1
|
Ikeda R, Kaneko H, Sato H, Anan H, Ikeda A, Goda Y, Sue S, Irie K, Maeda S. Amoebic colitis insufficient to metronidazole monotherapy. Clin J Gastroenterol 2025; 18:310-313. [PMID: 39666268 DOI: 10.1007/s12328-024-02083-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 12/04/2024] [Indexed: 12/13/2024]
Abstract
Amoebic colitis is a parasitic gastrointestinal disease caused by Entamoeba histolytica (E. histolytica). In Japan, metronidazole (MNZ) monotherapy is often used and most cases are effective. However, we report a case of MNZ-insufficient amoebic colitis caused by residual cysts. A 73-year-old man had been staying in Southeast Asia for over a decade. He had undergone a screening colonoscopy and ulcerative lesions were observed in the cecum, and a biopsy confirmed amoeba parasites. The patient was treated with MNZ monotherapy. However, he forgot to take the medicine for several days, and the ulcerative lesions persisted. The patient was referred to our facility, and we performed a colonoscopy and confirmed trophozoites. Since we considered that previous treatment failure was due to the low oral dosage, we re-prescribed MNZ. A colonoscopy after 6 months showed that the ulcerative lesions persisted. We clinically diagnosed MNZ-insufficient amoebic colitis caused by residual cysts and prescribed MNZ and paromomycin (PRM) each for 10 days. One year later, no ulcerative lesions were observed. MNZ-insufficient amoebic colitis should be considered, when ulcerative lesions remain after MNZ administration and PRM is effective drug against cysts, and we propose a combination therapy of PRM to MNZ.
Collapse
Affiliation(s)
- Ryosuke Ikeda
- Department of Gastroenterology, Yokohama City University Graduate School of Medicine, 3-9, Fukuura, Kanazawa-ku, Yokohama, Kanagawa, 236-0004, Japan.
| | - Hiroaki Kaneko
- Department of Gastroenterology, Yokohama City University Graduate School of Medicine, 3-9, Fukuura, Kanazawa-ku, Yokohama, Kanagawa, 236-0004, Japan
| | - Hiroki Sato
- Department of Gastroenterology, Yokohama City University Graduate School of Medicine, 3-9, Fukuura, Kanazawa-ku, Yokohama, Kanagawa, 236-0004, Japan
| | - Hideyuki Anan
- Department of Gastroenterology, Yokohama City University Graduate School of Medicine, 3-9, Fukuura, Kanazawa-ku, Yokohama, Kanagawa, 236-0004, Japan
| | - Aya Ikeda
- Department of Gastroenterology, Yokohama City University Graduate School of Medicine, 3-9, Fukuura, Kanazawa-ku, Yokohama, Kanagawa, 236-0004, Japan
| | - Yoshihiro Goda
- Department of Gastroenterology, Yokohama City University Graduate School of Medicine, 3-9, Fukuura, Kanazawa-ku, Yokohama, Kanagawa, 236-0004, Japan
| | - Soichiro Sue
- Department of Gastroenterology, Yokohama City University Graduate School of Medicine, 3-9, Fukuura, Kanazawa-ku, Yokohama, Kanagawa, 236-0004, Japan
| | - Kuniyasu Irie
- Department of Gastroenterology, Yokohama City University Graduate School of Medicine, 3-9, Fukuura, Kanazawa-ku, Yokohama, Kanagawa, 236-0004, Japan
| | - Shin Maeda
- Department of Gastroenterology, Yokohama City University Graduate School of Medicine, 3-9, Fukuura, Kanazawa-ku, Yokohama, Kanagawa, 236-0004, Japan
| |
Collapse
|
2
|
Li Y, Meng X, Li D, Xia X, Zhang J, Chen Y, Tan H. NeoI represents a group of transcriptional repressors regulating the biosynthesis of multiple aminoglycosides. SCIENCE CHINA. LIFE SCIENCES 2024; 67:2761-2770. [PMID: 39441460 DOI: 10.1007/s11427-024-2665-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 06/26/2024] [Indexed: 10/25/2024]
Abstract
