibitory effect of GAGs and their analogue dextran sulfate (DS) on T. gondii infection. For up to 24 h of incubation after inoculation of T. gondii, the inhibitory effect of GAGs on T. gondii infection and growth inside the host cell was weak. In contrast, DS markedly inhibited T. gondii infection. Moreover, low molecular weight DS particularly slowed the growth of T. gondii inside host cells. DS10 (dextran sulfate MW 10 kDa) was the most effective agent in these in vitro experiments and was therefore tested for its inhibitory effects in animal experiments; infection inhibition by DS10 was confirmed under these in vivo conditions. In this report, we showed that DSs, especially DS10, have the potential of a new type of drug for toxoplasmosis.
Collapse
|
13
|
Sivagurunathan S, Heaslip A, Liu J, Hu K. Identification of functional modules of AKMT, a novel lysine methyltransferase regulating the motility of Toxoplasma gondii. Mol Biochem Parasitol 2013; 189:43-53. [PMID: 23685344 DOI: 10.1016/j.molbiopara.2013.05.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 05/03/2013] [Accepted: 05/10/2013] [Indexed: 11/19/2022]
Abstract
The intracellular parasite Toxoplasma gondii is a leading cause of congenital neurological defects. To cause disease, it must reiterate its lytic cycle through host cell invasion, replication, and parasite egress. This requires the parasite to sense changes in its environment and switch between the non-motile (for replication) and motile (for invasion and egress) states appropriately. Recently, we discovered a previously unknown mechanism of motility regulation in T. gondii, mediated by a lysine methyltransferase, AKMT (for Apical complex lysine (K) methyltransferase). When AKMT is absent, activation of motility is inhibited, which compromises parasite invasion and egress, and thus severely impairs the lytic cycle. Although the methyltransferase activity of AKMT has been established, the phylogenetic relationship of AKMT with other better studied lysine methyltransferases (KMTs) was not known. Also unknown was the functional relationships between different domains of AKMT. In this work we carried out phylogenetic analyses, which show that AKMT orthologs form a new subfamily of KMTs. We systematically generated truncation mutants of AKMT, and discovered that the predicted enzymatic domain alone is a very poor enzyme and cannot complement the function of AKMT in vivo. Interestingly, the N- and C-terminal domains of the AKMT have drastically different impacts on its enzyme activity, localization as well as in vivo function. Our results thus reveal that AKMT is an unusual, parasite-specific enzyme and identified regions and interactions within this novel lysine methyltransferase that can be used as drug targets.
Collapse
|
14
|
Protein kinases of Toxoplasma gondii: functions and drug targets. Parasitol Res 2013; 112:2121-9. [DOI: 10.1007/s00436-013-3451-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 04/10/2013] [Indexed: 10/26/2022]
|
15
|
Garrison E, Treeck M, Ehret E, Butz H, Garbuz T, Oswald BP, Settles M, Boothroyd J, Arrizabalaga G. A forward genetic screen reveals that calcium-dependent protein kinase 3 regulates egress in Toxoplasma. PLoS Pathog 2012; 8:e1003049. [PMID: 23209419 PMCID: PMC3510250 DOI: 10.1371/journal.ppat.1003049] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Accepted: 10/08/2012] [Indexed: 12/26/2022] Open
Abstract
Egress from the host cell is a crucial and highly regulated step in the biology of the obligate intracellular parasite, Toxoplasma gondii. Active egress depends on calcium fluxes and appears to be a crucial step in escaping the attack from the immune system and, potentially, in enabling the parasites to shuttle into appropriate cells for entry into the brain of the host. Previous genetic screens have yielded mutants defective in both ionophore-induced egress and ionophore-induced death. Using whole genome sequencing of one mutant and subsequent analysis of all mutants from these screens, we find that, remarkably, four independent mutants harbor a mis-sense mutation in the same gene, TgCDPK3, encoding a calcium-dependent protein kinase. All four mutations are predicted to alter key regions of TgCDPK3 and this is confirmed by biochemical studies of recombinant forms of each. By complementation we confirm a crucial role for TgCDPK3 in the rapid induction of parasite egress and we establish that TgCDPK3 is critical for formation of latent stages in the brains of mice. Genetic knockout of TgCDPK3 confirms a crucial role for this kinase in parasite egress and a non-essential role for it in the lytic cycle. Toxoplasma gondii, an important human pathogen, is an obligate intracellular parasite, thus getting in and out of cells is key for its survival. The process by which Toxoplasma exits cells, known as egress, is controlled by calcium fluxes and can be triggered by ionophores. In vivo, rapid egress from the host cell has been identified as a means to escape attack by the innate immune system. At the molecular level, calcium dependent events in this parasite are regulated in part by plant like calcium dependent kinases, which share no homology to human kinases and are thus ideal drug targets. In this study we revisited 4 mutant parasite lines that were independently selected for an inability to undergo egress in response to ionophores. In all four mutants we have identified the Calcium Dependent Kinase 3 as the gene responsible for the defects. We have shown that two of these mutants, which are in a genetic background that allows virulence studies, also have a strong phenotype in vivo. That is, the parasites fail to form latent stages in mice. This work provides important information that a single kinase is responsible for the formation of latent stages that are important for transmission of the parasite.
