1
|
Horn M, Bieliková L, Vostoupalová A, Švéda J, Mareš M. An update on proteases and protease inhibitors from trematodes. ADVANCES IN PARASITOLOGY 2024; 126:97-176. [PMID: 39448195 DOI: 10.1016/bs.apar.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Trematodes, a class of parasitic flatworms, are responsible for a variety of devastating diseases in humans and animals, with schistosomiasis and fascioliasis being prominent examples. Trematode proteolytic systems involved in the host-parasite interaction have emerged as key contributors to the success of trematodes in establishing and maintaining infections. This review concentrates on diverse proteases and protease inhibitors employed by trematodes and provides an update on recent advances in their molecular-level characterization, with a focus on function, structure, and therapeutic target potential.
Collapse
Affiliation(s)
- Martin Horn
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Lucia Bieliková
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Andrea Vostoupalová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jakub Švéda
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Michael Mareš
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
2
|
Bakhshipour F, Zibaei M, Rokni MB, Miahipour A, Firoozeh F, Beheshti M, Beikzadeh L, Alizadeh G, Aryaeipour M, Raissi V. Comparative evaluation of real-time PCR and ELISA for the detection of human fascioliasis. Sci Rep 2024; 14:3865. [PMID: 38366006 PMCID: PMC10873325 DOI: 10.1038/s41598-024-54602-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 02/14/2024] [Indexed: 02/18/2024] Open
Abstract
Fascioliasis is a zoonotic parasitic infection caused by Fasciola species in humans and animals. Despite significant advances in vaccination and new therapeutic agents, little attention has been paid to validating methods for the diagnosis of fascioliasis in humans. Serological techniques are convenient assays that significantly improves the diagnosis of Fasciola infection. However, a more sensitive method is required. The aim of this study was to compare the Real-Time PCR technique with the indirect-ELISA for the detection of Fasciola hepatica in human. Using a panel of sera from patients infected with Fasciola hepatica (n = 51), other parasitic infections (n = 7), and uninfected controls (n = 12), we optimized an ELISA which employs an excretory-secretory antigens from F. hepatica for the detection of human fascioliasis. After DNA extraction from the samples, molecular analysis was done using Real-Time PCR technique based on the Fasciola ribosomal ITS1 sequence. Of 70 patient serum samples, 44 (62.86%) samples were identified as positive F. hepatica infection using ELISA and Real-Time PCR assays. There was no cross-reaction with other parasitic diseases such as toxoplasmosis, leishmaniasis, taeniasis, hydatidosis, trichinosis, toxocariasis, and strongyloidiasis. The significant difference between the agreement and similarity of the results of patients with indirect ELISA and Real-Time PCR was 94.4% and 99.2%, respectively (Cohen's kappa ≥ 0.7; P = 0.02). Based on the Kappa agreement findings, the significant agreement between the results of ELISA and Real-Time PCR indicates the accuracy and reliability of these tests in the diagnosis of F. hepatica in humans.
Collapse
Affiliation(s)
- Fatemeh Bakhshipour
- Department of Parasitology and Mycology, School of Medicine, Alborz University of Medical Sciences, P.O. Box: 3149779453, Karaj, Iran
| | - Mohammad Zibaei
- Department of Parasitology and Mycology, School of Medicine, Alborz University of Medical Sciences, P.O. Box: 3149779453, Karaj, Iran.
