1
|
Abdulai-Saiku S, Gupta S, Wang D, Marino F, Moreno AJ, Huang Y, Srivastava D, Panning B, Dubal DB. The maternal X chromosome affects cognition and brain ageing in female mice. Nature 2025; 638:152-159. [PMID: 39843739 PMCID: PMC11798838 DOI: 10.1038/s41586-024-08457-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 11/27/2024] [Indexed: 01/24/2025]
Abstract
Female mammalian cells have two X chromosomes, one of maternal origin and one of paternal origin. During development, one X chromosome randomly becomes inactivated1-4. This renders either the maternal X (Xm) chromosome or the paternal X (Xp) chromosome inactive, causing X mosaicism that varies between female individuals, with some showing considerable or complete skew of the X chromosome that remains active5-7. Parent-of-X origin can modify epigenetics through DNA methylation8,9 and possibly gene expression; thus, mosaicism could buffer dysregulated processes in ageing and disease. However, whether X skew or its mosaicism alters functions in female individuals is largely unknown. Here we tested whether skew towards an active Xm chromosome influences the brain and body-and then delineated unique features of Xm neurons and Xp neurons. An active Xm chromosome impaired cognition in female mice throughout the lifespan and led to worsened cognition with age. Cognitive deficits were accompanied by Xm-mediated acceleration of biological or epigenetic ageing of the hippocampus, a key centre for learning and memory, in female mice. Several genes were imprinted on the Xm chromosome of hippocampal neurons, suggesting silenced cognitive loci. CRISPR-mediated activation of Xm-imprinted genes improved cognition in ageing female mice. Thus, the Xm chromosome impaired cognition, accelerated brain ageing and silenced genes that contribute to cognition in ageing. Understanding how Xm impairs brain function could lead to an improved understanding of heterogeneity in cognitive health in female individuals and to X-chromosome-derived pathways that protect against cognitive deficits and brain ageing.
Collapse
Affiliation(s)
- Samira Abdulai-Saiku
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Shweta Gupta
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Dan Wang
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Francesca Marino
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
- Neurosciences Graduate Program, University of California San Francisco, San Francisco, CA, USA
| | - Arturo J Moreno
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Yu Huang
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA, USA
| | - Deepak Srivastava
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - Barbara Panning
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - Dena B Dubal
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA.
- Neurosciences Graduate Program, University of California San Francisco, San Francisco, CA, USA.
- Bakar Aging Research Institute, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
2
|
Grantham EK, Warden AS, McCarthy GS, DaCosta A, Mason S, Blednov Y, Mayfield RD, Harris RA. Role of toll-like receptor 7 (TLR7) in voluntary alcohol consumption. Brain Behav Immun 2020; 89:423-432. [PMID: 32726684 PMCID: PMC7572874 DOI: 10.1016/j.bbi.2020.07.029] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 07/09/2020] [Accepted: 07/22/2020] [Indexed: 12/16/2022] Open
Abstract
Overactivation of neuroimmune signaling has been linked to excessive ethanol consumption. Toll-like receptors (TLRs) are a major component of innate immune signaling and initiate anti- and pro-inflammatory responses via intracellular signal transduction cascades. TLR7 is upregulated in post-mortem brain tissue from humans with alcohol use disorder (AUD) and animals with prior exposure to ethanol. Despite this evidence, the role of TLR7 in the regulation of voluntary ethanol consumption has not been studied. We test the hypothesis that TLR7 activation regulates voluntary ethanol drinking behavior by administering a TLR7 agonist (R848) during an intermittent access drinking procedure in mice. Acute activation of TLR7 reduced ethanol intake, preference, and total fluid intake due, at least in part, to an acute sickness response. However, chronic pre-treatment with R848 resulted in tolerance to the adverse effects of the drug and a subsequent increase in ethanol consumption. To determine the molecular machinery that mediates these behavioral changes, we evaluated gene expression after acute and chronic TLR7 activation. We found that acute TLR7 activation produces brain region specific changes in expression of immune pathway genes, whereas chronic TLR7 activation causes downregulation of TLRs and blunted cytokine induction, suggesting molecular tolerance. Our results demonstrate a novel role for TLR7 signaling in regulating voluntary ethanol consumption. Taken together, our findings suggest TLR7 may be a viable target for development of therapies to treat AUD.