In general, the initiation or closure of antibiotic biosynthesis is determined by regulatory proteins, but most of their mechanisms of action remain unknown. The 2-deoxystreptamine-containing aminoglycosides (2-DOS AGs) form a unique category among antibiotics. Genomic analysis revealed that a group of hypothetical regulatory genes represented by neoI are widely distributed in the biosynthetic gene clusters (BGCs) of natural products from Streptomyces species, including several 2-DOS AGs. Only limited knowledge is available for the roles of NeoI-type regulators although neomycin and some of the related AGs have been developed as therapeutic drugs for decades. This study focuses on the functional determination of neoI and its homologues situated in the BGCs of six AGs. We found that the yield of neomycin in neoI disruption mutant (ΔneoI) increased by 50% compared to the wild-type (WT) strain ((420.6±44.1) mg L-1), while it was partially restored by the complementation of neoI, demonstrating that NeoI acted as a repressor in neomycin biosynthesis. Further electrophoretic mobility shift assays (EMSAs) and DNase I footprinting assays indicated that NeoI could specifically bind to the promoter region between neoE and neoI with conserved nucleotides (5'-CVHYMRCHDKAGYGGACR-3'), as determined by site-directed mutagenesis. Interestingly, cross-bindings of the NeoI homologues from the six different BGCs to their corresponding DNA targets were manifested, and the five exogenous NeoI homologues could complement NeoI function of repressing neomycin biosynthesis. Our results suggested that NeoI-type regulators represent widespread and conservative regulatory characteristics in the biosynthesis of 2-DOS AGs, which would be significant for optimizing the biosynthetic pathways of valuable commercialized aminoglycoside antibiotics.
Collapse
Affiliation(s)
- Yue Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiangxi Meng
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Dong Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiulei Xia
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jihui Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yihua Chen
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Huarong Tan
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
3
|
Kumari P, Agrawal P, Umarao P, Ramachandran V, Gourinath S. Identification of Small Molecule Inhibitors Targeting Phosphoserine Phosphatase: A Novel Target for the Development of Antiamoebic Drugs. ACS OMEGA 2024; 9:27906-27918. [PMID: 38973836 PMCID: PMC11223228 DOI: 10.1021/acsomega.3c09439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/25/2024] [Accepted: 01/31/2024] [Indexed: 07/09/2024]
Abstract
Amoebiasis, a widespread disease caused by the protozoan parasite Entamoeba histolytica, poses challenges due to the adverse effects of existing antiamoebic drugs and rising drug resistance. Novel targeted drugs are in need of the hour to combat the prevalence of this disease. Given the significance of cysteine for Entamoeba survival, the rate-determining step in the serine (the sole substrate of cysteine synthesis) biosynthetic pathway, i.e., the conversion of 3-phosphoserine to l-serine catalyzed by phosphoserine phosphatase (PSP), emerges as a promising drug target. Our previous study unveils the essential role of EhPSP in amoebas' survival, particularly under oxidative stress, by increasing cysteine production. The study also revealed that EhPSP differs significantly from its human counterpart, both structurally and biochemically, highlighting its potential as a viable target for developing new antiamoebic drugs. In the present study, employing in silico screening of vast natural and synthetic small chemical compound libraries, we identified 21 potential EhPSP inhibitor molecules. Out of the 21 compounds examined, only five could inhibit the catalytic activity of EhPSP. The inhibition capability of these five compounds was subsequently validated by in silico binding free energy calculations, SPR-based real-time binding studies, and molecular simulations to assess the stability of the EhPSP-inhibitor complexes. By identifying the five potential inhibitors that can target cysteine synthesis via EhPSP, our findings establish EhPSP as a drug candidate that can serve as a foundation for antiamoebic drug research.
