1
|
Aliyeva O, Belenichev IF, Bilai I, Duiun I, Makyeyeva L, Oksenych V, Kamyshnyi O. HSP 70 Modulators for the Correction of Cognitive, Mnemonic, and Behavioral Disorders After Prenatal Hypoxia. Biomedicines 2025; 13:982. [PMID: 40299680 PMCID: PMC12025304 DOI: 10.3390/biomedicines13040982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 04/11/2025] [Accepted: 04/15/2025] [Indexed: 05/01/2025] Open
Abstract
Background/Objectives: Prenatal hypoxia (PH) is a leading cause of nervous system disorders in early childhood and subsequently leads to a decline in the cognitive and mnemonic functions of the central nervous system (such as memory impairment, reduced learning ability, and information processing). It also increases anxiety and the risk of brain disorders in adulthood. Compensatory-adaptive mechanisms of the mother-placenta-fetus system, which enhance the fetus's CNS resilience, are known, including the activation of endogenous neuroprotection in response to hypoxic brain injury through the pharmacological modulation of HSP70. Methods: To evaluate the effect of HSP70 modulators-Cerebrocurin, Angiolin, Tamoxifen, Glutaredoxin, Thiotriazoline, and HSF-1 (heat shock factor 1 protein), as well as Mildronate and Mexidol-on the motor skills, exploratory behaviors, psycho-emotional activities, learning, and memories of offspring after PH. Experimental PH was induced by daily intraperitoneal injections of sodium nitrite solution into pregnant female rats from the 16th to the 21st day of pregnancy at a dose of 50 mg/kg. The newborns received intraperitoneal injections of Angiolin (50 mg/kg), Thiotriazoline (50 mg/kg), Mexidol (100 mg/kg), Cerebrocurin (150 µL/kg), L-arginine (200 mg/kg), Glutaredoxin (200 µg/kg), HSF-1 (50 mg/kg), or Mildronate (50 mg/kg) for 30 days. At 1 month, the rats were tested in the open field test, and at 2 months, they were trained and tested for working and spatial memory in the radial maze. Results: Modeling PH led to persistent impairments in exploratory activity, psycho-emotional behavior, and a decrease in the cognitive-mnestic functions of the CNS. It was found that Angiolin and Cerebrocurin had the most pronounced effects on the indicators of exploratory activity and psycho-emotional status in 1-month-old animals after PH. They also exhibited the most significant cognitive-enhancing and memory-supporting effects during the training and evaluation of skill retention in the maze in 2-month-old offspring after PH. Conclusions: for the first time, we obtained experimental data on the effects of HSP70 modulators on exploratory activity, psycho-emotional behavior, and cognitive-mnestic functions of the central nervous system in offspring following intrauterine hypoxia. Based on the results of this study, we identified the pharmacological agents Angiolin and Cerebrocurin as promising neuroprotective agents after perinatal hypoxia.
