1
|
Hu X, Liang H, Li F, Zhang R, Zhu Y, Zhu X, Xu Y. Necrotizing enterocolitis: current understanding of the prevention and management. Pediatr Surg Int 2024; 40:32. [PMID: 38196049 PMCID: PMC10776729 DOI: 10.1007/s00383-023-05619-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/15/2023] [Indexed: 01/11/2024]
Abstract
Necrotizing enterocolitis (NEC) is one of the diseases in neonates, with a high morbidity and mortality rate, especially in preterm infants. This review aimed to briefly introduce the latest epidemiology, susceptibility factors, and clinical diagnosis and presentation of NEC. We also organized new prevention strategies by risk factors according to different pathogeneses and then discussed new treatment methods based on Bell's staging and complications, and the classification of mild to high severity based on clinical and imaging manifestations. Such a generalization will help clinicians and researchers to gain a deeper understanding of the disease and to conduct more targeted classification, grading prevention, and exploration. We focused on prevention and treatment of the early and suspected stages of NEC, including the discovery of novel biomarkers and drugs to control disease progression. At the same time, we discussed its clinical application, future development, and shortcomings.
Collapse
Affiliation(s)
- Xiaohan Hu
- Institute of Pediatric, Children's Hospital of Soochow University, 92 Zhong Nan Street, Suzhou City, Jiangsu Province, China
- Department of Neonatology, Children's Hospital of Soochow University, 92 Zhong Nan Street, Suzhou City, Jiangsu Province, China
| | - Hansi Liang
- Jiangsu Key Laboratory of Gastrointestinal Tumor Immunology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Fang Li
- Department of Human Anatomy and Histology and Embryology, Soochow University, Suzhou, Jiangsu Province, China
| | - Rui Zhang
- Institute of Pediatric, Children's Hospital of Soochow University, 92 Zhong Nan Street, Suzhou City, Jiangsu Province, China
| | - Yanbo Zhu
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Xueping Zhu
- Institute of Pediatric, Children's Hospital of Soochow University, 92 Zhong Nan Street, Suzhou City, Jiangsu Province, China.
- Department of Neonatology, Children's Hospital of Soochow University, 92 Zhong Nan Street, Suzhou City, Jiangsu Province, China.
| | - Yunyun Xu
- Institute of Pediatric, Children's Hospital of Soochow University, 92 Zhong Nan Street, Suzhou City, Jiangsu Province, China.
| |
Collapse
|
2
|
Abstract
Human breast milk is the optimal nutrition for all infants and is comprised of many bioactive and immunomodulatory components. The components in human milk, such as probiotics, human milk oligosaccharides (HMOs), extracellular vesicles, peptides, immunoglobulins, growth factors, cytokines, and vitamins, play a critical role in guiding neonatal development beyond somatic growth. In this review, we will describe the bioactive factors in human milk and discuss how these factors shape neonatal immunity, the intestinal microbiome, intestinal development, and more from the inside out.
Collapse
Affiliation(s)
- Sarah F Andres
- Department of Pediatrics, Pediatric GI Division, School of Medicine, Oregon Health and Science University, Portland, OR 97229, United States
| | - Brian Scottoline
- Division of Neonatology, Department of Pediatrics, Oregon Health & Science University, Portland, OR 97239, United States
| | - Misty Good
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, University of North Carolina at Chapel Hill, 101 Manning Drive, Campus Box 7596, Chapel Hill, NC 27599, United States.
