1
|
Mohammad Rahimi H, Mahdavi F, Eslami N, Nemati S, Mirjalali H. The Effects of Extracellular Vesicles Derived from Hydatid Cyst Fluid on the Expression of microRNAs Involved in Liver Fibrosis. Acta Parasitol 2025; 70:89. [PMID: 40220059 DOI: 10.1007/s11686-025-01024-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Accepted: 03/24/2025] [Indexed: 04/14/2025]
Abstract
INTRODUCTION Hydatidosis is a zoonotic neglected disease caused by the larval stage of Echinococcus granulosus. Evidence suggests a communication between hydatid cyst (HC) and hosts via extracellular vesicles (EVs). However, a little is known about the communication between EVs derived from HC fluid (HCF) and host cells. The current study aimed to investigate the effect of HCF derived EVs on expression of fibrotic and anti-fibrotic miRNAs in THP-1 cell line. METHODS In the current study, EVs were isolated using ultracentrifugation from wild-infected sheep HCF and characterized by western blot, electron microscope, and size distribution analysis. The effects of EVs on the expression levels of microRNAs (mir-16, mir-29a, and mir-155) involved in liver fibrosis were investigated using quantitative real-time PCR (qRT-PCR), 3 and 24 h after incubation. RESULTS Western blot analyses confirmed the expression of CD63 marker, while Calnexin and CD81 were absent in EVs samples. The SEM and morphology revealed round shape vesicles. The DLS analysis showed average size distribution 130.6 nm diameter. The expression levels of mir-16 and mir-29a were significantly upregulated after 3 h for 8.66 and 3.420, respectively, while they were significantly downregulated after 24 h for 3.853 and 1.859, respectively. CONCLUSION The main mechanism of the communication between EVs derived from HCF and their host remains unclear. Our results suggest that HC may modulate the expression of miRNAs, involved in liver fibrosis via EVs.
Collapse
Affiliation(s)
- Hanieh Mohammad Rahimi
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Mahdavi
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nasim Eslami
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Advanced Therapy Medicinal Product Technology Development Center (ATMP-TDC), Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Sara Nemati
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Mirjalali
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Alfandari D, Rosenhek-Goldian I, Kozela E, Nevo R, Senprún MB, Moisieiev A, Sogauker N, Azuri I, Gelman S, Kiper E, Ben Hur D, Dharan R, Sorkin R, Porat Z, Morandi MI, Regev-Rudzki N. Host Immune Cell Membrane Deformability Governs the Uptake Route of Malaria-Derived Extracellular Vesicles. ACS NANO 2025; 19:9760-9778. [PMID: 40030053 PMCID: PMC11924330 DOI: 10.1021/acsnano.4c07503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 02/11/2025] [Accepted: 02/13/2025] [Indexed: 03/19/2025]
Abstract
The malaria parasite, Plasmodium falciparum, secretes extracellular vesicles (EVs) to facilitate its growth and to communicate with the external microenvironment, primarily targeting the host's immune cells. How parasitic EVs enter specific immune cell types within the highly heterogeneous pool of immune cells remains largely unknown. Using a combination of imaging flow cytometry and advanced fluorescence analysis, we demonstrated that the route of uptake of parasite-derived EVs differs markedly between host T cells and monocytes. T cells, which are components of the adaptive immune system, internalize parasite-derived EVs mainly through an interaction with the plasma membrane, whereas monocytes, which function in the innate immune system, take up these EVs via endocytosis. The membranal/endocytic balance of EV internalization is driven mostly by the amount of endocytic incorporation. Integrating atomic force microscopy with fluorescence data analysis revealed that internalization depends on the biophysical properties of the cell membrane rather than solely on molecular interactions. In support of this, altering the cholesterol content in the cell membrane tilted the balance in favor of one uptake route over another. Our results provide mechanistic insights into how P. falciparum-derived EVs enter into diverse host cells. This study highlights the sophisticated cell-communication tactics used by the malaria parasite.
Collapse
Affiliation(s)
- Daniel Alfandari
- Department
of Biomolecular Sciences, Faculty of Biochemistry, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Irit Rosenhek-Goldian
- Department
of Chemical Research Support, Weizmann Institute
of Science, Rehovot 7610001, Israel
| | - Ewa Kozela
- Department
of Biomolecular Sciences, Faculty of Biochemistry, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Reinat Nevo
- Department
of Biomolecular Sciences, Faculty of Biochemistry, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Marcela Bahlsen Senprún
- Department
of Biomolecular Sciences, Faculty of Biochemistry, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Anton Moisieiev
- Department
of Biomolecular Sciences, Faculty of Biochemistry, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Noam Sogauker
- Department
of Biomolecular Sciences, Faculty of Biochemistry, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ido Azuri
- Bioinformatics
Unit, Life Sciences Core Facilities, Weizmann
Institute of Science, Rehovot 7610001, Israel
| | - Samuel Gelman
- Bioinformatics
Unit, Life Sciences Core Facilities, Weizmann
Institute of Science, Rehovot 7610001, Israel
| | - Edo Kiper
- Department
of Biomolecular Sciences, Faculty of Biochemistry, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Daniel Ben Hur
- Department
of Biomolecular Sciences, Faculty of Biochemistry, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Raviv Dharan
- Raymond
and Beverly Sackler Faculty of Exact Sciences, School of Chemistry, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Raya Sorkin
- Raymond
and Beverly Sackler Faculty of Exact Sciences, School of Chemistry, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Ziv Porat
- Flow
cytometry Unit, Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Mattia I. Morandi
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Science, Prague 160-00, Czech Republic
- IMol
Polish Academy of Sciences, Warsaw 02-247, Poland
| | - Neta Regev-Rudzki
- Department
of Biomolecular Sciences, Faculty of Biochemistry, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
3
|
Espinosa G, Salinas-Varas C, Rojas-Barón L, Preußer C, Pogge von Strandmann E, Gärtner U, Conejeros I, Hermosilla C, Taubert A. Bovine PMN responses to extracellular vesicles released by Besnoitia besnoiti tachyzoites and B. besnoiti-infected host cells. Front Immunol 2024; 15:1509355. [PMID: 39749330 PMCID: PMC11693690 DOI: 10.3389/fimmu.2024.1509355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 12/03/2024] [Indexed: 01/04/2025] Open
Abstract
Bovine besnoitiosis is a re-emerging cattle disease caused by the apicomplexan parasite Besnoitia besnoiti, which severely affects individual animal welfare and profitability in cattle industry. We recently showed that B. besnoiti tachyzoite exposure to bovine polymorphonuclear neutrophils (PMN) effectively triggers neutrophil extracellular trap (NET) formation, leading to parasite immobilization hampering host cell infection. So far, the triggers of this defense mechanism remain unclear. Emerging evidence indicates that extracellular vesicles (EVs) modulate PMN effector functions, such as ROS production or NET formation. Therefore, we tested whether exposure of bovine PMN to EVs from different cellular sources affects classical PMN effector functions and cytokine/chemokine secretion. EVs were isolated from B. besnoiti-infected and non-infected host cells (bovine umbilical vein endothelial cells, BUVEC), from tachyzoite-exposed bovine PMN and from B. besnoiti tachyzoites. EV concentration and size was determined by Nano-Flow cytometry and EV nature was confirmed by both classical EV markers (CD9 and CD81) and transmission electron microscopy (TEM). Overall, PMN stimulation with both BUVEC- and tachyzoite-derived EVs significantly induced extracellular DNA release while EVs from PMN failed to affect NET formation. BUVEC and tachyzoite EV-driven NET formation was confirmed microscopically by the presence of DNA decorated with neutrophil elastase (NE) and histones in typical NET structures. Moreover, confocal microscopy revealed EVs to be internalized by bovine PMN. Referring to PMN activation, EVs from the different cellular sources all failed to affect glycolytic or oxidative responses of bovine PMN as detected by Seahorse®-based analytics and luminol-based chemoluminescence, thereby denying any role of NADPH oxidase (NOX) activity in EV-driven NET formation. Finally, exposure to B. besnoiti-infected BUVEC-derived EVs induced IL-1β and IL-6 release, but failed to drive CXCL8 release of bovine PMN. Hence, we overall demonstrated that EVs of selected cellular origin owned the capacity to trigger NOX-independent NET formation, were incorporated by PMN and selectively fostered IL-1β and IL-6 release.