Collapse
Affiliation(s)
- Olena Aliyeva
- Department of Histology, Cytology and Embryology, Zaporizhzhia State Medical and Pharmaceutical University, 69035 Zaporizhzhia, Ukraine
| | - Igor F. Belenichev
- Department of Pharmacology and Medical Formulation with Course of Normal Physiology, Zaporizhzhia State Medical and Pharmaceutical University, 69035 Zaporizhzhia, Ukraine
| | - Ivan Bilai
- Department of Clinical Pharmacy, Pharmacotherapy, Pharmacognosy and Pharmaceutical Chemistry, Zaporizhzhia State Medical and Pharmaceutical University, 69035 Zaporizhzhia, Ukraine
| | - Iryna Duiun
- Department of Clinical Pharmacy, Pharmacotherapy, Pharmacognosy and Pharmaceutical Chemistry, Zaporizhzhia State Medical and Pharmaceutical University, 69035 Zaporizhzhia, Ukraine
| | - Lyudmyla Makyeyeva
- Department of Histology, Cytology and Embryology, Zaporizhzhia State Medical and Pharmaceutical University, 69035 Zaporizhzhia, Ukraine
| | | | - Oleksandr Kamyshnyi
- Department of Microbiology, Virology, and Immunology, I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine;
| |
Collapse
|
2
|
Nazarizadeh S, Ghotbeddin Z, Ghafouri S, Sarkaki A. The protective effect of DMI on hippocampus EEG, behavioral and biochemical parameters in hypoxia-induced seizure on neonatal period. PLoS One 2024; 19:e0309240. [PMID: 39495759 PMCID: PMC11534219 DOI: 10.1371/journal.pone.0309240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 08/07/2024] [Indexed: 11/06/2024] Open
Abstract
Hypoxia-Induced Neonatal Seizure (HINS) is a prevalent type of seizure in infants caused by hypoxic conditions, which can lead to an increased risk of epilepsy, learning disabilities, and cognitive impairments later in life. This study focuses on examining the effects of dimethyl itaconate (DMI) on cognition, motor coordination, and anxiety-like behavior in male rats that have experienced HINS. 42 male Wistar newborn rats (PND10) were randomly divided into six groups (n = 7). 1) Control (Vehicle only); received DMI solvent (0.1ml) without applying hypoxia. 2-3) DMI; receiving (20 and 50 mg/kg; i.p). 4) HINS; they were placed in a hypoxia chamber with 7% oxygen and 93% nitrogen concentration for 15 minutes. 5-6) DMI+HINS; received DMI (20 and 50 mg/kg; i.p) 24h before hypoxia. Behavioral tests including; Novel object recognition test, Rotarod, Parallel bar, Open field and elevated plus maze (EPM); started at age 45 after birth. After behavioral tests, the hippocampal CA1 region local EEG was recorded in all groups. Then the brain hippocampus tissue was isolated and the amount of MDA, SOD, NO, and Thiol was measured by ELISA method. Data showed that the administration of DMI improved motor symptoms, anxiety-like behaviors, and cognition in HINS rats (p<0.05). EEG power in the HINS group decreased significantly compared to other experimental groups (p<0.05). Biochemical observations showed that DMI significantly reduced oxidative stress and inflammation in the hippocampal tissue of HINS rats (p<0.05). Increased hippocampal oxidative stress and inflammation can be effective in the occurrence of behavioral disorders observed in HINS rats. While DMI improved these behavioral impairments by reducing oxidative stress and inflammation.
Collapse
Affiliation(s)
- Shadi Nazarizadeh
- Department of Basic Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Zohreh Ghotbeddin
- Department of Basic Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
- Stem Cell and Transgenic Technology Research Center, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Samireh Ghafouri
- Department of Physiology, Medicine Faculty, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Persian Gulf Physiology Research Center, Basic Medical Sciences Research Institute, Medicinal Plants Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Alireza Sarkaki
- Department of Physiology, Medicine Faculty, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Persian Gulf Physiology Research Center, Basic Medical Sciences Research Institute, Medicinal Plants Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
3
|