| |
Collapse
|
3
|
Wu Y, Liu Z, Tang D, Liu H, Luo S, Stinchcombe TE, Glass C, Su L, Lin L, Christiani DC, Wang Q, Wei Q. Potentially functional variants of HBEGF and ITPR3 in GnRH signaling pathway genes predict survival of non-small cell lung cancer patients. Transl Res 2021; 233:92-103. [PMID: 33400994 PMCID: PMC8184605 DOI: 10.1016/j.trsl.2020.12.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 12/08/2020] [Accepted: 12/30/2020] [Indexed: 12/17/2022]
Abstract
The gonadotropin-releasing hormone (GnRH) signaling pathway controls reproductive functions and cancer growth and progression. However, few studies investigated roles of genetic variants of GnRH pathway genes in survival of patients with non-small cell lung cancer (NSCLC). Therefore, we first evaluated associations between 22,528 single-nucleotide polymorphisms (SNPs) in 101 GnRH pathway genes and survival of 1185 NSCLC patients using a dataset from Prostate, Lung, Colorectal and Ovarian Cancer Screening Trial. We found 572 SNPs to be significantly associated with overall survival (OS) of NSCLC (P ≤ 0.05, Bayesian false discovery probability ≤0.80). We then validated these SNPs in another dataset with 984 NSCLC patients from the Harvard Lung Cancer Susceptibility Study. Finally, two independent SNPs (HBEGF rs4150236G>A and ITPR3 rs116454384C>T) remained significantly associated with NSCLC OS in the combined analysis with hazards ratios of 0.84 (95% confidence interval = 0.76-0.92, P = 0.0003) and 0.85 (0.78-0.94, 0.0012), respectively; their genetic score (the number of protective genotypes) was associated with a better OS and disease-specific survival (Ptrend = 0.0002 and 0.0001, respectively). Further expression quantitative trail loci analysis showed a significant correlation between ITPR3 rs116454384 T allele and an increased mRNA expression level in both whole blood and normal lung tissue, and high ITPR3 mRNA expression levels in tumors were associated with a better survival of NSCLC patients. Because ITPR3 mutations were rare in tumors, ITPR3 rs116454384C>T likely had an effect on cancer progression by regulating the gene expression. Therefore, genetic variants of HBEGF rs4150236G>A and ITPR3 rs116454384C>T may be predictors for NSCLC survival, but HBEGF rs4150236G>A functional relevance remains to be determined.
Collapse
Affiliation(s)
- Yufeng Wu
- Department of Internal Medicine, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China; Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina; Department of Population Health Sciences, Duke University School of Medicine, Durham, North Carolina
| | - Zhensheng Liu
- Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina; Department of Population Health Sciences, Duke University School of Medicine, Durham, North Carolina
| | - Dongfang Tang
- Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina; Department of Population Health Sciences, Duke University School of Medicine, Durham, North Carolina
| | - Hongliang Liu
- Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina; Department of Population Health Sciences, Duke University School of Medicine, Durham, North Carolina
| | - Sheng Luo
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, North Carolina
| | - Thomas E Stinchcombe
- Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina; Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Carolyn Glass
- Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina; Department of Pathology, Duke University School of Medicine, Durham, North Carolina
| | - Li Su
- Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts
| | - Lijuan Lin
- Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts; Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts
| | - David C Christiani
- Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts; Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts; Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Qiming Wang
- Department of Internal Medicine, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China.
| | - Qingyi Wei
- Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina; Department of Population Health Sciences, Duke University School of Medicine, Durham, North Carolina; Department of Medicine, Duke University Medical Center, Durham, North Carolina.
| |
Collapse
|
4
|
Chen J, Bekale LA, Khomtchouk KM, Xia A, Cao Z, Ning S, Knox SJ, Santa Maria PL. Locally administered heparin-binding epidermal growth factor-like growth factor reduces radiation-induced oral mucositis in mice. Sci Rep 2020; 10:17327. [PMID: 33060741 PMCID: PMC7567084 DOI: 10.1038/s41598-020-73875-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 09/21/2020] [Indexed: 01/28/2023] Open
Abstract
Oral mucositis refers to lesions of the oral mucosa observed in patients with cancer being treated with radiation with or without chemotherapy, and can significantly affect quality of life. There is a large unmet medical need to prevent oral mucositis that can occur with radiation either alone or in combination with chemotherapy. We investigated the efficacy of locally administered heparin-binding epidermal growth factor-like growth factor (HB-EGF), a potent epithelial proliferation and migration stimulator of the oral mucosa as a potential therapy to prevent radiation induced oral mucositis. Using a single dose (20 Gy) of radiation to the oral cavity of female C57BL/6 J mice, we evaluated the efficacy of HB-EGF treatment (5 µl of 10 µg/ml) solution. The results show that HB-EGF delivered post radiation, significantly increased the area of epithelial thickness on the tongue (dorsal tongue (42,106 vs 53,493 µm2, p < 0.01), ventral tongue (30,793 vs 39,095 µm2, *p < 0.05)) compared to vehicle control, enhanced new epithelial cell division, and increased the quality and quantity of desmosomes in the oral mucosa measured in the tongue and buccal mucosa. This data provides the proof of concept that local administration of HB-EGF has the potential to be developed as a topical treatment to mitigate oral mucositis following radiation.
