1
|
Abdelrahman RS, Abdelaziz RR, Abdelmageed ME. Montelukast alleviates thioacetamide-induced hepatic encephalopathy in rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04291-9. [PMID: 40411618 DOI: 10.1007/s00210-025-04291-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 05/12/2025] [Indexed: 05/26/2025]
Abstract
Hepatic encephalopathy (HE) is a serious neuropsychiatric dysfunction associated with acute and chronic liver disease. Montelukast (Mon) is a cysteinyl leukotriene receptor 1 (CysLT1R) antagonist approved as adjuvant therapy for asthma. The antioxidant and anti-inflammatory effects of montelukast have been reported in previous studies. To the best of our knowledge, Mon therapeutics' efficacy against thioacetamide-induced HE has not been investigated. This study aims to detect the protective effects of Mon (5 and 10 mg/kg, orally for seven consecutive days) on TAA (200 mg/kg, i.p., at three alternative days) induced HE in rats and to demonstrate its hepato/neuroprotective effects mechanisms. Results showed that Mon significantly improved hepatic and brain function, suppressed the release of inflammatory factors (brain and liver levels of NF-κB and TNF-α), and reduced oxidative stress (MDA and NO levels in both the brain and liver). Moreover, Mon activated PI3K/Akt expression in the brain and suppressed TAA-induced brain caspase-3 expression. Finally, TAA-induced histopathological changes in brain and liver sections were markedly normalized by Mon. Mon shows promise as a therapeutic agent in experimental HE models, and its mechanism of action involves the upregulation of PI3K/Akt expression, thereby inhibiting the expression of caspase-3 and the activity of TNF-α and NF-κB.
Collapse
Affiliation(s)
- Rehab S Abdelrahman
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Taibah University, 41477, Al-Madina Al-Munawwarah, Saudi Arabia
| | - Rania R Abdelaziz
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| | - Marwa E Abdelmageed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
2
|
Huang J, Jiang W, Ma H, Zhang H, Zhao H, Wang Q, Zhang J. Effect of Lipopolysaccharide (LPS) on Oxidative Stress and Apoptosis in Immune Tissues from Schizothorax prenanti. Animals (Basel) 2025; 15:1298. [PMID: 40362113 PMCID: PMC12070837 DOI: 10.3390/ani15091298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 04/27/2025] [Accepted: 04/28/2025] [Indexed: 05/15/2025] Open
Abstract
Schizothorax prenanti is an economically important cold-water fish in China. Lipopolysaccharide (LPS) can induce an immune response in S. prenanti; however, little is known about the effects of LPS on oxidative stress (OS) and apoptosis in S. prenanti. In this study, S. prenanti fish were stimulated with LPS at a dose of 10 mg/kg of body weight. After 0 h, 12 h and 24 h, the tissue samples were collected. The OS- and apoptosis-related genes and enzymatic activities in the liver, head kidney (HK), and spleen of S. prenanti were analyzed by a two-way repeated-measures analysis of variance (ANOVA). Hematoxylin and eosin and terminal transferase uridyl nick end labeling staining were also performed. In S. prenanti, LPS administration downregulated the catalase (CAT) and B-cell lymphoma/Leukemia-2 (Bcl-2) expression levels, and upregulated BCL2-associated X (Bax) and cysteine-aspartic-specific protease-3 (caspase-3) expression levels. Meanwhile, superoxide dismutase and CAT enzymatic activities were inhibited and malondialdehyde (MDA) content was increased by LPS treatment. Additionally, LPS treatment induced OS damage and apoptosis in tissue sections. These results indicated that apoptosis in the liver, HK, and spleen of LPS-administered S. prenanti may be mediated by OS via the mitochondrial apoptotic signaling pathway. Our findings are expected to contribute to a better understanding of the responses of different tissues to bacterial challenges. In addition, we can increase the tolerance of fish to the OS through dietary manipulation in the future.
Collapse
Affiliation(s)
- Jiqin Huang
- Shaanxi Key Laboratory of Qinling Ecological Security, Shaanxi Institute of Zoology, Xi’an 710032, China; (J.H.); (W.J.); (H.M.); (H.Z.); (H.Z.); (Q.W.)
| | - Wei Jiang
- Shaanxi Key Laboratory of Qinling Ecological Security, Shaanxi Institute of Zoology, Xi’an 710032, China; (J.H.); (W.J.); (H.M.); (H.Z.); (H.Z.); (Q.W.)
| | - Hongying Ma
- Shaanxi Key Laboratory of Qinling Ecological Security, Shaanxi Institute of Zoology, Xi’an 710032, China; (J.H.); (W.J.); (H.M.); (H.Z.); (H.Z.); (Q.W.)
| | - Han Zhang
- Shaanxi Key Laboratory of Qinling Ecological Security, Shaanxi Institute of Zoology, Xi’an 710032, China; (J.H.); (W.J.); (H.M.); (H.Z.); (H.Z.); (Q.W.)
| | - Hu Zhao
- Shaanxi Key Laboratory of Qinling Ecological Security, Shaanxi Institute of Zoology, Xi’an 710032, China; (J.H.); (W.J.); (H.M.); (H.Z.); (H.Z.); (Q.W.)
| | - Qijun Wang
- Shaanxi Key Laboratory of Qinling Ecological Security, Shaanxi Institute of Zoology, Xi’an 710032, China; (J.H.); (W.J.); (H.M.); (H.Z.); (H.Z.); (Q.W.)
| | - Jianlu Zhang
- Shaanxi Key Laboratory of Qinling Ecological Security, Shaanxi Institute of Zoology, Xi’an 710032, China; (J.H.); (W.J.); (H.M.); (H.Z.); (H.Z.); (Q.W.)
- College of Urban and Environmental Sciences, Northwest University, Xi’an 710127, China
| |
Collapse
|
3
|
Abdelrahman RS, Elnfarawy AA, Nashy AE, Abdelsalam RA, Zaghloul MS. Targeting angiogenic and proliferative mediators by montelukast & trimetazidine Ameliorates thioacetamide-induced liver fibrosis in rats. Toxicol Appl Pharmacol 2025; 495:117208. [PMID: 39716576 DOI: 10.1016/j.taap.2024.117208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 12/25/2024]
Abstract
Liver fibrosis is a significant health complication with the potential to result in serious mortality and morbidity. However, there is no standard treatment due to its complex pathogenesis. The drug montelukast reversibly and selectively antagonizes the cysteinyl-leukotrienes-1 receptor and reduces inflammation; thus, it is used in the treatment of asthma. Trimetazidine, an anti-anginal agent, selectively inhibits the activity of mitochondrial long-chain 3-ketoacyl-CoA thiolase, inhibition of free fatty acid (FFA) oxidation. This study explores the efficacy of montelukast (5 and 10 mg/kg) and trimetazidine (10-20 mg/kg) against liver fibrosis induced by thioacetamide (TAA) in rats. Impaired liver function tests were significantly improved by montelukast and trimetazidine. The antioxidant and anti-inflammatory effects of montelukast and trimetazidine were proved by the inhibition of malondialdehyde (MDA) and nitric oxide (NO) accumulation, with elevation of glutathione (GSH) and superoxide dismutase activity, decreased heat shock protein (HSP-70) expression, and a decline in interleukin-6 (IL-6) and tumor necrosis factor (TNF-α) levels in liver tissue. Also, the antifibrotic effects were explored by reducing levels of hydroxyproline and alpha-smooth muscle actin (α-SMA) expression in liver tissue and attenuating hepatic expression of hepatic expression of angiogenic mediator vascular endothelium growth factor (VEGF) and proliferative mediator Antigen Kiel 67 (Ki-67).
Collapse
Affiliation(s)
- Rehab S Abdelrahman
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, 35516 Mansoura, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Taibah University, Al-Madina Al-Munawwarah, 30001, Saudi Arabia.
| | - Ahmed A Elnfarawy
- Biotechnology Lab, Central Administration of Biological and Innovative Products and Clinical Studies, Giza, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | | | - Ramy A Abdelsalam
- Lecturer of Pathology, Faculty of Medicine, Mansoura University, Egypt
| | - Marwa S Zaghloul
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, 35516 Mansoura, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura National University, Gamasa, 7731168, Egypt
| |
Collapse
|
4
|
Puri S, Kirad S, Muzaffar-Ur-Rehman M, Mandal SK, Sharma PK, Sankaranarayanan M, Deepa PR. Lipogenic stearoyl-CoA desaturase-1 (SCD1) targeted virtual screening for chemical inhibitors: molecular docking / dynamics simulation and in vitro assessment of anti-NAFLD efficacy. RSC Adv 2024; 14:31797-31808. [PMID: 39380655 PMCID: PMC11459445 DOI: 10.1039/d4ra06037g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/01/2024] [Indexed: 10/10/2024] Open
Abstract
Amidst rising global prevalence of metabolic syndrome, the associated risk of non-alcoholic fatty liver disease (NAFLD) is also rapidly increasing. The pathogenesis of NAFLD starts with fat accumulation and progresses through inflammation and fibrotic sequel, often involving complex molecular mechanisms involving de novo lipogenesis. Stearoyl-CoA desaturase 1 (SCD1) enzyme, expressed in liver and adipose tissue, converts saturated fatty acids to monounsaturated fatty acids (MUFAs), contributing to triglyceride and cholesterol ester formation. In this study, potential SCD1 inhibitors were screened using the ZINC database of curated medically-approved drugs by virtual screening, molecular docking, and molecular dynamics simulations. The top-scoring five ligands with strong binding affinity against SCD1 were ZINC000003831151 > ZINC000001540998 > ZINC000003830713 > ZINC000000897251 > ZINC000002005305, which showed stable protein-ligand complexation and favorable pharmacokinetic attributes. The top ligand, Montelukast, was experimentally validated for its pharmacological efficacy in an in vitro cell culture model of steatosis (NAFLD). Montelukast showed a dose-dependent decrease in hepatic fat accumulation, reduced levels of free radicals, and lowered oxidative stress (P < 0.05). These outcomes suggest Montelukast to be a potential SCD1 inhibitor, with anti-NAFLD efficacy. These findings open new avenues for therapeutic development of the top 5 ligands in metabolic disorders involving SCD1.
Collapse
Affiliation(s)
- Sonakshi Puri
- Biochemistry and Enzyme Biotechnology Lab, Department of Biological Sciences, Birla Institute of Technology and Science Pilani, Pilani Campus Pilani-333031 Rajasthan India +91 1596 255881
| | - Shivani Kirad
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus Pilani-333031 Rajasthan India +91-1596-255717
| | - Mohammed Muzaffar-Ur-Rehman
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus Pilani-333031 Rajasthan India +91-1596-255717
| | - Sumit Kumar Mandal
- Biochemistry and Enzyme Biotechnology Lab, Department of Biological Sciences, Birla Institute of Technology and Science Pilani, Pilani Campus Pilani-333031 Rajasthan India +91 1596 255881
| | - Pankaj Kumar Sharma
- Biochemistry and Enzyme Biotechnology Lab, Department of Biological Sciences, Birla Institute of Technology and Science Pilani, Pilani Campus Pilani-333031 Rajasthan India +91 1596 255881
| | - Murugesan Sankaranarayanan
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus Pilani-333031 Rajasthan India +91-1596-255717
| | - P R Deepa
- Biochemistry and Enzyme Biotechnology Lab, Department of Biological Sciences, Birla Institute of Technology and Science Pilani, Pilani Campus Pilani-333031 Rajasthan India +91 1596 255881
| |
Collapse
|
5
|
Hagar HH, Alhazmi SM, Arafah M, Bayoumy NM. Inhibition of sepsis-induced pancreatic injury by leukotriene receptor antagonism via modulation of oxidative injury, and downregulation of inflammatory markers in experimental rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:3425-3435. [PMID: 37962585 DOI: 10.1007/s00210-023-02812-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/22/2023] [Indexed: 11/15/2023]
Abstract
The purpose of this study is to investigate the effect of montelukast on lipopolysaccharide (LPS)-induced pancreatitis. Adult male Wistar rats were divided into 5 groups: normal control, control montelukast, LPS group, and two LPS + montelukast-treated groups. Acute pancreatitis (AP) was induced by a single dose of LPS (6 mg/kg, i.p.), while montelukast was given in two different doses (10 and 20 mg/kg/day) for 3 consecutive days prior to the injection of LPS. AP was demonstrated by significant increases in serum levels of lactate dehydrogenase (LDH) and pancreatic enzymes lipase and amylase. Proinflammatory response activation was evident by elevated serum levels of nitric oxide (NO) and increased pancreatic concentrations of tumor necrosis factor-α (TNF-α), interleukin-1 (IL-1β), and intercellular adhesion molecule-1 (ICAM-1). The activity of myeloperoxidase (MPO), a neutrophil infiltration marker, has also been increased. Oxidative stress was confirmed by significant increases in the concentrations of lipid peroxides measured as thiobarbituric acid reactive substances (TBARS) and decreases in the concentrations of reduced glutathione (GSH) in the pancreatic tissues of animals treated with LPS. Histological examination confirmed the biochemical alterations. Montelukast treatment reversed all these biochemical indices and histopathological changes that LPS induced. Montelukast reduced the increase in serum levels of lipase, amylase, LDH, total nitrite/nitrate, TNF-α, IL-1β, and ICAM-1. MPO activities and TBARS concentrations were also suppressed while GSH content was increased in pancreatic tissues. These results show that montelukast may be a beneficial pharmacological agent in protection against LPS-induced oxidative pancreatic injury by inhibiting neutrophil infiltration, counteracting oxidative stress, and suppressing inflammatory mediators.