Collapse
Affiliation(s)
- Gabriel Espinosa
- Institute of Parasitology, Justus Liebig University Giessen, Giessen, Germany
| | | | - Lisbeth Rojas-Barón
- Institute of Parasitology, Justus Liebig University Giessen, Giessen, Germany
| | - Christian Preußer
- Core Facility Extracellular Vesicles, Center for Tumor Biology and Immunology, Philipps University of Marburg, Marburg, Germany
| | - Elke Pogge von Strandmann
- Core Facility Extracellular Vesicles, Center for Tumor Biology and Immunology, Philipps University of Marburg, Marburg, Germany
| | - Ulrich Gärtner
- Institute of Anatomy and Cell Biology, Justus Liebig University Giessen, Giessen, Germany
| | - Iván Conejeros
- Institute of Parasitology, Justus Liebig University Giessen, Giessen, Germany
| | - Carlos Hermosilla
- Institute of Parasitology, Justus Liebig University Giessen, Giessen, Germany
| | - Anja Taubert
- Institute of Parasitology, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
4
|
Mathur S, Kaushik S, Kothari SL, Srivastava VK. Role of various virulence factors involved in the pathogenesis of Entamoeba histolytica. Exp Parasitol 2024; 266:108841. [PMID: 39362393 DOI: 10.1016/j.exppara.2024.108841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/09/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
Developing countries continuously face challenges to get rid of amoebiasis, a protozoan disease caused by Entamoeba histolytica. Every year around 900 million people get affected by amoebiasis, among them only 10 % of people show the symptoms of the disease while 90 % of people do not show any symptoms but still, serve as carriers of the disease. Asymptomatic persons carry cysts of Entamoeba in their fecal matter, which is carried by house flies to contaminate the food and water. Entamoeba histolytica is a very successful pathogen because it has very well-developed virulence factors that function in infection to host as well as in overcoming the host's immune response. However, researchers have very little information about the clear relationship between virulence factors and the virulence of Entamoeba histolytica, through various research, researchers have been able to identify key pathogenic factors that are crucial to the pathogenesis of amoebiasis and have provided valuable insights into the development of the disease. The objective of this review is to underscore various virulence factors (Monosaccharides, Gal/GalNAc lectin, extracellular vesicles, cysteine proteases, amoeba-pores, and actin microfilament) involved in pathogenesis which may be helpful for designing of future drug or therapy.
Collapse
Affiliation(s)
- Shubham Mathur
- Amity Institute of Biotechnology, Amity University Rajasthan, Kant Kalwar, NH-11C, Jaipur-Delhi Highway, 303002, Jaipur, India
| | - Sanket Kaushik
- Amity Institute of Biotechnology, Amity University Rajasthan, Kant Kalwar, NH-11C, Jaipur-Delhi Highway, 303002, Jaipur, India
| | - S L Kothari
- Amity Institute of Biotechnology, Amity University Rajasthan, Kant Kalwar, NH-11C, Jaipur-Delhi Highway, 303002, Jaipur, India
| | | |
Collapse
|
5
|
Alvarado-Ocampo J, Abrahams-Sandí E, Retana-Moreira L. Overview of extracellular vesicles in pathogens with special focus on human extracellular protozoan parasites. Mem Inst Oswaldo Cruz 2024; 119:e240073. [PMID: 39319874 PMCID: PMC11421424 DOI: 10.1590/0074-02760240073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 07/09/2024] [Indexed: 09/26/2024] Open
Abstract
Extracellular vesicles (EVs) are lipid-bilayered membrane-delimited particles secreted by almost any cell type, involved in different functions according to the cell of origin and its state. From these, cell to cell communication, pathogen-host interactions and modulation of the immune response have been widely studied. Moreover, these vesicles could be employed for diagnostic and therapeutic purposes, including infections produced by pathogens of diverse types; regarding parasites, the secretion, characterisation, and roles of EVs have been studied in particular cases. Moreover, the heterogeneity of EVs presents challenges at every stage of studies, which motivates research in this area. In this review, we summarise some aspects related to the secretion and roles of EVs from several groups of pathogens, with special focus on the most recent research regarding EVs secreted by extracellular protozoan parasites.
Collapse
Affiliation(s)
- Johan Alvarado-Ocampo
- Universidad de Costa Rica, Facultad de Microbiología, Centro de Investigación en Enfermedades Tropicales, San José, Costa Rica
| | - Elizabeth Abrahams-Sandí
- Universidad de Costa Rica, Facultad de Microbiología, Centro de Investigación en Enfermedades Tropicales, San José, Costa Rica
- Universidad de Costa Rica, Facultad de Microbiología, Departamento de Parasitología, San José, Costa Rica
| | - Lissette Retana-Moreira
- Universidad de Costa Rica, Facultad de Microbiología, Centro de Investigación en Enfermedades Tropicales, San José, Costa Rica
- Universidad de Costa Rica, Facultad de Microbiología, Departamento de Parasitología, San José, Costa Rica
| |
Collapse
|
6
|
Kozela E, Meneghetti P, Regev-Rudzki N, Torrecilhas AC, Porat Z. Subcellular particles for characterization of host-parasite interactions. Microbes Infect 2024; 26:105314. [PMID: 38367661 DOI: 10.1016/j.micinf.2024.105314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 01/14/2024] [Accepted: 02/13/2024] [Indexed: 02/19/2024]
Abstract
Parasitic diseases remain a major global health problem for humans. Parasites employ a variety of strategies to invade and survive within their hosts and to manipulate host defense mechanisms, always in the pathogen's favor. Extracellular vesicles (EVs), membrane-bound nanospheres carrying a variety of bioactive compounds, were shown to be released by the parasites during all stages of the infection, enabling growth and expansion within the host and adaptation to frequently changing environmental stressors. In this review, we discuss how the use of existing nanotechnologies and high-resolution imaging tools assisted in revealing the role of EVs during parasitic infections, enabling the quantitation, visualization, and detailed characterization of EVs. We discuss here the cases of malaria, Chagas disease and leishmaniasis as examples of parasitic neglected tropical diseases (NTDs). Unraveling the EVs' role in the NTD pathogenesis may enormously contribute to their early and reliable diagnostic, effective treatment, and prevention.