Collapse
Affiliation(s)
- Jing Chen
- Department of Otolaryngology, Head and Neck Surgery, Stanford University, 801 Welch Road, Stanford, CA, 94305-5739, USA
| | - Laurent A Bekale
- Department of Otolaryngology, Head and Neck Surgery, Stanford University, 801 Welch Road, Stanford, CA, 94305-5739, USA.
| | - Kelly M Khomtchouk
- Department of Otolaryngology, Head and Neck Surgery, Stanford University, 801 Welch Road, Stanford, CA, 94305-5739, USA
| | - Anping Xia
- Department of Otolaryngology, Head and Neck Surgery, Stanford University, 801 Welch Road, Stanford, CA, 94305-5739, USA
| | - Zhixin Cao
- Department of Otolaryngology, Head and Neck Surgery, Stanford University, 801 Welch Road, Stanford, CA, 94305-5739, USA
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Shoucheng Ning
- Department of Radiation Oncology, Stanford University, Stanford, CA, 94305, USA
| | - Susan J Knox
- Department of Radiation Oncology, Stanford University, Stanford, CA, 94305, USA
| | - Peter L Santa Maria
- Department of Otolaryngology, Head and Neck Surgery, Stanford University, 801 Welch Road, Stanford, CA, 94305-5739, USA.
| |
Collapse
|
5
|
Eckol Alleviates Intestinal Dysfunction during Suckling-to-Weaning Transition via Modulation of PDX1 and HBEGF. Int J Mol Sci 2020; 21:ijms21134755. [PMID: 32635412 PMCID: PMC7370175 DOI: 10.3390/ijms21134755] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 06/30/2020] [Accepted: 07/02/2020] [Indexed: 12/14/2022] Open
Abstract
Maintaining intestinal health in livestock is critical during the weaning period. The precise mechanisms of intestinal dysfunction during this period are not fully understood, although these can be alleviated by phlorotannins, including eckol. This question was addressed by evaluating the changes in gene expression and intestinal function after eckol treatment during suckling-to-weaning transition. The biological roles of differentially expressed genes (DEGs) in intestinal development were investigated by assessing intestinal wound healing and barrier functions, as well as the associated signaling pathways and oxidative stress levels. We identified 890 DEGs in the intestine, whose expression was altered by eckol treatment, including pancreatic and duodenal homeobox (PDX)1, which directly regulate heparin-binding epidermal growth factor-like growth factor (HBEGF) expression in order to preserve intestinal barrier functions and promote wound healing through phosphoinositide 3-kinase (PI3K)/AKT and P38 signaling. Additionally, eckol alleviated H2O2-induced oxidative stress through PI3K/AKT, P38, and 5’-AMP-activated protein kinase (AMPK) signaling, improved growth, and reduced oxidative stress and intestinal permeability in pigs during the weaning period. Eckol modulates intestinal barrier functions, wound healing, and oxidative stress through PDX/HBEGF, and improves growth during the suckling-to-weaning transition. These findings suggest that eckol can be used as a feed supplement in order to preserve the intestinal functions in pigs and other livestock during this process.
Collapse
|
6
|
Lee NM. Epidermal growth factor as a reliable marker of necrotizing enterocolitis in preterm neonates. Clin Exp Pediatr 2020; 63:133-134. [PMID: 32024341 PMCID: PMC7170783 DOI: 10.3345/kjp.2019.00409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 09/18/2019] [Indexed: 11/27/2022] Open
Affiliation(s)
- Na Mi Lee
- Department of Pediatrics, Chung-Ang University Hospital, College of Medicine, Chung-Ang University, Seoul, Korea
| |
Collapse
|
7
|
Nolan LS, Parks OB, Good M. A Review of the Immunomodulating Components of Maternal Breast Milk and Protection Against Necrotizing Enterocolitis. Nutrients 2019; 12:E14. [PMID: 31861718 PMCID: PMC7019368 DOI: 10.3390/nu12010014] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/05/2019] [Accepted: 12/17/2019] [Indexed: 02/06/2023] Open
Abstract
Breast milk contains immunomodulating components that are beneficial to newborns during maturation of their immune system. Human breast milk composition is influenced by an infant's gestational and chronological age, lactation stage, and the mother and infant's health status. Major immunologic components in human milk, such as secretory immunoglobulin A (IgA) and growth factors, have a known role in regulating gut barrier integrity and microbial colonization, which therefore protect against the development of a life-threatening gastrointestinal illness affecting newborn infants called necrotizing enterocolitis (NEC). Breast milk is a known protective factor in the prevention of NEC when compared with feeding with commercial formula. Breast milk supplements infants with human milk oligosaccharides, leukocytes, cytokines, nitric oxide, and growth factors that attenuate inflammatory responses and provide immunological defenses to reduce the incidence of NEC. This article aims to review the variety of immunomodulating components in breast milk that protect the infant from the development of NEC.