| | - Mohammad Bagher Rokni
- Department of Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Center for Research of Endemic Parasites of Iran, Tehran University of Medical Sciences, Tehran, Iran
| | - Abolfazl Miahipour
- Department of Parasitology and Mycology, School of Medicine, Alborz University of Medical Sciences, P.O. Box: 3149779453, Karaj, Iran
| | - Farzaneh Firoozeh
- Department of Microbiology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Masoud Beheshti
- Department of Virology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Leila Beikzadeh
- Department of Medical Laboratory Sciences, Faculty of Para-Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Gita Alizadeh
- Department of Parasitology and Mycology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mojgan Aryaeipour
- Department of Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Vahid Raissi
- Department of Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Esteban JG, Muñoz-Antolí C, Toledo R, Ash LR. Diagnosis of Human Trematode Infections. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1454:541-582. [PMID: 39008275 DOI: 10.1007/978-3-031-60121-7_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Digenetic trematodes form a major group of human parasites, affecting a large number of humans, especially in endemic foci. Over 100 species have been reported infecting humans, including blood, lung, liver and intestinal parasites. Traditionally, trematode infections have been diagnosed by parasitological methods based on the detection and the identification of eggs in different clinical samples. However, this is complicated due to the morphological similarity between eggs of different trematode species and other factors such as lack of sensitivity or ectopic locations of the parasites. Moreover, the problem is currently aggravated by migratory flows, international travel, international trade of foods and changes in alimentary habits. Although efforts have been made for the development of immunological and molecular techniques, the detection of eggs through parasitological techniques remains as the gold standard for the diagnosis of trematodiases. In the present chapter, we review the current status of knowledge on diagnostic techniques used when examining feces, urine, and sputum and also analyze the most relevant characteristics used to identify eggs with a quick key for the identification of eggs.
Collapse
Affiliation(s)
- J Guillermo Esteban
- Área de Parasitología, Departamento de Farmacia, Tecnología Farmacéutica y Parasitología, Facultad de Farmacia, Universidad de Valencia, Burjassot, Valencia, Spain.
| | - Carla Muñoz-Antolí
- Área de Parasitología, Departamento de Farmacia, Tecnología Farmacéutica y Parasitología, Facultad de Farmacia, Universidad de Valencia, Burjassot, Valencia, Spain
| | - Rafael Toledo
- Área de Parasitología, Departamento de Farmacia, Tecnología Farmacéutica y Parasitología, Facultad de Farmacia, Universidad de Valencia, Burjassot, Valencia, Spain
| | - Lawrence R Ash
- Infectious & Tropical Diseases, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
4
|
Gong JZ, Fan YM, Yuan W, Pan M, Liu D, Tao JP, Huang SY. Development of a novel method for diagnosis of fasciolosis based on cathepsin L7 in ruminants. Vet Parasitol 2023; 322:110021. [PMID: 37657153 DOI: 10.1016/j.vetpar.2023.110021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/21/2023] [Accepted: 08/25/2023] [Indexed: 09/03/2023]
Abstract
Fasciolosis is a widely distributed zoonosis reported over 81 countries around the world. Good and early diagnostic method is critical in controlling this disease and prevention of injury to the liver and bile ducts. In this study, we identified a novel member (cathepsin L7) of cathepsin family from Fasciola spp.. Firstly, the biological character of CL7 was analyzed according to the information of cathepsin L family, and then rCL7 was expressed and purified, a new iELISA based on CL7 was developed. The results exhibited CL7 iELISA had 100% sensitivity 100% specificity in sheep (cut-off 1.329) and 100% sensitivity 93.75% specificity in cattle (cut-off 0.756). Moreover, anti-Fasciola CL7 antibodies could be detected in early Fasciola gigantica infected buffaloes, as early as 3 week-post-infection (WPI). In conclusion, it is suggested that CL7 with low cost, early detection, good specificity and sensitivity could be used as a candidate antigen for detection of ruminant fasciolosis.
Collapse
Affiliation(s)
- Jing-Zhi Gong
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, PR China
| | - Yi-Min Fan
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, PR China
| | - Wanzhe Yuan
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, PR China
| | - Ming Pan
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, PR China
| | - Dandan Liu
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, PR China
| | - Jian-Ping Tao
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, PR China
| | - Si-Yang Huang
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, PR China.