Collapse
Affiliation(s)
- Hanan H Hagar
- Department of Physiology, College of Medicine & King Khalid University Hospital, King Saud University, P.O. BOX 2925, Riyadh, 11461, Saudi Arabia.
| | - Shaima M Alhazmi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Maha Arafah
- Department of Pathology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Nervana Mustafa Bayoumy
- Department of Physiology, College of Medicine & King Khalid University Hospital, King Saud University, P.O. BOX 2925, Riyadh, 11461, Saudi Arabia
| |
Collapse
|
6
|
Kokate D, Marathe P. Evaluation of Effect of Montelukast in the Model of Streptozotocin Induced Diabetic Nephropathy in Rats. Indian J Endocrinol Metab 2024; 28:47-54. [PMID: 38533280 PMCID: PMC10962779 DOI: 10.4103/ijem.ijem_414_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 03/06/2023] [Accepted: 05/16/2023] [Indexed: 03/28/2024] Open
Abstract
Background Diabetic nephropathy is a progressive condition and a leading cause of end-stage renal disease. Oxidative stress and inflammation play an important role in its pathogenesis. In pre-clinical studies, Montelukast had shown renoprotective and anti-oxidant properties, hence the study was planned to evaluate the effect of Montelukast in a Streptozotocin (STZ) induced model of diabetic nephropathy. Methods 40 Wistar rats of either sex were randomly divided into four groups viz. 1. Vehicle control group, 2. Enalapril (5 mg/kg), 3. Montelukast low-dose (10 mg/kg) and 4. High-dose (20 mg/kg) group. On day 1, diabetes was induced using a single dose of STZ (60 mg/kg) intraperitoneally. Diabetes induction was verified based on fasting blood glucose (FBG) levels on day 7 and from day 8 to day 42, rats were given study drugs. FBG, serum creatinine, blood urea nitrogen (BUN) and urine microalbumin levels were assessed pre-study and post-study. Assessments of kidney malondialdehyde (MDA), reduced glutathione (GSH) and renal histopathology were carried out at the end of the study. Results Montelukast 10 mg/kg group showed significantly lower urine microalbumin levels compared to the vehicle control group (p < 0.05). Montelukast 20 mg/kg group showed significantly lower levels of FBG, serum creatinine, BUN and urine microalbumin compared to the vehicle control group (p < 0.05). In addition, Montelukast 20 mg/kg group also showed better effects on kidney MDA and GSH levels (p < 0.05) and histopathological scores compared to the vehicle control group. Conclusion Montelukast showed a protective effect in the model of diabetic nephropathy because of its antioxidant effect.
Collapse
Affiliation(s)
- Dhananjay Kokate
- Department of Pharmacology and Therapeutics, Seth GSMC and KEM Hospital, Acharya Donde Marg, Parel, Mumbai, Maharashtra, India
| | - Padmaja Marathe
- Department of Pharmacology and Therapeutics, Seth GSMC and KEM Hospital, Acharya Donde Marg, Parel, Mumbai, Maharashtra, India
| |
Collapse
|
7
|
Takahashi M, Senga A, Teraoka K, Khan S, Makino R, Cline MA, Tachibana T. D-Galactosamine Causes Liver Injury Synergistically with Lipopolysaccharide but not Zymosan in Chicks. J Poult Sci 2023; 60:2023031. [PMID: 38145204 PMCID: PMC10730122 DOI: 10.2141/jpsa.2023031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 11/07/2023] [Indexed: 12/26/2023] Open
Abstract
The pathogen-associated molecular patterns (PAMPs) lipopolysaccharide (LPS) and zymosan, derived from gram-negative bacteria and fungi, respectively, activate the innate immune system and cause injury to multiple organs, including the liver and intestine, in mammals. In rodents, PAMP-induced injury has been demonstrated to be potentiated by co-administration of D-galactosamine (D-GalN) in rodents. However, whether PAMPs and D-GalN collectively cause organ injury in birds remains unclear. The present study aimed to measure the effects of intraperitoneal injection of D-GalN with LPS or zymosan on parameters related to hepatic injury in chicks (Gallus gallus). Plasma aspartate aminotransferase (AST), alanine aminotransferase (ALT), and lactate dehydrogenase (LDH) activities were not affected by intraperitoneal injection of D-GalN alone. Although these activities were not affected by LPS injection alone, they were increased by combining LPS with D-GalN. In contrast, plasma AST, ALT, and LDH activities were not affected by zymosan, both alone and with D-GalN. The expression of mRNAs for interleukin-6 (IL-6) and inducible nitric oxide synthase (iNOS) in the liver was significantly increased by the combination of LPS and D-GalN. In contrast, combining zymosan with D-GalN significantly increased iNOS mRNA expression, irrespective of hepatic injury. These results suggest that IL-6 may be the cause and/or result of hepatic injury in chicks. Additionally, chicks are tolerant to the hepatic effects of D-GalN, LPS, or zymosan alone.
Collapse
Affiliation(s)
- Maki Takahashi
- Department of Agrobiological Science, Faculty of Agriculture, Ehime University, Matsuyama 790-8566, Ehime, Japan
| | - Akira Senga
- Department of Agrobiological Science, Faculty of Agriculture, Ehime University, Matsuyama 790-8566, Ehime, Japan
| | - Kei Teraoka
- Department of Agrobiological Science, Faculty of Agriculture, Ehime University, Matsuyama 790-8566, Ehime, Japan
| | - Sakirul Khan
- Department of Microbiology, Faculty of Medicine, Oita University, Yufu, Oita 879-5593, Japan
| | - Ryosuke Makino
- Department of Agrobiological Science, Faculty of Agriculture, Ehime University, Matsuyama 790-8566, Ehime, Japan
| | - Mark A. Cline
- School of Neuroscience, Virginia Polytechnic Institute and State University, 24061, Blacksburg, Virginia, United States
| | - Tetsuya Tachibana
- Department of Agrobiological Science, Faculty of Agriculture, Ehime University, Matsuyama 790-8566, Ehime, Japan
| |
Collapse
|
8
|
Aydemir Celep N, Gedikli S. Protective Effect of Silymarin on Liver in Experimental in the Sepsis Model of Rats. Acta Histochem Cytochem 2023; 56:9-19. [PMID: 36890848 PMCID: PMC9986308 DOI: 10.1267/ahc.22-00059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 01/16/2023] [Indexed: 03/03/2023] Open
Abstract
This study, it was investigated whether silymarin has a protective effect by performing histological, immunohistochemical, and biochemical evaluations on the liver damage induced by cecal ligation perforation (CLP). CLP model was established and silymarin was treated at a dose of 50 mg/kg, 100 mg/kg, and 200 mg/kg, by oral one hour before the CLP. As an effect of the histological evaluations of the liver tissues, venous congestion, inflammation, and necrosis in the hepatocytes were observed in the CLP group. A situation close to the control group was observed in the Silymarin (SM)100 and SM200 groups. As a result of the immunohistochemical evaluations, inducible nitric oxide synthase (iNOS), cytokeratine (CK)18, Tumor necrosis factor-alpha (TNF-α), and interleukine (IL)-6 immunoreactivities were intense in the CLP group. In the biochemical analysis, Alkaline Phosphatase (ALP), Aspartate Aminotransferase (AST), and Alanine Aminotransferase (ALT) levels were significantly increased in the CLP group, while a significant decrease was observed in the treatment groups. TNFα, IL-1β, and IL-6 concentrations were in parallel with histopathological evaluations. In the biochemical analysis, Malondialdehyte (MDA) level increased significantly in the CLP group, but there was a significant decrease in the SM100 and SM200 groups. Glutathione (GSH), Superoxide Dismutase (SOD), Catalase (CAT), and Glutathione Peroxidase (GSH-Px) activities were relatively low in the CLP group. According to these data, it was concluded that using silymarin reduces the existing liver damage in sepsis.
Collapse
Affiliation(s)
- Nevra Aydemir Celep
- Department of Histology and Embriology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Semin Gedikli
- Department of Histology and Embriology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| |
Collapse
|
9
|
Red Palm Oil Ameliorates Oxidative Challenge and Inflammatory Responses Associated with Lipopolysaccharide-Induced Hepatic Injury by Modulating NF-κβ and Nrf2/GCL/HO-1 Signaling Pathways in Rats. Antioxidants (Basel) 2022; 11:antiox11081629. [PMID: 36009348 PMCID: PMC9404920 DOI: 10.3390/antiox11081629] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/16/2022] [Accepted: 08/16/2022] [Indexed: 11/23/2022] Open
Abstract
Lipopolysaccharide (LPS), a well-conserved cell wall component of Gram positive bacteria, exerts its toxic effects via inducing oxidative and pro-inflammatory responses. Red palm oil (RPO) is a unique natural product with a balanced ratio of saturated and unsaturated fatty acids, with reported antioxidant and anti-inflammatory effects. In this study, we assess the protective effect and mechanistic action of RPO using a lipopolysaccharide (LPS)-induced hepatic injury model. Male Wistar rats were assigned into four groups (10 animals/group): normal control (NC), RPO, LPS and RPO + LPS. Animals in the RPO and RPO + LPS groups were administered RPO (200 μL/day) for 28 days. On the 27th day of experiment, animals in LPS and RPO + LPS groups were injected with LPS (0.5 mg/kg body weight). Animals were sacrificed 24 h later, and blood and liver tissues harvested for biochemical and molecular analysis. RPO resolved hepatic histological dysfunction induced by LPS, and lowered alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase and γ-glutamyl transferase activities in the serum. Hepatic malondialdehyde and conjugated dienes, as well as pro-inflammatory cytokines, including interleukin (IL)-1β, IL-6 and TNFα were significantly diminished (p < 0.05) by RPO pre-treatment. Activity of hepatic antioxidant enzymes including superoxide dismutase, glutathione reductase, glutathione peroxidase, as well as glutathione redox status (GSH:GSSG), and markers of antioxidant capacity that decreased as a result of LPS injection were improved by RPO pre-treatment. Mechanistically, RPO up-regulated mRNA expression of redox sensitive transcription factor Nrf2 and its downstream targets GCL and HO-1, while also suppressing the expression of NFκβ and associated inflammatory protein, Iκβ kinase (IκKβ). In conclusion, this study highlights the ameliorating effects of RPO against LPS-induced hepatic injury and revealed the Nrf2/GCL/HO-1 and NFκβ signaling axis as potential contributing mechanisms.
Collapse
|
10
|
Beyer D, Hoff J, Sommerfeld O, Zipprich A, Gaßler N, Press AT. The liver in sepsis: molecular mechanism of liver failure and their potential for clinical translation. Mol Med 2022; 28:84. [PMID: 35907792 PMCID: PMC9338540 DOI: 10.1186/s10020-022-00510-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 07/13/2022] [Indexed: 12/25/2022] Open
Abstract
Liver failure is a life-threatening complication of infections restricting the host's response to infection. The pivotal role of the liver in metabolic, synthetic, and immunological pathways enforces limits the host's ability to control the immune response appropriately, making it vulnerable to ineffective pathogen resistance and tissue damage. Deregulated networks of liver diseases are gradually uncovered by high-throughput, single-cell resolved OMICS technologies visualizing an astonishing diversity of cell types and regulatory interaction driving tolerogenic signaling in health and inflammation in disease. Therefore, this review elucidates the effects of the dysregulated host response on the liver, consequences for the immune response, and possible avenues for personalized therapeutics.
Collapse
Affiliation(s)
- Dustin Beyer
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
| | - Jessica Hoff
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
- Center for Sepsis Control and Care, Jena University Hospital, Bachstr. 18, 07743, Jena, Germany
| | - Oliver Sommerfeld
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
- Center for Sepsis Control and Care, Jena University Hospital, Bachstr. 18, 07743, Jena, Germany
| | - Alexander Zipprich
- Department of Internal Medicine IV, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
| | - Nikolaus Gaßler
- Pathology, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
| | - Adrian T Press
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany.