Collapse
Affiliation(s)
- Lila S. Nolan
- Department of Pediatrics, Division of Newborn Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA;
| | - Olivia B. Parks
- University of Pittsburgh School of Medicine, Medical Scientist Training Program, Pittsburgh, PA 15213, USA;
| | - Misty Good
- Department of Pediatrics, Division of Newborn Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA;
| |
Collapse
|
8
|
Meister AL, Doheny KK, Travagli RA. Necrotizing enterocolitis: It's not all in the gut. Exp Biol Med (Maywood) 2019; 245:85-95. [PMID: 31810384 DOI: 10.1177/1535370219891971] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Necrotizing enterocolitis is the leading cause of death due to gastrointestinal disease in preterm neonates, affecting 5–12% of neonates born at a very-low birth weight. Necrotizing enterocolitis can present with a slow and insidious onset, with some neonates displaying early symptoms such as feeding intolerance. Treatment during the early stages includes bowel rest and careful use of antibiotics, but surgery is required if pneumoperitoneum and intestinal perforation occur. Mortality rates among neonates requiring surgery are estimated to be 20–30%, mandating the development of non-invasive and reliable biomarkers to predict necrotizing enterocolitis before the onset of clinical signs. Such biomarkers would allow at-risk neonates to receive maximal preventative therapies such as careful nutritional consideration, probiotics, and increased skin-to-skin care.Impact statementNecrotizing enterocolitis (NEC) is a devastating gastrointestinal disease; its high mortality rate mandates the development of non-invasive biomarkers to predict NEC before its onset. This review summarizes the pathogenesis, prevention, unresolved issues, and long-term outcomes of NEC.
Collapse
Affiliation(s)
- Alissa L Meister
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, PA, USA
| | - Kim K Doheny
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, PA, USA.,Neonatal-Perinatal Medicine, Penn State College of Medicine, Hershey, PA, USA
| | - R Alberto Travagli
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, PA, USA
| |
Collapse
|
9
|
New insights into necrotizing enterocolitis: From laboratory observation to personalized prevention and treatment. J Pediatr Surg 2019; 54:398-404. [PMID: 29980346 PMCID: PMC6344311 DOI: 10.1016/j.jpedsurg.2018.06.012] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 05/21/2018] [Accepted: 06/03/2018] [Indexed: 01/04/2023]
Abstract
BACKGROUND/PURPOSE Necrotizing enterocolitis (NEC) is a devastating disease of prematurity that develops after feeding, often without warning, and results in diffuse intestinal necrosis leading to sepsis and death in many cases. The lack of improvement in overall survival is influenced by nonspecific diagnostic modalities as well as inexact and nonpersonalized treatment strategies. METHODS/RESULTS Recently, we and others have shown that NEC develops in response to exaggerated bacterial signaling in the premature intestine, as a consequence of elevated expression and activity of the bacterial receptor toll-like receptor 4 (TLR4), which is important for normal gut development. Breast milk is a powerful TLR4 inhibitor, while mutations in TLR4 genes lead to increased NEC risk in humans, providing proof-of-concept for its role in NEC. Recently, a drug discovery approach has revealed a novel class of TLR4 inhibitors which are being developed for personalized approaches to NEC treatment. CONCLUSION This review will highlight the current understanding of the role of bacterial signaling in NEC pathogenesis, and will describe advances in diagnosis, prevention and treatment of NEC that may hopefully improve survival for these most fragile patients. SYSTEMATIC REVIEW Level of Evidence: Level II.