| |
Collapse
|
5
|
Fereig RM, Metwally S, El-Alfy ES, Abdelbaky HH, Shanab O, Omar MA, Alsayeqh AF. High relatedness of bioinformatic data and realistic experimental works on the potentials of Fasciola hepatica and F. gigantica cathepsin L1 as a diagnostic and vaccine antigen. Front Public Health 2022; 10:1054502. [PMID: 36568750 PMCID: PMC9768368 DOI: 10.3389/fpubh.2022.1054502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/17/2022] [Indexed: 12/12/2022] Open
Abstract
Introduction Fascioliasis is a parasitic foodborne disease caused by the liver flukes, Fasciola hepatica and F. gigantica. Such parasites cause serious illness in numerous domestic animals and also in humans. Following infection, the parasite secretes a variety of molecules that immediately interact with the host immunity to establish successful infection. These molecules include cathepsin L peptidase 1 (CatL1); the highly investigated diagnostic and vaccine antigens using various animal models. However, a few studies have analyzed the potentials of FhCatL1 as a diagnostic or vaccine antigen using bioinformatic tools and much less for FgCatL1. The present study provides inclusive and exclusive information on the physico-chemical, antigenic and immunogenic properties of F. hepatica cathepsin L1 (FhCatL1) protein using multiple bioinformatic analysis tools and several online web servers. Also, the validation of our employed available online servers was conducted against a huge collection of previously published studies focusing on the properties of FhCatL1as a diagnostic and vaccine antigen. Methods For this purpose, the secondary, tertiary, and quaternary structure of FhCatL1 protein were also predicted and analyzed using the SWISS-MODEL server. Validation of the modeled structures was performed by Ramachandran plots. The antigenic epitopes of the protein were predicted by IEDB server. Results and discussion Our findings revealed the low similarity of FhCatL1 with mammalian CatL1, lacking signal peptides or transmembrane domain, and the presence of 33 phosphorylation sites. Also, the containment of FhCatL1 for many topological, physico-chemical, immunological properties that favored its function of solubility and interaction with the immune components were reported. In addition, the earlier worldwide reports documented the high efficacy of FhCatL1 as a diagnostic and vaccine antigen in different animals. Altogether, FhCatL1 is considered an excellent candidate for using in commercialized diagnostic assays or vaccine products against fascioliasis in different animal species. Our assessment also included FgCatL1 and reported very similar findings and outputs to those of FhCatL1.
Collapse
Affiliation(s)
- Ragab M. Fereig
- Division of Internal Medicine, Department of Animal Medicine, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Samy Metwally
- Division of Infectious Diseases, Department of Animal Medicine, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - El-Sayed El-Alfy
- Department of Parasitology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Hanan H. Abdelbaky
- Doctor of Veterinary Sciences, Veterinary Clinic, Veterinary Directorate, Qena, Egypt
| | - Obeid Shanab
- Department of Biochemistry, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Mosaab A. Omar
- Department of Parasitology, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt,Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraidah, Saudi Arabia
| | - Abdullah F. Alsayeqh
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraidah, Saudi Arabia,*Correspondence: Abdullah F. Alsayeqh
| |
Collapse
|
6
|
Wang J, He K, Wu Z, Jin W, Wu W, Guo Y, Zhang W, Di W. Development of a colloidal gold immunochromatographic strip for the rapid detection of antibodies against Fasciola gigantica in buffalo. Front Vet Sci 2022; 9:1004932. [PMID: 36187830 PMCID: PMC9523912 DOI: 10.3389/fvets.2022.1004932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/01/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundFasciola gigantica, a tropical liver fluke, infects buffalo in Asian and African countries, causing significant economic losses and posing public health threats. The diagnostic of buffalo fascioliasis caused by F. gigantica is vital in fascioliasis control and preventation. The 22nd gel filtration chromatography fraction of F. gigantica Excretory-Secretory Products (FgESP), namely Fasciola 22 (F22), which was used as a diagnostic antigen in indirect ELISA, has demonstrated great potential for fascioliasis diagnosing. In the absence of rapid diagnostic methods, the use of a colloidal gold immunochromatographic strip based on F22 was applied to detect F. gigantica infection in buffalo.MethodsIn the present