- Center for Sepsis Control and Care, Jena University Hospital, Bachstr. 18, 07743, Jena, Germany.
- Medical Faculty, Friedrich-Schiller-University Jena, Kastanienstr. 1, 07747, Jena, Germany.
| |
Collapse
|
11
|
Leukotriene Receptor Antagonist, Montelukast Ameliorates L-NAME-Induced Pre-eclampsia in Rats through Suppressing the IL-6/Jak2/STAT3 Signaling Pathway. Pharmaceuticals (Basel) 2022; 15:ph15080914. [PMID: 35893738 PMCID: PMC9332684 DOI: 10.3390/ph15080914] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 07/19/2022] [Indexed: 12/15/2022] Open
Abstract
Aims: To investigate the potential protective role of montelukast (Mont) in the pre-eclampsia rat model induced by L-NG-Nitro arginine methyl ester (L-NAME). Methods and materials: Thirty-two pregnant female albino Wistar rats were assigned to four groups: the control group: pregnant rats received vehicles; the Mont group: pregnant rats received Mont (10 mg/kg/day, p.o.) from the 6th to the 18th day of gestation; the L-NAME group: pregnant rats received L-NAME (50 mg/kg/day, i.p.) from the 9th to the 18th day of gestation; the Mont/L-NAME group: pregnant rats received Mont (10 mg/kg/day, p.o.) from the 6th to the 18th day of gestation and L-NAME (50 mg/kg/day, i.p.) from the 9th to the 18th day of gestation. Placental, hepatic, and renal malondialdehyde (MDA), total nitrites (NOx), interleukin 6 (IL-6), and tumor necrosis factor (TNF)-α were determined. Serum alanine transaminase (ALT), aspartate transaminase (AST), creatinine, urea, 24-h urinary protein, and the placental growth factor (PGF) were measured. Histopathological examinations of the placental, hepatic, and renal tissues were also performed. In addition, placental, hepatic, and renal Janus kinase 2 (Jak2) and signal transducer and activator of transcription 3 (STAT3) immunoblotting were performed. Key findings: Mont improves oxidative stress, IL-6, TNF-α, ALT, AST, creatinine, urea, 24-h urinary protein, PGF, Jak2, and STAT3 which were all affected by L-NAME. Moreover, the histopathological assessment indicated that Mont restored the normal architecture that was markedly disturbed by L-NAME. Significance: Mont exerted the biochemical and histopathological amelioration of L-NAME-caused pre-eclampsia through its anti-inflammatory, anti-oxidant function and suppression of the IL-6/Jak2/STAT3 signaling pathway.
Collapse
|
12
|
Huang H, Chang YH, Xu J, Ni HY, Zhao H, Zhai BW, Efferth T, Gu CB, Fu YJ. Aucubin as a natural potential anti-acute hepatitis candidate: Inhibitory potency and hepatoprotective mechanism. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 102:154170. [PMID: 35609387 DOI: 10.1016/j.phymed.2022.154170] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 04/17/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Hepatic inflammation can substantially impact the development of acute hepatitis. It is a pressing need to identify and exploit novel therapeutic targets as well as effective drug therapies against acute hepatitis. Aucubin (AU) is one of the main active components extracted from the leaves of Eucommia ulmoides and possesses significant anti-inflammatory and antioxidant activities. However, the protective effect and mechanism of AU on acute hepatitis have not been reported yet. PURPOSE This study aims to investigate the protective effect of AU on LPS-induced acute hepatitis and the mechanism of action. METHODS The limma package was used to analyze differentially expressed genes (DEGs) between LPS-induced acute hepatitis and normal groups based on Gene Expression Omnibus (GEO) microarray data. Network pharmacology predicted targets for AU therapy against acute hepatitis, and Gene Ontology (GO) enrichment analysis of the biological processes involved in these targets. The key pathways were analyzed by protein-protein interaction, KEGG (Kyoto Encyclopedia of Genes and Genomes), and GSEA (Gene Set Enrichment Analysis) enrichment. The important interaction targets between AU and key pathways were evaluated by molecular simulation. The in silico predicted mechanism was verified based on in vitro and in vivo experiments. RESULTS A total of 116 intersection targets between AU prediction targets and differentially expressed genes were identified. They were functionally involved in the imbalance of "inflammation-anti-inflammation" and "oxidation-antioxidation" systems in the process of LPS-induced cases. In vitro experiments revealed that AU reduced inflammation in LPS-induced HepG2 cells by reducing the inflammatory cytokines TNF-α, IL-6, as well as iNOS enzyme activity levels. In addition, LPS-induced oxidative stress can be alleviated by AU via adjusting the levels of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), Malone dialdehyde (MDA) and reactive oxygen species (ROS). Protein-protein interaction and GSEA results showed that AU might exert anti-inflammatory effects mainly through the STAT3/NF-κB signal pathway. Molecular dynamics simulation as well as in vivo tests further demonstrated AU restrained nuclear transfer of NF-κB (P65), probably through reducing phosphorylation of STAT3. In addition, AU appears to reduce oxidative stress by upregulating NRF2/HO-1. CONCLUSION We explored potential targets and signal pathways of AU in inhibiting acute hepatitis. AU exerted anti-inflammatory and antioxidant activities and may be a useful candidate drug for the treatment of acute hepatitis.
Collapse
Affiliation(s)
- Han Huang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China; Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China
| | - Yuan-Hang Chang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China; Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China
| | - Jian Xu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China; Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China
| | - Hai-Yan Ni
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China; Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China
| | - Heng Zhao
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China; Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China
| | - Bo-Wen Zhai
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, University of Mainz, 55128, Mainz, Germany
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, University of Mainz, 55128, Mainz, Germany
| | - Cheng-Bo Gu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China; Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China.
| | - Yu-Jie Fu
- The College of Forestry, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
13
|
Gu Y, Chen K, Xi B, Xie J, Bing X. Protective effects of paeonol against lipopolysaccharide-induced liver oxidative stress and inflammation in gibel carp (Carassius auratus gibelio). Comp Biochem Physiol C Toxicol Pharmacol 2022; 257:109339. [PMID: 35378299 DOI: 10.1016/j.cbpc.2022.109339] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 03/21/2022] [Accepted: 03/30/2022] [Indexed: 11/16/2022]
Abstract
Paeonol (2'-hydroxy-4'-methoxyacetophenone) is a phenol that exhibits antioxidant and anti-inflammatory capabilities. In this study, the underlying mechanism of paeonol against LPS-induced oxidative stress and inflammatory responses in gibel carp was investigated. Three hundred healthy gibel carp were divided into five groups (n = 9), intraperitoneally injected with LPS and thereafter treated with paeonol (16 mg/kg and 64 mg/kg). Fish were anesthetized with MS-222 (100 mg/L), and samples were collected at 72 h to investigate plasma biochemical indexes, liver histopathology, antioxidant enzymatic activity, and TLR receptor-related gene expression. Fish injected with LPS (20 mg/kg) exhibited significantly increased plasma aminotransferase (ALT), aminotransferase (AST), lactate dehydrogenase (LDH), glucose (GLU), diamine oxidase (DAO), and alkaline phosphatase (ALP) levels (P < 0.05). In addition, LPS challenge significantly enhanced myeloperoxidase (MPO) and malondialdehyde (MDA) contents, whereas those of catalase (CAT) and glutathione peroxidase (GSH-Px) decreased (P < 0.05). However, treatment with paeonol attenuated these LPS-induced changes (P < 0.05). The mRNA expression of TLR4, TIRAP, MyD88, TRAF6, NF-κB, TNF-α, IL-1β, and IL-8, which were activated by LPS challenge (P < 0.05), were downregulated by paeonol. Additionally, histopathological examination demonstrated that paeonol alleviates LPS-induced hepatic tissue lesions in fish. Taken together, the results suggest that paeonol mitigates LPS-induced liver oxidative stress and inflammation in gibel carp.
Collapse
Affiliation(s)
- Yipeng Gu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Kai Chen
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Bingwen Xi
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| | - Jun Xie
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| | - Xuwen Bing
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| |
Collapse
|
14
|
El-Kashef DH, Zaghloul RA. Ameliorative effect of montelukast against carbon tetrachloride-induced hepatotoxicity: Targeting NLRP3 inflammasome pathway. Life Sci 2022; 304:120707. [PMID: 35690106 DOI: 10.1016/j.lfs.2022.120707] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/29/2022] [Accepted: 06/07/2022] [Indexed: 12/16/2022]
Abstract
AIMS Montelukast, a selective antagonist of type 1 cysteinyl-leukotriene receptors, has antioxidant and anti-inflammatory abilities. This study aimed to explore its hepatoprotective impact against CCl4-induced hepatotoxicity compared to a standard hepatoprotective agent, silymarin. MAIN METHODS Twenty-four albino mice were used in this study, CCl4 (1 mL/kg of 1:1 v/v CCl4:olive oil) was singly injected in mice, and montelukast was administered in a dose of 10 mg/kg. KEY FINDINGS Results revealed that montelukast significantly improved CCl4-induced alterations in both structure and function of the liver, verified respectively through histopathology and by the reduced levels of ALT, AST, ALP, and GGT upon comparison with CCl4. Also, montelukast prevented the induction of oxidative stress via decreasing hepatic MDA content and enhancing GSH levels. Moreover, montelukast produced a profound decrease in the levels of hepatic NLRP3 and its adaptor protein, ASC, and a reduction in the pro-inflammatory markers, NF-κB, IL-1β, TNF-α, and IL-6. In addition, montelukast markedly reduced liver fibrosis, as illustrated by Masson Trichrome, and the decreased hepatic levels of TGF-β and α-SMA. Furthermore, montelukast efficiently decreased apoptosis as manifested by the decreased hepatic level of Caspase 3. SIGNIFICANCE Montelukast protected against CCl4-induced hepatotoxicity via exerting antioxidant, anti-inflammatory, anti-fibrotic, and anti-apoptotic effects.
Collapse
Affiliation(s)
- Dalia H El-Kashef
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.
| | - Randa A Zaghloul
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
15
|
Khodabakhsh P, Khoie N, Dehpour AR, Abdollahi A, Ghazi-Khansari M, Shafaroodi H. Montelukast suppresses the development of irritable bowel syndrome phenotype possibly through modulating NF-κB signaling in an experimental model. Inflammopharmacology 2022; 30:313-325. [PMID: 35013876 DOI: 10.1007/s10787-021-00907-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 11/30/2021] [Indexed: 12/13/2022]
Abstract
Irritable bowel syndrome (IBS) is a functional gut disorder with multi-factorial pathophysiology that causes recurring pain or discomfort in the abdomen, as well as altered bowel habits. Montelukast, a well-known cysteinyl leukotriene receptor 1 (CysLT1R) antagonist, is widely used for the anti-inflammatory management of asthma. The present study aimed to evaluate the effects of pharmacological inhibition of CysLT1R on acetic acid-induced diarrhea-predominant IBS (D-IBS) in rats. Behavioral pain responses to noxious mechanical stimulation were decreased in the montelukast-treated rats as compared to the model animals following colorectal distension (CRD)-induced visceral hypersensitivity. Stool frequency decreased dose-dependently by montelukast in IBS rats exposed to restraint stress. A significantly shorter immobility time was also observed in IBS rats who received montelukast vs IBS group in the forced swimming test (depression-like behavior). Furthermore, there were significant decreases in the NF-κB protein expression, inflammatory cytokine (TNF-α, and IL-1ß) levels, and histopathological inflammatory injuries concomitant with increased anti-inflammatory cytokine, IL-10, in montelukast-treated rats compared with the IBS group. Cysteinyl leukotriene production and CysLT1R mRNA expression showed no remarkable differences among the experimental groups. The present results suggest the possible beneficial effects of montelukast in the management of D-IBS symptoms. The molecular mechanism underlying such effects, at least to some extent, might be through modulating CysLT1R-mediated NF-κB signaling. Yet, more studies are required to demonstrate the clinical potential of this drug for IBS therapy.