Collapse
|
10
|
Li P, Deng Q, Liu J, Yan J, Wei Z, Zhang Z, Liu H, Li B. Roles for HB-EGF in Mesenchymal Stromal Cell Proliferation and Differentiation During Skeletal Growth. J Bone Miner Res 2019; 34:295-309. [PMID: 30550637 PMCID: PMC7816091 DOI: 10.1002/jbmr.3596] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 09/04/2018] [Accepted: 09/22/2018] [Indexed: 12/22/2022]
Abstract
HB-EGF, a member of the EGF superfamily, plays important roles in development and tissue regeneration. However, its functions in skeletal stem cells and skeleton development and growth remain poorly understood. Here, we used the Cre/LoxP system to ablate or express HB-EGF in Dermo1+ mesenchymal stromal cells and their progenies, including chondrocytes and osteoblast lineage cells, and bone marrow stromal cells (BMSCs). Dermo1-Cre; HB-EGFf/f mice only showed a modest increase in bone mass, whereas Dermo1-HB-EGF mice developed progressive chondrodysplasia, chondroma, osteoarthritis-like joint defects, and loss of bone mass and density, which were alleviated by treatment with EGFR inhibitor AG1478. The cartilage defects were recapitulated in chondrocyte-specific HB-EGF overexpression (Col2-HB-EGF) mice with a lesser severity. Dermo1-HB-EGF mice showed an increase in proliferation but defects in differentiation of chondrocytes and osteoblasts. HB-EGF promoted BMSC proliferation via the Akt1 and Erk pathways but inhibited BMSC differentiation via restraining Smad1/5/8 activation. However, Dermo1-HB-EGF mice showed normal osteoclastogenesis and bone resorption. These results reveal an important function of autocrine or paracrine HB-EGF in mesenchymal stromal cell proliferation and differentiation and suggest that EGF signaling needs to be tightly controlled to maintain bone and articular cartilage integrity. © 2018 The Authors. Journal of Bone and Mineral Research Published by Wiley Periodicals Inc.
Collapse
Affiliation(s)
- Ping Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Qi Deng
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Jiajia Liu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Jianshe Yan
- School of Life Sciences, Shanghai University, Shanghai, China.,Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhanying Wei
- Metabolic Bone Disease and Genetic Research Unit, Department of Osteoporosis and Bone Diseases, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Zhenlin Zhang
- Metabolic Bone Disease and Genetic Research Unit, Department of Osteoporosis and Bone Diseases, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Huijuan Liu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Baojie Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
11
|
Su Y, Luo H, Yang J. Heparin-binding EGF-like growth factor attenuates lung inflammation and injury in a murine model of pulmonary emphysema. Growth Factors 2018; 36:246-262. [PMID: 30600734 DOI: 10.1080/08977194.2018.1552270] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Pulmonary inflammation and progressive lung destruction are the major causes of chronic obstructive pulmonary disease (COPD), resulting in emphysema and irreversible pulmonary dysfunction. Heparin-binding EGF-like growth factor (HB-EGF), is known to play a protective role in the process of various inflammatory diseases. However, its effect on COPD is poorly understood. This study was designed to determine the effect of HB-EGF on lung inflammation and injury in a murine model of pulmonary emphysema. HB-EGF promoted percent survival and body weight, attenuated lung injury, inflammatory cells, and cytokines infiltration, and prevented lung function decline. Additionally, treatment of rHB-EGF suppressed the nuclear translocation of nuclear factor κB (NF-κB)/p65, decreased TUNEL-positive cells and the expression of caspase 3, and increased the expression of PCNA, HB-EGF, and EGF receptor (EGFR). We conclude that HB-EGF attenuates lung inflammation and injury, probably through the activation of EGFR, followed by suppression of NF-ΚB signalling, promotion of cell proliferation, and inhibition of apoptosis.
Collapse
Affiliation(s)
- Yanwei Su
- a School of Nursing, Tongji Medical College , Huazhong University of Science and Technology , Wuhan , China
| | - Heng Luo
- b Department of Pathology, Union Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan , China
| | - Jixin Yang
- c Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan , China
| |
Collapse
|
12
|
Abstract
PURPOSE OF REVIEW Necrotizing enterocolitis (NEC) is a devastating disease that predominately affects premature neonates. The pathogenesis of NEC is multifactorial and poorly understood. Risk factors include low birth weight, formula-feeding, hypoxic/ischemic insults, and microbial dysbiosis. This review focuses on our current understanding of the diagnosis, management, and pathogenesis of NEC. RECENT FINDINGS Recent findings identify specific mucosal cell types as potential therapeutic targets in NEC. Despite a broadly accepted view that bacterial colonization plays a key role in NEC, characteristics of bacterial populations associated with this disease remain elusive. The use of probiotics such as lactobacilli and bifidobacteria has been studied in numerous trials, but there is a lack of consensus regarding specific strains and dosing. Although growth factors found in breast milk such as epidermal growth factor and heparin-binding epidermal growth factor may be useful in disease prevention, developing new therapeutic interventions in NEC critically depends on better understanding of its pathogenesis. SUMMARY NEC is a leading cause of morbidity and mortality in premature neonates. Recent data confirm that growth factors and certain bacteria may offer protection against NEC. Further studies are needed to better understand the complex pathogenesis of NEC.
