1
|
Giraudo A, Bolchi C, Pallavicini M, Di Santo R, Costi R, Saccoliti F. Uncovering the Mechanism of Action of Antiprotozoal Agents: A Survey on Photoaffinity Labeling Strategy. Pharmaceuticals (Basel) 2024; 18:28. [PMID: 39861091 PMCID: PMC11768348 DOI: 10.3390/ph18010028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/19/2024] [Accepted: 12/24/2024] [Indexed: 01/27/2025] Open
Abstract
Plasmodium, Leishmania, and Trypanosoma parasites are responsible for infectious diseases threatening millions of people worldwide. Despite more recent efforts devoted to the search for new antiprotozoal agents, efficacy, safety, and resistance issues still hinder the development of suited therapeutic options. The lack of robustly validated targets and the complexity of parasite's diseases have made phenotypic screening a preferential drug discovery strategy for the identification of new chemical entities. However, via this approach, no information on biological target(s) and mechanisms of action of compounds are provided. Among the target deconvolution strategies useful to fill this gap, photoaffinity labeling (PAL) has emerged as one of most suited to enable investigation in a complex cellular environment. More recently, PAL has been exploited to unravel the molecular basis of bioactive compounds' function in live parasites, allowing elucidation of the mechanism of action of both approved drugs and new chemical entities. Besides highlighting new potential drug targets, PAL can provide valuable information on efficacy and liabilities of small molecules at the molecular level, which could be exploited to greatly facilitate the rational optimization of compounds in terms of potency and safety. In this review, we will report the most recent studies that have leveraged PAL to disclose the biological targets and mechanism of action of phenotypically active compounds targeting kinetoplastid diseases (i.e., human African trypanosomiasis, leishmaniasis, and Chagas disease) and malaria. Moreover, we will comment on potential perspectives that this innovative approach can provide in aiding the discovery and development of new antiprotozoal drugs.
Collapse
Affiliation(s)
- Alessandro Giraudo
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via Mangiagalli 25, I-20133 Milano, Italy
| | - Cristiano Bolchi
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via Mangiagalli 25, I-20133 Milano, Italy
| | - Marco Pallavicini
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via Mangiagalli 25, I-20133 Milano, Italy
| | - Roberto Di Santo
- Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci Bolognetti, “Sapienza” Università di Roma, p.le Aldo Moro 5, I-00185 Rome, Italy
| | - Roberta Costi
- Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci Bolognetti, “Sapienza” Università di Roma, p.le Aldo Moro 5, I-00185 Rome, Italy
| | - Francesco Saccoliti
- Dipartimento di Scienze della Vita, della Salute e delle Professioni Sanitarie, Università degli Studi “Link Campus University”, Via del Casale di S. Pio V 44, I-00165 Rome, Italy
| |
Collapse
|
2
|
Adomako AK, Gasu EN, Mensah JO, Borquaye LS. Antileishmanial natural products as potential inhibitors of the Leishmania pteridine reductase: insights from molecular docking and molecular dynamics simulations. In Silico Pharmacol 2024; 12:70. [PMID: 39091898 PMCID: PMC11289227 DOI: 10.1007/s40203-024-00247-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 07/22/2024] [Indexed: 08/04/2024] Open
Abstract
Although many natural product-derived compounds possess anti-leishmanial activities in vitro and in vivo, their molecular targets in the Leishmania parasite remain elusive. This is a major challenge in optimizing these compounds into leads. The Leishmania pteridine reductase (PTR1) is peculiar for folate and pterin metabolism and has been validated as a drug target. In this study, 17 compounds with anti-leishmanial activities were screened against Leishmania major PTR1 (LmPTR1) using molecular docking and molecular dynamics (MD) simulations. All ligands were bound in the active site pocket of LmPTR1 with binding affinities ranging from -11.2 to -5.2 kcal/mol. Agnuside, betulin, betulinic acid, gerberinol, ismailin, oleanolic acid, pristimerin, and ursolic acid demonstrated binding affinities similar to a known inhibitor, methyl 1-(4-{[2,4-diaminopteridin-6-yl) methyl] amino} benzoyl) piperidine-4-carboxylate (DVP). MD simulations revealed that betulin, betulinic acid, ismailin, oleanolic acid, pristimerin, and ursolic acid formed stable complexes with LmPTR1. The binding free energies of the complexes were very good (-87 to -148 kJ/mol), and much higher than the complex of the standard DVP inhibitor and LmPTR1 (-27 kJ/mol). Betulin, betulinic acid, ismailin, oleanolic acid, pristimerin, and ursolic acid likely exert their antileishmanial action by inhibiting PTR1 and could thus be used as a basis for the development of potential antileishmanial chemotherapeutic agents. Graphical abstract Supplementary Information The online version contains supplementary material available at 10.1007/s40203-024-00247-8.
Collapse
Affiliation(s)
| | - Edward Ntim Gasu
- Department of Chemistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
- Central Laboratory, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | | | - Lawrence Sheringham Borquaye
- Department of Chemistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
- Central Laboratory, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| |
Collapse
|
3
|
Valiallahi A, Vazifeh Z, Gatabi ZR, Davoudi M, Gatabi IR. PLGA Nanoparticles as New Drug Delivery Systems in Leishmaniasis Chemotherapy: A Review of Current Practices. Curr Med Chem 2024; 31:6371-6392. [PMID: 37612875 DOI: 10.2174/0929867331666230823094737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 06/03/2023] [Accepted: 07/18/2023] [Indexed: 08/25/2023]
Abstract
Although leishmaniasis is one of the most common parasitic diseases, its traditional treatments suffer from some serious problems. To solve such issues, we can take advantage of the effective nanoparticle-based approaches to deliver anti-leishmanial agents into leishmania-infected macrophages either using passive targeting or using macrophagerelated receptors. Despite the high potential of nanotechnology, Liposomal Amphotericin B (AmBisome®) is the only FDA-approved nanoparticle-based anti-leishmanial therapy. In an effort to find more anti-leishmanial nano-drugs, this 2011-2021 review study aimed to investigate the in-vivo and in-vitro effectiveness of poly (lactic-co-glycolic acid) nanoparticles (PLGA-NPs) in the delivery of some traditional anti-leishmanial drugs. Based on the results, PLGA-NPs could improve solubility, controlled release, trapping efficacy, bioavailability, selectivity, and mucosal penetration of the drugs, while they decreased resistance, dose/duration of administration and organotoxicity of the agents. However, none of these nano-formulations have been able to enter clinical trials so far. We summarized the data about the common problems of anti-leishmanial agents and the positive effects of various PLGA nano-formulations on reducing these drawbacks under both in-vitro and in-vivo conditions in three separate tables. Overall, this study proposes two AmB-loaded PLGA with a 99% reduction in parasite load as promising nanoparticles for further studies.
Collapse
Affiliation(s)
- Alaleh Valiallahi
- Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | - Zahra Vazifeh
- Department of Biotechnology, Shahed University, Tehran, Iran
| | - Zahra Rezanejad Gatabi
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Maryam Davoudi
- Department of Clinical Laboratory Sciences, Faculty of Allied Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
4
|
Lafi O, Essid R, Lachaud L, Jimenez C, Rodríguez J, Ageitos L, Mhamdi R, Abaza L. Synergistic antileishmanial activity of erythrodiol, uvaol, and oleanolic acid isolated from olive leaves of cv. Chemlali. 3 Biotech 2023; 13:395. [PMID: 37970450 PMCID: PMC10643720 DOI: 10.1007/s13205-023-03825-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 10/17/2023] [Indexed: 11/17/2023] Open
Abstract
This study aimed to assess the antileishmanial activity of biomolecules obtained from Olea europaea L. leaves and twigs recovered from eight Tunisian cultivars. The extraction was first carried out with 80% methanol, and then the obtained extract was fractionated using three solvents of increasing polarity: cyclohexane (CHX), dichloromethane (DCM) and ethyl acetate (EtOAc). The antileishmanial activity was determined against leishmanial strains responsible for cutaneous, visceral, and mucocutaneous leishmaniasis. The cyclohexane fraction of the leaves of cv. Chemlali from the region of Sidi-Bouzid exhibited the strongest leishmanicidal activity against all the tested leishmanial strains. The inhibition concentrations (IC50) were 16.5, 14.5, and 7.4 μg mL-1 for Leishmania mexicana (cutaneous), Leishmania braziliensis (mucocutaneous), and Leishmania donovani (visceral), respectively. Interestingly, low cytotoxicity was observed on THP-1 cells with selective indexes (SI) ranging from 22.8 to 50.5. HPLC-HRMS and full-house NMR analysis allowed the identification of three triterpenic compounds, oleanolic acid (IC50 = 64.1 μg mL-1), erythrodiol (IC50 = 52.0 µg mL-1), and uvaol (IC50 = 53.8 μg mL-1). Antileishmanial activity of uvaol and oleanolic acid has been previously reported. However, this work constitutes the first report of the antileishmanial activity of erythrodiol which showed combinatorial interaction with uvaol (IC50 = 26.1 μg mL-1) against Leishmania tropica. The mixture of the three compounds, as major ones, exhibited an enhanced activity against Leishmania tropica (IC50 = 16.3 µg mL-1) compared to erythrodiol alone or the combination of uvaol and erythrodiol. This finding is of great importance and needs further investigation. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03825-3.