Collapse
Affiliation(s)
- Pariya Khodabakhsh
- Student Research Committee, Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nilgoon Khoie
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad-Reza Dehpour
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Abdollahi
- Department of Pathology, School of Medicine, IKHC, Teheran University of Medical Sciences, Tehran, Iran
| | - Mahmoud Ghazi-Khansari
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamed Shafaroodi
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran. .,Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
16
|
Li Z, Wang J, Ma Y. Montelukast attenuates interleukin IL-1β-induced oxidative stress and apoptosis in chondrocytes by inhibiting CYSLTR1 (Cysteinyl Leukotriene Receptor 1) and activating KLF2 (Kruppel Like Factor 2). Bioengineered 2021; 12:8476-8484. [PMID: 34565285 PMCID: PMC8806840 DOI: 10.1080/21655979.2021.1984003] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Montelukast is a cysteinyl leukotriene receptor 1 (CysLTR1) antagonist widely used to suppress the inflammatory response in asthma and allergic rhinitis. This study aimed to investigate the potential impacts of montelukast on osteoarthritis (OA) progression. To determine the role of montelukast in OA, the expression of CysLTR1 was first examined by quantitative reverse transcription PCR (RT-qPCR) and western blot in IL-1β-induced ATDC5 cells treated with or without montelukast. Subsequently, the impacts of montelukast on cell viability and oxidative stress were measured by Cell-Counting-Kit-8 (CCK-8), commercial kits and western blot. Oxidative stress-related protein expressions were determined by western blot analysis in Il-1β-induced ATDC5 cells. Cell apoptosis and cartilage degradation were examined by TdT-mediated dUTP Nick-End Labeling (TUNEL) assay, western blot and RT-qPCR. KLF2 expression was measured in IL-1β-induced ATDC5 cells treated with montelukast. After interference with small interfering RNA (siRNA)-KLF2 in ATDC5 cells, the loss-of-function assays were also performed in same ways. CysLTR1 expression was elevated in IL-1β-induced ATDC5 cells but inhibited significantly by montelukast. Montelukast attenuated the oxidative stress and apoptosis, improved cell viability. Moreover, montelukast enhanced KLF2 expression. After transfected with siRNA-KLF2, montelukast attenuated cell injury, oxidative stress, apoptosis and cartilage degradation in IL-1β-induced ATDC5 cells by activating KLF2.In summary, this work elaborates the evidence that montelukast could attenuate oxidative stress and apoptosis in IL-1β-induced chondrocytes by inhibiting CysLTR1 and activating KLF2, which can guide the therapeutic strategies of montelukast for OA development in the future.
Collapse
Affiliation(s)
- Zongwei Li
- School of Pharmaceutical Engineering, Guangdong Food and Drug Vocational College, Guangzhou City, Guangdong Province, China
| | - Jianming Wang
- School of Pharmaceutical Engineering, Guangdong Food and Drug Vocational College, Guangzhou City, Guangdong Province, China
| | - Yumin Ma
- Department of Pharmaceutical Machinery, Maternal and Child Health and Family Planning Technical Service Center, Wuwei City, Gansu Province, China
| |
Collapse
|
17
|
El-Baz AM, Shata A, Hassan HM, El-Sokkary MM, Khodir AE. The therapeutic role of lactobacillus and montelukast in combination with metformin in diabetes mellitus complications through modulation of gut microbiota and suppression of oxidative stress. Int Immunopharmacol 2021; 96:107757. [DOI: https:/doi.org/10.1016/j.intimp.2021.107757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
|
18
|
El-Baz AM, Shata A, Hassan HM, El-Sokkary MMA, Khodir AE. The therapeutic role of lactobacillus and montelukast in combination with metformin in diabetes mellitus complications through modulation of gut microbiota and suppression of oxidative stress. Int Immunopharmacol 2021; 96:107757. [PMID: 33991997 DOI: 10.1016/j.intimp.2021.107757] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/22/2021] [Accepted: 05/01/2021] [Indexed: 12/25/2022]
Abstract
Male reproductive dysfunction is one of the overlooked findings of diabetes mellitus (DM) that deserves greater scientific attention. This study is designed to explore the therapeutic potential of metformin and montelukast, in combination with Lactobacillus, for modulation of intestinal flora and suppression of oxidative stress in testicular and liver damage in diabetic male rats. A DM model was induced by streptozotocin (STZ)which caused functional, biochemical, and inflammatory injuries to the testicular and liver tissues. The experimental panel included nine rat groups: normal control, normal control plus metformin, normal control plus montelukast, DM control, DM plus montelukast, DM plus a combination of metformin and Lactobacillus, DM plus a combination of montelukast and Lactobacillus, and DM plus a combination of metformin and montelukast. In parallel, clinical evaluation of microscopic examination scoring, and hepatic and testicular injuries, were evaluated. Biochemical markers including glucose level, lipid profile, inflammatory markers (tumor necrosis factor- (TNF-α) and interleukin-17 (IL-17), Caspase-3, and Bax proteins expressions were measured. The change in the microbiota abundance was investigated using conventional and real-time PCR. The current study revealed a significant difference in the relative abundance of microbiota, where DM is associated with an enormous increase of Bacteroides spp., Clostridium spp., E. coli, and Fusobacterium spp., and a significant decrease in Bifidobacteria spp., and Lactobacillus spp., in contrast with normal control. Metformin and montelukast, in combination with Lactobacillus, significantly reversed the testicular and liver damage caused by STZ. Moreover, the drugs significantly reduced the oxidative, inflammatory, and apoptotic activities induced by STZ.
Collapse
Affiliation(s)
- Ahmed M El-Baz
- Microbiology and Biotechnology department, Faculty of pharmacy, Delta University for Science and Technology, Gamasa 11152, Egypt.
| | - Ahmed Shata
- Clinical pharmacology department, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt; Clinical Pharmacy department, Faculty of pharmacy, Delta University for Science and Technology, Gamasa 11152, Egypt
| | - Hanan M Hassan
- Pharmacology and biochemistry department, Faculty of pharmacy, Delta University for Science and Technology, Gamasa 11152, Egypt
| | - Mohamed M A El-Sokkary
- Microbiology department, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Ahmed E Khodir
- Pharmacology department, Faculty of pharmacy, Horus University-Egypt, New Damietta 34518, Egypt
| |
Collapse
|
19
|
Maresh MM, Abdelaziz RR, Ibrahim TM. Febuxostat mitigates concanavalin A-induced acute liver injury via modulation of MCP-1, IL-1β, TNF-α, neutrophil infiltration, and apoptosis in mice. Life Sci 2020; 260:118307. [PMID: 32841665 DOI: 10.1016/j.lfs.2020.118307] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/10/2020] [Accepted: 08/18/2020] [Indexed: 12/16/2022]
Abstract
AIM Liver plays a crucial role in innate immunity reactions. This role predisposes the liver to innate-mediated liver injury when uncontrolled inflammation occurs. In this study, the effect of febuxostat administration on acute liver injury induced by concanavalin A (Con A) injection into mouse eye orbital sinus was studied. MATERIALS AND METHODS Two doses of febuxostat (10 and 20 mg/kg, orally) were administered either 1 h before or 30 min after the administration of Con A. Febuxostat at a low dose (10 mg/kg) before and after Con A modulated the elevation of serum ALT, liver uric acid, liver myeloperoxidase (MPO), and interleukin-1β (IL-1β) induced by Con A. The same dose of febuxostat before Con A also decreased serum total bilirubin and neutrophil infiltration, as evidenced by flow cytometry and histopathological analysis. KEY FINDINGS Febuxostat at a high dose (20 mg/kg) significantly improved serum ALT, AST, albumin, total bilirubin, liver uric acid, MPO, monocyte chemoattractant protein-1 (MCP-1), tumor necrosis factor-alpha (TNF-α), interleukin-4 (IL-4), IL-1β, and neutrophil infiltration induced by Con A administration. The results of histopathological examination of liver cells paralleled the observed biochemical improvements. Hepatocyte apoptosis as evidenced by immunohistochemical examination of cleaved caspase-3 was markedly decreased in the febuxostat protection and treatment groups, in a dose-dependent manner SIGNIFICANCE: These results indicate that febuxostat, especially at the higher dose, may be an effective inhibitor of immune reactions evoked by Con A administration.
Collapse
Affiliation(s)
- Mohammed M Maresh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, 35516 Mansoura, Egypt
| | - Rania R Abdelaziz
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, 35516 Mansoura, Egypt..
| | - Tarek M Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, 35516 Mansoura, Egypt
| |
Collapse
|
20
|
Mandal S, Verma N, Bora NS, Dey P, Islam J, Dwivedi SK, Chattopadhyay P. Exploration of therapeutic role of montelukast and dexamethasone combination against paraquat induced inhalational toxicity. Inhal Toxicol 2020; 32:299-310. [PMID: 32597253 DOI: 10.1080/08958378.2020.1784321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
OBJECTIVES To explore the therapeutic role of a single dose combination of montelukast (MON) and dexamethasone (DXM) through intra-peritoneal route against paraquat (PQ)-intoxicated experimental Wistar rats. METHODS In vivo the survival rate was investigated following the administration of both MON and DXM in PQ exposed rats. Lungs parameters including enhanced pause (Penh), tidal volume (TV) and breath per minute (BPM) were determined using the whole body plethysmograph (WBP). Further chest imaging and histopathological studies were conducted to evaluate the lungs injury. In vivo the antioxidant activity was carried out by determining the levels of catalase (SOD), superoxide dismutase (CAT) and glutathione peroxidase (GSH-Px). Lungs tissue concentration of different proinflammatory cytokines like IL-1β, IL-6, TGF-β1 and TNF-α was also determined. Finally, expression of NF-kB and p-NF-kB was investigated by western blot. RESULTS Results of survival rate and levels of lungs parameters indicated therapeutic potential of combination treatment of MON and DXM. Protective activity on lungs was reflected in chest imaging and histopathological investigations. Moreover, combination treatment exhibited significant increased levels of all anti-oxidant parameters. Significant decrease in the levels of IL-1β; IL-6; TGF-β1 and TNF-α was also observed with the combination treatment of MON and DXM. Evidence of significant down regulation of NF-kB and phospho-NF-kB was also found with the combination treatment of MON and DXM. CONCLUSIONS Given the advantage of therapeutic synergism activity of MON and DXM, it may be used in the prophylaxis of PQ-intoxication following clinical trials.
Collapse
Affiliation(s)
- Santa Mandal
- Division of Pharmaceutical Technology, Defence Research Laboratory, Tezpur, Assam, India.,School of Pharmaceutical Sciences, IFTM University, Moradabad, Uttar Pradesh, India
| | - Navneet Verma
- School of Pharmaceutical Sciences, IFTM University, Moradabad, Uttar Pradesh, India
| | - Nilutpal S Bora
- Division of Pharmaceutical Technology, Defence Research Laboratory, Tezpur, Assam, India.,Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India
| | - Piyali Dey
- Division of Pharmaceutical Technology, Defence Research Laboratory, Tezpur, Assam, India.,School of Pharmaceutical Sciences, IFTM University, Moradabad, Uttar Pradesh, India
| | - Johirul Islam
- Division of Pharmaceutical Technology, Defence Research Laboratory, Tezpur, Assam, India
| | - Sanjai K Dwivedi
- Division of Pharmaceutical Technology, Defence Research Laboratory, Tezpur, Assam, India
| | | |
Collapse
|
21
|
El-Kashef DH, Abdelrahman RS. Montelukast ameliorates Concanavalin A-induced autoimmune hepatitis in mice via inhibiting TNF-α/JNK signaling pathway. Toxicol Appl Pharmacol 2020; 393:114931. [PMID: 32109511 DOI: 10.1016/j.taap.2020.114931] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 02/17/2020] [Accepted: 02/24/2020] [Indexed: 01/19/2023]
Abstract
BACKGROUND Concanavalin A (ConA) is a well-established model to induce autoimmune hepatitis (AIH) in mice which mimics pathological alterations that occur in human. The pathogenesis of ConA-induced AIH involves many signaling pathways. Montelukast is a leukotriene receptor antagonist that is mainly used in the management of asthma. The antioxidant, anti-inflammatory and anti-apoptotic effects of montelukast have been reported in previous studies. Lately, montelukast has been documented to confer protection against various inflammatory diseases. Up to date, no study has explored the effect of montelukast on AIH induced by ConA. AIM AND METHOD This study aims to detect the protective effects of montelukast (10 mg/kg) on ConA (20 mg/kg)- induced AIH in mice and to demonstrate its hepatoprotective mechanisms. Hepatic function, histological changes, oxidative stress, inflammation, autophagy, and apoptotic markers were investigated. RESULTS Hepatic function and histological data revealed that treatment with montelukast significantly attenuated ConA-induced hepatic damage. Montelukast significantly reduced JNK level and NFκB p65 expression, and inhibited proinflammatory cytokines (TNF-α and IL-6) as well as oxidative stress (MDA, NO, and GSH). Moreover, inflammatory cells (CD4+ infiltration and the levels of apoptotic markers (Bax and caspase-3) besides autophagy biomarkers (Beclin1 and LC3) were reduced. CONCLUSION Our results suggest that montelukast could be a potential therapeutic drug against the ConA-induced AIH through its anti-oxidant, anti-inflammatory, anti- autophagy as well as anti-apoptotic properties.