Collapse
|
13
|
Association of Heparin-binding EGF-like Growth Factor Polymorphisms With Necrotizing Enterocolitis in Preterm Infants. J Pediatr Gastroenterol Nutr 2018; 66:e99-e102. [PMID: 28953531 DOI: 10.1097/mpg.0000000000001753] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Heparin-binding epidermal growth factor (EGF)-like growth factor (HB-EGF) protects the intestines from injury in experimental necrotizing enterocolitis (NEC). We hypothesized that polymorphisms in the HB-EGF gene lead to low HB-EGF production in peripheral blood and increased risk of NEC in the Chinese Han population. To test this hypothesis, 30 NEC patients and 80 control subjects were selected. Five HB-EGF single-nucleotide polymorphisms (SNPs) and its plasma levels were measured by genotyping and enzyme-linked immunosorbent assay, respectively. Only 1 out of the 5 SNPs showed a notable result. The notable SNP (rs4912711) was associated with NEC in its minor allele frequency and its "G/T" genotype distribution. In addition, plasma HB-EGF levels were reduced especially the "G/T" genotype in NEC patients. Our data suggest that if validated in larger studies screening for HB-EGF SNPs/genotypes and plasma levels may be useful as a risk factor for NEC in the future.
Collapse
|
14
|
Gan X, Li J. [Research advances in necrotizing enterocolitis in neonates]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2018; 20:164-168. [PMID: 29429468 PMCID: PMC7389245 DOI: 10.7499/j.issn.1008-8830.2018.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Accepted: 01/02/2018] [Indexed: 06/08/2023]
Abstract
Necrotizing enterocolitis (NEC) is a catastrophic disease caused by a variety of factors in neonates, especially preterm infants. Severe NEC has a high fatality rate, and most survivors may face short- and long-term adverse prognosis. Risk factors for NEC include preterm birth, non-breastfeeding, microbial abnormalities in the digestive tract, and ischemia-reperfusion injury. High-resolution abdominal ultrasound helps with the early diagnosis of NEC. The preventive measures for NEC include protecting the intestinal mucosa through nutritional intervention, interfering with intestinal injury signals, changing intestinal microflora, and performing early minimal enteral nutrition. This disease progresses rapidly, and there are still no effective measures. Supportive care is mainly used for the treatment of this disease, and patients in severe conditions may need surgical treatment. Celastrol, lipopolysaccharide, and fecal transplantation help with the treatment of NEC, but further studies are needed to confirm their clinical effects.
Collapse
Affiliation(s)
- Xin Gan
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| | | |
Collapse
|
15
|
Hodzic Z, Bolock AM, Good M. The Role of Mucosal Immunity in the Pathogenesis of Necrotizing Enterocolitis. Front Pediatr 2017; 5:40. [PMID: 28316967 PMCID: PMC5334327 DOI: 10.3389/fped.2017.00040] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 02/15/2017] [Indexed: 12/29/2022] Open
Abstract
Necrotizing enterocolitis (NEC) is the most devastating gastrointestinal disease of prematurity. Although the precise cause is not well understood, the main risk factors thought to contribute to NEC include prematurity, formula feeding, and bacterial colonization. Recent evidence suggests that NEC develops as a consequence of intestinal hyper-responsiveness to microbial ligands upon bacterial colonization in the preterm infant, initiating a cascade of aberrant signaling events, and a robust pro-inflammatory mucosal immune response. We now have a greater understanding of important mechanisms of disease pathogenesis, such as the role of cytokines, immunoglobulins, and immune cells in NEC. In this review, we will provide an overview of the mucosal immunity of the intestine and the relationship between components of the mucosal immune system involved in the pathogenesis of NEC, while highlighting recent advances in the field that have promise as potential therapeutic targets. First, we will describe the cellular components of the intestinal epithelium and mucosal immune system and their relationship to NEC. We will then discuss the relationship between the gut microbiota and cell signaling that underpins disease pathogenesis. We will conclude our discussion by highlighting notable therapeutic advancements in NEC that target the intestinal mucosal immunity.