Collapse
Affiliation(s)
- Poonam Kumari
- International
Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India
- Structural
Biology Lab, School of Life Sciences, Jawaharlal
Nehru University, New Delhi 110067, India
| | - Prakhar Agrawal
- International
Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India
| | - Preeti Umarao
- Structural
Biology Lab, School of Life Sciences, Jawaharlal
Nehru University, New Delhi 110067, India
| | - Vijayan Ramachandran
- The
Centre for Innovation in Brain Sciences, University of Arizona, Tucson 85721, Arizona, United States
| | - Samudrala Gourinath
- Structural
Biology Lab, School of Life Sciences, Jawaharlal
Nehru University, New Delhi 110067, India
| |
Collapse
|
4
|
Sauvey C, Meewan I, Ehrenkaufer G, Blevitt J, Jackson P, Abagyan R. High-throughput phenotypic screen identifies a new family of potent anti-amoebic compounds. PLoS One 2023; 18:e0280232. [PMID: 37159460 PMCID: PMC10168566 DOI: 10.1371/journal.pone.0280232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 12/23/2022] [Indexed: 05/11/2023] Open
Abstract
Entamoeba histolytica is a disease-causing parasitic amoeba which affects an estimated 50 million people worldwide, particularly in socioeconomically vulnerable populations experiencing water sanitation issues. Infection with E. histolytica is referred to as amoebiasis, and can cause symptoms such as colitis, dysentery, and even death in extreme cases. Drugs exist that are capable of killing this parasite, but they are hampered by downsides such as significant adverse effects at therapeutic concentrations, issues with patient compliance, the need for additional drugs to kill the transmissible cyst stage, and potential development of resistance. Past screens of small and medium sized chemical libraries have yielded anti-amoebic candidates, thus rendering high-throughput screening a promising direction for new drug discovery in this area. In this study, we screened a curated 81,664 compound library from Janssen pharmaceuticals against E. histolytica trophozoites in vitro, and from it identified a highly potent new inhibitor compound. The best compound in this series, JNJ001, showed excellent inhibition activity against E. histolytica trophozoites with EC50 values at 0.29 μM, which is better than the current approved treatment, metronidazole. Further experimentation confirmed the activity of this compound, as well as that of several structurally related compounds, originating from both the Janssen Jump-stARter library, and from chemical vendors, thus highlighting a new structure-activity relationship (SAR). In addition, we confirmed that the compound inhibited E. histolytica survival as rapidly as the current standard of care and inhibited transmissible cysts of the related model organism Entamoeba invadens. Together these results constitute the discovery of a novel class of chemicals with favorable in vitro pharmacological properties. The discovery may lead to an improved therapy against this parasite and in all of its life stages.
Collapse
Affiliation(s)
- Conall Sauvey
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School for Pharmacy and Pharmaceutical Sciences, University of California-San Diego, La Jolla, California, United States of America
| | - Ittipat Meewan
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School for Pharmacy and Pharmaceutical Sciences, University of California-San Diego, La Jolla, California, United States of America
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | - Gretchen Ehrenkaufer
- Division of Infectious Diseases, Department of Internal Medicine, Stanford University School of Medicine, Stanford, California, United States of America
| | - Jonathan Blevitt
- Janssen Research and Development, LLC, Ja Jolla, California, United States of America
| | - Paul Jackson
- Janssen Research and Development, LLC, Ja Jolla, California, United States of America
| | - Ruben Abagyan
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School for Pharmacy and Pharmaceutical Sciences, University of California-San Diego, La Jolla, California, United States of America
| |
Collapse
|
5
|
Tien V, Singh U. Entamoeba histolytica (Amebiasis). PRINCIPLES AND PRACTICE OF PEDIATRIC INFECTIOUS DISEASES 2023:1341-1346.e3. [DOI: 10.1016/b978-0-323-75608-2.00263-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
6
|
Ponatinib, Lestaurtinib and mTOR/PI3K inhibitors are promising repurposing candidates against Entamoeba histolytica. Antimicrob Agents Chemother 2021; 66:e0120721. [PMID: 34871094 DOI: 10.1128/aac.01207-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Dysentery caused by Entamoeba histolytica affects millions of people annually. Current treatment regimens are based on metronidazole to treat invasive parasites combined with paromomycin for luminal parasites. Issues with treatment include significant side effects, inability to easily treat breastfeeding and pregnant women, the use of two sequential agents, and concern that all therapy is based on nitroimidazole agents with no alternatives if clinical resistance emerges. Thus, the need for new drugs against amebiasis is urgent. To identify new therapeutic candidates, we screened the ReFRAME library (11,948 compounds assembled for Repurposing, Focused Rescue, and Accelerated Medchem) against E. histolytica trophozoites. We identified 159 hits in the primary screen at 10 μM and 46 compounds were confirmed in secondary assays. Overall, 26 were selected as priority molecules for further investigation including 6 FDA approved, 5 orphan designation, and 15 which are currently in clinical trials (3 phase III, 7 phase II and 5 phase I). We found that all 26 compounds are active against metronidazole resistant E. histolytica and 24 are able to block parasite recrudescence after drug removal. Additionally, 14 are able to inhibit encystation and 2 (lestaurtinib and LY-2874455) are active against mature cysts. Two classes of compounds are most interesting for further investigations: the Bcr-Abl TK inhibitors, with the ponatinib (EC50 0.39) as most potent and mTOR or PI3K inhibitors with 8 compounds in clinical development, of which 4 have nanomolar potency. Overall, these are promising candidates and represent a significant advance for drug development against E. histolytica.