study, the 22nd gel filtration chromatography fraction of FgESP (F22) was used as an antigen to establish the colloidal gold-based immunochromatographic strip (ICS). The nitrocellulose membrane was incubated with F22 at the test line (T line) and goat anti-mouse secondary antibody at the control line (C line). The mouse anti-buffalo secondary antibody 2G7 conjugated to colloidal gold particles was used as the detection system for line visualization. The strip was assembled and developed by optimizing reaction conditions. The sensitivity, specificity, stability, and early diagnostic value of the strip were evaluated employing buffalo-derived sera.ResultsAn immunochromatographic strip for the rapid detection of antibodies against F. gigantica-FgICS was developed. The strip demonstrated high sensitivity and specificity. Sensitivity tests confirmed positive results even when the positive reference serum was diluted 4,096 times. Except for one Schistosoma japonicum-positive serum that tested positive via FgICS, specificity tests confirmed no cross-reactivity with other positive sera of Schistosoma japonicum and Babesia bovis. The strip remained stable after storage at 4°C for up to 3 months. In infected buffalo, antibodies could be detected as early as 14–21 days post-infection. The detection of 17 positive sera yielded an 82.4% positive rate via FgICS vs. a 100.0% positive rate via ELISA based on FgESP. For FgICS, the 95% confidence interval of sensitivity was 84.8–95.4%, while specificity was 4.2–14.7%.ConclusionThe immunochromatographic strip FgICS developed in this study provides a simple and rapid method of F. gigantica antibody detection and infected buffalo monitoring in the field.
Collapse
Affiliation(s)
- Jinhui Wang
- College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Guangxi University, Nanning, China
| | - Kangxin He
- College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Guangxi University, Nanning, China
| | - Zhengjiao Wu
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Weikun Jin
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Wende Wu
- College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Guangxi University, Nanning, China
| | - Yanfeng Guo
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Weiyu Zhang
- College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Guangxi University, Nanning, China
- *Correspondence: Weiyu Zhang
| | - Wenda Di
- College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Guangxi University, Nanning, China
- Wenda Di
| |
Collapse
|
7
|
Zhu Y, Zhu X, Chen Z, Cao X, Wang L, Zang L, Cao W, Sun T, Bai X. The Efficacy of Needle-Warming Moxibustion Combined with Hyperbaric Oxygen Therapy for Ischemic Stroke and Its Effect on Neurological Function. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:2204981. [PMID: 35237338 PMCID: PMC8885239 DOI: 10.1155/2022/2204981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/20/2022] [Accepted: 01/26/2022] [Indexed: 11/17/2022]
Abstract
OBJECTIVE To elucidate the therapeutic efficacy of needle-warming moxibustion (NWM) combined with hyperbaric oxygen therapy (HBOT) in the treatment of patients with ischemic stroke and its effect on neurological function. METHODS One hundred patients with ischemic stroke admitted to the Xuzhou Medical University Affiliated Hospital of Lianyungang from January 2019 to July 2021 were enrolled. Among them, 45 patients treated with NWM were set as the control group, and the rest 55 patients treated by NWM combined with HBOT were included in the research group. The curative effect, neurological deficit score, activity of daily living (ADL), balance ability, and the levels of serum proinflammatory factors in both groups were observed and recorded. Of them, the neurological deficit of patients was evaluated by the National Institutes of Health Stroke Scale (NHISS), the ADL ability was determined by the Barthel index score, and the balance ability was assessed by the Berg balance scale. RESULTS The total effective rate of the research group was higher than that of the control group. Better ADL and balance ability and milder neurologic impairment were determined in the research group compared with the control group. After treatment, the secretion levels of proinflammatory factors such as C-reactive protein (CRP), tumor necrosis factor-α (TNF-α), and interleukin-8 (IL-8) in the serum of patients in the research group were statistically lower than those before treatment and the control group. CONCLUSIONS NWM combined with HBOT is effective in the treatment of patients with ischemic stroke, which can not only improve patients' neurological function, ADL, and balance ability but also inhibit serum inflammatory reactions.