Collapse
Affiliation(s)
- E K Grantham
- Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, 2500 Speedway, Stop 14800, Austin, TX 78712, USA; Institute for Neuroscience, University of Texas at Austin, Austin, TX 78712, USA.
| | - A S Warden
- Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, 2500 Speedway, Stop 14800, Austin, TX 78712, USA; Institute for Neuroscience, University of Texas at Austin, Austin, TX 78712, USA; Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - G S McCarthy
- Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, 2500 Speedway, Stop 14800, Austin, TX 78712, USA; Institute for Cell and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - A DaCosta
- Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, 2500 Speedway, Stop 14800, Austin, TX 78712, USA
| | - S Mason
- Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, 2500 Speedway, Stop 14800, Austin, TX 78712, USA
| | - Y Blednov
- Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, 2500 Speedway, Stop 14800, Austin, TX 78712, USA
| | - R D Mayfield
- Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, 2500 Speedway, Stop 14800, Austin, TX 78712, USA; Institute for Neuroscience, University of Texas at Austin, Austin, TX 78712, USA
| | - R A Harris
- Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, 2500 Speedway, Stop 14800, Austin, TX 78712, USA; Institute for Neuroscience, University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
3
|
Arnaboldi F, Sommariva M, Opizzi E, Rasile M, Camelliti S, Busnelli M, Menegola E, Di Renzo F, Menon A, Barajon I. Expression of Toll-like receptors 4 and 7 in murine peripheral nervous system development. Ann Anat 2020; 231:151526. [PMID: 32380196 DOI: 10.1016/j.aanat.2020.151526] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 02/03/2020] [Accepted: 04/10/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND Toll-Like Receptors (TLRs) play a critical role in the innate and adaptive immune system. They are the mammalian orthologs of Drosophila melanogaster protein Toll, which has been proved to have an early morphogenetic role in invertebrate embryogenesis that in the adult switches to an immune function. AIM The aim of this study was to evaluate the expression of TLR4 and TLR7 during dorsal root ganglia (DRG), paravertebral ganglia (PVG), and enteric nervous system (ENS) murine development. METHODS Mouse embryos from different stages (i.e. E12 to E18) were processed for immunolocalization analysis on formalin-fixed paraffin-embedded sections, and isolated intestine were processed for whole-mount preparations. RESULTS We observed a differentially regulated expression of TLR4 and TLR7 during embryogenesis and an overall increased expression of both receptors during development. While TLR4 was detectable in neurons of DRG and PVG starting from E14 and only from E18 in the ENS, TLR7 was already expressed in scattered neurons of all the investigated regions at E12. CONCLUSIONS TLR4 and TRL7 expression temporal patterns suggest a morphogenetic role for these receptors in the development of neural crest derivatives in mammals.
Collapse
Affiliation(s)
- Francesca Arnaboldi
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Via Mangiagalli 31, 20133 Milano, Italy.
| | - Michele Sommariva
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Via Mangiagalli 31, 20133 Milano, Italy
| | - Emanuela Opizzi
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Via Mangiagalli 31, 20133 Milano, Italy
| | - Marco Rasile
- Humanitas Clinical and Research Center, Via Manzoni 56, 20089 Rozzano, Milano, Italy; Humanitas University, Via Rita Levi Montalcini 4, 20090 Pieve Emanuele, Milano, Italy
| | - Simone Camelliti
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Via Mangiagalli 31, 20133 Milano, Italy
| | - Marco Busnelli
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti, 9/11/13, 20133 Milano, Italy
| | - Elena Menegola
- Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Francesca Di Renzo
- Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Alessandra Menon
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Via Mangiagalli 31, 20133 Milano, Italy; Clinica Ortopedica, ASST Centro Specialistico Ortopedico Traumatologico Gaetano Pini-CTO, Milan, Italy
| | - Isabella Barajon
- Humanitas University, Via Rita Levi Montalcini 4, 20090 Pieve Emanuele, Milano, Italy
| |
Collapse
|
4
|
Tlr7 deletion alters expression profiles of genes related to neural function and regulates mouse behaviors and contextual memory. Brain Behav Immun 2018; 72:101-113. [PMID: 29885943 DOI: 10.1016/j.bbi.2018.06.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 05/24/2018] [Accepted: 06/06/2018] [Indexed: 11/22/2022] Open
Abstract