Collapse
|
7
|
Elbadwi FA, Khairy EA, Alsamani FO, Mahadi MA, Abdalrahman SE, Ahmed ZAM, Elsayed I, Ibraheem W, Alzain AA. Identification of novel transmembrane Protease Serine Type 2 drug candidates for COVID-19 using computational studies. INFORMATICS IN MEDICINE UNLOCKED 2021; 26:100725. [PMID: 34514079 PMCID: PMC8421083 DOI: 10.1016/j.imu.2021.100725] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/01/2021] [Accepted: 09/03/2021] [Indexed: 12/15/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) emergence has resulted in a global health crisis. As a consequence, discovering an effective therapy that saves lives and slows the spread of the pandemic is a global concern currently. In silico drug repurposing is highly regarded as a precise computational method for obtaining fast and reliable results. Transmembrane serine-type 2 (TMPRSS2) is a SARS CoV-2 enzyme that is essential for viral fusion with the host cell. Inhibition of TMPRSS2 may block or lessen the severity of SARS-CoV-2 infection. In this study, we aimed to perform an in silico drug repurposing to identify drugs that can effectively inhibit SARS-CoV-2 TMPRSS2. As there is no 3D structure of TMPRSS2 available, homology modeling was performed to build the 3D structure of human TMPRSS2. 3848 world-approved drugs were screened against the target. Based on docking scores and visual outcomes, the best-fit drugs were chosen. Molecular dynamics (MD) and density functional theory (DFT) studies were also conducted. Five potential drugs (Amikacin, isepamicin, butikacin, lividomycin, paromomycin) exhibited promising binding affinities. In conclusion, these findings empower purposing these agents.
Collapse
Affiliation(s)
- Fatima A Elbadwi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Gezira, Gezira, Sudan
| | - Elaf A Khairy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Gezira, Gezira, Sudan
| | - Fatima O Alsamani
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Gezira, Gezira, Sudan
| | - Mariam A Mahadi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Gezira, Gezira, Sudan
| | - Segood E Abdalrahman
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Gezira, Gezira, Sudan
| | - Zain Alsharf M Ahmed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Gezira, Gezira, Sudan
| | - Inas Elsayed
- Department of Pharmacology, Faculty of Pharmacy, University of Gezira, Gezira, Sudan
| | - Walaa Ibraheem
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Gezira, Gezira, Sudan
| | - Abdulrahim A Alzain
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Gezira, Gezira, Sudan
| |
Collapse
|
8
|
Li J, Cui Z, Li X, Zhang L. Review of zoonotic amebiasis: Epidemiology, clinical signs, diagnosis, treatment, prevention and control. Res Vet Sci 2021; 136:174-181. [PMID: 33676155 DOI: 10.1016/j.rvsc.2021.02.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 01/11/2021] [Accepted: 02/26/2021] [Indexed: 02/07/2023]
Abstract
Amebiasis is a disease caused by the protozoan parasite Entamoeba histolytica, which mainly shows symptoms of acute diarrhea, dysentery, amebic colitis, and amebic liver abscesses. As the fourth leading parasitic cause of human mortality, E. histolytica mainly infect children in developing countries, transmitted by food and water contamination. In the majority of infected individuals, Entamoeba sp. asymptomatically colonizes the large intestine and self-limiting, while in others, the parasite breaches the mucosal epithelial barrier to cause amebic colitis and can disseminate to soft organs to cause abscesses. Metronidazole (MTZ) is the recommended and most widely used drug for treating the invasive amebiasis. No amebiasis vaccine has been approved for human clinical trials to date, but many recent vaccine development studies hold promise. For the prevention and control of amebiasis, improvement of water purification systems and hygiene practices could decrease disease incidence. In this review, we focus on the epidemiology, transmission, clinical signs, pathogenesis, diagnosis, treatment, prevention and control of the zoonotic amebiasis.