Collapse
Affiliation(s)
- Oumayma Lafi
- Laboratory of Biotechnology of Olive, Centre of Biotechnology of Borj Cedria, BP 901, 2050 Hammam-Lif, Tunisia
- Faculty of Mathematical, Physical and Natural Sciences of Tunis, The University of Tunis El Manar, 20 Street of Tolede, 2092 Tunis, Tunisia
| | - Rym Essid
- Laboratory of Bioactive Substances, Centre of Biotechnology of Borj Cedria, BP 901, 2050 Hammam-Lif, Tunisia
| | - Laurence Lachaud
- UMR, Univ Montpellier (IRD-CNRS), MIVEGEC, Montpellier, France
- Department of Parasitology-Mycology, CHU Montpellier, 39 Av. Charles Flahault, 34295 Montpellier cedex 5, France
| | - Carlos Jimenez
- CICA-Centro Interdisciplinar de Química e Bioloxía, Departamento de Química, Facultade de Ciencias, Universidade da Coruña, 15071 A Coruña, Spain
| | - Jaime Rodríguez
- CICA-Centro Interdisciplinar de Química e Bioloxía, Departamento de Química, Facultade de Ciencias, Universidade da Coruña, 15071 A Coruña, Spain
| | - Lucía Ageitos
- CICA-Centro Interdisciplinar de Química e Bioloxía, Departamento de Química, Facultade de Ciencias, Universidade da Coruña, 15071 A Coruña, Spain
| | - Ridha Mhamdi
- Laboratory of Biotechnology of Olive, Centre of Biotechnology of Borj Cedria, BP 901, 2050 Hammam-Lif, Tunisia
| | - Leila Abaza
- Laboratory of Biotechnology of Olive, Centre of Biotechnology of Borj Cedria, BP 901, 2050 Hammam-Lif, Tunisia
| |
Collapse
|
5
|
Lahmadi G, Horchani M, Dbeibia A, Mahdhi A, Romdhane A, Lawson AM, Daïch A, Harrath AH, Ben Jannet H, Othman M. Novel Oleanolic Acid-Phtalimidines Tethered 1,2,3 Triazole Hybrids as Promising Antibacterial Agents: Design, Synthesis, In Vitro Experiments and In Silico Docking Studies. Molecules 2023; 28:4655. [PMID: 37375209 DOI: 10.3390/molecules28124655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/04/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
As part of the valorization of agricultural waste into bioactive compounds, a series of structurally novel oleanolic acid ((3β-hydroxyolean-12-en-28-oic acid, OA-1)-phtalimidines (isoindolinones) conjugates 18a-u bearing 1,2,3-triazole moieties were designed and synthesized by treating an azide 4 previously prepared from OA-1 isolated from olive pomace (Olea europaea L.) with a wide range of propargylated phtalimidines using the Cu(I)-catalyzed click chemistry approach. OA-1 and its newly prepared analogues, 18a-u, were screened in vitro for their antibacterial activity against two Gram-positive bacteria, Staphylococcus aureus and Listeria monocytogenes, and two Gram-negative bacteria, Salmonella thyphimurium and Pseudomonas aeruginosa. Attractive results were obtained, notably against L. monocytogenes. Compounds 18d, 18g, and 18h exhibited the highest antibacterial activity when compared with OA-1 and other compounds in the series against tested pathogenic bacterial strains. A molecular docking study was performed to explore the binding mode of the most active derivatives into the active site of the ABC substrate-binding protein Lmo0181 from L. monocytogenes. Results showed the importance of both hydrogen bonding and hydrophobic interactions with the target protein and are in favor of the experimental data.
Collapse
Affiliation(s)
- Ghofrane Lahmadi
- Normandie University, URCOM, UNILEHAVRE, FR3021, UR 3221, 25 Rue Philippe Lebon, BP 540, F-76058 Le Havre, France
- Laboratory of Heterocyclic Chemistry, LR11ES39, Faculty of Science of Monastir, University of Monastir, Avenue of Environment, Monastir 5019, Tunisia
| | - Mabrouk Horchani
- Laboratory of Heterocyclic Chemistry, LR11ES39, Faculty of Science of Monastir, University of Monastir, Avenue of Environment, Monastir 5019, Tunisia
| | - Amal Dbeibia
- Laboratory of Analysis, Treatment and Valorization of Pollutants of the Environment and Products, Faculty of Pharmacy, University of Monastir, Monastir 5000, Tunisia
| | - Abdelkarim Mahdhi
- Laboratory of Analysis, Treatment and Valorization of Pollutants of the Environment and Products, Faculty of Pharmacy, University of Monastir, Monastir 5000, Tunisia
| | - Anis Romdhane
- Laboratory of Heterocyclic Chemistry, LR11ES39, Faculty of Science of Monastir, University of Monastir, Avenue of Environment, Monastir 5019, Tunisia
| | - Ata Martin Lawson
- Normandie University, URCOM, UNILEHAVRE, FR3021, UR 3221, 25 Rue Philippe Lebon, BP 540, F-76058 Le Havre, France
| | - Adam Daïch
- Normandie University, URCOM, UNILEHAVRE, FR3021, UR 3221, 25 Rue Philippe Lebon, BP 540, F-76058 Le Havre, France
| | - Abdel Halim Harrath
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Hichem Ben Jannet
- Laboratory of Heterocyclic Chemistry, LR11ES39, Faculty of Science of Monastir, University of Monastir, Avenue of Environment, Monastir 5019, Tunisia
| | - Mohamed Othman
- Normandie University, URCOM, UNILEHAVRE, FR3021, UR 3221, 25 Rue Philippe Lebon, BP 540, F-76058 Le Havre, France
| |
Collapse
|
6
|
Shanmugam M, Subramanian S, Ramachandran S. Method development and validation for quantification of six bioactive compounds (andrographolide, columbin, piperine, gallic, paracoumaric and oleanolic acids) by HPTLC. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2023; 20:137-145. [PMID: 36384045 DOI: 10.1515/jcim-2022-0135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
OBJECTIVES During the spread of pandemic diseases, immunity boosting herbal drugs are taken as a preventive medicine. Kapacurak Kuṭinīr Cūraṇam is a Siddha drug used for flu like viral infections, cold and fever. Developing an analytical method to estimate the content of active phytoconstituents in such antiviral immune boosting drug will be useful in the phyto pharmaceutical industry. METHODS A precise, reliable and sensitive ordinary phase high performance thin layer chromatography (HPTLC) method has been developed and validated for identification and simultaneous estimation of six bioactive components namely like andrographolide, columbin, gallic acid, ρ-coumaric acid, piperine and oleanolic acid from any Indian traditional medicine, medicinal plant, drugs and food materials etc. The separation was achieved on silica gel 60F254 TLC plates using toluene: ethyl acetate: formic acid (7:3:0.5, v/v) as mobile phase. The gallic acid, ρ-coumaric acid, piperine markers were estimated using the densitometric scanning in absorption mode at 254 nm. The densitometric scanning was done after derivatization (vanillin-sulphuric acid reagent) at λ=520 nm for andrographolide, columbin and oleanolic acid. RESULTS The linear regression analysis data for the calibration plots showed a correlation coefficient in the concentration range 1-5 μg per band for the bioactive markers with respect to area. The method was validated for accuracy, precision, limit of detection (LOD), and quantitation of limit (LOQ). CONCLUSIONS Developed method was accurate, precise and fast to ensure the quality of Kapacurak Kuṭinīr Cūraṇam.