Collapse
Affiliation(s)
- Dalia H El-Kashef
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, 35516 Mansoura, Egypt
| | - Rehab S Abdelrahman
- Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, Al-Madina Al-Munawwarah, 30001, Saudi Arabia. Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, 35516, Mansoura, Egypt.
| |
Collapse
|
22
|
Hassan NF, Nada SA, Hassan A, El-Ansary MR, Al-Shorbagy MY, Abdelsalam RM. Saroglitazar Deactivates the Hepatic LPS/TLR4 Signaling Pathway and Ameliorates Adipocyte Dysfunction in Rats with High-Fat Emulsion/LPS Model-Induced Non-alcoholic Steatohepatitis. Inflammation 2019; 42:1056-1070. [PMID: 30737662 DOI: 10.1007/s10753-019-00967-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The most epidemic liver disorder non-alcoholic steatohepatitis (NASH) is characterized by hepatic steatosis and inflammation with hepatocellular damage. Recently, it is predictable to be the extensive cause for liver transplantation. The absence of an approved therapeutic agent for NASH is the reason for investigating saroglitazar (SAR) which showed promising effects as a dual PPAR-α/γ agonist in recent studies on NASH. Here, we aimed to investigate the effect of SAR on NASH induced in rats by the administration of high-fat emulsion (HFE) and small doses of lipopolysaccharides (LPS) for 5 weeks. Rats were divided into three groups: negative control group (saline and standard rodent chow), model group (HFE(10 ml/kg/day, oral gavage) + LPS(0.5 mg/kg/week, i.p)), and SAR-treated group (HFE(10 ml/kg/day, oral gavage) + LPS(0.5 mg/kg/week, i.p.) + SAR(4 mg/kg/day, oral gavage) starting at week 3.Treatment with SAR successfully ameliorated the damaging effects of HFE with LPS, by counteracting body weight gain and biochemically by normalization of liver function parameters activity, glucose, insulin, homeostasis model of assessment (HOMA-IR) score, lipid profile levels, and histopathological examination. Significant changes in adipokine levels were perceived, resulting in a significant decline in serum leptin and tumor necrosis factor-α (TNF-α) level concurrent with adiponectin normalization. The positive effects observed for SAR on NASH are due to the downregulation of the LPS/TLR4 pathway, as indicated by the suppression of hepatic Toll-like receptor 4 (TLR4), NF-κB, TNF-α, and transforming growth factor-β1 (TGF-β1) expression. In conclusion, this work verified that SAR ameliorates NASH through deactivation of the hepatic LPS/TLR4 pathway and inhibition of adipocyte dysfunction.
Collapse
Affiliation(s)
- Noha F Hassan
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Modern University for Technology and Information, Cairo, Egypt
| | - Somaia A Nada
- Department of Pharmacology and Toxicology, National Research Centre, Giza, Egypt
| | - Azza Hassan
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Mona R El-Ansary
- Department of Biochemistry, Faculty of Pharmacy, Modern University for Technology and Information, Al-Mokattam, Cairo, Egypt.
| | - Muhammad Y Al-Shorbagy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.,School of Pharmacy, Newgiza University, Giza, Egypt
| | - Rania M Abdelsalam
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
23
|
Dibromoacetic Acid Induced Hepatotoxicity in Mice through Oxidative Stress and Toll-Like Receptor 4 Signaling Pathway Activation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:5637235. [PMID: 31827682 PMCID: PMC6886355 DOI: 10.1155/2019/5637235] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 07/31/2019] [Accepted: 09/26/2019] [Indexed: 01/13/2023]
Abstract
Dibromoacetic acid (DBA) is one of haloacetic acids, often as a by-product of disinfection in drinking water. DBA is a multiple-organ carcinogen in rodent animals, but little research on its hepatotoxicity has been conducted and its mechanism has not been elucidated. In this study, we found that DBA could induce obvious hepatotoxcity in Balb/c mice as indicated by histological changes, increasing serum level of alanine aminotransferase (ALT) and aspartate aminotransferase (AST), and accumulation of hepatic glycogen, after the mice were administered DBA at doses of 1.25, 5, and 20 mg/kg body weight for 28 days via oral gavage. In mechanism study, DBA induced oxidative stress as evidenced by increasing the level of malondialdehyde (MDA), reactive oxygen species (ROS) in the liver, advanced oxidative protein products (AOPPs) in the serum, and decreasing the level of glutathione (GSH) in the liver. DBA induced inflammation in the liver of the mice which is supported by increasing the production of tumor necrosis factor-α (TNF-α) and the mRNA levels of TNF-α, interleukin-6 (IL-6), interleukin-1β (IL-1β), and nuclear factor κB (NF-κB) in the liver. DBA also upregulated the protein levels of Toll-like receptor (TLR) 4, myeloid differentiation factor 88 (MyD88), tumor necrosis factor receptor-associated factor 6 (TRAF6), inhibitor of nuclear factor κB alpha (IκB-α), nuclear factor κB p65 (NF-κB p65), and the phosphoralation of P38 mitogen-activated protein kinase (P38MAPK) and c-Jun N-terminal kinase (JNK). Conclusion. DBA could induce hepatotoxicity in mice by oral exposure; the mechanism is related to oxidative stress, inflammation, and Toll-like receptor 4 signaling pathway activation.
Collapse
|
24
|
Hareedy MS, Ahmed EA, Ali MF. Montelukast modifies simvastatin-induced myopathy and hepatotoxicity. Drug Dev Res 2019; 80:1000-1009. [PMID: 31389048 DOI: 10.1002/ddr.21581] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 07/07/2019] [Accepted: 07/22/2019] [Indexed: 12/17/2022]
Abstract
Montelukast (MNK) has prominent anti-inflammatory and antioxidant activities. It can protect the liver in different hepatotoxic models in animals. Simvastatin (SMV) is one of commonly used lipid lowering drugs for treatment of dyslipidemia in order to reduce cardiovascular disease. It has severe side effects such as myopathy and hepatotoxicity. The aim of the present study is to investigate the possible effect of MNK on SMV-induced myopathy and hepatotoxicity. Four groups of male rats: control group which received saline via stomach tube, MNK treated group (received 10 mg/kg/day MNK via stomach tube), SMV treated group (received 30 mg/kg/day SMV via stomach tube), and MNK + SMV (combination) group which received both MNK and SMV. All animals were treated for 14 days before obtaining blood and tissue samples. SMV has both hepatotoxic effects and myopathy. SMV caused a significant increase in myoglobin, creatinine kinase, ALT, AST, ALP, and bilirubin but, it decreased total proteins, globulin and albumin levels. Co-treatment of SMV and MNK increased the antioxidant activity significantly. MNK modifies partially the myopathic changes and hepatotoxic effect of SMV. Co-administration of MNK and SMV decreased their toxic potentials on the liver, skeletal muscles, and kidney. They have antioxidant activities when given together that produce muscle and hepatic protective effects.
Collapse
Affiliation(s)
- Mohammad S Hareedy
- Department of Pharmacology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Esraa A Ahmed
- Department of Pharmacology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Marwa F Ali
- Department of Pathology, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
25
|
Hegab II, El-Horany HES, Elbatsh MM, Helal DS. Montelukast abrogates prednisolone-induced hepatic injury in rats: Modulation of mitochondrial dysfunction, oxidative/nitrosative stress, and apoptosis. J Biochem Mol Toxicol 2018; 33:e22231. [PMID: 30276927 DOI: 10.1002/jbt.22231] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 07/29/2018] [Accepted: 08/02/2018] [Indexed: 02/28/2024]
Abstract
The aim of this study was to investigate the protective effect of montelukast (MTK) against prednisolone-induced hepatic injury in rats. Twenty-eight male albino rats were categorized into four equal groups. Group I served as the control group; group II: rats orally received prednisolone (5 mg·kg-1 ·d-1 ) for 30 days; groups III and IV: rats orally received MTK at 10 and 20 mg·kg-1 ·d-1 , respectively, simultaneously with prednisolone for 30 days. Serum liver enzymes, hepatic mitochondrial function, oxidative/nitrosative stress, and inflammatory and apoptotic markers were evaluated, and the results were confirmed by histopathological examination. MTK showed significant hepatic protection evidenced by alleviated histological lesion and improvement of mitochondrial function, oxidative/nitrosative stress, and inflammatory and apoptotic changes induced by prednisolone, with more profound protection in higher MTK dose (20 mg·kg-1 ). In view of these findings, we can conclude that MTK may have hepatoprotective potential, beyond its therapeutic value for asthmatic patients during their course of corticosteroid therapy.
Collapse
Affiliation(s)
| | | | - Maha M Elbatsh
- Clinical Pharmacology Department, Faculty of Medicine, Menoufia University, Tanta, Egypt
| | - Duaa S Helal
- Pathology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| |
Collapse
|
26
|
Mansour RM, Ahmed MAE, El-Sahar AE, El Sayed NS. Montelukast attenuates rotenone-induced microglial activation/p38 MAPK expression in rats: Possible role of its antioxidant, anti-inflammatory and antiapoptotic effects. Toxicol Appl Pharmacol 2018; 358:76-85. [PMID: 30222980 DOI: 10.1016/j.taap.2018.09.012] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 09/04/2018] [Accepted: 09/12/2018] [Indexed: 12/12/2022]
Abstract
Montelukast (MK),a cysteinyl leukotriene (CysLT1) receptor antagonist, latterly exhibited a remarkable neuroprotective activity in various neurodegenerative disorders. This study aims to elucidate the neuroprotective effect of MK in rotenone-induced Parkinson's disease(PD) model in rats. Ninety six male rats were split into four groups: vehicle control (0.2 ml/kg/48 h, sc), MK (10 mg/kg/day, ip), rotenone (1.5 mg/kg/48 h, sc.) and rotenone pretreated with MK. Rotenone treatment led to significant reduction in motor functioning and elevation in oxidative stress markers. Additionally, upregulation of p38 mitogen-activated protein kinase (p38 MAPK) and CysLT1 receptor expressions were anchored with enhanced striatal microglial activation generating a severe neuro-inflammatory milieu. Furthermore, an augmentation in p53 expression and cleaved caspases-3 activity increased apoptotic neurodegeneration synchronized with reduction of striatal tyrosine hydroxylase (TH) content. Changes in neuronal morphology was also noted. MK administration significantly mitigated motor impairment and rise in oxidative stress mediators. As well, the anti-inflammatory activity of MK was manifested by hindering the principal controller of inflammatory pathway, nuclear factor-kappa B, followed by its downstream pro-inflammatory cytokines (tumor necrosis factor-alpha and interleukin-1 beta), by attenuating striatal microglial activation and hampering the expression of both p38 MAPK and CysLT1. Moreover, MK revealed a decline in p53 expression with its downstream cleaved caspases-3 which resulted in preservation of striatal TH terminals as verified by increased striatal TH content and improvement in the histopathological changes incited by rotenone. In conclusion, MK endowed neuroprotective effects in rotenone-induced PD animal model via attenuation of microglial cell activation and p38 MAPK expression.
Collapse
Affiliation(s)
- Riham M Mansour
- Department of Pharmacology and Toxicology, Faculty of Pharmacy and Drug Manufacturing, Misr University for Science and Technology (MUST), 6th October City, Giza, Egypt
| | - Maha A E Ahmed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy and Drug Manufacturing, Misr University for Science and Technology (MUST), 6th October City, Giza, Egypt
| | - Ayman E El-Sahar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Egypt
| | - Nesrine S El Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Egypt.
| |
Collapse
|
27
|
Zafirlukast and vincamine ameliorate tamoxifen-induced oxidative stress and inflammation: Role of the JNK/ERK pathway. Life Sci 2018; 202:78-88. [DOI: 10.1016/j.lfs.2018.04.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 03/27/2018] [Accepted: 04/02/2018] [Indexed: 12/19/2022]
|
28
|
Yangi B, Cengiz Ustuner M, Dincer M, Ozbayer C, Tekin N, Ustuner D, Colak E, Kolac UK, Entok E. Propolis Protects Endotoxin Induced Acute Lung and Liver Inflammation Through Attenuating Inflammatory Responses and Oxidative Stress. J Med Food 2018; 21:1096-1105. [PMID: 29719160 DOI: 10.1089/jmf.2017.0151] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Propolis is a natural bee product, and it has many effects, including antioxidant, anti-inflammatory, antihepatotoxic, and anticancer activity. In this study, we aimed to explore the potential in vivo anti-inflammatory, antioxidant, and antiapoptotic properties of propolis extract on lipopolysaccharide (LPS)-induced inflammation in rats. Forty-two, 3- to 4-month-old male Sprague Dawley rats were used in six groups. LPS (1 mg/kg) was administered intraperitoneally to rats in inflammation, inflammation + propolis30, and inflammation+propolis90 groups. Thirty milligram/kilogram and 90 mg/kg of propolis were given orally 24 h after LPS injection. After the determination of the inflammation in lung and liver tissues by 18F-fluoro-deoxy-d-glucose-positron emission tomography (18FDG-PET), samples were collected. The levels of malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), nitric oxide (NO), and DNA fragmentation were determined. The decrease of MDA levels in inflammation + propolis30 and inflammation + propolis90 groups was determined compared to the inflammation group in lung and liver tissues. The increase of SOD% inhibition in inflammation + propolis90 group was determined in liver, lung, and hemolysate compared to the inflammation group. Increased CAT activities in inflammation + propolis30 and inflammation + propolis90 groups were observed in liver tissue and hemolysate compared to inflammation group. In lung tissue, NO levels were lower in inflammation group compared to the control group, but DNA fragmentation levels were higher. 18F-FDG uptake of tissues in inflammation + propolis30 and inflammation + propolis90 groups was decreased compared to the inflammation group. In conclusion, the data of this study indicate that the propolis application may serve as a potential approach for treating inflammatory diseases through the effect of reducing inflammation and free oxygen radical production.