Nasri H, Ghotbeddin Z, Rahimi K, Tabandeh MR. The effects of MEPaL on oxidative stress and motor function in the rats affected by prenatal hypoxia. Brain Behav 2024; 14:e3539. [PMID: 38849974 PMCID: PMC11161390 DOI: 10.1002/brb3.3539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 03/23/2024] [Accepted: 04/19/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Maternal hypoxia disrupts neural development and subsequently leads to cerebral palsy and epilepsy in newborns. Hypoxia plays a role in neurodegeneration by increasing oxidative stress. Pistacia atlantica is known as an important antioxidant, and its anti-inflammatory and antioxidant effects have been shown in various studies. This study aims to investigate the effects of methanolic extract of P. atlantica leaves (MEPaLs) on the oxidative parameters in the serum of rats affected by maternal hypoxia. MATERIAL AND METHODS In this study, eight pregnant rats were used. The newborns were divided into four groups, including the control and the hypoxia groups, which are affected by maternal hypoxia, hypoxia + MEPaL 100 mg/kg, and hypoxia + MEPaL 150 mg/kg. MEPaL was injected (i.p) for 21 days into the neonatal rats after the lactation period. Hypoxia was induced by keeping pregnant rats in a hypoxic chamber with 7% oxygen and 93% nitrogen intensity for 3 h on the 20th day of pregnancy. Behavioral changes were measured using open-field and rotarod tests. Finally, biomarkers of oxidative stress, nitric oxide (NO), glutathione (GSH), GSSG, TAS, TOS, and oxidative stress index (OSI) were measured in the experimental groups. RESULTS Behavioral results showed that the anxiety behavior in the hypoxia group increased, but the motor activity (moved distance and movement speed) decreased. Moreover, the amount of time spent maintaining balance on the rotarod rod was significantly decreased in the hypoxia group. The concentration of NO in the group of hypoxia + MEPaL 100 mg/kg showed a significant decrease, and MEPaL 100, and 150 mg/kg + hypoxia also increased the concentration of GSH and decreased GSSG. In addition, MEPaL100 and 150 mg/kg caused a significant increase in the ratio of GSH to GSSG and decreased OSI and total oxidant capacity. CONCLUSIONS Oxidative stress increased in the rats affected by maternal hypoxia and may be the main mechanism for motor activity impairment and balance disturbance, whereas MELaL improved motor performance by decreasing oxidative stress.
Collapse
Affiliation(s)
- Hadis Nasri
- Department of Basic Sciences, Faculty of Veterinary MedicineShahid Chamran University of AhvazAhvazIran
| | - Zohreh Ghotbeddin
- Department of Basic Sciences, Faculty of Veterinary MedicineShahid Chamran University of AhvazAhvazIran
- Stem Cell and Transgenic Technology Research CenterShahid Chamran University of AhvazAhvazIran
| | - Kaveh Rahimi
- Department of Basic Sciences, Faculty of Veterinary MedicineShahid Chamran University of AhvazAhvazIran
| | - Mohammad Reza Tabandeh
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary MedicineShahid Chamran University of AhvazAhvazIran
- Stem Cell and Transgenic Technology Research CenterShahid Chamran University of AhvazAhvazIran
| |
Collapse
|
4
|
Mamidi RR, McEvoy CT. Oxygen in the neonatal ICU: a complicated history and where are we now? Front Pediatr 2024; 12:1371710. [PMID: 38751747 PMCID: PMC11094359 DOI: 10.3389/fped.2024.1371710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/17/2024] [Indexed: 05/18/2024] Open
Abstract
Despite major advances in neonatal care, oxygen remains the most commonly used medication in the neonatal intensive care unit (NICU). Supplemental oxygen can be life-saving for term and preterm neonates in the resuscitation period and beyond, however use of oxygen in the neonatal period must be judicious as there can be toxic effects. Newborns experience substantial hemodynamic changes at birth, rapid energy consumption, and decreased antioxidant capacity, which requires a delicate balance of sufficient oxygen while mitigating reactive oxygen species causing oxidative stress. In this review, we will discuss the physiology of neonates in relation to hypoxia and hyperoxic injury, the history of supplemental oxygen in the delivery room and beyond, supporting clinical research guiding trends for oxygen therapy in neonatal care, current practices, and future directions.