Collapse
Affiliation(s)
- Yonggang Zhu
- Neurorehabilitation Department, The Affiliated Lianyungang Hospital of Xuzhou Medical University, The First People's Hospital of Lianyungang, The First Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang Clinical College of Nanjing Medical University, Lianyungang, 222002 Jiangsu Province, China
| | - Xiuhua Zhu
- Neurorehabilitation Department, The Affiliated Lianyungang Hospital of Xuzhou Medical University, The First People's Hospital of Lianyungang, The First Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang Clinical College of Nanjing Medical University, Lianyungang, 222002 Jiangsu Province, China
| | - Zhitian Chen
- Neurorehabilitation Department, The Affiliated Lianyungang Hospital of Xuzhou Medical University, The First People's Hospital of Lianyungang, The First Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang Clinical College of Nanjing Medical University, Lianyungang, 222002 Jiangsu Province, China
| | - Xueli Cao
- Neurorehabilitation Department, The Affiliated Lianyungang Hospital of Xuzhou Medical University, The First People's Hospital of Lianyungang, The First Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang Clinical College of Nanjing Medical University, Lianyungang, 222002 Jiangsu Province, China
| | - Lu Wang
- Neurorehabilitation Department, The Affiliated Lianyungang Hospital of Xuzhou Medical University, The First People's Hospital of Lianyungang, The First Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang Clinical College of Nanjing Medical University, Lianyungang, 222002 Jiangsu Province, China
| | - Lin Zang
- Neurorehabilitation Department, The Affiliated Lianyungang Hospital of Xuzhou Medical University, The First People's Hospital of Lianyungang, The First Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang Clinical College of Nanjing Medical University, Lianyungang, 222002 Jiangsu Province, China
| | - Weiwei Cao
- Neurorehabilitation Department, The Affiliated Lianyungang Hospital of Xuzhou Medical University, The First People's Hospital of Lianyungang, The First Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang Clinical College of Nanjing Medical University, Lianyungang, 222002 Jiangsu Province, China
| | - Tian Sun
- Neurorehabilitation Department, The Affiliated Lianyungang Hospital of Xuzhou Medical University, The First People's Hospital of Lianyungang, The First Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang Clinical College of Nanjing Medical University, Lianyungang, 222002 Jiangsu Province, China
| | - Xinyu Bai
- Acupuncture and Massage Department, The Affiliated Lianyungang Hospital of Xuzhou Medical University, The First People's Hospital of Lianyungang, The First Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang Clinical College of Nanjing Medical University, Lianyungang, 222002 Jiangsu Province, China
| |
Collapse
|
8
|
Zhang J, Sun Y, Zheng J. Prospects for liver fluke vaccines. Exp Parasitol 2021; 230:108170. [PMID: 34699916 DOI: 10.1016/j.exppara.2021.108170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 10/05/2021] [Accepted: 10/22/2021] [Indexed: 11/18/2022]
Abstract
Fasciola spp., Opisthorchis spp. and Clonorchis sinensis are common liver flukes that can cause a variety of diseases, mainly cholangiocarcinoma induced by clonorchiasis and liver damage and associated pathology induced by fascioliasis. Because these trematodes are parasites of humans and domestic animals, they have greatly affected the economy of agricultural industries and public health worldwide. Due to the emergence of drug resistance and the living habits of flukes, among other reasons, a possibility of reinfection remains even when antiparasitic drugs are used. Therefore, developing a safe, efficient and cost-effective vaccine against trematodes is an important goal. Here, we briefly describe the progress in the development of vaccines against liver flukes. Related innovations may provide effective protection against these helminths and the diseases that they cause.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Intensive Care Unit, First Hospital of Jilin University, Changchun, Jilin, Changchun, Xinmin Street NO.71, 130021, China; Department of Pathogenobiology, College of Basic Medical Sciences, Jilin University, Jilin, Changchun Xinmin Street NO.126, 130000, China.
| | - Ying Sun
- Department of Respiratory and Critical Care Medicine, First Hospital of Jilin University, Changchun, Xinmin Street NO.71, 130021, China.