The neuronal innate immune system recognizes endogenous danger signals and regulates neuronal development and function. Toll-like receptor 7 (TLR7), one of the TLRs that trigger innate immune responses in neurons, controls neuronal morphology. To further assess the function of TLR7 in the brain, we applied next generation sequencing to investigate the effect of Tlr7 deletion on gene expression in hippocampal and cortical mixed cultures and on mouse behaviors. Since previous in vivo study suggested that TLR7 is more critical for neuronal morphology at earlier developmental stages, we analyzed two time-points (4 and 18 DIV) to represent young and mature neurons, respectively. At 4 DIV, Tlr7 KO neurons exhibited reduced expression of genes involved in neuronal development, synaptic organization and activity and behaviors. Some of these Tlr7-regulated genes are also associated with multiple neurological and neuropsychiatric diseases. TLR7-regulated transcriptomic profiles differed at 18 DIV. Apart from neuronal genes, genes related to glial cell development and differentiation became sensitive to Tlr7 deletion at 18 DIV. Moreover, Tlr7 KO mice exhibited altered behaviors in terms of anxiety, aggression, olfaction and contextual fear memory. Electrophysiological analysis further showed an impairment of long-term potentiation in Tlr7 KO hippocampus. Taken together, these results indicate that TLR7 regulates neural development and brain function, even in the absence of infectious or pathogenic molecules. Our findings strengthen evidence for the role of the neuronal innate immune system in fine-tuning neuronal morphology and activity and implicate it in neuropsychiatric disorders.
Collapse
|
5
|
Hung YF, Chen CY, Shih YC, Liu HY, Huang CM, Hsueh YP. Endosomal TLR3, TLR7, and TLR8 control neuronal morphology through different transcriptional programs. J Cell Biol 2018; 217:2727-2742. [PMID: 29777026 PMCID: PMC6080926 DOI: 10.1083/jcb.201712113] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 04/09/2018] [Accepted: 05/03/2018] [Indexed: 02/07/2023] Open
Abstract
Neuroinflammation is associated with diverse neurological disorders. Endosomal Toll-like receptors (TLRs) including TLR3, TLR7, and TLR8 cell-autonomously regulate neuronal differentiation. However, the mechanisms by which these three TLRs affect neuronal morphology are unclear. In this study, we compare these TLRs in mouse neurons. By combining in vitro neuronal cultures, in utero electroporation, and transcriptomic profiling, we show that TLR8, TLR7, and TLR3 promote dendritic pruning via MYD88 signaling. However, they induce different transcriptomic profiles related to innate immunity, signaling, and neuronal development. The temporal expression patterns and the effects on neuronal morphology are not identical upon activation of these endosomal TLRs. Pathway analyses and in vitro studies specifically implicate mitogen-activated protein kinase signaling in TLR8-mediated dendritic pruning. We further show that TLR8 is more critical for dendritic arborization at a late development stage in vivo. The activation of TLR8, TLR7, or TLR3 results in dendritic shortening, and TLR7 and TLR3 but not TLR8 also control axonal growth. In-depth transcriptomic analyses show that TLRs use different downstream pathways to control neuronal morphology, which may contribute to neuronal development and pathological responses.
Collapse
Affiliation(s)
- Yun-Fen Hung
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan.,Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Chiung-Ya Chen
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Yi-Chun Shih
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Hsin-Yu Liu
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | | | - Yi-Ping Hsueh
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
6
|
Guardado P, Olivera A, Rusch HL, Roy M, Martin C, Lejbman N, Lee H, Gill JM. Altered gene expression of the innate immune, neuroendocrine, and nuclear factor-kappa B (NF-κB) systems is associated with posttraumatic stress disorder in military personnel. J Anxiety Disord 2016; 38:9-20. [PMID: 26751122 DOI: 10.1016/j.janxdis.2015.12.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 10/08/2015] [Accepted: 12/08/2015] [Indexed: 12/21/2022]
Abstract
Whole transcriptome analysis provides an unbiased examination of biological activity, and likely, unique insight into the mechanisms underlying posttraumatic stress disorder (PTSD) and comorbid depression and traumatic brain injury. This study compared gene-expression profiles in military personnel with PTSD (n=28) and matched controls without PTSD (n=27) using HG-U133 Plus 2.0 microarrays (Affymetrix), which contain 54,675 probe sets representing more than 38,500 genes. Analysis of expression profiles revealed 203 differentially expressed genes in PTSD, of which 72% were upregulated. Using Partek Genomics Suite 6.6, differentially expressed transcription clusters were filtered based on a selection criterion of ≥1.5 relative fold change at a false discovery rate of ≤5%. Ingenuity Pathway Analysis (Qiagen) of the differentially expressed genes indicated a dysregulation of genes associated with the innate immune, neuroendocrine, and NF-κB systems. These findings provide novel insights that may lead to new pharmaceutical agents for PTSD treatments and help mitigate mental and physical comorbidity risk.