Collapse
Affiliation(s)
- Rachna R. Mamidi
- Division of Neonatology, Oregon Health & Science University, Portland, OR, United States
| | | |
Collapse
|
5
|
Nikolic B, Trnski-Levak S, Kosic K, Drlje M, Banovac I, Hranilovic D, Jovanov-Milosevic N. Lasting mesothalamic dopamine imbalance and altered exploratory behavior in rats after a mild neonatal hypoxic event. Front Integr Neurosci 2024; 17:1304338. [PMID: 38304737 PMCID: PMC10832065 DOI: 10.3389/fnint.2023.1304338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 12/22/2023] [Indexed: 02/03/2024] Open
Abstract
Introduction Adversities during the perinatal period can decrease oxygen supply to the fetal brain, leading to various hypoxic brain injuries, which can compromise the regularity of brain development in different aspects. To examine the catecholaminergic contribution to the link between an early-life hypoxic insult and adolescent behavioral aberrations, we used a previously established rat model of perinatal hypoxia but altered the hypobaric to normobaric conditions. Methods Exploratory and social behavior and learning abilities were tested in 70 rats of both sexes at adolescent age. Inherent vertical locomotion, sensory-motor functions and spatial learning abilities were explored in a subset of animals to clarify the background of altered exploratory behavior. Finally, the concentrations of dopamine (DA) and noradrenaline in midbrain and pons, and the relative expression of genes for DA receptors D1 and D2, and their down-stream targets (DA- and cAMP-regulated phosphoprotein, Mr 32 kDa, the regulatory subunit of protein kinase A, and inhibitor-5 of protein phosphatase 1) in the hippocampus and thalamus were investigated in 31 rats. Results A lesser extent of alterations in exploratory and cognitive aspects of behavior in the present study suggests that normobaric conditions mitigate the hypoxic injury compared to the one obtained under hypobaric conditions. Increased exploratory rearing was the most prominent consequence, with impaired spatial learning in the background. In affected rats, increased midbrain/pons DA content, as well as mRNA levels for DA receptors and their down-stream elements in the thalamus, but not the hippocampus, were found. Conclusion We can conclude that a mild hypoxic event induced long-lasting disbalances in mesothalamic DA signaling, contributing to the observed behavioral alterations. The thalamus was thereby indicated as another structure, besides the well-established striatum, involved in mediating hypoxic effects on behavior through DA signaling.
Collapse
Affiliation(s)
- Barbara Nikolic
- Department of Biology, University of Zagreb Faculty of Science, Zagreb, Croatia
| | - Sara Trnski-Levak
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Kristina Kosic
- Department of Biology, University of Zagreb Faculty of Science, Zagreb, Croatia
| | - Matea Drlje
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Ivan Banovac
- Department of Biology, University of Zagreb School of Medicine, Zagreb, Croatia
- Department for Anatomy and Clinical Anatomy, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Dubravka Hranilovic
- Department of Biology, University of Zagreb Faculty of Science, Zagreb, Croatia
| | - Natasa Jovanov-Milosevic
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
- Department of Biology, University of Zagreb School of Medicine, Zagreb, Croatia
| |
Collapse
|
6
|
Ghotbeddin Z, Khazaeel K, Tabandeh MR, Aliheydari M, Yaghoubi H. Effects of omega-3 fatty acid supplementation during chronic maternal hypoxia on behavioral disorders in male rat offspring: the role of Trk family and oxidative stress. Metab Brain Dis 2022; 37:1959-1967. [PMID: 35622266 DOI: 10.1007/s11011-022-01012-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/16/2022] [Indexed: 11/26/2022]
Abstract
Maternal hypoxia due to a lack of blood flow and insufficient oxygen supply in the brain leads to behavioral disorders in adult offspring. Fish oil includes docosahexaenoic acid (DHA), a significant component of membrane phospholipids of nerve cells, which improved cognition, and memory. Trk family receptors are activated by hypoxic induction factor (HIF), and are involved in the neurotrophin's protective effects at the cellular level. Here we studied the biochemical, and molecular mechanisms of the protective effect of fish oil during the chronic maternal hypoxia model on behavioral responses in male rat offspring. Pregnant female rats were randomly divided into 4 experimental groups: 1) ctr; Control rats were pregnant 2) Hyp; Pregnant female rats received hypoxia from 6 to 15th day of pregnancy, with 10% oxygen intensity, and 90% nitrogen; 3) FO; Pregnant female rats received fish oil (F8020 1 ml / day, for ten consecutive days Orally), and 4) FO / Hyp; Pregnant female rats received hypoxia plus fish oil in the same manner. Behavioral parameters were evaluated in 28-day-old male offspring. HIF-1α, TrkB, and P75 gene expression were measured in the offspring's brain. Maternal hypoxia impaired memory performance, and locomotor activity in offspring. Besides, Trk family gene expression, and oxidative stress indicators showed a significant increase in the offspring's brain exposed to maternal hypoxia compared to the control group. Overall, fish oil improved behavioral parameters by inhibiting oxidative stress, and the expression of Trk family receptors.