Collapse
Affiliation(s)
- Ewa Kozela
- Department of Biomolecular Sciences, Faculty of Biochemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Paula Meneghetti
- Universidade Federal de São Paulo (UNIFESP), Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Departamento de Ciências Farmacêuticas, Laboratório de Imunologia Celular e Bioquímica de Fungos e Protozoários, Brazil
| | - Neta Regev-Rudzki
- Department of Biomolecular Sciences, Faculty of Biochemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Ana Claudia Torrecilhas
- Universidade Federal de São Paulo (UNIFESP), Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Departamento de Ciências Farmacêuticas, Laboratório de Imunologia Celular e Bioquímica de Fungos e Protozoários, Brazil.
| | - Ziv Porat
- Flow Cytometry Unit, Life Sciences Core Facilities, WIS, Rehovot, Israel.
| |
Collapse
|
7
|
Wang J, Barr MM, Wehman AM. Extracellular vesicles. Genetics 2024; 227:iyae088. [PMID: 38884207 PMCID: PMC11304975 DOI: 10.1093/genetics/iyae088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 05/21/2024] [Indexed: 06/18/2024] Open
Abstract
Extracellular vesicles (EVs) encompass a diverse array of membrane-bound organelles released outside cells in response to developmental and physiological cell needs. EVs play important roles in remodeling the shape and content of differentiating cells and can rescue damaged cells from toxic or dysfunctional content. EVs can send signals and transfer metabolites between tissues and organisms to regulate development, respond to stress or tissue damage, or alter mating behaviors. While many EV functions have been uncovered by characterizing ex vivo EVs isolated from body fluids and cultured cells, research using the nematode Caenorhabditis elegans has provided insights into the in vivo functions, biogenesis, and uptake pathways. The C. elegans EV field has also developed methods to analyze endogenous EVs within the organismal context of development and adult physiology in free-living, behaving animals. In this review, we summarize major themes that have emerged for C. elegans EVs and their relevance to human health and disease. We also highlight the diversity of biogenesis mechanisms, locations, and functions of worm EVs and discuss open questions and unexplored topics tenable in C. elegans, given the nematode model is ideal for light and electron microscopy, genetic screens, genome engineering, and high-throughput omics.
Collapse
Affiliation(s)
- Juan Wang
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA
| | - Maureen M Barr
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA
| | - Ann M Wehman
- Department of Biological Sciences, University of Denver, Denver, CO 80210, USA
| |
Collapse
|
8
|
Leroux M, Lafleur A, Villalba-Guerrero C, Beaulieu M, Lira AB, Olivier M. Extracellular vesicles in parasitic protozoa: Impact of Leishmania exosomes containing Leishmania RNA virus 1 (LRV1) on Leishmania infectivity and disease progression. CURRENT TOPICS IN MEMBRANES 2024; 94:157-186. [PMID: 39370206 DOI: 10.1016/bs.ctm.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
This chapter focuses on the interplay between Leishmania parasites and their host, particularly on Leishmania RNA virus (LRVs) and extracellular vesicles (EVs) in modulating host-pathogen interactions. Leishmania EVs have been shown to facilitate gene transfer, including drug-resistance genes, enhancing the parasites' survival and resistance to antileishmanial therapeutics. These EVs also play a significant role in host immune modulation by altering cytokine production in macrophages and promoting an anti-inflammatory environment that favours parasitic persistence. The presence of virulence factors such as GP63 within these EVs further underscores their role in the parasite's immunopathogenesis. Over the last few decades, LRVs have been established as drivers of the severity and persistence of leishmaniasis by exacerbating inflammatory responses and potentially influencing treatment outcomes. This chapter discusses the evolutionary origins and classification of these viruses, and explores their role in parasitic pathogenicity, highlighting their ubiquity across protozoan parasites and their impact on disease progression.
Collapse
Affiliation(s)
- Marine Leroux
- The Research Institute of the McGill University Health Centre, McGill University, Montréal, QC, Canada
| | - Andrea Lafleur
- The Research Institute of the McGill University Health Centre, McGill University, Montréal, QC, Canada
| | - Carlos Villalba-Guerrero
- The Research Institute of the McGill University Health Centre, McGill University, Montréal, QC, Canada
| | - Myriam Beaulieu
- The Research Institute of the McGill University Health Centre, McGill University, Montréal, QC, Canada
| | - Andressa Brito Lira
- The Research Institute of the McGill University Health Centre, McGill University, Montréal, QC, Canada
| | - Martin Olivier
- The Research Institute of the McGill University Health Centre, McGill University, Montréal, QC, Canada.
| |
Collapse
|
9
|
Shmueli M, Ben-Shimol S. Review of Leishmaniasis Treatment: Can We See the Forest through the Trees? PHARMACY 2024; 12:30. [PMID: 38392937 PMCID: PMC10892631 DOI: 10.3390/pharmacy12010030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/04/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
There are three known clinical syndromes of leishmaniasis: cutaneous (CL), mucocutaneous (MCL), and visceral disease (VL). In MCL and VL, treatment must be systemic (either oral or intravenous), while CL treatment options vary and include observation-only localized/topical treatment, oral medications, or parenteral drugs. Leishmaniasis treatment is difficult, with several factors to be considered. First, the efficacy of treatments varies among different species of parasites prevalent in different areas on the globe, with each species having a unique clinical presentation and resistance profile. Furthermore, leishmaniasis is a neglected tropical disease (NTD), resulting in a lack of evidence-based knowledge regarding treatment. Therefore, physicians often rely on case reports or case series studies, in the absence of randomized controlled trials (RCT), to assess treatment efficacy. Second, defining cure, especially in CL and MCL, may be difficult, as death of the parasite can be achieved in most cases, while the aesthetic result (e.g., scars) is hard to predict. This is a result of the biological nature of the disease, often diagnosed late in the course of disease (with possible keloid formation, etc.). Third, physicians must consider treatment ease of use and the safety profile of possible treatments. Thus, topical or oral treatments (for CL) are desirable and promote adherence. Fourth, the cost of the treatment is an important consideration. In this review, we aim to describe the diverse treatment options for different clinical manifestations of leishmaniasis. For each currently available treatment, we will discuss the various considerations mentioned above (efficacy, ease of use, safety, and cost).