Collapse
Affiliation(s)
- Junqiang Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Zhaohui Cui
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Xiaoying Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Longxian Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China.
| |
Collapse
|
9
|
Sauvey C, Ehrenkaufer G, Shi D, Debnath A, Abagyan R. Antineoplastic kinase inhibitors: A new class of potent anti-amoebic compounds. PLoS Negl Trop Dis 2021; 15:e0008425. [PMID: 33556060 PMCID: PMC7895358 DOI: 10.1371/journal.pntd.0008425] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 02/19/2021] [Accepted: 12/21/2020] [Indexed: 12/17/2022] Open
Abstract
Entamoeba histolytica is a protozoan parasite which infects approximately 50 million people worldwide, resulting in an estimated 70,000 deaths every year. Since the 1960s E. histolytica infection has been successfully treated with metronidazole. However, drawbacks to metronidazole therapy exist, including adverse effects, a long treatment course, and the need for an additional drug to prevent cyst-mediated transmission. E. histolytica possesses a kinome with approximately 300–400 members, some of which have been previously studied as potential targets for the development of amoebicidal drug candidates. However, while these efforts have uncovered novel potent inhibitors of E. histolytica kinases, none have resulted in approved drugs. In this study we took the alternative approach of testing a set of twelve previously FDA-approved antineoplastic kinase inhibitors against E. histolytica trophozoites in vitro. This resulted in the identification of dasatinib, bosutinib, and ibrutinib as amoebicidal agents at low-micromolar concentrations. Next, we utilized a recently developed computational tool to identify twelve additional drugs with human protein target profiles similar to the three initial hits. Testing of these additional twelve drugs led to the identification of ponatinib, neratinib, and olmutinib were identified as highly potent, with EC50 values in the sub-micromolar range. All of these six drugs were found to kill E. histolytica trophozoites as rapidly as metronidazole. Furthermore, ibrutinib was found to kill the transmissible cyst stage of the model organism E. invadens. Ibrutinib thus possesses both amoebicidal and cysticidal properties, in contrast to all drugs used in the current therapeutic strategy. These findings together reveal antineoplastic kinase inhibitors as a highly promising class of potent drugs against this widespread and devastating disease. Every year, nearly a hundred thousand people worldwide die from infection by the intestinal parasite Entamoeba histolytica, despite the widespread availability of metronidazole as a treatment. Here we report that six anticancer drugs of the kinase inhibitor class possess potent anti-amoebic properties, with one of them killing both actively dividing parasite and its transmissible cysts. These anticancer kinase inhibitors, including the dual-purpose drug with both amoebicidal and cysticidal activities may be used to treat amoebiasis, especially in cancer patients or in life-threatening brain- and liver-infecting forms of the disease.
Collapse
Affiliation(s)
- Conall Sauvey
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School for Pharmacy and Pharmaceutical Sciences, University of California—San Diego, La Jolla, California, United States of America
- * E-mail: (CS); (RA)
| | - Gretchen Ehrenkaufer
- Division of Infectious Diseases, Department of Internal Medicine, Stanford University School of Medicine, Stanford, California, United States of America
| | - Da Shi
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School for Pharmacy and Pharmaceutical Sciences, University of California—San Diego, La Jolla, California, United States of America
| | - Anjan Debnath
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School for Pharmacy and Pharmaceutical Sciences, University of California—San Diego, La Jolla, California, United States of America
| | - Ruben Abagyan
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School for Pharmacy and Pharmaceutical Sciences, University of California—San Diego, La Jolla, California, United States of America
- * E-mail: (CS); (RA)
| |
Collapse
|
10
|
Can We Harness Immune Responses to Improve Drug Treatment in Leishmaniasis? Microorganisms 2020; 8:microorganisms8071069. [PMID: 32709117 PMCID: PMC7409143 DOI: 10.3390/microorganisms8071069] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/12/2020] [Accepted: 07/16/2020] [Indexed: 02/07/2023] Open
Abstract
Leishmaniasis is a vector-borne parasitic disease that has been neglected in priority for control and eradication of malaria, tuberculosis, and HIV/AIDS. Collectively, over one seventh of the world’s population is at risk of being infected with 0.7–1.2 million new infections reported annually. Clinical manifestations range from self-healing cutaneous lesions to fatal visceral disease. The first anti-leishmanial drugs were introduced in the 1950′s and, despite several shortcomings, remain the mainstay for treatment. Regardless of this and the steady increase in infections over the years, particularly among populations of low economic status, research on leishmaniasis remains under funded. This review looks at the drugs currently in clinical use and how they interact with the host immune response. Employing chemoimmunotherapeutic approaches may be one viable alternative to improve the efficacy of novel/existing drugs and extend their lifespan in clinical use.