Collapse
Affiliation(s)
- Berat Yangi
- 1 Department of Medical Biology, Eskisehir Osmangazi University , Eskisehir, Turkey
| | | | - Murat Dincer
- 2 Department of Medical Oncology, Faculty of Medicine, Eskisehir Osmangazi University , Eskisehir, Turkey
| | - Cansu Ozbayer
- 3 Department of Midwifery, School of Health Science, Dumlupınar University , Kutahya, Turkey
| | - Neslihan Tekin
- 4 Department of Biotechnology and Molecular Biology, Aksaray University , Aksaray, Turkey
| | - Derya Ustuner
- 5 Department of Medical Laboratory, Vocational School of Health Services, Eskisehir Osmangazi University , Eskisehir, Turkey
| | - Emine Colak
- 1 Department of Medical Biology, Eskisehir Osmangazi University , Eskisehir, Turkey
| | - Umut Kerem Kolac
- 1 Department of Medical Biology, Eskisehir Osmangazi University , Eskisehir, Turkey
| | - Emre Entok
- 6 Department of Nuclear Medicine, Faculty of Medicine, Eskisehir Osmangazi University , Eskisehir, Turkey
| |
Collapse
|
29
|
Resveratrol and Montelukast Alleviate Paraquat-Induced Hepatic Injury in Mice: Modulation of Oxidative Stress, Inflammation, and Apoptosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:9396425. [PMID: 29201275 PMCID: PMC5671749 DOI: 10.1155/2017/9396425] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 09/26/2017] [Indexed: 01/09/2023]
Abstract
Paraquat (PQ) is one of the most used herbicide worldwide. Its cytotoxicity is attributed to reactive radical generation. Resveratrol (Res) and montelukast (MK) have anti-inflammatory and antioxidant properties. The protective effects of Res, MK, or their combination against PQ-induced acute liver injury have not been investigated before. Therefore, we explored the protective potential of Res and/or MK against PQ hepatic toxicity in a mouse model. Mice were randomly assigned to five groups: group I served as the normal control and group II received a single dose of PQ (50 mg/kg, i.p.). Groups III, IV, and V received PQ plus oral Res (5 mg/kg/day), MK (10 mg/kg/day), and Res/MK combination, respectively. Res and/or MK reduced PQ-induced liver injury, evidenced by normalization of serum total protein, ALT, and AST. Res and/or MK significantly reversed PQ-induced oxidative stress markers glutathione and malondialdehyde. Res and/or MK significantly reduced PQ-induced inflammation reflected in TNF-α levels. Furthermore, Res and/or MK reversed PQ-induced apoptosis assessed by differential expression of p53, Bax, and Bcl-2. Histopathologic examination supported the biochemical findings. Although Res and MK displayed antioxidative, anti-inflammatory, and antiapoptotic activities, their combination was not always synergistic.
Collapse
|
30
|
Cysteinyl Leukotrienes as Potential Pharmacological Targets for Cerebral Diseases. Mediators Inflamm 2017; 2017:3454212. [PMID: 28607533 PMCID: PMC5451784 DOI: 10.1155/2017/3454212] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 04/10/2017] [Accepted: 04/19/2017] [Indexed: 02/06/2023] Open
Abstract
Cysteinyl leukotrienes (CysLTs) are potent lipid mediators widely known for their actions in asthma and in allergic rhinitis. Accumulating data highlights their involvement in a broader range of inflammation-associated diseases such as cancer, atopic dermatitis, rheumatoid arthritis, and cardiovascular diseases. The reported elevated levels of CysLTs in acute and chronic brain lesions, the association between the genetic polymorphisms in the LTs biosynthesis pathways and the risk of cerebral pathological events, and the evidence from animal models link also CysLTs and brain diseases. This review will give an overview of how far research has gone into the evaluation of the role of CysLTs in the most prevalent neurodegenerative disorders (ischemia, Alzheimer's and Parkinson's diseases, multiple sclerosis/experimental autoimmune encephalomyelitis, and epilepsy) in order to understand the underlying mechanism by which they might be central in the disease progression.
Collapse
|
31
|
Makled MN, El-Awady MS, Abdelaziz RR, Atwan N, Guns ET, Gameil NM, Shehab El-Din AB, Ammar EM. Pomegranate protects liver against cecal ligation and puncture-induced oxidative stress and inflammation in rats through TLR4/NF-κB pathway inhibition. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2016; 43:182-192. [PMID: 27011232 DOI: 10.1016/j.etap.2016.03.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 03/07/2016] [Accepted: 03/12/2016] [Indexed: 06/05/2023]
Abstract
Acute liver injury secondary to sepsis is a major challenge in intensive care unit. This study was designed to investigate potential protective effects of pomegranate against sepsis-induced acute liver injury in rats and possible underlying mechanisms. Pomegranate was orally given (800mg/kg/day) for two weeks before sepsis induction by cecal ligation and puncture (CLP). Pomegranate improved survival and attenuated liver inflammatory response, likely related to downregulation of mRNA expression of toll like recptor-4, reduced nuclear translocation and DNA binding activity of proinflammatory transcription factor NF-κB subunit p65, decreased mRNA and protein expression of tumor necrosis factor-alpha and reduction in myeloperoxidase activity and mRNA expression. Pomegranate also decreased CLP-induced oxidative stress as reflected by decreased malondialdehyde content, and increased reduced glutathione level and superoxide dismutase activity. These results confirm the antiinflammatory and antioxidant effects of pomegranate in CLP-induced acute liver injury mediated through inhibiting TLR4/NF-κB pathway, lipid peroxidation and neutrophil infiltration.
Collapse
Affiliation(s)
- Mirhan N Makled
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.
| | - Mohammed S El-Awady
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Rania R Abdelaziz
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Nadia Atwan
- Department of Pathology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Emma T Guns
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Nariman M Gameil
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Ahmed B Shehab El-Din
- Department of Nephrology and Urology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Elsayed M Ammar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
32
|
Khodir AE, Ghoneim HA, Rahim MA, Suddek GM. Montelukast attenuates lipopolysaccharide-induced cardiac injury in rats. Hum Exp Toxicol 2016; 35:388-397. [PMID: 26089034 DOI: 10.1177/0960327115591372] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
This study investigates the possible protective effects of montelukast (MNT) against lipopolysaccharide (LPS)-induced cardiac injury, in comparison to dexamethasone (DEX), a standard anti-inflammatory. Male Sprague Dawley rats (160-180 g) were assigned to five groups (n = 8/group): (1) control; (2) LPS (10 mg/kg, intraperitoneal (i.p.)); (3) LPS + MNT (10 mg/kg, per os (p.o.)); (4) LPS + MNT (20 mg/kg, p.o.); and (5) LPS + DEX (1 mg/kg, i.p.). Twenty-four hours after LPS injection, heart/body weight (BW) ratio and percent survival of rats were determined. Serum total protein, creatine kinase muscle/brain (CK-MB), alkaline phosphatase (ALP), and lactate dehydrogenase (LDH) activities were measured. Heart samples were taken for histological assessment and for determination of malondialdehyde (MDA) and glutathione (GSH) contents. Cardiac tumor necrosis factor α (TNF-α) expression was evaluated immunohistochemically. LPS significantly increased heart/BW ratio, serum CK-MB, ALP, and LDH activities and decreased percent survival and serum total protein levels. MDA content increased in heart tissues with a concomitant reduction in GSH content. Immunohistochemical staining of heart specimens from LPS-treated rats revealed high expression of TNF-α. MNT significantly reduced percent mortality and suppressed the release of inflammatory and oxidative stress markers when compared with LPS group. Additionally, MNT effectively preserved tissue morphology as evidenced by histological evaluation. MNT (20 mg/kg) was more effective in alleviating LPS-induced heart injury when compared with both MNT (10 mg/kg) and DEX (1 mg/kg), as evidenced by decrease in positive staining by TNF-α immunohistochemically, decrease MDA, and increase GSH content in heart tissue. This study demonstrates that MNT might have cardioprotective effects against the inflammatory process during endotoxemia. This effect can be attributed to its antioxidant and/or anti-inflammatory properties.
Collapse
Affiliation(s)
- A E Khodir
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Delta University, Mansoura, Egypt
| | - H A Ghoneim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - M A Rahim
- Urology and Nephrology Center, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - G M Suddek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
33
|
İçer M, Zengin Y, Gunduz E, Dursun R, Durgun HM, Turkcu G, Yuksel H, Üstündağ M, Guloglu C. Is montelukast as effective as N-acetylcysteine in hepatic injury due to acetaminophen intoxication in rats? ACTA ACUST UNITED AC 2016; 68:55-9. [DOI: 10.1016/j.etp.2015.09.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 08/13/2015] [Accepted: 09/18/2015] [Indexed: 12/19/2022]
|
34
|
Dilek F, Ozkaya E, Kocyigit A, Yazici M, Guler EM, Dundaroz MR. Plasma total thiol pool in children with asthma: Modulation during montelukast monotherapy. Int J Immunopathol Pharmacol 2015; 29:84-9. [PMID: 26684630 DOI: 10.1177/0394632015621563] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 11/09/2015] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Inflammation, which is a hallmark of asthma, is one of the main sources of oxidative stress in the human body. Thiols are powerful antioxidants that protect cells against the consequences of oxidative stress. We aimed to investigate whether asthma and montelukast monotherapy affect the total plasma thiol pool in children. METHODS A total of 60 children with asthma and 35 healthy controls participated in the study. Group I consisted of newly diagnosed asthmatics who did not have regular anti-asthmatic therapy previously. Group II consisted of patients who had been undertaking montelukast monotherapy regularly for at least 4 months. Plasma total antioxidant status (TAS) and plasma total thiol (PTT) were measured using spectrophotometric methods. RESULTS Bronchial asthma patients in both groups I and II had decreased median TAS levels compared with the control group (1.59 [interquartile range, 1.04-1.70] and 1.67 [1.50-1.75] vs. 2.98 [2.76-3.16] Trolox equiv./L, respectively; P<0.001). Group I had decreased PTT concentrations compared with the control group (0.18 [0.16-0.20] vs. 0.21 [0.19-0.22] mmol/L; P<0.001), and group II had similar PTT levels to the control group (0.20 [0.17-0.22] mmol/L; P>0.05). In addition, the median TAS and PTT levels for groups I and II were not statistically different (P>0.05). There was a positive correlation between TAS and PTT levels (rho=0.38, P<0.05) in group I. CONCLUSION In order to balance the oxidative stress, both TAS and PTT which are markers of the antioxidant system are reduced in children with asthma. Montelukast monotherapy can limit oxidative stress and thus restore PTT levels but not TAS levels in asthmatic children.