Collapse
Affiliation(s)
- Moshe Shmueli
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel
| | - Shalom Ben-Shimol
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel
- Pediatric Infectious Disease Unit, Soroka University Medical Center, Beer Sheva 8410115, Israel
| |
Collapse
|
10
|
Xiong Y, Lou P, Xu C, Han B, Liu J, Gao J. Emerging role of extracellular vesicles in veterinary practice: novel opportunities and potential challenges. Front Vet Sci 2024; 11:1335107. [PMID: 38332755 PMCID: PMC10850357 DOI: 10.3389/fvets.2024.1335107] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/12/2024] [Indexed: 02/10/2024] Open
Abstract
Extracellular vesicles are nanoscale vesicles that transport signals between cells, mediating both physiological and pathological processes. EVs facilitate conserved intercellular communication. By transferring bioactive molecules between cells, EVs coordinate systemic responses, regulating homeostasis, immunity, and disease progression. Given their biological importance and involvement in pathogenesis, EVs show promise as biomarkers for veterinary diagnosis, and candidates for vaccine production, and treatment agents. Additionally, different treatment or engineering methods could be used to boost the capability of extracellular vesicles. Despite the emerging veterinary interest, EV research has been predominantly human-based. Critical knowledge gaps remain regarding isolation protocols, cargo loading mechanisms, in vivo biodistribution, and species-specific functions. Standardized methods for veterinary EV characterization and validation are lacking. Regulatory uncertainties impede veterinary clinical translation. Advances in fundamental EV biology and technology are needed to propel the veterinary field forward. This review introduces EVs from a veterinary perspective by introducing the latest studies, highlighting their potential while analyzing challenges to motivate expanded veterinary investigation and translation.
Collapse
Affiliation(s)
- Yindi Xiong
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Peng Lou
- NHC Key Laboratory of Transplant Engineering and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Chuang Xu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Bo Han
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jingping Liu
- NHC Key Laboratory of Transplant Engineering and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Jian Gao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
11
|
Chiribao ML, Díaz-Viraqué F, Libisch MG, Batthyány C, Cunha N, De Souza W, Parodi-Talice A, Robello C. Paracrine Signaling Mediated by the Cytosolic Tryparedoxin Peroxidase of Trypanosoma cruzi. Pathogens 2024; 13:67. [PMID: 38251374 PMCID: PMC10818299 DOI: 10.3390/pathogens13010067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/28/2023] [Accepted: 01/09/2024] [Indexed: 01/23/2024] Open
Abstract
Peroxiredoxins are abundant and ubiquitous proteins that participate in different cellular functions, such as oxidant detoxification, protein folding, and intracellular signaling. Under different cellular conditions, peroxiredoxins can be secreted by different parasites, promoting the induction of immune responses in hosts. In this work, we demonstrated that the cytosolic tryparedoxin peroxidase of Trypanosoma cruzi (cTXNPx) is secreted by epimastigotes and trypomastigotes associated with extracellular vesicles and also as a vesicle-free protein. By confocal microscopy, we show that cTXNPx can enter host cells by an active mechanism both through vesicles and as a recombinant protein. Transcriptomic analysis revealed that cTXNPx induces endoplasmic reticulum stress and interleukin-8 expression in epithelial cells. This analysis also suggested alterations in cholesterol metabolism in cTXNPx-treated cells, which was confirmed by immunofluorescence showing the accumulation of LDL and the induction of LDL receptors in both epithelial cells and macrophages. BrdU incorporation assays and qPCR showed that cTXNPx has a mitogenic, proliferative, and proinflammatory effect on these cells in a dose-dependent manner. Importantly, we also demonstrated that cTXNPx acts as a paracrine virulence factor, increasing the susceptibility to infection in cTXNPx-pretreated epithelial cells by approximately 40%. Although the results presented in this work are from in vitro studies and likely underestimate the complexity of parasite-host interactions, our work suggests a relevant role for this protein in establishing infection.
Collapse
Affiliation(s)
- María Laura Chiribao
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo 11000, Uruguay;
- Laboratorio de Interacciones Hospedero–Patógeno—UBM, Institut Pasteur Montevideo, Montevideo 11000, Uruguay; (F.D.-V.); (M.G.L.)
| | - Florencia Díaz-Viraqué
- Laboratorio de Interacciones Hospedero–Patógeno—UBM, Institut Pasteur Montevideo, Montevideo 11000, Uruguay; (F.D.-V.); (M.G.L.)
| | - María Gabriela Libisch
- Laboratorio de Interacciones Hospedero–Patógeno—UBM, Institut Pasteur Montevideo, Montevideo 11000, Uruguay; (F.D.-V.); (M.G.L.)
| | - Carlos Batthyány
- Laboratory of Vascular Biology and Drug Development, Institut Pasteur Montevideo, Montevideo 11000, Uruguay;
| | - Narcisa Cunha
- Instituto de Biofísica Carlos Chagas Filho, Centro Nacional de Biologia Estrutural e Bioimagem (CENABIO), Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-901, Brazil; (N.C.); (W.D.S.)
| | - Wanderley De Souza
- Instituto de Biofísica Carlos Chagas Filho, Centro Nacional de Biologia Estrutural e Bioimagem (CENABIO), Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-901, Brazil; (N.C.); (W.D.S.)
| | - Adriana Parodi-Talice
- Laboratorio de Interacciones Hospedero–Patógeno—UBM, Institut Pasteur Montevideo, Montevideo 11000, Uruguay; (F.D.-V.); (M.G.L.)
- Sección Genética Evolutiva, Instituto de Biología, Facultad de Ciencias, Universidad de la República, Montevideo 11000, Uruguay
| | - Carlos Robello
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo 11000, Uruguay;
- Laboratorio de Interacciones Hospedero–Patógeno—UBM, Institut Pasteur Montevideo, Montevideo 11000, Uruguay; (F.D.-V.); (M.G.L.)
| |
Collapse
|
12
|
Sierra-López F, Castelan-Ramírez I, Hernández-Martínez D, Salazar-Villatoro L, Segura-Cobos D, Flores-Maldonado C, Hernández-Ramírez VI, Villamar-Duque TE, Méndez-Cruz AR, Talamás-Rohana P, Omaña-Molina M. Extracellular Vesicles Secreted by Acanthamoeba culbertsoni Have COX and Proteolytic Activity and Induce Hemolysis. Microorganisms 2023; 11:2762. [PMID: 38004773 PMCID: PMC10673465 DOI: 10.3390/microorganisms11112762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Several species of Acanthamoeba genus are potential pathogens and etiological agents of several diseases. The pathogenic mechanisms carried out by these amoebae in different target tissues have been documented, evidencing the relevant role of contact-dependent mechanisms. With the purpose of describing the pathogenic processes carried out by these protozoans more precisely, we considered it important to determine the emission of extracellular vesicles (EVs) as part of the contact-independent pathogenicity mechanisms of A. culbertsoni, a highly pathogenic strain. Through transmission electronic microscopy (TEM) and nanoparticle tracking analysis (NTA), EVs were characterized. EVs showed lipid membrane and a size between 60 and 855 nm. The secretion of large vesicles was corroborated by confocal and TEM microscopy. The SDS-PAGE of EVs showed proteins of 45 to 200 kDa. Antigenic recognition was determined by Western Blot, and the internalization of EVs by trophozoites was observed through Dil-labeled EVs. In addition, some EVs biological characteristics were determined, such as proteolytic, hemolytic and COX activity. Furthermore, we highlighted the presence of leishmanolysin in trophozites and EVs. These results suggest that EVs are part of a contact-independent mechanism, which, together with contact-dependent ones, allow for a better understanding of the pathogenicity carried out by Acanthamoeba culbertsoni.