Collapse
Affiliation(s)
- Murugammal Shanmugam
- Department of Chemistry, Siddha Central Research Institute (Central Council for Research in Siddha, Ministry of AYUSH, Government of India), Chennai, Tamil Nadu, India
| | - Subashini Subramanian
- Department of Chemistry, Siddha Central Research Institute (Central Council for Research in Siddha, Ministry of AYUSH, Government of India), Chennai, Tamil Nadu, India
| | - Shakila Ramachandran
- Department of Chemistry, Siddha Central Research Institute (Central Council for Research in Siddha, Ministry of AYUSH, Government of India), Chennai, Tamil Nadu, India
| |
Collapse
|
7
|
Yang YH, Dai SY, Deng FH, Peng LH, Li C, Pei YH. Recent advances in medicinal chemistry of oleanolic acid derivatives. PHYTOCHEMISTRY 2022; 203:113397. [PMID: 36029846 DOI: 10.1016/j.phytochem.2022.113397] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 08/14/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
Oleanolic acid (OA), a ubiquitous pentacyclic oleanane-type triterpene isolated from edible and medicinal plants, exhibits a wide spectrum of pharmacological activities and tremendous therapeutic potential. However, the undesirable pharmacokinetic properties limit its application and development. Numerous researches on structural modifications of OA have been carried out to overcome this limitation and improve its pharmacokinetic and therapeutic properties. This review aims to compile and summarize the recent progresses in the medicinal chemistry of OA derivatives, especially on structure-activity relationship in the last few years (2010-2021). It gives insights into the rational design of bioactive derivatives from OA scaffold as promising therapeutic agents.
Collapse
Affiliation(s)
- Yi-Hui Yang
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin, 150081, PR China
| | - Si-Yang Dai
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin, 150081, PR China
| | - Fu-Hua Deng
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin, 150081, PR China
| | - Li-Huan Peng
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin, 150081, PR China
| | - Chang Li
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin, 150081, PR China.
| | - Yue-Hu Pei
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin, 150081, PR China.
| |
Collapse
|
8
|
Unraveling the Phytochemistry, Traditional Uses, and Biological and Pharmacological Activities of Thymus algeriensis Boiss. & Reut. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6487430. [PMID: 35663202 PMCID: PMC9159826 DOI: 10.1155/2022/6487430] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/11/2022] [Accepted: 04/21/2022] [Indexed: 12/20/2022]
Abstract
Growing concern for public health has increased the need to change the paradigm towards a healthcare system that advocates holistic practices while reducing adverse effects. Herbal therapy is becoming an integral part of the therapeutic arsenal, and several successful plant-derived compounds/molecules are being introduced into the market. The medicinal plants belonging to the genus Thymus are among the most important species within the Lamiaceae family. One of them is Thymus algeriensis which is mainly distributed in the Mediterranean region. For a long time, this species has been used in traditional medicine to treat several disorders and diseases including inflammation, diabetes, rheumatism, digestive, and respiratory affections. This review describes the traditional uses, phytochemical composition, and biological and pharmacological activities of T. algeriensis extracts. Data were obtained using electronic databases such as SciFindern, ScienceDirect, Scopus, and Web of Science. Several plant-based extracts and a broad spectrum of identified secondary metabolites were highlighted and discussed with respective activities and modes of action. T. algeriensis represents a promising natural resource for the pharmaceutical industry mainly for antioxidant, anti-inflammatory, antimicrobial, and anticancer activities. Considering these findings, more research is needed to transmute the conventional uses of T. algeriensis into scientifically sound information. Moreover, extensive preclinical, clinical, toxicological, and pharmacokinetic trials on this species and its derivatives compounds are required to underpin the mechanisms of action and ensure its biosafety and efficiency. This comprehensive review provides a scientific basis for future investigations on the use of T. algeriensis and derived compounds in health maintenance and promotion and disease prevention.
Collapse
|
9
|
Chemical constituents of Mussaenda erythrophylla Schumach. & Thonn. (Rubiaceae) and their chemophenetic significance. BIOCHEM SYST ECOL 2021. [DOI: 10.1016/j.bse.2021.104329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
10
|
Kourbeli V, Chontzopoulou E, Moschovou K, Pavlos D, Mavromoustakos T, Papanastasiou IP. An Overview on Target-Based Drug Design against Kinetoplastid Protozoan Infections: Human African Trypanosomiasis, Chagas Disease and Leishmaniases. Molecules 2021; 26:molecules26154629. [PMID: 34361781 PMCID: PMC8348971 DOI: 10.3390/molecules26154629] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/23/2021] [Accepted: 07/27/2021] [Indexed: 02/06/2023] Open
Abstract
The protozoan diseases Human African Trypanosomiasis (HAT), Chagas disease (CD), and leishmaniases span worldwide and therefore their impact is a universal concern. The present regimen against kinetoplastid protozoan infections is poor and insufficient. Target-based design expands the horizon of drug design and development and offers novel chemical entities and potential drug candidates to the therapeutic arsenal against the aforementioned neglected diseases. In this review, we report the most promising targets of the main kinetoplastid parasites, as well as their corresponding inhibitors. This overview is part of the Special Issue, entitled "Advances of Medicinal Chemistry against Kinetoplastid Protozoa (Trypanosoma brucei, Trypanosoma cruzi and Leishmania spp.) Infections: Drug Design, Synthesis and Pharmacology".
Collapse
Affiliation(s)
- Violeta Kourbeli
- Department of Pharmacy, Division of Pharmaceutical Chemistry, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimioupoli-Zografou, 157 84 Athens, Greece;
| | - Eleni Chontzopoulou
- Department of Organic Chemistry, Faculty of Chemistry, National and Kapodistrian University of Athens, Panepistimioupoli-Zografou, 157 71 Athens, Greece; (E.C.); (K.M.); (D.P.); (T.M.)
| | - Kalliopi Moschovou
- Department of Organic Chemistry, Faculty of Chemistry, National and Kapodistrian University of Athens, Panepistimioupoli-Zografou, 157 71 Athens, Greece; (E.C.); (K.M.); (D.P.); (T.M.)
| | - Dimitrios Pavlos
- Department of Organic Chemistry, Faculty of Chemistry, National and Kapodistrian University of Athens, Panepistimioupoli-Zografou, 157 71 Athens, Greece; (E.C.); (K.M.); (D.P.); (T.M.)
| | - Thomas Mavromoustakos
- Department of Organic Chemistry, Faculty of Chemistry, National and Kapodistrian University of Athens, Panepistimioupoli-Zografou, 157 71 Athens, Greece; (E.C.); (K.M.); (D.P.); (T.M.)
| | - Ioannis P. Papanastasiou
- Department of Pharmacy, Division of Pharmaceutical Chemistry, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimioupoli-Zografou, 157 84 Athens, Greece;
- Correspondence:
| |
Collapse
|
11
|
Herrera-Acevedo C, Flores-Gaspar A, Scotti L, Mendonça-Junior FJB, Scotti MT, Coy-Barrera E. Identification of Kaurane-Type Diterpenes as Inhibitors of Leishmania Pteridine Reductase I. Molecules 2021; 26:molecules26113076. [PMID: 34063939 PMCID: PMC8196580 DOI: 10.3390/molecules26113076] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/18/2021] [Accepted: 05/18/2021] [Indexed: 12/16/2022] Open
Abstract
The current treatments against Leishmania parasites present high toxicity and multiple side effects, which makes the control and elimination of leishmaniasis challenging. Natural products constitute an interesting and diverse chemical space for the identification of new antileishmanial drugs. To identify new drug options, an in-house database of 360 kauranes (tetracyclic diterpenes) was generated, and a combined ligand- and structure-based virtual screening (VS) approach was performed to select potential inhibitors of Leishmania major (Lm) pteridine reductase I (PTR1). The best-ranked kauranes were employed to verify the validity of the VS approach through LmPTR1 enzyme inhibition assay. The half-maximal inhibitory concentration (IC50) values of selected bioactive compounds were examined using the random forest (RF) model (i.e., 2β-hydroxy-menth-6-en-5β-yl ent-kaurenoate (135) and 3α-cinnamoyloxy-ent-kaur-16-en-19-oic acid (302)) were below 10 μM. A compound similar to 302, 3α-p-coumaroyloxy-ent-kaur-16-en-19-oic acid (302a), was also synthesized and showed the highest activity against LmPTR1. Finally, molecular docking calculations and molecular dynamics simulations were performed for the VS-selected, most-active kauranes within the active sites of PTR1 hybrid models, generated from three Leishmania species that are known to cause cutaneous leishmaniasis in the new world (i.e., L. braziliensis, L. panamensis, and L. amazonensis) to explore the targeting potential of these kauranes to other species-dependent variants of this enzyme.