Collapse
Affiliation(s)
- Zohreh Ghotbeddin
- Department of Physiology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
- Stem Cell and Transgenic Technology Research Center, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
| | - Kaveh Khazaeel
- Stem Cell and Transgenic Technology Research Center, Shahid Chamran University of Ahvaz, Ahvaz, Iran
- Department of Anatomy, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mohammad-Reza Tabandeh
- Stem Cell and Transgenic Technology Research Center, Shahid Chamran University of Ahvaz, Ahvaz, Iran
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Maryam Aliheydari
- Department of Physiology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Hooshyar Yaghoubi
- Department of Physiology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| |
Collapse
|
7
|
Chou FS, Chen CY, Lee AC, Wang PS. Impaired Cell Cycle Progression and Self-Renewal of Fetal Neural Stem and Progenitor Cells in a Murine Model of Intrauterine Growth Restriction. Front Cell Dev Biol 2022; 10:821848. [PMID: 35903551 PMCID: PMC9314876 DOI: 10.3389/fcell.2022.821848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 06/20/2022] [Indexed: 11/30/2022] Open
Abstract
Individuals with intrauterine growth restriction (IUGR) are at an increased risk for neurodevelopmental impairment. Fetal cortical neurogenesis is a time-sensitive process in which fetal neural stem cells (NSCs) follow a distinct pattern of layer-specific neuron generation to populate the cerebral cortex. Here, we used a murine maternal hypoxia-induced IUGR model to study the impact of IUGR on fetal NSC development. In this model, timed-pregnant mice were exposed to hypoxia during the active stage of neurogenesis, followed by fetal brain collection and analysis. In the IUGR fetal brains, we found a significant reduction in cerebral cortical thickness accompanied by decreases in layer-specific neurons. Using EdU labeling, we demonstrated that cell cycle progression of fetal NSCs was delayed, primarily observed in the G2/M phase during inward interkinetic nuclear migration. Following relief from maternal hypoxia exposure, the remaining fetal NSCs re-established their neurogenic ability and resumed production of layer-specific neurons. Surprisingly, the newly generated neurons matched their control counterparts in layer-specific marker expression, suggesting preservation of the fetal NSC temporal identity despite IUGR effects. As expected, the absolute number of neurons generated in the IUGR group remained lower compared to that in the control group due to a reduced fetal NSC pool size as a result of cell cycle defect. Transcriptome analysis identified genes related to energy expenditure and G2/M cell cycle progression being affected by maternal hypoxia-induced IUGR. Taken together, maternal hypoxia-induced IUGR is associated with a defect in cell cycle progression of fetal NSCs, and has a long-term impact on offspring cognitive development.