Collapse
Affiliation(s)
- Francisco Sierra-López
- Laboratory of Amphizoic Amoebae, Faculty of Superior Studies Iztacala, Medicine, National Autonomous University of Mexico (UNAM), Tlalnepantla 54090, Mexico (I.C.-R.); (D.H.-M.); (D.S.-C.); (A.R.M.-C.)
| | - Ismael Castelan-Ramírez
- Laboratory of Amphizoic Amoebae, Faculty of Superior Studies Iztacala, Medicine, National Autonomous University of Mexico (UNAM), Tlalnepantla 54090, Mexico (I.C.-R.); (D.H.-M.); (D.S.-C.); (A.R.M.-C.)
| | - Dolores Hernández-Martínez
- Laboratory of Amphizoic Amoebae, Faculty of Superior Studies Iztacala, Medicine, National Autonomous University of Mexico (UNAM), Tlalnepantla 54090, Mexico (I.C.-R.); (D.H.-M.); (D.S.-C.); (A.R.M.-C.)
| | - Lizbeth Salazar-Villatoro
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies, National Polytechnic Institute (IPN), Mexico City 07360, Mexico; (L.S.-V.); (V.I.H.-R.); (P.T.-R.)
| | - David Segura-Cobos
- Laboratory of Amphizoic Amoebae, Faculty of Superior Studies Iztacala, Medicine, National Autonomous University of Mexico (UNAM), Tlalnepantla 54090, Mexico (I.C.-R.); (D.H.-M.); (D.S.-C.); (A.R.M.-C.)
| | - Catalina Flores-Maldonado
- Department of Physiology, Biophysics and Neurosciences, Center for Research and Advanced Studies, National Polytechnic Institute (IPN), Mexico City 07360, Mexico;
| | - Verónica Ivonne Hernández-Ramírez
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies, National Polytechnic Institute (IPN), Mexico City 07360, Mexico; (L.S.-V.); (V.I.H.-R.); (P.T.-R.)
| | - Tomás Ernesto Villamar-Duque
- General Biotery, Faculty of Superior Studies Iztacala, Biology, National Autonomous University of Mexico (UNAM), Tlalnepantla 54090, Mexico;
| | - Adolfo René Méndez-Cruz
- Laboratory of Amphizoic Amoebae, Faculty of Superior Studies Iztacala, Medicine, National Autonomous University of Mexico (UNAM), Tlalnepantla 54090, Mexico (I.C.-R.); (D.H.-M.); (D.S.-C.); (A.R.M.-C.)
| | - Patricia Talamás-Rohana
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies, National Polytechnic Institute (IPN), Mexico City 07360, Mexico; (L.S.-V.); (V.I.H.-R.); (P.T.-R.)
| | - Maritza Omaña-Molina
- Laboratory of Amphizoic Amoebae, Faculty of Superior Studies Iztacala, Medicine, National Autonomous University of Mexico (UNAM), Tlalnepantla 54090, Mexico (I.C.-R.); (D.H.-M.); (D.S.-C.); (A.R.M.-C.)
| |
Collapse
|
13
|
Tiberti N, Longoni SS, Combes V, Piubelli C. Host-Derived Extracellular Vesicles in Blood and Tissue Human Protozoan Infections. Microorganisms 2023; 11:2318. [PMID: 37764162 PMCID: PMC10536481 DOI: 10.3390/microorganisms11092318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Blood and tissue protozoan infections are responsible for an enormous burden in tropical and subtropical regions, even though they can also affect people living in high-income countries, mainly as a consequence of migration and travel. These pathologies are responsible for heavy socio-economic issues in endemic countries, where the lack of proper therapeutic interventions and effective vaccine strategies is still hampering their control. Moreover, the pathophysiological mechanisms associated with the establishment, progression and outcome of these infectious diseases are yet to be fully described. Among all the players, extracellular vesicles (EVs) have raised significant interest during the last decades due to their capacity to modulate inter-parasite and host-parasite interactions. In the present manuscript, we will review the state of the art of circulating host-derived EVs in clinical samples or in experimental models of human blood and tissue protozoan diseases (i.e., malaria, leishmaniasis, Chagas disease, human African trypanosomiasis and toxoplasmosis) to gain novel insights into the mechanisms of pathology underlying these conditions and to identify novel potential diagnostic markers.
Collapse
Affiliation(s)
- Natalia Tiberti
- Department of Infectious, Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, 37024 Negrar di Valpolicella, Italy; (S.S.L.); (C.P.)
| | - Silvia Stefania Longoni
- Department of Infectious, Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, 37024 Negrar di Valpolicella, Italy; (S.S.L.); (C.P.)
| | - Valéry Combes
- Microvesicles and Malaria Research Group, School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia;
| | - Chiara Piubelli
- Department of Infectious, Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, 37024 Negrar di Valpolicella, Italy; (S.S.L.); (C.P.)
| |
Collapse
|
14
|
You H, Jones MK, Gordon CA, Arganda AE, Cai P, Al-Wassiti H, Pouton CW, McManus DP. The mRNA Vaccine Technology Era and the Future Control of Parasitic Infections. Clin Microbiol Rev 2023; 36:e0024121. [PMID: 36625671 PMCID: PMC10035331 DOI: 10.1128/cmr.00241-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Despite intensive long-term efforts, with very few exceptions, the development of effective vaccines against parasitic infections has presented considerable challenges, given the complexity of parasite life cycles, the interplay between parasites and their hosts, and their capacity to escape the host immune system and to regulate host immune responses. For many parasitic diseases, conventional vaccine platforms have generally proven ill suited, considering the complex manufacturing processes involved and the costs they incur, the inability to posttranslationally modify cloned target antigens, and the absence of long-lasting protective immunity induced by these antigens. An effective antiparasite vaccine platform is required to assess the effectiveness of novel vaccine candidates at high throughput. By exploiting the approach that has recently been used successfully to produce highly protective COVID mRNA vaccines, we anticipate a new wave of research to advance the use of mRNA vaccines to prevent parasitic infections in the near future. This article considers the characteristics that are required to develop a potent antiparasite vaccine and provides a conceptual foundation to promote the development of parasite mRNA-based vaccines. We review the recent advances and challenges encountered in developing antiparasite vaccines and evaluate the potential of developing mRNA vaccines against parasites, including those causing diseases such as malaria and schistosomiasis, against which vaccines are currently suboptimal or not yet available.