Collapse
Affiliation(s)
- Chonny Herrera-Acevedo
- Post-Graduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil; (C.H.-A.); (L.S.)
- Bioorganic Chemistry Laboratory, Facultad de Ciencias Básicas y Aplicadas, Universidad Militar Nueva Granada, Cajicá 250247, Colombia;
| | - Areli Flores-Gaspar
- Departamento de Química, Facultad de Ciencias Básicas y Aplicadas, Universidad Militar Nueva Granada, Cajicá 250247, Colombia
- Correspondence: (A.F.-G.); (M.T.S.); Tel.: +57-1-650-00-00 (ext. 1526) (A.F.-G.); +55-83-99869-0415 (M.T.S.)
| | - Luciana Scotti
- Post-Graduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil; (C.H.-A.); (L.S.)
| | | | - Marcus Tullius Scotti
- Post-Graduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil; (C.H.-A.); (L.S.)
- Correspondence: (A.F.-G.); (M.T.S.); Tel.: +57-1-650-00-00 (ext. 1526) (A.F.-G.); +55-83-99869-0415 (M.T.S.)
| | - Ericsson Coy-Barrera
- Bioorganic Chemistry Laboratory, Facultad de Ciencias Básicas y Aplicadas, Universidad Militar Nueva Granada, Cajicá 250247, Colombia;
- Departamento de Química, Facultad de Ciencias Básicas y Aplicadas, Universidad Militar Nueva Granada, Cajicá 250247, Colombia
| |
Collapse
|
12
|
Boniface PK, Sano CM, Elizabeth FI. Unveiling the Targets Involved in the Quest of Antileishmanial Leads Using In silico Methods. Curr Drug Targets 2021; 21:681-712. [PMID: 32003668 DOI: 10.2174/1389450121666200128112948] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 02/01/2023]
Abstract
BACKGROUND Leishmaniasis is a neglected tropical disease associated with several clinical manifestations, including cutaneous, mucocutaneous, and visceral forms. As currently available drugs have some limitations (toxicity, resistance, among others), the target-based identification has been an important approach to develop new leads against leishmaniasis. The present study aims to identify targets involved in the pharmacological action of potent antileishmanial compounds. METHODS The literature information regarding molecular interactions of antileishmanial compounds studied over the past half-decade is discussed. The information was obtained from databases such as Wiley, SciFinder, Science Direct, National Library of Medicine, American Chemical Society, Scientific Electronic Library Online, Scopus, Springer, Google Scholar, Web of Science, etc. Results: Numerous in vitro antileishmanial compounds showed affinity and selective interactions with enzymes such as arginase, pteridine reductase 1, trypanothione reductase, pyruvate kinase, among others, which are crucial for the survival and virulence of the Leishmania parasite. CONCLUSION The in-silico activity of small molecules (enzymes, proteins, among others) might be used as pharmacological tools to develop candidate compounds for the treatment of leishmaniasis. As some pharmacologically active compounds may act on more than one target, additional studies of the mechanism (s) of action of potent antileishmanial compounds might help to better understand their pharmacological action. Also, the optimization of promising antileishmanial compounds might improve their biological activity.
Collapse
Affiliation(s)
- Pone K Boniface
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Cinthya M Sano
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Ferreira I Elizabeth
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
13
|
Herrera-Acevedo C, Perdomo-Madrigal C, Muratov EN, Scotti L, Scotti MT. Discovery of Alternative Chemotherapy Options for Leishmaniasis through Computational Studies of Asteraceae. ChemMedChem 2021; 16:1234-1245. [PMID: 33336460 DOI: 10.1002/cmdc.202000862] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/15/2020] [Indexed: 12/12/2022]
Abstract
Leishmaniasis is a complex disease caused by over 20 Leishmania species that primarily affects populations with poor socioeconomic conditions. Currently available drugs for treating leishmaniasis include amphotericin B, paromomycin, and pentavalent antimonials, which have been associated with several limitations, such as low efficacy, the development of drug resistance, and high toxicity. Natural products are an interesting source of new drug candidates. The Asteraceae family includes more than 23 000 species worldwide. Secondary metabolites that can be found in species from this family have been widely explored as potential new treatments for leishmaniasis. Recently, computational tools have become more popular in medicinal chemistry to establish experimental designs, identify new drugs, and compare the molecular structures and activities of novel compounds. Herein, we review various studies that have used computational tools to examine various compounds identified in the Asteraceae family in the search for potential drug candidates against Leishmania.
Collapse
Affiliation(s)
- Chonny Herrera-Acevedo
- Post-Graduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, Cidade Universitária-Castelo Branco III, Joao Pessoa, PB, Brazil
| | - Camilo Perdomo-Madrigal
- School of Science, Universidad de Ciencias Aplicadas y Ambientales, Calle 222 n° 55-37, Bogotá D.C., Colombia
| | - Eugene N Muratov
- Post-Graduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, Cidade Universitária-Castelo Branco III, Joao Pessoa, PB, Brazil
| | - Luciana Scotti
- Post-Graduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, Cidade Universitária-Castelo Branco III, Joao Pessoa, PB, Brazil
| | - Marcus Tullius Scotti
- Post-Graduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, Cidade Universitária-Castelo Branco III, Joao Pessoa, PB, Brazil
| |
Collapse
|
14
|
Upegui Zapata YA, Echeverri F, Quiñones W, Torres F, Nacher M, Rivas LI, Meira CDS, Gedamu L, Escobar G, Archbold R, Vélez ID, Robledo SM. Mode of action of a formulation containing hydrazones and saponins against leishmania spp. Role in mitochondria, proteases and reinfection process. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2020; 13:94-106. [PMID: 32734890 PMCID: PMC7334304 DOI: 10.1016/j.ijpddr.2020.06.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 06/18/2020] [Accepted: 06/22/2020] [Indexed: 12/14/2022]
Abstract
Toxicity and poor adherence to treatment that favors the generation of resistance in the Leishmania parasites highlight the need to develop better alternatives. Here, we evaluated the in vitro effectiveness of hydrazone derived from chromanes 2-(2,3-dihydro-4H-1-benzothiopyran-4-ylidene) hydrazide (TC1) and 2-(2,3-dihydro-4H-1-benzopyran-4-ylidene) hydrazide (TC2) and the mixture of triterpene saponin hederagenin-3-O-(3,4-O-diacetyl-ß-D-xylopyranosyl-(1à3)-a-L- rhamnopyranosyl-(1à2)-a-L-arabinofuranoside, hederagenin-3-O-(3,4-O-diacetyl-a-L- arabinopyranosyl-(1à3)-a-L-rhamnopyranosyl-(1à2)-a-L-arabinofuranoside and, hederagenin-3-O-(4-O-acetyl-ß-D-xylopyranosyl-(1à3)-a-L-rhamnopyranosyl-(1à2)-a-L-arabinofuranoside from Sapindus saponaria (SS) on L. braziliensis and L. pifanoi. Mixtures of TC1 or TC2 with saponin were formulated for topical application and the therapeutic effectiveness was evaluated in the model for cutaneous leishmaniasis (CL) in golden hamster. The mode of action of these compounds was tested on various parasite processes and ultrastructural parasite modifications. TC1, TC2 and SS showed moderate cytotoxicity when tested independently but toxicity was improved when tested in combination. The compounds were more active against intracellular Leishmania amastigotes. In vivo studies showed that combinations of TC1 or TC2 with SS in 1:1 ratio (w/w) cured 100% of hamsters with no signs associated with toxicity. The compounds did cause changes in the mitochondrial activity of the parasite with a decrease in ATP levels and depolarization of membrane potential and overproduction of reactive oxygen species; nevertheless, these effects were not related to alterations in membrane permeability. The phagolysosome ultrastructure was also affected impacting the survival of Leishmania but the function of the lysosome nor the pH inside the phagolysosome did not change. Lastly, there was a protease inhibition which was directly related to the decrease in the ability of Leishmania to infect and multiply inside the macrophage. The results suggest that the combination of TC1 and TC2 with SS in a 1:1 ratio is capable of curing CL in hamsters. This effect may be due to the ability of these compounds to affect parasite survival and the ability to infect new cells.