Collapse
|
11
|
Rawat A, Singh P, Jyoti A, Kaushik S, Srivastava VK. Averting transmission: A pivotal target to manage amoebiasis. Chem Biol Drug Des 2020; 96:731-744. [PMID: 32356312 DOI: 10.1111/cbdd.13699] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/16/2020] [Accepted: 04/19/2020] [Indexed: 12/18/2022]
Abstract
Amoebiasis is a parasitic infectious disease caused by the enteric protozoan Entamoeba histolytica, a leading basis of deaths accounted to parasites, succeeding malaria and schistosomiasis. Conventional treatment methodologies used to deal with amoebiasis mainly rely on the administration of anti-amoebic compounds and vaccines but are often linked with substantial side-effects on the patient. Besides, cases of development of drug resistance in protozoans have been recorded, contributing further to the reduction in the efficiency of the treatment. Loopholes in the efficacious management of the disease call for the development of novel methodologies to manage amoebiasis. A way to achieve this is by targeting the essential metabolic processes of 'encystation' and 'excystation', and the associated biomolecules, thus interrupting the biphasic life cycle of the parasite. Technologies like the CRISPR-Cas9 system can efficiently be exploited to discover novel and essential molecules that regulate the protozoan's metabolism, while efficiently manipulating and managing the known drug targets, leading to an effective halt and forestall to the enteric infection. This review presents a perspective on these essential metabolic processes and the associated molecules that can be targeted efficaciously to prevent the transmission of amoebiasis, thus managing the disease and proving to be a fruitful endeavour.
Collapse
Affiliation(s)
- Aadish Rawat
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, India
| | - Parikshit Singh
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, India
| | - Anupam Jyoti
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, India
| | - Sanket Kaushik
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, India
| | | |
Collapse
|
12
|
Yamamoto K, Yanagawa Y, Oka S, Watanabe K. Two cases of endoscopically diagnosed amebic colitis treated with paromomycin monotherapy. PLoS Negl Trop Dis 2020; 14:e0008013. [PMID: 32191702 PMCID: PMC7081979 DOI: 10.1371/journal.pntd.0008013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Kei Yamamoto
- Disease Control and Prevention Center, National Center for Global Health and Medicine, Tokyo, Japan
| | - Yasuaki Yanagawa
- AIDS Clinical Center, National Center for Global Health and Medicine, Tokyo, Japan
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Shinichi Oka
- AIDS Clinical Center, National Center for Global Health and Medicine, Tokyo, Japan
| | - Koji Watanabe
- AIDS Clinical Center, National Center for Global Health and Medicine, Tokyo, Japan
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan
- * E-mail:
| |
Collapse
|
13
|
Carrero JC, Reyes-López M, Serrano-Luna J, Shibayama M, Unzueta J, León-Sicairos N, de la Garza M. Intestinal amoebiasis: 160 years of its first detection and still remains as a health problem in developing countries. Int J Med Microbiol 2019; 310:151358. [PMID: 31587966 DOI: 10.1016/j.ijmm.2019.151358] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/29/2019] [Accepted: 09/15/2019] [Indexed: 12/22/2022] Open
Abstract
Amoebiasis is a parasitic disease caused by Entamoeba histolytica (E. histolytica), an extracellular enteric protozoan. This infection mainly affects people from developing countries with limited hygiene conditions, where it is endemic. Infective cysts are transmitted by the fecal-oral route, excysting in the terminal ileum and producing invasive trophozoites (amoebae). E. histolytica mainly lives in the large intestine without causing symptoms; however, possibly as a result of so far unknown signals, the amoebae invade the mucosa and epithelium causing intestinal amoebiasis. E. histolytica possesses different mechanisms of pathogenicity for the adherence to the intestinal epithelium and for degrading extracellular matrix proteins, producing tissue lesions that progress to abscesses and a host acute inflammatory response. Much information has been obtained regarding the virulence factors, metabolism, mechanisms of pathogenicity, and the host immune response against this parasite; in addition, alternative treatments to metronidazole are continually emerging. An accesible and low-cost diagnostic method that can distinguish E. histolytica from the most nonpathogenic amoebae and an effective vaccine are necessary for protecting against amoebiasis. However, research about the disease and its prevention has been a challenge due to the relationship between E. histolytica and the host during the distinct stages of the disease is multifaceted. In this review, we analyze the interaction between the parasite, the human host, and the colon microbiota or pathogenic microorganisms, which together give rise to intestinal amoebiasis.