Collapse
Affiliation(s)
- Zerina Hodzic
- University of Pittsburgh School of Medicine , Pittsburgh, PA , USA
| | - Alexa M Bolock
- Division of Newborn Medicine, Department of Pediatrics, Washington University School of Medicine , St. Louis, MO , USA
| | - Misty Good
- Division of Newborn Medicine, Department of Pediatrics, Washington University School of Medicine , St. Louis, MO , USA
| |
Collapse
|
16
|
Zubarioglu U, Uslu S, Bulbul A. New Frontiers of Necrotizing Enterocolitis: From Pathophysiology to Treatment. Health (London) 2017. [DOI: 10.4236/health.2017.91008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
17
|
Niño DF, Sodhi CP, Hackam DJ. Necrotizing enterocolitis: new insights into pathogenesis and mechanisms. Nat Rev Gastroenterol Hepatol 2016; 13:590-600. [PMID: 27534694 PMCID: PMC5124124 DOI: 10.1038/nrgastro.2016.119] [Citation(s) in RCA: 379] [Impact Index Per Article: 42.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Necrotizing enterocolitis (NEC) is the most frequent and lethal disease of the gastrointestinal tract of preterm infants. At present, NEC is thought to develop in the premature host in the setting of bacterial colonization, often after administration of non-breast milk feeds, and disease onset is thought to be due in part to a baseline increased reactivity of the premature intestinal mucosa to microbial ligands as compared with the full-term intestinal mucosa. The increased reactivity leads to mucosal destruction and impaired mesenteric perfusion and partly reflects an increased expression of the bacterial receptor Toll-like receptor 4 (TLR4) in the premature gut, as well as other factors that predispose the intestine to a hyper-reactive state in response to colonizing microorganisms. The increased expression of TLR4 in the premature gut reflects a surprising role for this molecule in the regulation of normal intestinal development through its effects on the Notch signalling pathway. This Review will examine the current approach to the diagnosis and treatment of NEC, provide an overview of our current knowledge regarding its molecular underpinnings and highlight advances made within the past decade towards the development of specific preventive and treatment strategies for this devastating disease.
Collapse
MESH Headings
- Animals
- Biological Factors/therapeutic use
- Biomarkers/metabolism
- Breast Feeding
- Disease Models, Animal
- Disease Susceptibility
- Enterocolitis, Necrotizing/diagnosis
- Enterocolitis, Necrotizing/etiology
- Enterocolitis, Necrotizing/prevention & control
- Gastrointestinal Microbiome/physiology
- Humans
- Infant, Newborn
- Infant, Premature
- Infant, Premature, Diseases/diagnosis
- Infant, Premature, Diseases/etiology
- Infant, Premature, Diseases/therapy
- Probiotics/therapeutic use
- Treatment Outcome
Collapse
Affiliation(s)
- Diego F Niño
- Division of Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Baltimore, Maryland 21287, USA
- The Bloomberg Children's Center, 1800 Orleans Street, Baltimore, Maryland 21287, USA
| | - Chhinder P Sodhi
- Division of Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Baltimore, Maryland 21287, USA
- The Bloomberg Children's Center, 1800 Orleans Street, Baltimore, Maryland 21287, USA
| | - David J Hackam
- Division of Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Baltimore, Maryland 21287, USA
- The Bloomberg Children's Center, 1800 Orleans Street, Baltimore, Maryland 21287, USA
| |
Collapse
|
18
|
Santa Maria PL, Kim S, Yang YP. No systemic exposure of transtympanic heparin-binding epidermal growth factor like growth factor. Drug Chem Toxicol 2016; 39:451-4. [PMID: 26887920 DOI: 10.3109/01480545.2016.1143482] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CONTEXT Heparin-binding epidermal growth factor like growth factor (HB-EGF) is an emerging therapeutic for the regeneration of the tympanic membrane (TM). OBJECTIVE Our aim was to determine whether the doses of HB-EGF delivered in a sustained release hydrogel into a middle ear mouse model, would be measurable in the systemic circulation. We also aimed to observe, in the scenario that the intended dose was absorbed directly into the circulation, whether these levels could be measured above the background levels of HB-EGF in the circulation. METHODS A total of 12 mice had transtympanic injections of 5 μg/ml of HB-EGF contained within a previously described novel hydrogel vehicle, while another 12 mice had intravenous delivery of 10 μg/kg of HB-EGF. Intravenous blood samples were collected at 0-, 3-, 24-, 168-, 288- and 720-h post-injection. A double-antibody sandwich one-step process enzyme-linked immunosorbent assay (ELISA) was used to determine the level of HB-EGF in the serum. RESULTS No mice in the transtympanic administration group and no mice in the intravenous administration group were found to have blood level measured above that in the controls. DISCUSSION The inability of the positive control to measure levels above background, suggest the total dose used in our studies, even if 100% absorbed into the system circulation is insignificant. CONCLUSIONS HB-EGF at the doses and delivery method proposed for treatment of chronic TM perforation in a mouse model are likely to have no measurable systemic effect.