Collapse
Affiliation(s)
- Yulieth A Upegui Zapata
- PECET, Facultad de Medicina, Universidad de Antioquia, Calle 70 # 52-21, Medellín, Colombia; Grupo de Química Orgánica de Productos Naturales, Instituto de Química, Calle 70 # 52-21, Medellín, Colombia
| | - Fernando Echeverri
- Grupo de Química Orgánica de Productos Naturales, Instituto de Química, Calle 70 # 52-21, Medellín, Colombia.
| | - Winston Quiñones
- Grupo de Química Orgánica de Productos Naturales, Instituto de Química, Calle 70 # 52-21, Medellín, Colombia
| | - Fernando Torres
- Grupo de Química Orgánica de Productos Naturales, Instituto de Química, Calle 70 # 52-21, Medellín, Colombia
| | - Montserrat Nacher
- Centro de Investigaciones Biológicas Margarita Salas (C.S.I.C) Ramiro de Maeztu 9, 28007, Madrid, Spain
| | - Luis I Rivas
- Centro de Investigaciones Biológicas Margarita Salas (C.S.I.C) Ramiro de Maeztu 9, 28007, Madrid, Spain
| | - Camila Dos Santos Meira
- Department of Biological Sciences. University of Calgary, 2500 University Dr NW, Calgary, Alberta, T2N 1N4, Canada
| | - Lashitew Gedamu
- Department of Biological Sciences. University of Calgary, 2500 University Dr NW, Calgary, Alberta, T2N 1N4, Canada
| | - Gustavo Escobar
- Grupo de Química Orgánica de Productos Naturales, Instituto de Química, Calle 70 # 52-21, Medellín, Colombia
| | - Rosendo Archbold
- Grupo de Química Orgánica de Productos Naturales, Instituto de Química, Calle 70 # 52-21, Medellín, Colombia
| | - Iván D Vélez
- PECET, Facultad de Medicina, Universidad de Antioquia, Calle 70 # 52-21, Medellín, Colombia
| | - Sara M Robledo
- PECET, Facultad de Medicina, Universidad de Antioquia, Calle 70 # 52-21, Medellín, Colombia.
| |
Collapse
|
15
|
Sen A. Prophylactic and therapeutic roles of oleanolic acid and its derivatives in several diseases. World J Clin Cases 2020; 8:1767-1792. [PMID: 32518769 PMCID: PMC7262697 DOI: 10.12998/wjcc.v8.i10.1767] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 03/27/2020] [Accepted: 05/01/2020] [Indexed: 02/05/2023] Open
Abstract
Oleanolic acid (OA) and its derivatives are widely found in diverse plants and are naturally effective pentacyclic triterpenoid compounds with broad prophylactic and therapeutic roles in various diseases such as ulcerative colitis, multiple sclerosis, metabolic disorders, diabetes, hepatitis and different cancers. This review assembles and presents the latest in vivo reports on the impacts of OA and OA derivatives from various plant sources and the biological mechanisms of OA activities. Thus, this review presents sufficient data proposing that OA and its derivatives are potential alternative and complementary therapies for the treatment and management of several diseases.
Collapse
Affiliation(s)
- Alaattin Sen
- Department of Molecular Biology and Genetics, Faculty of Life and Natural Sciences, Abdullah Gul University, Kayseri 38080, Turkey
| |
Collapse
|
16
|
Scotti MT, Monteiro AFM, de Oliveira Viana J, Bezerra Mendonça Junior FJ, Ishiki HM, Tchouboun EN, De Araújo RSA, Scotti L. Recent Theoretical Studies Concerning Important Tropical Infections. Curr Med Chem 2020; 27:795-834. [DOI: 10.2174/0929867326666190711121418] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 07/20/2018] [Accepted: 04/12/2019] [Indexed: 01/02/2023]
Abstract
Neglected Tropical Diseases (NTDs) form a group of diseases that are strongly associated
with poverty, flourish in impoverished environments, and thrive best in tropical areas,
where they tend to present overlap. They comprise several diseases, and the symptoms
vary dramatically from disease to disease, often causing from extreme pain, and untold misery
that anchors populations to poverty, permanent disability, and death. They affect more than 1
billion people worldwide; mostly in poor populations living in tropical and subtropical climates.
In this review, several complementary in silico approaches are presented; including
identification of new therapeutic targets, novel mechanisms of activity, high-throughput
screening of small-molecule libraries, as well as in silico quantitative structure-activity relationship
and recent molecular docking studies. Current and active research against Sleeping
Sickness, American trypanosomiasis, Leishmaniasis and Schistosomiasis infections will hopefully
lead to safer, more effective, less costly and more widely available treatments against
these parasitic forms of Neglected Tropical Diseases (NTDs) in the near future.
Collapse
Affiliation(s)
- Marcus Tullius Scotti
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, Joao Pessoa - PB, Brazil
| | - Alex France Messias Monteiro
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, Joao Pessoa - PB, Brazil
| | - Jéssika de Oliveira Viana
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, Joao Pessoa - PB, Brazil
| | | | - Hamilton M. Ishiki
- University of Western Sao Paulo (Unoeste), Presidente Prudente, SP, Brazil
| | | | - Rodrigo Santos A. De Araújo
- Laboratory of Synthesis and Drug Delivery, Department of Biological Science, State University of Paraiba, Joao Pessoa, PB, Brazil
| | - Luciana Scotti
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, Joao Pessoa - PB, Brazil
| |
Collapse
|
17
|
Medina-O'Donnell M, Rivas F, Reyes-Zurita FJ, Cano-Muñoz M, Martinez A, Lupiañez JA, Parra A. Oleanolic Acid Derivatives as Potential Inhibitors of HIV-1 Protease. JOURNAL OF NATURAL PRODUCTS 2019; 82:2886-2896. [PMID: 31617361 DOI: 10.1021/acs.jnatprod.9b00649] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Pentacyclic triterpenes, such as oleanolic acid (I), are promising scaffolds for diversification through the use of combinatorial methods to obtain derivatives that improve their biological properties, increasing their bioavailability and enhancing their therapeutic efficacy. The purpose of this study was to evaluate the influence that derivatives of oleanolic acid, conjugated with one or two amino acids and an acyl group, might exert on HIV-1 protease inhibition. The in vitro studies conducted suggested that the presence of a carboxyacyl group generally improves the inhibition of HIV-1 protease, especially when a phthaloyl group is present, with IC50 concentration values below 5 μM. The gain in activity of three 3-phthaloyl derivatives, with sub-micromolar IC50 values, was between 60- and 100-fold more active than oleanolic acid. A molecular docking study has also been performed to elucidate the mode of binding to the protease by these oleanolic acid derivatives. In general, the derivatives that exhibited the highest inhibitory activity of HIV-1 protease also showed the highest binding energies in docking simulations. The overall results suggest that the coupling of one or two amino acids and a phthaloyl group to oleanolic acid improves HIV-1 protease inhibition, implying that these triterpene derivatives may be promising antiviral agents against HIV.
Collapse
|
18
|
Moraes Neto RN, Setúbal RFB, Higino TMM, Brelaz-de-Castro MCA, da Silva LCN, Aliança ASDS. Asteraceae Plants as Sources of Compounds Against Leishmaniasis and Chagas Disease. Front Pharmacol 2019; 10:477. [PMID: 31156427 PMCID: PMC6530400 DOI: 10.3389/fphar.2019.00477] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 04/16/2019] [Indexed: 12/28/2022] Open
Abstract
Leishmaniasis and Chagas disease cause great impact on social and economic aspects of people living in developing countries. The treatments for these diseases are based on the same regimen for over 40 years, thus, there is an urgent need for the development of new drugs. In this scenario, Asteraceae plants (a family widely used in folk medicine worldwide) are emerging as an interesting source for new trypanocidal and leishmanicidal compounds. Herein, we provide a non-exhaustive review about the activity of plant-derived products from Asteraceae with inhibitory action toward Leishmania spp. and T. cruzi. Special attention was given to those studies aiming the isolation (or identification) of the bioactive compounds. Ferulic acid, rosmarinic acid, and ursolic acid (Baccharis uncinella DC.) were efficient to treat experimental leishmaniasis; while deoxymikanolide (Mikania micrantha) and (+)-15-hydroxy-labd-7-en-17-al (Aristeguietia glutinosa Lam.) showed in vivo anti-T. cruzi action. It is also important to highlight that several plant-derived products (compounds, essential oils) from Artemisia plants have shown high inhibitory potential against Leishmania spp., such as artemisinin and its derivatives. In summary, these compounds may help the development of new effective agents against these neglected diseases.