Collapse
Affiliation(s)
- Fatih Dilek
- Bezmialem Vakif University Medical Faculty, Department of Pediatrics, Division of Pediatric Allergy and Immunology, Fatih, Istanbul, Turkey
| | - Emin Ozkaya
- Bezmialem Vakif University Medical Faculty, Department of Pediatrics, Division of Pediatric Allergy and Immunology, Fatih, Istanbul, Turkey
| | - Abdurrahim Kocyigit
- Bezmialem Vakif University Medical Faculty, Department of Clinical Biochemistry, Fatih, Istanbul, Turkey
| | - Mebrure Yazici
- Bezmialem Vakif University Medical Faculty, Department of Pediatrics, Division of Pediatric Allergy and Immunology, Fatih, Istanbul, Turkey
| | - Eray Metin Guler
- Bezmialem Vakif University Medical Faculty, Department of Pediatrics, Division of Pediatric Allergy and Immunology, Fatih, Istanbul, Turkey
| | - Mehmet Rusen Dundaroz
- Bezmialem Vakif University Medical Faculty, Department of Pediatrics, Division of Pediatric Allergy and Immunology, Fatih, Istanbul, Turkey
| |
Collapse
|
35
|
CysLT 2 receptor mediates lipopolysaccharide-induced microglial inflammation and consequent neurotoxicity in vitro. Brain Res 2015; 1624:433-445. [DOI: 10.1016/j.brainres.2015.08.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 07/17/2015] [Accepted: 08/07/2015] [Indexed: 01/01/2023]
|
36
|
Garcia IJP, Kinoshita PF, Scavone C, Mignaco JA, de Oliveira Barbosa LA, de Lima Santos H. Ouabain Modulates the Lipid Composition of Hippocampal Plasma Membranes from Rats with LPS-induced Neuroinflammation. J Membr Biol 2015; 248:1191-8. [DOI: 10.1007/s00232-015-9840-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 09/04/2015] [Indexed: 12/21/2022]
|
37
|
Dilek F, Ozkaya E, Kocyigit A, Yazici M, Kesgin S, Gedik AH, Cakir E. Effect of montelukast monotherapy on oxidative stress parameters and DNA damage in children with asthma. Int Arch Allergy Immunol 2015; 167:119-26. [PMID: 26303984 DOI: 10.1159/000436967] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 06/11/2015] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND There is ample knowledge reported in the literature about the role of oxidative stress in asthma pathogenesis. It is also known that the interaction of reactive oxygen species with DNA may result in DNA strand breaks. The aim of this study was to investigate if montelukast monotherapy affects oxidative stress and DNA damage parameters in a population of pediatric asthma patients. METHODS Group I consisted of 31 newly diagnosed asthmatic patients not taking any medication, and group II consisted of 32 patients who had been treated with montelukast for at least 6 months. Forty healthy control subjects were also enrolled in the study. Plasma total oxidant status (TOS) and total antioxidant status (TAS) were measured to assess oxidative stress. DNA damage was assessed by means of alkaline comet assay. RESULTS The patients in both group I and group II had statistically significant higher plasma TOS (13.1 ± 4 and 11.1 ± 4.1 μmol H2O2 equivalent/liter, respectively) and low TAS levels (1.4 ± 0.5 and 1.5 ± 0.5 mmol Trolox equivalent/liter, respectively) compared with the control group (TOS: 6.3 ± 3.5 μmol H2O2 equivalent/liter and TAS: 2.7 ± 0.6 mmol Trolox equivalent/liter; p < 0.05). DNA damage was 18.2 ± 1.0 arbitrary units (a.u.) in group I, 16.7 ± 8.2 a.u. in group II and 13.7 ± 3.4 a.u. in the control group. There were statistically significant differences only between group I and the control group (p < 0.05). CONCLUSIONS According to the findings, montelukast therapy makes only minimal but not statistically significant improvement in all TOS, TAS and DNA damage parameters.
Collapse
Affiliation(s)
- Fatih Dilek
- Divisions of Pediatric Allergy and Immunology, Department of Pediatrics, Bezmialem Vakif University Medical Faculty, Istanbul, Turkey
| | | | | | | | | | | | | |
Collapse
|
38
|
Kuru S, Kismet K, Barlas AM, Tuncal S, Celepli P, Surer H, Ogus E, Ertas E. The Effect of Montelukast on Liver Damage in an Experimental Obstructive Jaundice Model. VISZERALMEDIZIN 2015; 31:131-8. [PMID: 26989383 PMCID: PMC4789965 DOI: 10.1159/000375434] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background Montelukast is a cysteinyl-leukotriene type 1 (CysLT1) selective receptor antagonist. In recent years, investigations have shown that montelukast possesses secondary anti-inflammatory activities and also antioxidant effects. For this reason, we aimed to determine the possible effects of montelukast on liver damage in experimental obstructive jaundice. Methods 30 Wistar-Albino male rats were randomized and divided into three groups of 10 animals each: group I, sham-operated; group II, ligation and division of the common bile duct (BDL) followed by daily intraperitoneal injection of 1 ml of saline; group III, BDL followed by daily intraperitoneal injection of 10 mg/kg montelukast dissolved in saline. The animals were killed on postoperative day 7 by high-dose diethyl ether inhalation. Blood and liver samples were taken for examination. Results In this study, liver malondialdehyde (MDA) (p = 0.001), myeloperoxidase (p = 0.003), and total sulfhydryl (SH) (p = 0.009) were found to be significantly different between the BDL + montelukast and the BDL groups. Plasma total SH (p = 0.002) and MDA (p = 0.027) values were also statistically different between these groups. Statistical analyses of histological activity index scores showed that the histopathological damage in the BDL + montelukast group was significantly less than the damage in the control group (p < 0.05 for all pathological parameters). Conclusion According to the results of this study, montelukast showed a significant hepatoprotective effect in this experimental obstructive jaundice model, which might be due to its antioxidant and anti-inflammatory activities.
Collapse
Affiliation(s)
- Serdar Kuru
- Department of General Surgery, Ankara Training and Research Hospital, Ankara, Turkey
| | - Kemal Kismet
- Department of General Surgery, Ankara Training and Research Hospital, Ankara, Turkey
| | - Aziz M Barlas
- Department of General Surgery, Ankara Training and Research Hospital, Ankara, Turkey
| | - Salih Tuncal
- Department of General Surgery, Ankara Training and Research Hospital, Ankara, Turkey
| | - Pinar Celepli
- Department of Pathology, Aksaray State Hospital, Aksaray, Turkey
| | - Hatice Surer
- Department of Biochemistry, Ankara Training and Research Hospital, Ankara, Turkey
| | - Elmas Ogus
- Department of Biochemistry, Ankara Training and Research Hospital, Ankara, Turkey
| | - Ertugrul Ertas
- Department of General Surgery, Ankara Training and Research Hospital, Ankara, Turkey
| |
Collapse
|
39
|
Shukla P, Verma AK, Dewangan J, Rath SK, Mishra PR. Chitosan coated curcumin nanocrystals augment pharmacotherapy via improved pharmacokinetics and interplay of NFκB, Keap1 and Nrf2 expression in Gram negative sepsis. RSC Adv 2015. [DOI: 10.1039/c5ra06786c] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Chi-CUR-NC provides a viable approach for reducing mortality in cIAI associated Gram negative sepsis.
Collapse
Affiliation(s)
- Prashant Shukla
- Pharmaceutics Division
- Central Drug Research Institute
- Lucknow 226031
- India
| | - Ajeet K. Verma
- Toxicology Division
- Central Drug Research Institute
- Lucknow 226031
- India
| | - Jayant Dewangan
- Toxicology Division
- Central Drug Research Institute
- Lucknow 226031
- India
| | - Srikanta K. Rath
- Toxicology Division
- Central Drug Research Institute
- Lucknow 226031
- India
| | - Prabhat R. Mishra
- Pharmaceutics Division
- Central Drug Research Institute
- Lucknow 226031
- India
| |
Collapse
|
40
|
Effects of S-allyl cysteine on lung and liver tissue in a rat model of lipopolysaccharide-induced sepsis. Naunyn Schmiedebergs Arch Pharmacol 2014; 388:327-35. [DOI: 10.1007/s00210-014-1076-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 11/25/2014] [Indexed: 10/24/2022]
|
41
|
Khodir AE, Ghoneim HA, Rahim MA, Suddek GM. Montelukast reduces sepsis-induced lung and renal injury in rats. Can J Physiol Pharmacol 2014; 92:839-47. [PMID: 25243774 DOI: 10.1139/cjpp-2014-0191] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This study was undertaken to examine the effects of montelukast (MNT) on lung and kidney injury in lipopolysaccharide (LPS) induced systemic inflammatory response. Rats were randomized into 5 groups (n = 8 rats/group): (i) Control; (ii) LPS treated (10 mg/kg body mass, by intraperitoneal (i.p.) injection); (iii) LPS + MNT (10 mg/kg, per oral (p.o.)); (iv) LPS + MNT (20 mg/kg, p.o); (v) LPS + dexamethasone (DEX; 1 mg/kg, i.p.). Twenty-four hours after sepsis was induced, the lung or kidney:body mass ratio and percent survival of rats were determined. Creatinine, blood urea nitrogen (BUN), albumin, total protein, and LDH activity were measured. Lung and kidney samples were taken for histological assessment and for determination of their malondialdehyde (MDA) and glutathione (GSH) contents. The expression of tumour necrosis factor α (TNF-α) in tissue was evaluated immunohistochemically. LPS significantly increased the organ:body mass ratio, serum creatinine, BUN, and LDH, and decreased serum albumin and total protein levels. MDA levels increased in lung and kidney tissues after treatment with LPS, and there was a concomitant reduction in GSH levels. Immunohistochemical staining of lung and kidney specimens from LPS-treated rats revealed high expression levels of TNF-α. MNT suppresses the release of inflammatory and oxidative stress markers. Additionally, MNT effectively preserved tissue morphology as evidenced by histological evaluation. These results demonstrate that MNT could have lung and renoprotective effects against the inflammatory process during endotoxemia. This effect can be attributed to its antioxidant and (or) anti-inflammatory properties.
Collapse
Affiliation(s)
- Ahmed E Khodir
- a Department of Pharmacology and Toxicology, Faculty of Pharmacy, Delta University, Mansoura, Egypt
| | | | | | | |
Collapse
|
42
|
Shukla P, Dwivedi P, Gupta PK, Mishra PR. Optimization of novel tocopheryl acetate nanoemulsions for parenteral delivery of curcumin for therapeutic intervention of sepsis. Expert Opin Drug Deliv 2014; 11:1697-712. [PMID: 25046368 DOI: 10.1517/17425247.2014.932769] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVE The objective of this study is to develop a nanostructured parenteral delivery system, laden with curcumin (CUR), for the therapeutic intervention of sepsis and associated pathologies. METHODS Nanoemulsions were fabricated using sonication and speed homogenization. Size and zeta potential were evaluated by dynamic light scattering and transmission electron microscopy analysis. Pharmacodynamic and pharmacokinetic studies were performed on a rat model of lipopolysaccharide (LPS)-induced sepsis. RESULTS The drug content of optimized nanoemulsion (F5) formulation (particle size 246 ± 08 nm, polydispersity index (PDI) of 0.120, zeta potential of -41.1 ± 1.2 mV) was found to be 1.25 mg/ml. In vitro release studies demonstrated that F5 was able to sustain the release of CUR for up to 24 h. Minimal hemolysis and cellular toxicity demonstrated its suitability for intravenous administration. Significant reduction of inflammatory mediator levels was mediated through enhanced uptake by in RAW 264.7 and THP-1 in absence/presence of LPS. Nanoemulsion resulted in an improvement of plasma concentration (AUCF5/AUC CUR = 8.80) and tissue distribution of CUR in rats leading to a reduction in LPS-induced lung and liver injury due to less neutrophil migration, reduced TNF-α levels and oxidative stress (demonstrated by levels of lipid peroxides as well as carbonylated proteins) as confirmed by histopathological studies. CONCLUSION The findings suggest that the therapeutic performance (i.e., reduction in oxidative damage in tissues) of CUR can be enhanced by employing tocol acetate nanoemulsions (via improving pharmacokinetics and tissue distribution) as a platform for drug delivery in sepsis-induced organ injury.
Collapse
Affiliation(s)
- Prashant Shukla
- CSIR-Central Drug Research Institute, Pharmaceutics Division, Preclinical south PCS 002/011 , Jankipuram Extension, Sitapur Road, Lucknow, 226031 , India +91 9415753171 ;
| | | | | | | |
Collapse
|
43
|
Zhang XY, Chen L, Yang Y, Xu DM, Zhang SR, Li CT, Zheng W, Yu SY, Wei EQ, Zhang LH. Regulation of rotenone-induced microglial activation by 5-lipoxygenase and cysteinyl leukotriene receptor 1. Brain Res 2014; 1572:59-71. [DOI: 10.1016/j.brainres.2014.05.026] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 04/15/2014] [Accepted: 05/13/2014] [Indexed: 12/11/2022]
|
44
|
Ker YB, Peng CC, Chang WL, Chyau CC, Peng RY. Hepatoprotective bioactivity of the glycoprotein, antrodan, isolated from Antrodia cinnamomea mycelia. PLoS One 2014; 9:e93191. [PMID: 24690763 PMCID: PMC3972158 DOI: 10.1371/journal.pone.0093191] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 03/03/2014] [Indexed: 01/19/2023] Open
Abstract
Antrodan, a protein-bound polysaccharide isolated from Antrodia cinnamomea mycelia, was demonstrated to exhibit significant anti-inflammatory bioactivity in vitro. However, its role in hepatic injury in vivo still remains unclear. We hypothesized that antrodan may have beneficial hepatoprotective effects. To verify this, a lipopolysaccharide (LPS)-Sprague-Dawley rat model was used. Antrodan protected against liver damage by suppressing LPS-stimulated serum glutamine-oxaloacetic transaminase (GOT), glutamic-pyruvic transaminase (GPT), interleukin (IL)-6, hepatic thiobarbituric acid reactive substances (TBARS), nitric oxide (NO), inducible NO synthase (iNOS) and nuclear factor (NF)-κB, and by effectively alleviating the downregulated hepatic superoxide dismutase (SOD), catalase, and glutathione peroxidase (GSH-Px). Hematoxylin-eosin staining revealed that antrodan at a dosage of 40 mg/kg was able to alleviate LPS-induced liver damage to a normal status. In addition, we identified the partial main architectural backbone of antrodan to have a 1 → 3 linear β-glycosidic backbone of mannan linked by β-1 → 3 glucosidic branches. Conclusively, antrodan can potentially ameliorate liver damage in vivo by suppressing oxidative stress induced by LPS.