Collapse
Affiliation(s)
- Erin Garrison
- University of Idaho, Department of Biological Sciences, Moscow, Idaho, United States of America
| | - Moritz Treeck
- Stanford University School of Medicine, Department of Microbiology and Immunology, Stanford, California, United States of America
| | - Emma Ehret
- University of Idaho, Department of Biological Sciences, Moscow, Idaho, United States of America
| | - Heidi Butz
- University of Idaho, Department of Biological Sciences, Moscow, Idaho, United States of America
| | - Tamila Garbuz
- Indiana University School of Medicine, Department of Pharmacology and Toxicology, Indianapolis, Indiana, United States of America
| | - Benji P. Oswald
- University of Idaho, The Institute for Bioinformatics and Evolutionary Studies, Moscow, Idaho, United States of America
| | - Matt Settles
- University of Idaho, The Institute for Bioinformatics and Evolutionary Studies, Moscow, Idaho, United States of America
| | - John Boothroyd
- Stanford University School of Medicine, Department of Microbiology and Immunology, Stanford, California, United States of America
| | - Gustavo Arrizabalaga
- University of Idaho, Department of Biological Sciences, Moscow, Idaho, United States of America
- Indiana University School of Medicine, Department of Pharmacology and Toxicology, Indianapolis, Indiana, United States of America
- * E-mail:
| |
Collapse
|
16
|
Jacot D, Soldati-Favre D. Does protein phosphorylation govern host cell entry and egress by the Apicomplexa? Int J Med Microbiol 2012; 302:195-202. [DOI: 10.1016/j.ijmm.2012.07.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
17
|
Gong H, Kobayashi K, Sugi T, Takemae H, Kurokawa H, Horimoto T, Akashi H, Kato K. A novel PAN/apple domain-containing protein from Toxoplasma gondii: characterization and receptor identification. PLoS One 2012; 7:e30169. [PMID: 22276154 PMCID: PMC3261864 DOI: 10.1371/journal.pone.0030169] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Accepted: 12/14/2011] [Indexed: 12/03/2022] Open
Abstract
Toxoplasma gondii is an intracellular parasite that invades nucleated cells, causing toxoplasmosis in humans and animals worldwide. The extremely wide range of hosts susceptible to T. gondii is thought to be the result of interactions between T. gondii ligands and receptors on its target cells. In this study, a host cell-binding protein from T. gondii was characterized, and one of its receptors was identified. P104 (GenBank Access. No. CAJ20677) is 991 amino acids in length, containing a putative 26 amino acid signal peptide and 10 PAN/apple domains, and shows low homology to other identified PAN/apple domain-containing molecules. A 104-kDa host cell-binding protein was detected in the T. gondii lysate. Immunofluorescence assays detected P104 at the apical end of extracellular T. gondii. An Fc-fusion protein of the P104 N-terminus, which contains two PAN/apple domains, showed strong affinity for the mammalian and insect cells evaluated. This binding was not related to protein-protein or protein-lipid interactions, but to a protein-glycosaminoglycan (GAG) interaction. Chondroitin sulfate (CS), a kind of GAG, was shown to be involved in adhesion of the Fc-P104 N-terminus fusion protein to host cells. These results suggest that P104, expressed at the apical end of the extracellular parasite, may function as a ligand in the attachment of T. gondii to CS or other receptors on the host cell, facilitating invasion by the parasite.