Collapse
|
19
|
Chemical Constituents with Leishmanicidal Activity from a Pink-Yellow Cultivar of Lantana camara var. aculeata (L.) Collected in Central Mexico. Int J Mol Sci 2019; 20:ijms20040872. [PMID: 30781602 PMCID: PMC6413047 DOI: 10.3390/ijms20040872] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 01/31/2019] [Accepted: 02/01/2019] [Indexed: 11/17/2022] Open
Abstract
Lantana camara (L.) is employed by several ethnical groups to treat numerous diseases. Although there are no ethnomedical reports on its use against leishmaniasis, organic extracts prepared from L. camara were shown to display leishmanicidal activity. In the present study, we carried out a bioassay-guided fractionation of the dichloromethane extract from Mexican L. camara in order to identify the compounds responsible for the leishmanicidal activity. Eighteen chromatographic fractions (FI⁻FXVIII) were evaluated in vitro against Leishmania mexicana and L. amazonensis. FII, FX, FXI, FXV, and FXVI showed significant activity against both Leishmania strains, the most potent of which was FXV. Eicosane (1), squalene (2), β-ionone (3), caryophyllene oxide (4), β-caryophyllene (5), hexanoic acid (6), tiglic acid (7), a mixture of lantanilic (8) and camaric (9) acids, and lantadene B (10) were identified and obtained from the active fractions and evaluated for their leishmanicidal activity. The mixture of lantanilic (8) and camaric (9) acids (79%/21%) was the most potent one (half maximal inhibitory concentration (IC50) = 12.02 ± 0.36 μM). This study indicates that this cultivar of L. camara has high potential for the development of phytomedicines or as a source of natural products, which might represent lead compounds for the design of new drugs against leishmaniasis.
Collapse
|
20
|
Jee B, Kumar S, Yadav R, Singh Y, Kumar A, Sharma N. Ursolic acid and carvacrol may be potential inhibitors of dormancy protein small heat shock protein16.3 of Mycobacterium tuberculosis. J Biomol Struct Dyn 2018; 36:3434-3443. [PMID: 28984500 DOI: 10.1080/07391102.2017.1389305] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Accepted: 09/17/2017] [Indexed: 12/16/2022]
Abstract
Small heat shock protein16.3 (sHSP16.3) is a crucial protein for survival of Mycobacterium tuberculosis (MTB) in its host. Besides, this protein acts as a molecular chaperone during stress and is indispensable for MTB's growth, virulence and cell-wall thickening. sHSP16.3 is also a promising candidate for vaccine, serodiagnosis and drug design as well. In the present study, we have targeted sHSP16.3 with two phytochemicals, namely ursolic acid and carvacrol using in silico approach. Molecular docking analysis showed that both phytochemicals (ursolic acid and carvacrol) have docked with sHSP16.3 and shown tendency to inhibit the function of this vital protein of MTB. In addition, both compounds have exhibited strong compatibility with sHSP16.3 during whole 60 ns duration of molecular dynamics simulation. Further, the molecular mechanic/generalized Born/Poisson-Boltzmann surface area (MM/G/P/BSA) free energies were calculated which showed that both phytocompounds have stable and favourable binding energies causing strong binding with binding site of sHSP16.3. Taking together, the data of present study suggest that both phytocompounds may be potential inhibitor of sHSP16.3 of MTB and a best alternative to standard anti-tuberculosis drugs.
Collapse
Affiliation(s)
- Babban Jee
- a Department of Health Research, Ministry of Health and Family Welfare , Government of India , New Delhi 110001 , India
| | - Sanjay Kumar
- b Molecular and Structural Biology Division , Central Drug Research Institute , Lucknow 226031 , India
| | - Renu Yadav
- c Department of Biotechnology , Acharya Nagarjuna University , Guntur 522510 , India
| | - Yogesh Singh
- d Institute of Physiology I , Eberhard-Karls-Tübingen University , Gmelinstraße5, Tübingen D-72076 , Germany
| | - Anuj Kumar
- e Advance Center for Computational and Applied Biotechnology, Uttarakhand Council for Biotechnology (UCB) , Dehradun 248007 , India
| | - Naveen Sharma
- a Department of Health Research, Ministry of Health and Family Welfare , Government of India , New Delhi 110001 , India
| |
Collapse
|
21
|
Ayeleso TB, Matumba MG, Mukwevho E. Oleanolic Acid and Its Derivatives: Biological Activities and Therapeutic Potential in Chronic Diseases. Molecules 2017; 22:molecules22111915. [PMID: 29137205 PMCID: PMC6150249 DOI: 10.3390/molecules22111915] [Citation(s) in RCA: 191] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 10/31/2017] [Indexed: 12/13/2022] Open
Abstract
The increasing demand for natural products as an alternative therapy for chronic diseases has encouraged research into the pharmacological importance of bioactive compounds from plants. Recently, there has been a surge of interest in the therapeutic potential of oleanolic acid (OA) in the prevention and management of chronic diseases. Oleanolic acid is a pentacyclic triterpenoid widely found in plants, including fruits and vegetables with different techniques and chromatography platforms being employed in its extraction and isolation. Several studies have demonstrated the potential therapeutic effects of OA on different diseases and their symptoms. Furthermore, oleanolic acid also serves as a framework for the development of novel semi-synthetic triterpenoids that could prove vital in finding therapeutic modalities for various ailments. There are recent advances in the design and synthesis of chemical derivatives of OA to enhance its solubility, bioavailability and potency. Some of these derivatives have also been therapeutic candidates in a number of clinical trials. This review consolidates and expands on recent reports on the biological effects of oleanolic acid from different plant sources and its synthetic derivatives as well as their mechanisms of action in in vitro and in vivo study models. This review suggests that oleanolic acid and its derivatives are important candidates in the search for alternative therapy in the treatment and management of chronic diseases.
Collapse
Affiliation(s)
- Taiwo Betty Ayeleso
- Department of Biochemistry, North West University, Private Bag X2046, Mmabatho 2735, South Africa.
| | - Mashudu Given Matumba
- Department of Biochemistry, North West University, Private Bag X2046, Mmabatho 2735, South Africa.
| | - Emmanuel Mukwevho
- Department of Biochemistry, North West University, Private Bag X2046, Mmabatho 2735, South Africa.
| |
Collapse
|
22
|
Fernandes TB, Cunha MR, Sakata RP, Candido TM, Baby AR, Tavares MT, Barbosa EG, Almeida WP, Parise-Filho R. Synthesis, Molecular Modeling, and Evaluation of Novel Sulfonylhydrazones as Acetylcholinesterase Inhibitors for Alzheimer's Disease. Arch Pharm (Weinheim) 2017; 350. [PMID: 28940630 DOI: 10.1002/ardp.201700163] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 09/01/2017] [Accepted: 09/05/2017] [Indexed: 12/19/2022]
Abstract
Alzheimer's disease (AD) is the most common type of dementia and related to the degeneration of hippocampal cholinergic neurons, which dramatically affects cognitive ability. Acetylcholinesterase (AChE) inhibitors are employed as drugs for AD therapy. Three series of sulfonylhydrazone compounds were designed, and their ability to inhibit AChE was evaluated. Fifteen compounds were synthesized and twelve of them had IC50 values of 0.64-51.09 μM. The preliminary structure-activity relationships indicated that the methylcatechol moiety and arylsulfonyl substituents generated better compounds than both the benzodioxole and alkylsulfonyl chains. Molecular dynamics studies of compound 6d showed that the interaction with the peripheral binding site of AChE was similar to donepezil, which may explain its low IC50 (0.64 μM). Furthermore, the drug-likeness of 6d suggests that the compound may have appropriate oral absorption and brain penetration. Compound 6d also presented antiradical activity and was not cytotoxic to LL24 cells, suggesting that this compound might be considered safe. Our findings indicate that arylsulfonylhydrazones may be a promising scaffold for the design of new drug candidates for the treatment of AD.