Collapse
Affiliation(s)
- Peter Luke Santa Maria
- a Department of Otolaryngology , Head and Neck Surgery, Stanford University , Stanford , CA , USA
| | - Sungwoo Kim
- b Department of Orthopedic Surgery , Stanford University , Stanford , CA , USA
| | - Yunzhi Peter Yang
- b Department of Orthopedic Surgery , Stanford University , Stanford , CA , USA .,c Department of Materials Science and Engineering , Stanford University , Stanford , CA , USA , and.,d Department of Bioengineering , Stanford University , Stanford , CA , USA
| |
Collapse
|
19
|
Heparin-binding EGF-like growth factor and enteric neural stem cell transplantation in the prevention of experimental necrotizing enterocolitis in mice. Pediatr Res 2015; 78:29-37. [PMID: 25806717 PMCID: PMC4472527 DOI: 10.1038/pr.2015.63] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 11/10/2014] [Indexed: 12/15/2022]
Abstract
BACKGROUND Necrotizing enterocolitis (NEC) is associated with loss of neurons and glial cells in the enteric nervous system (ENS). Our goal was to determine whether enteric neural stem cell (NSC) transplantation, in conjunction with heparin-binding epidermal growth factor-like growth factor (HB-EGF), could protect against experimental NEC. METHODS In vitro, HB-EGF on NSC proliferation and migration, and the effects of receptors utilized by HB-EGF to exert these effects, were determined. In vivo, mouse pups were exposed to experimental NEC and treated with NSC alone, HB-EGF alone, NSC+HB-EGF, or HB-EGF overexpressing NSC. NSC engraftment and differentiation into neurons in the ENS, intestinal injury, intestinal permeability, and intestinal motility were determined. RESULTS HB-EGF promoted NSC proliferation via ErbB-1 receptors and enhanced NSC migration via ErbB-1, ErbB-4, and Nardilysin receptors. HB-EGF significantly enhanced the engraftment of transplanted NSC into the ENS during NEC. NSC transplantation significantly reduced NEC incidence and improved gut barrier function and intestinal motility, and these effects were augmented by simultaneous administration of HB-EGF or by transplantation of HB-EGF overexpressing NSC. CONCLUSION HB-EGF promotes NSC proliferation and migration. HB-EGF and NSC reduce intestinal injury and improve gut barrier function and intestinal motility in experimental NEC. Combined HB-EGF and NSC transplantation may represent a potential future therapy to prevent NEC.
Collapse
|
20
|
Khalili M, Soleyman MR, Baazm M, Beyer C. High-level expression and purification of soluble bioactive recombinant human heparin-binding epidermal growth factor in Escherichia coli. Cell Biol Int 2015; 39:858-64. [PMID: 25712700 DOI: 10.1002/cbin.10454] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Accepted: 02/13/2015] [Indexed: 11/08/2022]
Abstract
Heparin-binding epidermal growth factor (HB-EGF) is a member of highly conserved superfamily of proteins that has potential mitogenic activity and stimulates differentiation and migration of various cell types. Since HB-EGF has three intra-molecular disulfide bonds, a high expression pattern of active HB-EGF in an E. coli expression system was not successfully established. The aim of this study was to increase production of soluble bioactive recombinant human HB-EGF in E. coli by modifying growth conditions and codon optimization. The open reading frame codons of human HB-EGF were optimized to achieve high level expression in E. coli. The optimized codon was amplified, cloned into plasmid pET-32a, and transformed into E. coli BL21 for further expression. The cultivation parameters (temperature and inducer) were optimized to produce a high yield of soluble HB-EGF. The fusion protein was purified by Nickel-nitrilotriacetic acid (Ni-NTA) affinity chromatography. Amethylthiazole tetrazolium assay was used to evaluate the bioactivity of the produced recombinant protein. After codon optimization, the codon adaptation index (CAI) was increased from 0.255 in native gene to 0.829 using the optimized sequence. By lowering the temperature to 22°C and the inducer to 0.4 μM, we obtained 35% soluble expression of recombinant and biologically active human HB-EGF. Our data demonstrate that codon optimization increases the yield of HB-EGF in an E. coli expression system. Furthermore, the chosen modifications in cell culturing increase the solubility of recombinant human HB-EGF.
Collapse
Affiliation(s)
- Mostafa Khalili
- Department of Biotechnology, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Mohammad Reza Soleyman
- Department of Biotechnology, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Maryam Baazm
- Department of Anatomy, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Cordian Beyer
- Institute of Neuroanatomy, Medical Clinic, RWTH Aachen University, Aachen, Germany
| |
Collapse
|