| | - Jingtong Zheng
- Department of Pathogenobiology, College of Basic Medical Sciences, Jilin University, Jilin, Changchun Xinmin Street NO.126, 130000, China.
| |
Collapse
|
9
|
López Corrales J, Cwiklinski K, De Marco Verissimo C, Dorey A, Lalor R, Jewhurst H, McEvoy A, Diskin M, Duffy C, Cosby SL, Keane OM, Dalton JP. Diagnosis of sheep fasciolosis caused by Fasciola hepatica using cathepsin L enzyme-linked immunosorbent assays (ELISA). Vet Parasitol 2021; 298:109517. [PMID: 34271318 DOI: 10.1016/j.vetpar.2021.109517] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/29/2021] [Accepted: 07/03/2021] [Indexed: 02/01/2023]
Abstract
Fasciolosis, a global parasitic disease of agricultural livestock, is caused by the liver fluke Fasciola hepatica. Management and strategic control of fasciolosis on farms depends on early assessment of the extent of disease so that control measures can be implemented quickly. Traditionally, this has relied on the detection of eggs in the faeces of animals, a laborious method that lacks sensitivity, especially for sub-clinical infections, and identifies chronic infections only. Enzyme linked immunosorbent assays (ELISA) offer a quicker and more sensitive serological means of diagnosis that could detect early acute infection before significant liver damage occurs. The performance of three functionally-active recombinant forms of the major F. hepatica secreted cathepsins L, rFhCL1, rFhCL2, rFhCL3, and a cathepsin B, rFhCB3, were evaluated as antigens in an indirect ELISA to serologically diagnose liver fluke infection in experimentally and naturally infected sheep. rFhCL1 and rFhCL3 were the most effective of the four antigens detecting fasciolosis in sheep as early as three weeks after experimental infection, at least five weeks earlier than both coproantigen and faecal egg tests. In addition, the rFhCL1 and rFhCL3 ELISAs had a very low detection limit for liver fluke in lambs exposed to natural infection on pastures and thus could play a major role in the surveillance of farms and a 'test and treat' approach to disease management. Finally, antibodies to all three cathepsin L proteases remain high throughout chronic infection but decline rapidly after drug treatment with the flukicide, triclabendazole, implying that the test may be adapted to trace the effectiveness of drug treatment.
Collapse
Affiliation(s)
- Jesús López Corrales
- Molecular Parasitology Laboratory, Centre for One Health and Ryan Institute, National University of Ireland Galway, Galway, Ireland
| | - Krystyna Cwiklinski
- Molecular Parasitology Laboratory, Centre for One Health and Ryan Institute, National University of Ireland Galway, Galway, Ireland.
| | - Carolina De Marco Verissimo
- Molecular Parasitology Laboratory, Centre for One Health and Ryan Institute, National University of Ireland Galway, Galway, Ireland
| | - Amber Dorey
- Molecular Parasitology Laboratory, Centre for One Health and Ryan Institute, National University of Ireland Galway, Galway, Ireland
| | - Richard Lalor
- Molecular Parasitology Laboratory, Centre for One Health and Ryan Institute, National University of Ireland Galway, Galway, Ireland
| | - Heather Jewhurst
- Molecular Parasitology Laboratory, Centre for One Health and Ryan Institute, National University of Ireland Galway, Galway, Ireland
| | - Amanda McEvoy
- Animal & Bioscience Department, Teagasc Mellows Campus, Athenry, Co., Galway, Ireland
| | - Michael Diskin
- Animal & Bioscience Department, Teagasc Mellows Campus, Athenry, Co., Galway, Ireland
| | - Catherine Duffy
- Virology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast, BT4 3SD, UK
| | - S Louise Cosby
- Virology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast, BT4 3SD, UK
| | - Orla M Keane
- Animal & Bioscience Department, Teagasc Grange, Dunsany, Co. Meath, Ireland
| | - John Pius Dalton
- Molecular Parasitology Laboratory, Centre for One Health and Ryan Institute, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|