Collapse
Affiliation(s)
- Thais B Fernandes
- Faculty of Pharmaceutical Sciences, Department of Pharmacy, University of São Paulo, São Paulo, Brazil
| | - Micael R Cunha
- Faculty of Pharmaceutical Sciences, Department of Pharmacy, University of São Paulo, São Paulo, Brazil
| | - Renata P Sakata
- Faculty of Pharmaceutical Sciences, Department of Pharmacy, University of Campinas, Campinas, Brazil
| | - Thalita M Candido
- Faculty of Pharmaceutical Sciences, Department of Pharmacy, University of São Paulo, São Paulo, Brazil
| | - André R Baby
- Faculty of Pharmaceutical Sciences, Department of Pharmacy, University of São Paulo, São Paulo, Brazil
| | - Maurício T Tavares
- Faculty of Pharmaceutical Sciences, Department of Pharmacy, University of São Paulo, São Paulo, Brazil
| | - Euzébio G Barbosa
- Health Sciences Centre, Department of Pharmacy, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Wanda P Almeida
- Faculty of Pharmaceutical Sciences, Department of Pharmacy, University of Campinas, Campinas, Brazil
| | - Roberto Parise-Filho
- Faculty of Pharmaceutical Sciences, Department of Pharmacy, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
23
|
Rodríguez-Hernández D, Barbosa LCA, Demuner AJ, Nain-Perez A, Ferreira SR, Fujiwara RT, de Almeida RM, Heller L, Csuk R. Leishmanicidal and cytotoxic activity of hederagenin-bistriazolyl derivatives. Eur J Med Chem 2017; 140:624-635. [PMID: 29024910 DOI: 10.1016/j.ejmech.2017.09.045] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 09/19/2017] [Accepted: 09/21/2017] [Indexed: 10/18/2022]
Abstract
Aiming to obtain new potent leishmanicidal and cytotoxic compounds from natural sources, the triterpene hederagenin was converted into several new 1,2,3-triazolyl derivatives tethered at C-23 and C-28. For this work hederagenin was isolated from fruits of Sapindus saponaria and reacted with propargyl bromide to afford as a major product bis-propargylic derivative 1 in 74%. Submitting this compound to Huisgen 1,3-dipolar cycloaddition reactions with several azides afforded the derivatives 2-19 with yields in the range of 40-87%. All compounds have been screened for in vitro cytotoxic activity in a panel of five human cancer cell lines by a SRB assay. The bioassays showed that compound 19 was the most cytotoxic against all human cancer cell lines with EC50 = 7.4-12.1 μM. Moreover, leishmanicidal activity was evaluated through the in vitro effect in the growth of Leishmania infantum, and derivatives 1, 2, 5 and 17 were highly effective preventing proliferation of intracellular amastigote forms of L. infantum (IC50 = 28.8, 25.9, 5.6 and 7.4 μM, respectively). All these compounds showed a higher selectivity index and low toxicity against two strains of kidney BGM and liver HepG2 cells. Compound 5 has higher selectivity (1780 times) in comparison with the commercial antimony drug and is around 8 times more selective than the most active compound previously reported hederagenin derivative. Such high activity associated with low toxicities make the new bis-traiazolyl derivatives promising candidates for the treatment of leishmaniasis. In addition, hederagenin and some derivatives (2, 5 and 17) showed interaction in the binding site of the enzyme CYP51Li.
Collapse
Affiliation(s)
- Diego Rodríguez-Hernández
- Department of Chemistry, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627, Campus Pampulha, CEP 31270-901, Belo Horizonte, MG, Brazil
| | - Luiz C A Barbosa
- Department of Chemistry, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627, Campus Pampulha, CEP 31270-901, Belo Horizonte, MG, Brazil; Department of Chemistry, Universidade Federal de Viçosa, Av. P. H. Rolfs, s/n, CEP 36570-900, Viçosa, MG, Brazil.
| | - Antonio J Demuner
- Department of Chemistry, Universidade Federal de Viçosa, Av. P. H. Rolfs, s/n, CEP 36570-900, Viçosa, MG, Brazil
| | - Amalyn Nain-Perez
- Department of Chemistry, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627, Campus Pampulha, CEP 31270-901, Belo Horizonte, MG, Brazil
| | - Sebastião R Ferreira
- Department of Parasitology, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627, Campus Pampulha, CEP 31270-901, Belo Horizonte, MG, Brazil; Health Science Center, Universidade Federal de Roraima, Av. Cap. Ene Garcez, CEP 69310-000, Boa Vista, RR, Brazil
| | - Ricardo T Fujiwara
- Department of Parasitology, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627, Campus Pampulha, CEP 31270-901, Belo Horizonte, MG, Brazil
| | - Raquel M de Almeida
- Department of Parasitology, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627, Campus Pampulha, CEP 31270-901, Belo Horizonte, MG, Brazil
| | - Lucie Heller
- Martin-Luther-University Halle-Wittenberg, Organic Chemistry, Kurt-Mothes-Str.2, D 06120, Halle (Saale), Germany
| | - René Csuk
- Martin-Luther-University Halle-Wittenberg, Organic Chemistry, Kurt-Mothes-Str.2, D 06120, Halle (Saale), Germany.
| |
Collapse
|
24
|
Xu C, Liao Y, Fang C, Tsunoda M, Zhang Y, Song Y, Deng S. Simultaneous Analysis of Ursolic Acid and Oleanolic Acid in Guava Leaves Using QuEChERS-Based Extraction Followed by High-Performance Liquid Chromatography. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2017; 2017:2984562. [PMID: 28781908 PMCID: PMC5525069 DOI: 10.1155/2017/2984562] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 05/03/2017] [Accepted: 06/12/2017] [Indexed: 06/07/2023]
Abstract
In this paper, a novel method of QuEChERS-based extraction coupled with high-performance liquid chromatography has been developed for the simultaneous determination of ursolic acid (UA) and oleanolic acid (OA) in guava leaves. The QuEChERS-based extraction parameters, including the amount of added salt, vortex-assisted extraction time, and absorbent amount, and the chromatographic conditions were investigated for the analysis of UA and OA in guava leaves. Under the optimized conditions, the method showed good linearity over a range of 1-320 μg mL-1, with correlation coefficients above 0.999. The limits of detection of UA and OA were 0.18 and 0.36 μg mL-1, respectively. The intraday and interday precision were below 1.95 and 2.55%, respectively. The accuracies of the UA and OA determinations ranged from 97.4 to 111.4%. The contents of UA and OA in the guava leaf samples were 2.50 and 0.73 mg g-1, respectively. These results demonstrate that the developed method is applicable to the simultaneous determination of UA and OA in guava leaves.
Collapse
Affiliation(s)
- Chang Xu
- Key Laboratory of Tropical Biological Resources of Ministry of Education and Department of Pharmaceutical Sciences, College of Marine Science, Hainan University, Haikou 570228, China
| | - Yiyi Liao
- Key Laboratory of Tropical Biological Resources of Ministry of Education and Department of Pharmaceutical Sciences, College of Marine Science, Hainan University, Haikou 570228, China
| | - Chunyan Fang
- Key Laboratory of Tropical Biological Resources of Ministry of Education and Department of Pharmaceutical Sciences, College of Marine Science, Hainan University, Haikou 570228, China
| | - Makoto Tsunoda
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yingxia Zhang
- Key Laboratory of Tropical Biological Resources of Ministry of Education and Department of Pharmaceutical Sciences, College of Marine Science, Hainan University, Haikou 570228, China
| | - Yanting Song
- Key Laboratory of Tropical Biological Resources of Ministry of Education and Department of Pharmaceutical Sciences, College of Marine Science, Hainan University, Haikou 570228, China
| | - Shiming Deng
- Key Laboratory of Tropical Biological Resources of Ministry of Education and Department of Pharmaceutical Sciences, College of Marine Science, Hainan University, Haikou 570228, China
| |
Collapse
|
25
|
Pertino MW, Vega C, Rolón M, Coronel C, Rojas de Arias A, Schmeda-Hirschmann G. Antiprotozoal Activity of Triazole Derivatives of Dehydroabietic Acid and Oleanolic Acid. Molecules 2017; 22:molecules22030369. [PMID: 28264505 PMCID: PMC6155273 DOI: 10.3390/molecules22030369] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 02/13/2017] [Accepted: 02/21/2017] [Indexed: 12/13/2022] Open
Abstract
Tropical parasitic diseases such as Chagas disease and leishmaniasis are considered a major public health problem affecting hundreds of millions of people worldwide. As the drugs currently used to treat these diseases have several disadvantages and side effects, there is an urgent need for new drugs with better selectivity and less toxicity. Structural modifications of naturally occurring and synthetic compounds using click chemistry have enabled access to derivatives with promising antiparasitic activity. The antiprotozoal activity of the terpenes dehydroabietic acid, dehydroabietinol, oleanolic acid, and 34 synthetic derivatives were evaluated against epimastigote forms of Trypanosoma cruzi and promastigotes of Leishmaniabraziliensis and Leishmania infantum. The cytotoxicity of the compounds was assessed on NCTC-Clone 929 cells. The activity of the compounds was moderate and the antiparasitic effect was associated with the linker length between the diterpene and the triazole in dehydroabietinol derivatives. For the oleanolic acid derivatives, a free carboxylic acid function led to better antiparasitic activity.