Collapse
Affiliation(s)
- Pedro Guardado
- National Institute of Nursing Research, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Anlys Olivera
- National Institute of Nursing Research, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Heather L Rusch
- National Institute of Nursing Research, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA; Henry M Jackson Foundation for The Advancement of Military Medicine, 6720A Rockledge Drive #100, Bethesda, MD 20817, USA
| | - Michael Roy
- Uniformed Service University of the Health Science, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Christiana Martin
- National Institute of Nursing Research, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Natasha Lejbman
- National Institute of Nursing Research, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Hwyunhwa Lee
- University of Nevada, Las Vegas, School of Nursing, 4505 South Maryland Parkway, Las Vegas, NV 89154, USA
| | - Jessica M Gill
- National Institute of Nursing Research, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA.
| |
Collapse
|
7
|
Rodrigues FL, Silva LEV, Hott SC, Bomfim GF, da Silva CAA, Fazan R, Resstel LBM, Tostes RC, Carneiro FS. Toll-like receptor 9 plays a key role in the autonomic cardiac and baroreflex control of arterial pressure. Am J Physiol Regul Integr Comp Physiol 2015; 308:R714-23. [PMID: 25673780 DOI: 10.1152/ajpregu.00150.2014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 01/27/2015] [Indexed: 02/07/2023]
Abstract
The crosstalk between the immune and the autonomic nervous system may impact the cardiovascular function. Toll-like receptors are components of the innate immune system and play developmental and physiological roles. Toll-like receptor 9 (TLR9) is involved in the pathogenesis of cardiovascular diseases, such as hypertension and heart failure. Since such diseases are commonly accompanied by autonomic imbalance and lower baroreflex sensitivity, we hypothesized that TLR9 modulates cardiac autonomic and baroreflex control of arterial pressure (AP). Toll-like receptor 9 knockout (TLR9 KO) and wild-type (WT) mice were implanted with catheters into carotid artery and jugular vein and allowed to recover for 3 days. After basal recording of AP, mice received methyl-atropine or propranolol. AP and pulse interval (PI) variability were evaluated in the time and frequency domain (spectral analysis), as well as by multiscale entropy. Spontaneous baroreflex was studied by sequence technique. Behavioral and cardiovascular responses to fear-conditioning stress were also evaluated. AP was similar between groups, but TLR9 KO mice exhibited lower basal heart rate (HR). AP variability was not different, but PI variability was increased in TLR9 KO mice. The total entropy was higher in TLR9 KO mice. Moreover, baroreflex function was found higher in TLR9 KO mice. Atropine-induced tachycardia was increased in TLR9 KO mice, whereas the propranolol-induced bradycardia was similar to WT mice. TLR9 KO mice exhibit increased behavioral and decreased tachycardia responses to fear-conditioning stress. In conclusion, our findings suggest that TLR9 may negatively modulate cardiac vagal tone and baroreflex in mice.
Collapse
Affiliation(s)
- Fernanda Luciano Rodrigues
- Department of Pharmacology, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto, São Paulo, Brazil
| | - Luiz Eduardo V Silva
- Department of Physiology, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto, São Paulo, Brazil; and
| | - Sara Cristina Hott
- Department of Pharmacology, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto, São Paulo, Brazil
| | - Gisele F Bomfim
- Institute of Health Sciences, Federal University of Mato Grosso, Sinop, Mato Grosso, Brazil
| | - Carlos Alberto Aguiar da Silva
- Department of Physiology, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto, São Paulo, Brazil; and
| | - Rubens Fazan
- Department of Physiology, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto, São Paulo, Brazil; and
| | - Leonardo B M Resstel
- Department of Pharmacology, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto, São Paulo, Brazil
| | - Rita C Tostes
- Department of Pharmacology, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto, São Paulo, Brazil
| | - Fernando S Carneiro
- Department of Pharmacology, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto, São Paulo, Brazil;
| |
Collapse
|