Collapse
Affiliation(s)
- Hong You
- Department of Infection and Inflammation, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Malcolm K. Jones
- School of Veterinary Science, The University of Queensland, Brisbane, Australia
| | - Catherine A. Gordon
- Department of Infection and Inflammation, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Alexa E. Arganda
- Department of Infection and Inflammation, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Pengfei Cai
- Department of Infection and Inflammation, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Harry Al-Wassiti
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia
| | - Colin W. Pouton
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia
| | - Donald P. McManus
- Department of Infection and Inflammation, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| |
Collapse
|
15
|
Wang Y, Wang X, Zhang N, Yu Y, Bao P, Ma Y, Zhang H, Zhang X, Zhang X, Gong P, Li X, Li J. Extracellular vesicles of Clonorchis sinensis promote IL-6 and TNF-α secretion via the Toll-like receptor 9-mediated ERK pathway in biliary epithelial cells. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 139:104555. [PMID: 36183840 DOI: 10.1016/j.dci.2022.104555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/05/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Clonorchis sinensis is closely associated with cholangitis, cholecystitis, biliary fibrosis and cholangiocarcinoma. The present study elucidated the role of extracellular vesicles of C. sinensis (CsEVs) in activating Toll-like receptor 9 (TLR9) and regulating inflammatory responses. The results showed that TLR9 expression was increased in the livers of C. sinensis-infected mice. CsEVs were cup-shaped or saucer-shaped and 80-120 nm in diameter. CsEVs activated TLR9 and promoted IL-6 and TNF-α expression in mouse biliary epithelial cells (BECs), and TLR9 siRNA interference reduced the secretion of the two cytokines. CsEV stimulation promoted the phosphorylation of ERK, p38, AKT, and p65, and TLR9 siRNA interference regulated the phosphorylated ERK, AKT and p65 levels. The ERK inhibitor decreased the CsEVs-induced IL-6 and TNF-α secretion. The present study elucidated for the first time that CsEVs induced IL-6 and TNF-α production in BECs via the TLR9-mediated ERK pathway.
Collapse
Affiliation(s)
- Yuru Wang
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China.
| | - Xiaocen Wang
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China.
| | - Nan Zhang
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China.
| | - Yanhui Yu
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China.
| | - Penglin Bao
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China.
| | - Yeting Ma
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China.
| | - Haoyang Zhang
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China.
| | - Xu Zhang
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China.
| | - Xichen Zhang
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China.
| | - Pengtao Gong
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China.
| | - Xin Li
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China.
| | - Jianhua Li
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China.
| |
Collapse
|
16
|
Gupta D, Singh PK, Yadav PK, Narender T, Patil UK, Jain SK, Chourasia MK. Emerging strategies and challenges of molecular therapeutics in antileishmanial drug development. Int Immunopharmacol 2023; 115:109649. [PMID: 36603357 DOI: 10.1016/j.intimp.2022.109649] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/16/2022] [Accepted: 12/24/2022] [Indexed: 01/05/2023]
Abstract
Molecular therapy refers to targeted therapies based on molecules which have been intelligently directed towards specific biomolecular structures and include small molecule drugs, monoclonal antibodies, proteins and peptides, DNA or RNA-based strategies, targeted chemotherapy and nanomedicines. Molecular therapy is emerging as the most effective strategy to combat the present challenges of life-threatening visceral leishmaniasis, where the successful human vaccine is currently unavailable. Moreover, current chemotherapy-based strategies are associated with the issues of ineffective targeting, unavoidable toxicities, invasive therapies, prolonged treatment, high treatment costs and the development of drug-resistant strains. Thus, the rational approach to antileishmanial drug development primarily demands critical exploration and exploitation of biochemical differences between host and parasite biology, immunocharacteristics of parasite homing, and host-parasite interactions at the molecular/cellular level. Following this, the novel technology-based designing and development of host and/or parasite-targeted therapeutics having leishmanicidal and immunomodulatory activity is utmost essential to improve treatment efficacy. Thus, the present review is focused on immunological and molecular checkpoint targets in host-pathogen interaction, and molecular therapeutic prospects for Leishmania intervention, and the challenges ahead.
Collapse
Affiliation(s)
- Deepak Gupta
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar 470003, M.P., India; Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India
| | - Pankaj K Singh
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India; Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, Telangana, India
| | - Pavan K Yadav
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India
| | - Tadigoppula Narender
- Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India
| | - Umesh K Patil
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar 470003, M.P., India
| | - Sanjay K Jain
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar 470003, M.P., India
| | - Manish K Chourasia
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India.
| |
Collapse
|
17
|
Dumarchey A, Lavazec C, Verdier F. Erythropoiesis and Malaria, a Multifaceted Interplay. Int J Mol Sci 2022; 23:ijms232112762. [PMID: 36361552 PMCID: PMC9657351 DOI: 10.3390/ijms232112762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 01/24/2023] Open
Abstract
One of the major pathophysiologies of malaria is the development of anemia. Although hemolysis and splenic clearance are well described as causes of malarial anemia, abnormal erythropoiesis has been observed in malaria patients and may contribute significantly to anemia. The interaction between inadequate erythropoiesis and Plasmodium parasite infection, which partly occurs in the bone marrow, has been poorly investigated to date. However, recent findings may provide new insights. This review outlines clinical and experimental studies describing different aspects of ineffective erythropoiesis and dyserythropoiesis observed in malaria patients and in animal or in vitro models. We also highlight the various human and parasite factors leading to erythropoiesis disorders and discuss the impact that Plasmodium parasites may have on the suppression of erythropoiesis.
Collapse
Affiliation(s)
- Aurélie Dumarchey
- Inserm U1016, CNRS UMR8104, Université Paris Cité, Institut Cochin, 75014 Paris, France
- Laboratoire d’Excellence GR-Ex, 75015 Paris, France
| | - Catherine Lavazec
- Inserm U1016, CNRS UMR8104, Université Paris Cité, Institut Cochin, 75014 Paris, France
- Laboratoire d’Excellence GR-Ex, 75015 Paris, France
| | - Frédérique Verdier
- Inserm U1016, CNRS UMR8104, Université Paris Cité, Institut Cochin, 75014 Paris, France
- Laboratoire d’Excellence GR-Ex, 75015 Paris, France
- Correspondence:
| |
Collapse
|
18
|
Norouzi M, Pirestani M, Arefian E, Dalimi A, Sadraei J, Mirjalali H. Exosomes secreted by Blastocystis subtypes affect the expression of proinflammatory and anti-inflammatory cytokines (TNFα, IL-6, IL-10, IL-4). Front Med (Lausanne) 2022; 9:940332. [PMID: 36035429 PMCID: PMC9404381 DOI: 10.3389/fmed.2022.940332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/27/2022] [Indexed: 11/22/2022] Open
Abstract
Background Blastocystis sp. is a common intestinal parasite, possibly responsible for diarrhea, vomiting and nausea, abdominal pain, and irritable bowel syndrome. However, many studies focused on this issue due to the uncertainty of its pathogenic potential. The extracellular vesicles (EVs) are significant mediators for cellular communication, carrying biological molecules such as proteins, lipids, and nucleic acids. Compared with other parasites, little is known about the Blastocystis EVs. Hence the present investigation was done. Methods The Blastocystis parasites were cultured in the DMEM medium, and a 550–585 bp fragment was amplified using PCR, and sequencing was done. A commercial kit was used for exosome extraction and dynamic light scattering (DLS), flow cytometry (CD63, CD81 markers), and electron microscopy tests to determine their morphology. The human leukemia monocytic cell line (THP-1) was exposed to Blastocystis EVs. Next, the expression of proinflammatory and anti-inflammatory cytokines, including IL-4, IL-6, IL-10, and tumor necrosis factor-alpha (TNF-α), were measured using quantitative PCR. Results Exosomes were extracted from ST1-3 Blastocystis sp. According to the DLS assay, the size of the exosomes was in the range of 30–100 nm. Electron microscopy images and CD63 and CD81 markers also confirmed the exosome's size, structure, and morphology. According to real-time PCR results, ST1-derived exosomes caused IL-6 and TNF-α upregulation and IL-10 and IL-4 downregulation, ST2- and ST3-derived exosomes downregulated IL-10, and ST3-derived exosomes caused IL-6 upregulation. There is a statistically significant difference (P ≤ 0.05). Conclusion To our knowledge, this is the first report of the release of exosome-like vesicles by the human parasite, Blastocystis, and the provided information demonstrates the role of this parasite, particularly ST1 on proinflammatory and anti-inflammatory cytokines and navigating the host response.