Collapse
Affiliation(s)
- Mariano Walter Pertino
- Laboratorio de Química de Productos Naturales, Instituto de Química de Recursos Naturales, Universidad de Talca, 3460000 Talca, Chile.
| | - Celeste Vega
- Centro para el Desarrollo de la Investigación Científica (CEDIC), Manduvirá 635 entre 15 de Agosto y O'Leary, Barrio La Encarnación 1255, 2511 Asunción, Paraguay.
| | - Miriam Rolón
- Centro para el Desarrollo de la Investigación Científica (CEDIC), Manduvirá 635 entre 15 de Agosto y O'Leary, Barrio La Encarnación 1255, 2511 Asunción, Paraguay.
| | - Cathia Coronel
- Centro para el Desarrollo de la Investigación Científica (CEDIC), Manduvirá 635 entre 15 de Agosto y O'Leary, Barrio La Encarnación 1255, 2511 Asunción, Paraguay.
| | - Antonieta Rojas de Arias
- Centro para el Desarrollo de la Investigación Científica (CEDIC), Manduvirá 635 entre 15 de Agosto y O'Leary, Barrio La Encarnación 1255, 2511 Asunción, Paraguay.
| | - Guillermo Schmeda-Hirschmann
- Laboratorio de Química de Productos Naturales, Instituto de Química de Recursos Naturales, Universidad de Talca, 3460000 Talca, Chile.
| |
Collapse
|
26
|
Fernandez-Pastor I, Fernandez-Hernandez A, Perez-Criado S, Rivas F, Martinez A, Garcia-Granados A, Parra A. Microwave-assisted extraction versus Soxhlet extraction to determine triterpene acids in olive skins. J Sep Sci 2017; 40:1209-1217. [DOI: 10.1002/jssc.201601130] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 12/09/2016] [Accepted: 12/11/2016] [Indexed: 12/17/2022]
Affiliation(s)
| | - Antonia Fernandez-Hernandez
- Centro “Venta del Llano” del Instituto Andaluz de Investigación y Formación Agraria; Pesquera; Agroalimentaria y de la Producción Ecológica (IFAPA); Mengíbar Jaén Spain
| | - Sergio Perez-Criado
- Departamento de Quimica Organica; Facultad de Ciencias; Universidad de Granada; Granada Spain
| | - Francisco Rivas
- Departamento de Quimica Organica; Facultad de Ciencias; Universidad de Granada; Granada Spain
| | - Antonio Martinez
- Departamento de Quimica Organica; Facultad de Ciencias; Universidad de Granada; Granada Spain
| | - Andres Garcia-Granados
- Departamento de Quimica Organica; Facultad de Ciencias; Universidad de Granada; Granada Spain
| | - Andres Parra
- Departamento de Quimica Organica; Facultad de Ciencias; Universidad de Granada; Granada Spain
| |
Collapse
|
27
|
Ogungbe IV, Setzer WN. The Potential of Secondary Metabolites from Plants as Drugs or Leads against Protozoan Neglected Diseases-Part III: In-Silico Molecular Docking Investigations. Molecules 2016; 21:E1389. [PMID: 27775577 PMCID: PMC6274513 DOI: 10.3390/molecules21101389] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 10/06/2016] [Accepted: 10/12/2016] [Indexed: 12/11/2022] Open
Abstract
Malaria, leishmaniasis, Chagas disease, and human African trypanosomiasis continue to cause considerable suffering and death in developing countries. Current treatment options for these parasitic protozoal diseases generally have severe side effects, may be ineffective or unavailable, and resistance is emerging. There is a constant need to discover new chemotherapeutic agents for these parasitic infections, and natural products continue to serve as a potential source. This review presents molecular docking studies of potential phytochemicals that target key protein targets in Leishmania spp., Trypanosoma spp., and Plasmodium spp.
Collapse
Affiliation(s)
- Ifedayo Victor Ogungbe
- Department of Chemistry and Biochemistry, Jackson State University, Jackson, MS 39217, USA.
| | - William N Setzer
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA.
| |
Collapse
|
28
|
Rodríguez-Hernández D, Barbosa LCA, Demuner AJ, de Almeida RM, Fujiwara RT, Ferreira SR. Highly potent anti-leishmanial derivatives of hederagenin, a triperpenoid from Sapindus saponaria L. Eur J Med Chem 2016; 124:153-159. [PMID: 27569196 DOI: 10.1016/j.ejmech.2016.08.030] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 08/01/2016] [Accepted: 08/14/2016] [Indexed: 12/15/2022]
Abstract
Leishmaniasis is a neglected tropical disease (NTDs), endemic in 88 countries that affect more than 12 million people. Current drugs are limited due to their toxicity, development of biological resistance, length of treatment and high cost. Thus, the search for new effective and less toxic treatments is an urgent need. In this study, we report the synthesis of 3 new amide derivatives of hederagenin (22-24) with yields between 70% and 90%, along with 57 other derivatives of hederagenin (1-21, 25-60) carrying different groups at C-28 previously reported by our group, and the results of their in vitro ability to inhibit the growth of Leishmania infantum. Some derivatives (3, 4, 44, 49 and 52), showed activity at micromolar level and low toxicity against BGM and HepG2 cells. Moreover, the ability of hederagenin derivatives 3 (IC50 = 9.7 μM), 4 (12 μM), 44 (11 μM) and 49 (2 μM), to prevent proliferation of intracellular amastigote forms of L. infantum and their higher selectivity index and low toxicity compared to commercial positive drug control of choice (potassium antimonyl tartrate trihydrate) (IC50 = 80 μM, SI = 0.1), make these compounds promising candidates for the treatment of leishmaniasis.
Collapse
Affiliation(s)
- Diego Rodríguez-Hernández
- Department of Chemistry, Universidade Federal de Minas Gerais, Av. Pres Antônio Carlos 6627, Campus Pampulha, CEP 31270-901, Belo Horizonte, MG, Brazil; Department of Chemistry, Universidade Federal de Viçosa, Av. P. H Rolf, s/n, CEP 36570-000, Viçosa, MG, Brazil
| | - Luiz C A Barbosa
- Department of Chemistry, Universidade Federal de Minas Gerais, Av. Pres Antônio Carlos 6627, Campus Pampulha, CEP 31270-901, Belo Horizonte, MG, Brazil; Department of Chemistry, Universidade Federal de Viçosa, Av. P. H Rolf, s/n, CEP 36570-000, Viçosa, MG, Brazil.
| | - Antonio J Demuner
- Department of Chemistry, Universidade Federal de Viçosa, Av. P. H Rolf, s/n, CEP 36570-000, Viçosa, MG, Brazil
| | - Raquel M de Almeida
- Department of Parasitology, Universidade Federal de Minas Gerais, Av. Pres Antônio Carlos 6627, Campus Pampulha, CEP 31270-901, Belo Horizonte, MG, Brazil
| | - Ricardo T Fujiwara
- Department of Parasitology, Universidade Federal de Minas Gerais, Av. Pres Antônio Carlos 6627, Campus Pampulha, CEP 31270-901, Belo Horizonte, MG, Brazil.
| | - Sebastião R Ferreira
- Department of Parasitology, Universidade Federal de Minas Gerais, Av. Pres Antônio Carlos 6627, Campus Pampulha, CEP 31270-901, Belo Horizonte, MG, Brazil
| |
Collapse
|