Collapse
Affiliation(s)
- Fu-Sheng Chou
- Department of Pediatrics, The University of Kansas Medical Center, Kansas City, KS, United States
- Division of Neonatology, Children’s Mercy-Kansas City, Kansas City, MO, United States
- *Correspondence: Fu-Sheng Chou, ; Pei-Shan Wang,
| | - Chu-Yen Chen
- Department of Pediatrics, The University of Kansas Medical Center, Kansas City, KS, United States
| | - An-Chun Lee
- Department of Pediatrics, The University of Kansas Medical Center, Kansas City, KS, United States
| | - Pei-Shan Wang
- Department of Pediatrics, The University of Kansas Medical Center, Kansas City, KS, United States
- *Correspondence: Fu-Sheng Chou, ; Pei-Shan Wang,
| |
Collapse
|
8
|
Ochozková A, Mihalčíková L, Yamamotová A, Šlamberová R. Can prenatal methamphetamine exposure be considered a good animal model for ADHD? Physiol Res 2021; 70:S431-S440. [PMID: 35099261 PMCID: PMC8884398 DOI: 10.33549/physiolres.934815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 10/11/2021] [Indexed: 11/25/2022] Open
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a mental disorder with a heterogeneous origin with a global incidence that continues to grow. Its causes and pathophysiological mechanisms are not fully understood. It includes a combination of persistent symptoms such as difficulty in concentration, hyperactivity and impulsive behavior. Maternal methamphetamine (MA) abuse is a serious problem worldwide, it can lead to behavioral changes in their offspring that have similarities with behavioral changes seen in children with ADHD. There are several types of ADHD animal models, e.g. genetic models, pharmacologically, chemically and exogenously induced models. One of the exogenously induced ADHD models is the hypoxia-induced model. Our studies, as well as those of others, have demonstrated that maternal MA exposure can lead to abnormalities in the placenta and umbilical cord that result in prenatal hypoxia as well as fetal malnutrition that can result in irreversible changes to experimental animals. Therefore, the aim the present study was to compare the cognitive impairments in MA exposure model with those in established model of ADHD - prenatal hypoxia model, to test whether MA exposure is a valid model of ADHD. Pregnant Wistar rats were divided into four groups based on their gestational exposure to MA: (1) daily subcutaneous injections of MA (5 mg/kg), (2) saline injections at the same time and volume, (3) daily 1-hr hypoxia (10 % O2), and (4) no gestational exposure (controls). Male rat offspring were tested for short-term memory in the Novel Object Recognition Test and the Object Location Test between postnatal days 35 and 40. Also their locomotor activity in both tests was measured. Based on the present results, it seems that prenatal MA exposure is not the best animal model for ADHD since it shows corresponding symptoms only in certain measures. Given our previous results supporting our hypothesis, more experiments are needed to further test possible use of prenatal MA exposure as an animal model of the ADHD.
Collapse
Affiliation(s)
- A Ochozková
- Department of Physiology, Third Faculty of Medicine, Charles University, Prague, Czech Republic.
| | | | | | | |
Collapse
|
9
|
Indriawati R, Risdiana N, Wibowo T. An Increase in TNF-α Levels in Fetus due to Prenatal Ischemic Hypoxia. Open Access Maced J Med Sci 2021. [DOI: 10.3889/oamjms.2021.7840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND: Prenatal ischemic hypoxia can increase mortality and morbidity and affect the immune system. One of the immune responses is tumor necrosis factor-α (TNF-α) levels. However, the cellular mechanism of immune response abnormalities due to prenatal hypoxia remains unclear. An 11–17-day-old fetus is a sensitive period of neural development. Brain ischemia will cause cell dysfunction and can even affect TNF-α levels. Thus, how prenatal ischemic hypoxia increases TNF-α levels in the fetus remains unclear.
AIM: This study aims to examine the effect of the onset and duration of prenatal ischemic hypoxia on TNF-α levels.
METHODOLOGY: An experimental study with a post-test control design was conducted. Thirty Rattus norvegicus were induced with prenatal ischemic hypoxia (embryos aged 7, 12, and 17 days). The independent variable was prenatal ischemic hypoxia, while the dependent variable was TNF-α levels. TNF-α was measured using the ELISA technique and was carried out when the fetus was 19 days old (E19). The TNF-α was analyzed using ANOVA, and the limit of significance was set at p < 0.05.