Collapse
Affiliation(s)
- Julio C Carrero
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, CdMx, Mexico
| | - Magda Reyes-López
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN, CdMx, Mexico
| | - Jesús Serrano-Luna
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN, CdMx, Mexico
| | - Mineko Shibayama
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, CdMx, Mexico
| | - Juan Unzueta
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, CdMx, Mexico
| | - Nidia León-Sicairos
- Departamento de Investigación, Hospital Pediátrico de Sinaloa México, Unidad de Investigación, CIASaP, Facultad de Medicina, Universidad Autónoma de Sinaloa, Culiacán, Sinaloa, Mexico
| | - Mireya de la Garza
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN, CdMx, Mexico.
| |
Collapse
|
14
|
Schmidt-Hieber M, Bierwirth J, Buchheidt D, Cornely OA, Hentrich M, Maschmeyer G, Schalk E, Vehreschild JJ, Vehreschild MJGT. Diagnosis and management of gastrointestinal complications in adult cancer patients: 2017 updated evidence-based guidelines of the Infectious Diseases Working Party (AGIHO) of the German Society of Hematology and Medical Oncology (DGHO). Ann Hematol 2018; 97:31-49. [PMID: 29177551 PMCID: PMC5748412 DOI: 10.1007/s00277-017-3183-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 11/11/2017] [Indexed: 12/15/2022]
Abstract
Cancer patients frequently suffer from gastrointestinal complications. In this manuscript, we update our 2013 guideline on the diagnosis and management of gastrointestinal complications in adult cancer patients by the Infectious Diseases Working Party (AGIHO) of the German Society of Hematology and Medical Oncology (DGHO). An expert group was put together by the AGIHO to update the existing guideline. For each sub-topic, a literature search was performed in PubMed, Medline, and Cochrane databases, and strengths of recommendation and the quality of the published evidence for major therapeutic strategies were categorized using the 2015 European Society for Clinical Microbiology and Infectious Diseases (ESCMID) criteria. Final recommendations were approved by the AGIHO plenary conference. Recommendations were made with respect to non-infectious and infectious gastrointestinal complications. Strengths of recommendation and levels of evidence are presented. A multidisciplinary approach to the diagnosis and management of gastrointestinal complications in cancer patients is mandatory. Evidence-based recommendations are provided in this updated guideline.
Collapse
Affiliation(s)
- M Schmidt-Hieber
- Clinic for Hematology, Oncology, Tumor Immunology and Palliative Care, HELIOS Klinikum Berlin-Buch, Berlin, Germany
| | - J Bierwirth
- Deutsches Beratungszentrum für Hygiene, BZH GmbH, Freiburg, Germany
| | - D Buchheidt
- 3rd Department of Internal Medicine - Hematology and Oncology - Mannheim University Hospital, University of Heidelberg, Heidelberg, Germany
| | - O A Cornely
- 1st Department of Internal Medicine, University of Cologne, Cologne, Germany
- German Center for Infection Research (DZIF), partner site Bonn-Cologne, Cologne, Germany
- Clinical Trials Centre Cologne, ZKS Köln, University of Cologne, Cologne, Germany
| | - M Hentrich
- Department III for Internal Medicine, Hematology and Oncology, Rotkreuzklinikum München, Munich, Germany
| | - G Maschmeyer
- Department of Hematology, Oncology and Palliative Care, Ernst-von-Bergmann Klinikum, Potsdam, Germany
| | - E Schalk
- Department of Hematology and Oncology, Medical Center, Otto-von-Guericke University, Magdeburg, Germany
| | - J J Vehreschild
- 1st Department of Internal Medicine, University of Cologne, Cologne, Germany
- German Center for Infection Research (DZIF), partner site Bonn-Cologne, Cologne, Germany
| | - Maria J G T Vehreschild
- 1st Department of Internal Medicine, University of Cologne, Cologne, Germany.
- German Center for Infection Research (DZIF), partner site Bonn-Cologne, Cologne, Germany.