Collapse
Affiliation(s)
- Haiyan Gong
- Department of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| | - Kyousuke Kobayashi
- Department of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| | - Tatsuki Sugi
- Department of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| | - Hitoshi Takemae
- Department of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| | - Hitomi Kurokawa
- Department of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| | - Taisuke Horimoto
- Department of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| | - Hiroomi Akashi
- Department of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| | - Kentaro Kato
- Department of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
- * E-mail:
| |
Collapse
|
18
|
Kato K, Sugi T, Iwanaga T. Roles of Apicomplexan protein kinases at each life cycle stage. Parasitol Int 2011; 61:224-34. [PMID: 22209882 DOI: 10.1016/j.parint.2011.12.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Revised: 12/12/2011] [Accepted: 12/18/2011] [Indexed: 01/21/2023]
Abstract
Inhibitors of cellular protein kinases have been reported to inhibit the development of Apicomplexan parasites, suggesting that the functions of protozoan protein kinases are critical for their life cycle. However, the specific roles of these protein kinases cannot be determined using only these inhibitors without molecular analysis, including gene disruption. In this report, we describe the functions of Apicomplexan protein kinases in each parasite life stage and the potential of pre-existing protein kinase inhibitors as Apicomplexan drugs against, mainly, Plasmodium and Toxoplasma.
Collapse
Affiliation(s)
- Kentaro Kato
- Department of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| | | | | |
Collapse
|
19
|
Artz JD, Wernimont AK, Allali-Hassani A, Zhao Y, Amani M, Lin YH, Senisterra G, Wasney GA, Fedorov O, King O, Roos A, Lunin VV, Qiu W, Finerty P, Hutchinson A, Chau I, von Delft F, MacKenzie F, Lew J, Kozieradzki I, Vedadi M, Schapira M, Zhang C, Shokat K, Heightman T, Hui R. The Cryptosporidium parvum kinome. BMC Genomics 2011; 12:478. [PMID: 21962082 PMCID: PMC3227725 DOI: 10.1186/1471-2164-12-478] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Accepted: 09/30/2011] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Hundreds of millions of people are infected with cryptosporidiosis annually, with immunocompromised individuals suffering debilitating symptoms and children in socioeconomically challenged regions at risk of repeated infections. There is currently no effective drug available. In order to facilitate the pursuit of anti-cryptosporidiosis targets and compounds, our study spans the classification of the Cryptosporidium parvum kinome and the structural and biochemical characterization of representatives from the CDPK family and a MAP kinase. RESULTS The C. parvum kinome comprises over 70 members, some of which may be promising drug targets. These C. parvum protein kinases include members in the AGC, Atypical, CaMK, CK1, CMGC, and TKL groups; however, almost 35% could only be classified as OPK (other protein kinases). In addition, about 25% of the kinases identified did not have any known orthologues outside of Cryptosporidium spp. Comparison of specific kinases with their Plasmodium falciparum and Toxoplasma gondii orthologues revealed some distinct characteristics within the C. parvum kinome, including potential targets and opportunities for drug design. Structural and biochemical analysis of 4 representatives of the CaMK group and a MAP kinase confirms features that may be exploited in inhibitor design. Indeed, screening CpCDPK1 against a library of kinase inhibitors yielded a set of the pyrazolopyrimidine derivatives (PP1-derivatives) with IC₅₀ values of < 10 nM. The binding of a PP1-derivative is further described by an inhibitor-bound crystal structure of CpCDPK1. In addition, structural analysis of CpCDPK4 identified an unprecedented Zn-finger within the CDPK kinase domain that may have implications for its regulation. CONCLUSIONS Identification and comparison of the C. parvum protein kinases against other parasitic kinases shows how orthologue- and family-based research can be used to facilitate characterization of promising drug targets and the search for new drugs.