Collapse
Affiliation(s)
- Yaw-Bee Ker
- Department of Applied Food Technology, Hungkuang University, Taichung, Taiwan, ROC
| | - Chiung-Chi Peng
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan, ROC
| | - Wan-Lin Chang
- Research Institute of Biotechnology, Hungkuang University, Taichung, Taiwan, ROC
| | - Charng-Cherng Chyau
- Research Institute of Biotechnology, Hungkuang University, Taichung, Taiwan, ROC
| | - Robert Y. Peng
- Research Institute of Biotechnology, Hungkuang University, Taichung, Taiwan, ROC
| |
Collapse
|
45
|
Anti-inflammatuar and anti-oxidative effects of Nigella sativa L.: 18FDG-PET imaging of inflammation. Mol Biol Rep 2014; 41:2827-34. [DOI: 10.1007/s11033-014-3137-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 01/11/2014] [Indexed: 11/26/2022]
|
46
|
Wang D, Yin Y, Yao Y. Advances in sepsis-associated liver dysfunction. BURNS & TRAUMA 2014; 2:97-105. [PMID: 27602369 PMCID: PMC5012093 DOI: 10.4103/2321-3868.132689] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 04/14/2014] [Accepted: 04/24/2014] [Indexed: 05/06/2023]
Abstract
Recent studies have revealed liver dysfunction as an early event in sepsis. Sepsis-associated liver dysfunction is mainly resulted from systemic or microcirculatory disturbances, spillovers of bacteria and endotoxin (lipopolysaccharide, LPS), and subsequent activation of inflammatory cytokines as well as mediators. Three main cell types of the liver which contribute to the hepatic response in sepsis are Kupffer cells (KCs), hepatocytes and liver sinusoidal endothelial cells (LSECs). In addition, activated neutrophils, which are also recruited to the liver and produce potentially destructive enzymes and oxygen-free radicals, may further enhance acute liver injury. The clinical manifestations of sepsis-associated liver dysfunction can roughly be divided into two categories: Hypoxic hepatitis and jaundice. The latter is much more frequent in the context of sepsis. Hepatic failure is traditionally considered as a late manifestation of sepsis-induced multiple organ dysfunction syndrome. To date, no specific therapeutics for sepsis-associated liver dysfunction are available. Treatment measure is mainly focused on eradication of the underlying infection and management for severe sepsis. A better understanding of the pathophysiology of liver response in sepsis may lead to further increase in survival rates.
Collapse
Affiliation(s)
- Dawei Wang
- Department of Microbiology and Immunology, Burns Institute, First Hospital Affiliated to the Chinese PLA General Hospital, No.51 Fucheng Road, Haidian District, Beijing, 100048 China
- Department of ICU, Weihai Municipal Hospital, Weihai, Shandong, China
| | - Yimei Yin
- Department of ICU, Weihai Municipal Hospital, Weihai, Shandong, China
| | - Yongming Yao
- Department of Microbiology and Immunology, Burns Institute, First Hospital Affiliated to the Chinese PLA General Hospital, No.51 Fucheng Road, Haidian District, Beijing, 100048 China
| |
Collapse
|
47
|
Shin IS, Jeon WY, Shin HK, Lee MY. Effects of montelukast on subepithelial/peribronchial fibrosis in a murine model of ovalbumin induced chronic asthma. Int Immunopharmacol 2013; 17:867-73. [PMID: 24126112 DOI: 10.1016/j.intimp.2013.09.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 09/12/2013] [Accepted: 09/13/2013] [Indexed: 11/26/2022]
Abstract
Montelukast, a leukotriene receptor antagonist, is used commercially as a maintenance treatment for asthma and to relieve allergic symptoms. In this study, we evaluated the protective effects of montelukast against the airway inflammation and fibrosis using a murine model of ovalbumin (OVA) induced chronic asthma. The animals received OVA challenge three times a week for 4 weeks. Montelukast (30 mg/kg) was administrated orally once a day for 4 weeks. The administration of montelukast caused a reduction in elevated interleukin (IL)-4, IL-13, eotaxin, immunoglobulin (Ig), inflammatory cell infiltration into the airways, and mucus production after repeated OVA challenges. To investigate the antifibrotic mechanism of montelukast, we examined the expression of profibrotic mediators, including vascular endothelial growth factor (VEGF), transforming growth factor (TGF)-β1, and Smad3 proteins in the lung tissue using western blotting and immunohistochemistry. The administration of montelukast reduced the overexpression of profibrotic proteins in the lung tissue, which was confirmed by immnunohistochemistry. These results are consistent with a histopathological examination of lung tissue with Masson's trichrome stain. In conclusion, the administration of montelukast reduced airway inflammation and pulmonary fibrosis by reducing the release of Th2 cytokines and the expression of VEGF, TGF-β1/Smad3 in the lung tissue.
Collapse
Affiliation(s)
- In Sik Shin
- Basic Herbal Medicine Research Group, Korea Institute of Oriental Medicine, 483 Expo-ro, Yusung-gu, Daejeon 305-811, Republic of Korea
| | | | | | | |
Collapse
|
48
|
Zhang XY, Wang XR, Xu DM, Yu SY, Shi QJ, Zhang LH, Chen L, Fang SH, Lu YB, Zhang WP, Wei EQ. HAMI 3379, a CysLT2 receptor antagonist, attenuates ischemia-like neuronal injury by inhibiting microglial activation. J Pharmacol Exp Ther 2013; 346:328-41. [PMID: 23750020 DOI: 10.1124/jpet.113.203604] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2025] Open
Abstract
The cysteinyl leukotrienes (CysLTs) are inflammatory mediators closely associated with neuronal injury after brain ischemia through the activation of their receptors, CysLT1R and CysLT2R. Here we investigated the involvement of both receptors in oxygen-glucose deprivation/recovery (OGD/R)-induced ischemic neuronal injury and the effect of the novel CysLT2R antagonist HAMI 3379 [3-({[(1S,3S)-3- carboxycyclohexyl]amino}carbonyl)-4-(3-{4-[4-(cyclo-hexyloxy)butoxy]phenyl}propoxy)benzoic acid] in comparison with the CysLT1R antagonist montelukast. In primary neurons, neither the nonselective agonist leukotriene D4 (LTD4) nor the CysLT2R agonist N-methyl-leukotriene C4 (NMLTC4) induced neuronal injury, and HAMI 3379 did not affect OGD/R-induced neuronal injury. However, in addition to OGD/R, LTD4 and NMLTC4 induced cell injury and neuronal loss in mixed cultures of cortical cells, and neuronal loss and necrosis in neuron-microglial cocultures. Moreover, they induced phagocytosis and cytokine release (interleukin-1β and tumor necrosis factor-α) from primary microglia, and conditioned medium from the treated microglia induced neuronal necrosis. HAMI 3379 inhibited all of these responses, and its effects were the same as those of CysLT2R interference by CysLT2R short hairpin RNA, indicating CysLT2R dependence. In comparison, montelukast moderately inhibited OGD/R-induced primary neuronal injury and most OGD/R- and LTD4-induced (but not NMLTC4-induced) responses in mixed cultures, cocultures, and microglia. The effects of montelukast were both dependent and independent of CysLT1Rs because interference by CysLT1R small interfering RNA had limited effects on neuronal injury in neuron-microglial cocultures and on cytokine release from microglia. Our findings indicated that HAMI 3379 effectively blocked CysLT2R-mediated microglial activation, thereby indirectly attenuating ischemic neuronal injury. Therefore, CysLT2R antagonists may represent a new type of therapeutic agent in the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Xia-Yan Zhang
- Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Kishida T, Onozato T, Kanazawa T, Tanaka S, Kuroda J. Increase in covalent binding of 5-hydroxydiclofenac to hepatic tissues in rats co-treated with lipopolysaccharide and diclofenac: involvement in the onset of diclofenac-induced idiosyncratic hepatotoxicity. J Toxicol Sci 2013. [PMID: 23208430 DOI: 10.2131/jts.37.1143] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Diclofenac (DCF), a nonsteroidal anti-inflammatory drug, is well known to induce idiosyncratic hepatotoxicity. Although there remains much to be elucidated about its onset mechanism, it is widely accepted as a hypothesis that idiosyncratic hepatotoxicity arises from a specific immune response to a hapten formed by covalent binding of drugs or their reactive metabolites to hepatic tissues. In this study, we investigated the effects of covalent binding of DCF reactive metabolites to hepatic tissues using a rat model of liver injury induced by co-treatment with lipopolysaccharide (LPS) at a non-hepatotoxic dose. In studies done in vitro using hepatic microsomes prepared from rats treated with LPS alone, 4'- and 5-hydroxylation activities on DCF metabolism and adducts of reactive metabolites to dansyl glutathione (dGSH) were markedly decreased associated with a decrease in total P450 content. However, in studies done in vivo, the LPS/DCF co-treatment significantly increased adducts of 5-hydroxydiclofenac (5-OH-DCF) to rat hepatic tissues and delayed the elimination of 5-OH-DCF from plasma. Furthermore, we investigated the effects of co-treatment on hepatic GSH level in rats. A decrease of hepatic GSH was observed with the LPS/DCF co-treatment but not with LPS or DCF alone. The results suggest that covalent binding of reactive metabolites via 5-OH-DCF to hepatic tissues may play an important role in the onset of DCF-induced idiosyncratic hepatotoxicity, especially under decreased GSH conditions.
Collapse
Affiliation(s)
- Tomoyuki Kishida
- Safety Research Laboratory, R&D, Kissei Pharmaceutical Co., Ltd, Nagano, Japan.
| | | | | | | | | |
Collapse
|
50
|
Toufekoula C, Papadakis V, Tsaganos T, Routsi C, Orfanos SE, Kotanidou A, Carrer DP, Raftogiannis M, Baziaka F, Giamarellos-Bourboulis EJ. Compartmentalization of lipid peroxidation in sepsis by multidrug-resistant gram-negative bacteria: experimental and clinical evidence. Crit Care 2013; 17:R6. [PMID: 23324310 PMCID: PMC4056356 DOI: 10.1186/cc11930] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 01/09/2013] [Indexed: 11/10/2022] Open
Abstract
Introduction Recent evidence suggests a link between excess lipid peroxidation and specific organ failures in sepsis. No study has been performed in sepsis by multidrug-resistant (MDR) Gram-negative bacteria. Methods Lethal sepsis was induced in rats by the intraperitoneal injection of one MDR isolate of Pseudomonas aeruginosa. Produced malondialdehyde (MDA) was measured in tissues 5 hours after bacterial challenge with the thiobarbiturate assay followed by high-performance liquid chromatography (HPLC) analysis. Results were compared with those from a cohort of patients with ventilator-associated pneumonia (VAP) and sepsis by MDR Gram-negative bacteria. More precisely, serum MDA was measured on 7 consecutive days, and it was correlated with clinical characteristics. Results MDA of septic rats was greater in the liver, spleen, and aortic wall, and it was lower in the right kidney compared with sham operated-on animals. Findings were confirmed by the studied cohort. Circulating MDA was greater in patients with hepatic dysfunction and acute respiratory distress syndrome (ARDS) compared with patients without any organ failures. The opposite was found for patients with acute renal dysfunction. No differences were found between patients with ARDS without or with cardiovascular (CV) failure and patients without any organ failure. Serial measurements of MDA in serum of patients indicated that levels of MDA were greater in survivors of hepatic dysfunction and ARDS and lower in survivors of acute renal dysfunction. Conclusions Animal findings and results of human sepsis are complementary, and they suggest a compartmentalization of lipid peroxidation in systemic infections by MDR gram-negative bacteria.
Collapse
|