- 1st Department of Internal Medicine, Hospital of the University of Cologne, Kerpener Str. 62, 50937, Köln, Germany.
| |
Collapse
|
15
|
Taravaud A, Loiseau PM, Pomel S. In vitro evaluation of antimicrobial agents on Acanthamoeba sp. and evidence of a natural resilience to amphotericin B. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2017; 7:328-336. [PMID: 28918001 PMCID: PMC5604952 DOI: 10.1016/j.ijpddr.2017.09.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Revised: 09/01/2017] [Accepted: 09/07/2017] [Indexed: 12/11/2022]
Abstract
The free-living amoeba (FLA) Acanthamoeba sp. is an opportunistic pathogen that can cause amoebic keratitis (AK) or granulomatous amoebic encephalitis (GAE). While current treatments of AK are long with some relapses, no consensus therapy has been developed for GAE remaining lethal in 90% of the cases. In this context, efficient antiacanthamoebal drugs have to be identified. In this work, 15 drugs used in the treatment of AK or GAE or in other parasitic diseases were evaluated for their in vitro activity on A. castellanii. Hexamidine, voriconazole and clotrimazole exhibited the highest activities with IC50 values at 0.05 μM, 0.40 μM and 0.80 μM, respectively, while rifampicin, metronidazole and cotrimoxazole were inactive. Among 15 drug associations evaluated, no synergistic effect was observed, and one antagonism was determined between hexamidine and chlorhexidine. Interestingly, amphotericin B was the only drug presenting an increase of IC50 as a function of treatment duration. The amoebae susceptibility to amphotericin B cultured in the presence of 250 μM of the drug was similar to the one of a naive control, revealing that no resistant strain could be selected. However, the amoebae susceptibility always returned to an initial level at each passage. This natural and non-acquired adaptation to amphotericin B, qualified as resilience, was observed in several strains of A. castellanii and A. polyphaga. Using a pharmacological approach with effectors of different cellular mechanisms or transports, and an ultrastructural analysis of amphotericin B-treated amoebae, the involvement of several mitochondria-dependent pathways as well as multidrug resistant transporters was determined in amphotericin B resilience. Based on the observations from this study, the relevance of using amphotericin B in GAE treatments may be reconsidered, while the use of some other drugs, such as rifampicin or cotrimoxazole, is not relative to intrinsic antiacanthamoebal activity. In vitro evaluation of 15 antimicrobial agents on Acanthamoeba castellanii. Best activity for hexamidine and inefficiency of rifampicin and cotrimoxazole. Antagonism of the combination chlorhexidine/hexamidine. Natural resilience of Acanthamoeba sp. for amphotericin B. Involvement of mitochondria-dependent pathways and MDR in amphotericin B resilience.
Collapse
Affiliation(s)
- Alexandre Taravaud
- Chimiothérapie Antiparasitaire, UMR CNRS 8076, BioCIS, Université Paris-Sud, Université Paris-Saclay, 5 rue Jean-Baptiste Clément, 92290 Châtenay-Malabry, France
| | - Philippe M Loiseau
- Chimiothérapie Antiparasitaire, UMR CNRS 8076, BioCIS, Université Paris-Sud, Université Paris-Saclay, 5 rue Jean-Baptiste Clément, 92290 Châtenay-Malabry, France
| | - Sébastien Pomel
- Chimiothérapie Antiparasitaire, UMR CNRS 8076, BioCIS, Université Paris-Sud, Université Paris-Saclay, 5 rue Jean-Baptiste Clément, 92290 Châtenay-Malabry, France.
| |
Collapse
|
16
|
Paper-based colorimetric biosensor for antibiotics inhibiting bacterial protein synthesis. J Biosci Bioeng 2017; 123:96-100. [DOI: 10.1016/j.jbiosc.2016.07.015] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 07/15/2016] [Accepted: 07/22/2016] [Indexed: 12/13/2022]
|
17
|
El-Taweel HA. Understanding drug resistance in human intestinal protozoa. Parasitol Res 2015; 114:1647-59. [DOI: 10.1007/s00436-015-4423-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Accepted: 03/05/2015] [Indexed: 01/07/2023]
|
18
|
Hanessian S, Saavedra OM, Vilchis-Reyes MA, Llaguno-Rueda AM. Synthesis of 4′-deoxy-4′-fluoro neamine and 4′-deoxy-4′-fluoro 4′-epi neamine. MEDCHEMCOMM 2014. [DOI: 10.1039/c4md00072b] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The syntheses of 4′-deoxy-4′-fluoro neamine and 4′-deoxy-4′-fluoro 4′-epi neamine from the readily available neamine and paromamine are described.
Collapse
|