Collapse
Affiliation(s)
- Jennifer D Artz
- Structural Genomics Consortium, University of Toronto, MaRS South Tower, Floor 7, 101 College St, Toronto, Ontario M5G 1L7, Canada.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Sugi T, Kato K, Kobayashi K, Kurokawa H, Takemae H, Gong H, Recuenco FC, Iwanaga T, Horimoto T, Akashi H. 1NM-PP1 treatment of mice infected with Toxoplasma gondii. J Vet Med Sci 2011; 73:1377-9. [PMID: 21685719 DOI: 10.1292/jvms.11-0085] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Bumped kinase inhibitors (BKIs) target analog-sensitive kinases, which the genomes of mammals rarely encode. Previously, we demonstrated that a BKI effectively suppressed the in vitro replication of Toxoplasma gondii, the causative pathogen of toxoplasmosis, by targeting T. gondii calcium-dependent protein kinase 1 (TgCDPK1) (Eukaryotic Cell, 9: 667-670). Here, we examined whether the BKI 1NM-PP1 reduced parasite replication in vivo. A high dose of 1NM-PP1, by intraperitoneal injection, just before the parasite inoculation effectively reduced the parasite load in the brains, livers, and lungs of T. gondii-infected mice, however, a low dose of 1NM-PP1 with oral administration didn't change the survival rates of infected mice.
Collapse
Affiliation(s)
- Tatsuki Sugi
- Department of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Choi KM, Kim JY, Moon SU, Lee HW, Sattabongkot J, Na BK, Kim DW, Suh EJ, Kim YJ, Cho SH, Lee HS, Rhie HG, Kim TS. Molecular cloning of Plasmodium vivax calcium-dependent protein kinase 4. THE KOREAN JOURNAL OF PARASITOLOGY 2010; 48:319-24. [PMID: 21234235 PMCID: PMC3018582 DOI: 10.3347/kjp.2010.48.4.319] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2010] [Revised: 10/30/2010] [Accepted: 11/01/2010] [Indexed: 11/23/2022]
Abstract
A family of calcium-dependent protein kinases (CDPKs) is a unique enzyme which plays crucial roles in intracellular calcium signaling in plants, algae, and protozoa. CDPKs of malaria parasites are known to be key regulators for stage-specific cellular responses to calcium, a widespread secondary messenger that controls the progression of the parasite. In our study, we identified a gene encoding Plasmodium vivax CDPK4 (PvCDPK4) and characterized its molecular property and cellular localization. PvCDPK4 was a typical CDPK which had well-conserved N-terminal kinase domain and C-terminal calmodulin-like structure with 4 EF hand motifs for calcium-binding. The recombinant protein of EF hand domain of PvCDPK4 was expressed in E. coli and a 34 kDa product was obtained. Immunofluorescence assay by confocal laser microscopy revealed that the protein was expressed at the mature schizont of P. vivax. The expression of PvCDPK4-EF in schizont suggests that it may participate in the proliferation or egress process in the life cycle of this parasite.
Collapse
Affiliation(s)
- Kyung-Mi Choi
- National Institute of Health, Korea Center for Disease Control and Prevention, Seoul 122-701, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Use of the kinase inhibitor analog 1NM-PP1 reveals a role for Toxoplasma gondii CDPK1 in the invasion step. EUKARYOTIC CELL 2010; 9:667-70. [PMID: 20173034 DOI: 10.1128/ec.00351-09] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Toxoplasma gondii CDPK1 (TgCDPK1) was found to be the target of the toxoplasmocidal compound 1NM-PP1. When TgCDPK1 was mutated at position 128 from glycine to methionine, resistance was gained. Inhibition of gliding motility without inhibition of micronemal secretion by 1NM-PP1 suggests a function for TgCDPK1 in gliding motility.
Collapse
|