RESULTS: The TNF-α levels in the prenatal ischemic hypoxia group were statistically higher than in the control group (p < 0.05). The more the onset and the longer the ischemic hypoxia is, the higher the TNF-level (p < 0.05).
CONCLUSION: The prenatal ischemic hypoxia increased TNF-α levels in the fetus.
Collapse
|
10
|
Wang B, Zeng H, Liu J, Sun M. Effects of Prenatal Hypoxia on Nervous System Development and Related Diseases. Front Neurosci 2021; 15:755554. [PMID: 34759794 PMCID: PMC8573102 DOI: 10.3389/fnins.2021.755554] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/05/2021] [Indexed: 12/24/2022] Open
Abstract
The fetal origins of adult disease (FOAD) hypothesis, which was proposed by David Barker in the United Kingdom in the late 1980s, posited that adult chronic diseases originated from various adverse stimuli in early fetal development. FOAD is associated with a wide range of adult chronic diseases, including cardiovascular disease, cancer, type 2 diabetes and neurological disorders such as schizophrenia, depression, anxiety, and autism. Intrauterine hypoxia/prenatal hypoxia is one of the most common complications of obstetrics and could lead to alterations in brain structure and function; therefore, it is strongly associated with neurological disorders such as cognitive impairment and anxiety. However, how fetal hypoxia results in neurological disorders remains unclear. According to the existing literature, we have summarized the causes of prenatal hypoxia, the effects of prenatal hypoxia on brain development and behavioral phenotypes, and the possible molecular mechanisms.
Collapse
Affiliation(s)
- Bin Wang
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Hongtao Zeng
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jingliu Liu
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Miao Sun
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
11
|
Rocha R, Andrade L, Alves T, Sá S, Pereira PA, Dulce Madeira M, Cardoso A. Behavioral and brain morphological analysis of non-inflammatory and inflammatory rat models of preterm brain injury. Neurobiol Learn Mem 2021; 185:107540. [PMID: 34673263 DOI: 10.1016/j.nlm.2021.107540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 09/21/2021] [Accepted: 10/07/2021] [Indexed: 11/18/2022]
Abstract
Investigations using preclinical models of preterm birth have much contributed, together with human neuropathological studies, for advances in our understanding of preterm brain injury. Here, we evaluated whether the neurodevelopmental and behavioral consequences of preterm birth induced by a non-inflammatory model of preterm birth using mifepristone would differ from those after inflammatory prenatal transient hypoxia-ischemia (TSHI) model. Pregnant Wistar rats were either injected with mifepristone, and pups were delivered on embryonic day 21 (ED21 group), or laparotomized on the 18th day of gestation for 60 min of uterine arteries occlusion. Rat pups were tested postnatally for characterization of developmental milestones and, after weaning, they were behaviorally tested for anxiety and for spatial learning and memory. One month later, brains were processed for quantification of doublecortin (DCX)- and neuropeptide Y (NPY)-immunoreactive cells, and cholinergic varicosities in the hippocampus. ED21 rats did not differ from controls with respect to neonatal developmental milestones, anxiety, learning and memory functions, and neurochemical parameters. Conversely, in TSHI rats the development of neonatal reflexes was delayed, the levels of anxiety were reduced, and spatial learning and memory was impaired; in the hippocampus, the total number of DCX and NPY cells was increased, and the density of cholinergic varicosities was reduced. With these results we suggest that a preterm birth, in a non-inflammatory prenatal environment, does not significantly change neonatal development and adult neurologic outcome. On other hand, prenatal hypoxia and ischemia (inflammation) modifies developmental trajectory, learning and memory, neurogenesis, and NPY GABAergic and cholinergic brain systems.