Collapse
Affiliation(s)
- Mojtaba Norouzi
- Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Majid Pirestani
- Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
- *Correspondence: Majid Pirestani
| | - Ehsan Arefian
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Abdolhossein Dalimi
- Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Javid Sadraei
- Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hamed Mirjalali
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
19
|
Ong SC, Cheng WH, Ku FM, Tsai CY, Huang PJ, Lee CC, Yeh YM, Rada P, Hrdý I, Narayanasamy RK, Smutná T, Lin R, Luo HW, Chiu CH, Tachezy J, Tang P. Identification of Endosymbiotic Virus in Small Extracellular Vesicles Derived from Trichomonas vaginalis. Genes (Basel) 2022; 13:genes13030531. [PMID: 35328084 PMCID: PMC8951798 DOI: 10.3390/genes13030531] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/11/2022] [Accepted: 03/15/2022] [Indexed: 02/07/2023] Open
Abstract
Accumulated evidence suggests that the endosymbiotic Trichomonasvirus (TVV) may play a role in the pathogenesis and drug susceptibility of Trichomonas vaginalis. Several reports have shown that extracellular vesicles (EVs) released from TVV-positive (TVV+) trichomonads can modulate the immune response in human vaginal epithelial cells and animal models. These results prompted us to examine whether EVs released from TVV+ isolates contained TVV. We isolated small extracellular vesicles (sEVs) from six T. vaginalis isolates that were either TVV free (ATCC 50143), harbored a single (ATCC 30236, ATCC 30238, T1), two (ATCC PRA-98), or three TVV subspecies (ATCC 50148). The presence of TVV subspecies in the six isolates was observed using reverse transcription-polymerase chain reaction (RT-PCR). Transmission electron microscopy (TEM) confirmed the presence of cup-shaped sEVs with a size range from 30–150 nm. Trichomonas vaginalis tetraspanin (TvTSP1; TVAG_019180), the classical exosome marker, was identified in all the sEV preparations. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis showed that all the sEVs isolated from TVV+ isolates contain viral capsid proteins derived from the same TVV subspecies in that isolate as demonstrated by RT-PCR. To provide more comprehensive information on the TVV subspecies population in other T. vaginalis isolates, we investigated the distribution of TVV subspecies in twenty-four isolates by mining the New-Generation Sequencing (NGS) RNAseq datasets. Our results should be beneficial for future studies investigating the role of TVV on the pathogenicity of T. vaginalis and the possible transmission of virus subspecies among different isolates via sEVs.
Collapse
Affiliation(s)
- Seow-Chin Ong
- Department of Parasitology, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (S.-C.O.); (F.-M.K.); (C.-Y.T.); (R.L.); (H.-W.L.)
| | - Wei-Hung Cheng
- Department of Medical Laboratory Science, College of Medical Science and Technology, I-Shou University, Kaohsiung 824, Taiwan;
| | - Fu-Man Ku
- Department of Parasitology, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (S.-C.O.); (F.-M.K.); (C.-Y.T.); (R.L.); (H.-W.L.)
| | - Chih-Yu Tsai
- Department of Parasitology, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (S.-C.O.); (F.-M.K.); (C.-Y.T.); (R.L.); (H.-W.L.)
| | - Po-Jung Huang
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Guishan District, Taoyuan 333, Taiwan;
- Genomic Medicine Core Laboratory, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333, Taiwan; (C.-C.L.); (Y.-M.Y.)
| | - Chi-Ching Lee
- Genomic Medicine Core Laboratory, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333, Taiwan; (C.-C.L.); (Y.-M.Y.)
- Department of Computer Science and Information Engineering, College of Engineering, Chang Gung University, Taoyuan 333, Taiwan
| | - Yuan-Ming Yeh
- Genomic Medicine Core Laboratory, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333, Taiwan; (C.-C.L.); (Y.-M.Y.)
| | - Petr Rada
- Department of Parasitology, Faculty of Science, Biotechnology and Biomedicine Centre of the Academy of Sciences and Charles University in Vestec (BIOCEV), Průmyslová 595, 252 42 Vestec, Czech Republic; (P.R.); (I.H.); (R.K.N.); (T.S.)
| | - Ivan Hrdý
- Department of Parasitology, Faculty of Science, Biotechnology and Biomedicine Centre of the Academy of Sciences and Charles University in Vestec (BIOCEV), Průmyslová 595, 252 42 Vestec, Czech Republic; (P.R.); (I.H.); (R.K.N.); (T.S.)
| | - Ravi Kumar Narayanasamy
- Department of Parasitology, Faculty of Science, Biotechnology and Biomedicine Centre of the Academy of Sciences and Charles University in Vestec (BIOCEV), Průmyslová 595, 252 42 Vestec, Czech Republic; (P.R.); (I.H.); (R.K.N.); (T.S.)
| | - Tamara Smutná
- Department of Parasitology, Faculty of Science, Biotechnology and Biomedicine Centre of the Academy of Sciences and Charles University in Vestec (BIOCEV), Průmyslová 595, 252 42 Vestec, Czech Republic; (P.R.); (I.H.); (R.K.N.); (T.S.)
| | - Rose Lin
- Department of Parasitology, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (S.-C.O.); (F.-M.K.); (C.-Y.T.); (R.L.); (H.-W.L.)
| | - Hong-Wei Luo
- Department of Parasitology, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (S.-C.O.); (F.-M.K.); (C.-Y.T.); (R.L.); (H.-W.L.)
| | - Cheng-Hsun Chiu
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333, Taiwan;
| | - Jan Tachezy
- Department of Parasitology, Faculty of Science, Biotechnology and Biomedicine Centre of the Academy of Sciences and Charles University in Vestec (BIOCEV), Průmyslová 595, 252 42 Vestec, Czech Republic; (P.R.); (I.H.); (R.K.N.); (T.S.)
- Correspondence: (J.T.); (P.T.)
| | - Petrus Tang
- Department of Parasitology, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (S.-C.O.); (F.-M.K.); (C.-Y.T.); (R.L.); (H.-W.L.)
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333, Taiwan;
- Correspondence: (J.T.); (P.T.)
| |
Collapse
|
20
|
Silvestre A, Shintre SS, Rachidi N. Released Parasite-Derived Kinases as Novel Targets for Antiparasitic Therapies. Front Cell Infect Microbiol 2022; 12:825458. [PMID: 35252034 PMCID: PMC8893276 DOI: 10.3389/fcimb.2022.825458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/25/2022] [Indexed: 11/13/2022] Open
Abstract
The efficient manipulation of their host cell is an essential feature of intracellular parasites. Most molecular mechanisms governing the subversion of host cell by protozoan parasites involve the release of parasite-derived molecules into the host cell cytoplasm and direct interaction with host proteins. Among these released proteins, kinases are particularly important as they govern the subversion of important host pathways, such as signalling or metabolic pathways. These enzymes, which catalyse the transfer of a phosphate group from ATP onto serine, threonine, tyrosine or histidine residues to covalently modify proteins, are involved in numerous essential biological processes such as cell cycle or transport. Although little is known about the role of most of the released parasite-derived kinases in the host cell, they are examples of kinases hijacking host cellular pathways such as signal transduction or apoptosis, which are essential for immune response evasion as well as parasite survival and development. Here we present the current knowledge on released protozoan kinases and their involvement in host-pathogen interactions. We also highlight the knowledge gaps remaining before considering those kinases - involved in host signalling subversion - as antiparasitic drug targets.
Collapse
Affiliation(s)
- Anne Silvestre
- INRAE, Université de Tours, ISP, Nouzilly, France
- *Correspondence: Anne Silvestre, ; Najma Rachidi,
| | - Sharvani Shrinivas Shintre
- INRAE, Université de Tours, ISP, Nouzilly, France
- Institut Pasteur, Université de Paris and INSERM U1201, Unité de Parasitologie Moléculaire et Signalisation, Paris, France
| | - Najma Rachidi
- Institut Pasteur, Université de Paris and INSERM U1201, Unité de Parasitologie Moléculaire et Signalisation, Paris, France
- *Correspondence: Anne Silvestre, ; Najma Rachidi,
| |
Collapse
|
21
|
Ben Ami Pilo H, Khan Khilji S, Lühle J, Biskup K, Levy Gal B, Rosenhek Goldian I, Alfandari D, Revach O, Kiper E, Morandi MI, Rotkopf R, Porat Z, Blanchard V, Seeberger PH, Regev‐Rudzki N, Moscovitz O. Sialylated N-glycans mediate monocyte uptake of extracellular vesicles secreted from Plasmodium falciparum-infected red blood cells. JOURNAL OF EXTRACELLULAR BIOLOGY 2022; 1:e33. [PMID: 38938665 PMCID: PMC11080922 DOI: 10.1002/jex2.33] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/17/2022] [Accepted: 01/26/2022] [Indexed: 06/29/2024]
Abstract
Glycoconjugates on extracellular vesicles (EVs) play a vital role in internalization and mediate interaction as well as regulation of the host immune system by viruses, bacteria, and parasites. During their intraerythrocytic life-cycle stages, malaria parasites, Plasmodium falciparum (Pf) mediate the secretion of EVs by infected red blood cells (RBCs) that carry a diverse range of parasitic and host-derived molecules. These molecules facilitate parasite-parasite and parasite-host interactions to ensure parasite survival. To date, the number of identified Pf genes associated with glycan synthesis and the repertoire of expressed glycoconjugates is relatively low. Moreover, the role of Pf glycans in pathogenesis is mostly unclear and poorly understood. As a result, the expression of glycoconjugates on Pf-derived EVs or their involvement in the parasite life-cycle has yet to be reported. Herein, we show that EVs secreted by Pf-infected RBCs carry significantly higher sialylated complex N-glycans than EVs derived from healthy RBCs. Furthermore, we reveal that EV uptake by host monocytes depends on N-glycoproteins and demonstrate that terminal sialic acid on the N-glycans is essential for uptake by human monocytes. Our results provide the first evidence that Pf exploits host sialylated N-glycans to mediate EV uptake by the human immune system cells.
Collapse
Affiliation(s)
- Hila Ben Ami Pilo
- Faculty of BiochemistryDepartment of Biomolecular SciencesWeizmann Institute of ScienceRehovotIsrael
| | - Sana Khan Khilji
- Department of Biomolecular SystemsMax‐Planck‐Institute of Colloids and InterfacesBerlinGermany
- Institute of Chemistry and BiochemistryFreie Universität BerlinBerlinGermany
| | - Jost Lühle
- Department of Biomolecular SystemsMax‐Planck‐Institute of Colloids and InterfacesBerlinGermany
- Institute of Chemistry and BiochemistryFreie Universität BerlinBerlinGermany
| | - Karina Biskup
- Institute of Laboratory MedicineClinical Chemistry and PathobiochemistryCharite University Medicine BerlinBerlinGermany
| | - Bar Levy Gal
- Flow Cytometry Unit, Life Sciences Core FacilitiesWeizmann Institute of ScienceRehovotIsrael
| | | | - Daniel Alfandari
- Faculty of BiochemistryDepartment of Biomolecular SciencesWeizmann Institute of ScienceRehovotIsrael
| | - Or‐Yam Revach
- Faculty of BiochemistryDepartment of Biomolecular SciencesWeizmann Institute of ScienceRehovotIsrael
| | - Edo Kiper
- Faculty of BiochemistryDepartment of Biomolecular SciencesWeizmann Institute of ScienceRehovotIsrael
| | - Mattia I. Morandi
- Faculty of BiochemistryDepartment of Biomolecular SciencesWeizmann Institute of ScienceRehovotIsrael
| | - Ron Rotkopf
- Bioinformatics Unit, Life Sciences Core FacilitiesWeizmann Institute of ScienceRehovotIsrael
| | - Ziv Porat
- Flow Cytometry Unit, Life Sciences Core FacilitiesWeizmann Institute of ScienceRehovotIsrael
| | - Véronique Blanchard
- Institute of Laboratory MedicineClinical Chemistry and PathobiochemistryCharite University Medicine BerlinBerlinGermany
| | - Peter H. Seeberger
- Department of Biomolecular SystemsMax‐Planck‐Institute of Colloids and InterfacesBerlinGermany
- Institute of Chemistry and BiochemistryFreie Universität BerlinBerlinGermany
| | - Neta Regev‐Rudzki
- Faculty of BiochemistryDepartment of Biomolecular SciencesWeizmann Institute of ScienceRehovotIsrael
| | - Oren Moscovitz
- Department of Biomolecular SystemsMax‐Planck‐Institute of Colloids and InterfacesBerlinGermany
| |
Collapse
|