Collapse
Affiliation(s)
- Ruben Rocha
- Department of Biomedicine - Unit of Anatomy, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal; Center of Health Technology and Services Research (CINTESIS), Faculty of Medicine, University of Porto, Rua Dr. Plácido da Costa, 4200-450 Porto, Portugal; Pediatric Neurology Department, Centro Materno-Infantil do Norte, Centro Hospitalar Universitário do Porto, 4050-651 Porto, Portugal; Pediatric Emergency Department, Centro Hospitalar Universitário S. João, 4200-319 Porto, Portugal
| | - Leonardo Andrade
- Department of Biomedicine - Unit of Anatomy, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Tânia Alves
- Department of Biomedicine - Unit of Anatomy, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Susana Sá
- Department of Biomedicine - Unit of Anatomy, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal; Center of Health Technology and Services Research (CINTESIS), Faculty of Medicine, University of Porto, Rua Dr. Plácido da Costa, 4200-450 Porto, Portugal
| | - Pedro A Pereira
- Department of Biomedicine - Unit of Anatomy, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal; Center of Health Technology and Services Research (CINTESIS), Faculty of Medicine, University of Porto, Rua Dr. Plácido da Costa, 4200-450 Porto, Portugal
| | - M Dulce Madeira
- Department of Biomedicine - Unit of Anatomy, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal; Center of Health Technology and Services Research (CINTESIS), Faculty of Medicine, University of Porto, Rua Dr. Plácido da Costa, 4200-450 Porto, Portugal
| | - Armando Cardoso
- Department of Biomedicine - Unit of Anatomy, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal; Center of Health Technology and Services Research (CINTESIS), Faculty of Medicine, University of Porto, Rua Dr. Plácido da Costa, 4200-450 Porto, Portugal.
| |
Collapse
|
12
|
Gotchac J, Cardoit L, Thoby-Brisson M, Brissaud O. A Rodent Model of Mild Neonatal Hypoxic Ischemic Encephalopathy. Front Neurol 2021; 12:637947. [PMID: 34025552 PMCID: PMC8131664 DOI: 10.3389/fneur.2021.637947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 04/08/2021] [Indexed: 11/13/2022] Open
Abstract
In the brain of full-term newborns, Hypoxic Ischemic Encephalopathy (HIE), a consequence of severe hypoxia and ischemia due to low cardiac output, is frequently observed and results in cerebral injuries with dramatic consequences for life. To investigate the physiopathology of HIE, several animal models have been developed, but none closely replicate human cases, mostly because they are based on a single carotid ligation protocol. In the present study we aimed to develop a novel and more accurate HIE model in juvenile (post-natal days (PND) 14–16) rats. For this, we induced a 9 min hypoxic cardiac arrest (CA) by stopping mechanical ventilation of intubated, ventilated and curarized rats followed by a cardiopulmonary resuscitation. To evaluate the consequences of the CA we performed radiological (cerebral MRI), behavioral (Open Field, Elevated Plus Maze, Fear Conditioning), and histological (Cresyl Violet and Fluoro-Jade B) testing on treated animals. We found that rats in the CA group developed an anxiolytic-like behavioral profile in adulthood without any locomotor impairment, nor memory deficits. However, MRI investigation performed early after CA failed to reveal any change in apparent diffusion coefficient (ADC) in brain tissue (including the hippocampus, striatum, and thalamus), suggesting no massive anatomical lesion had occurred. In contrast, signs of neurodegeneration were found in the Dentate Gyrus and the CA1 region of the hippocampus at day 1 post-CA, suggesting that the anxiolytic-like phenotype observed in adulthood could be related to an abnormal degeneration of this brain region beginning immediately after CA. Thus, our model, despite not representing a severe condition of HIE, nonetheless constitutes a potential model for studying mild, yet persistent and region-specific cerebral injury resulting from an acute oxygen deprivation.
Collapse
Affiliation(s)
- Julien Gotchac
- Institut des Neurosciences Cognitives et Intégratives d'Aquitaine, CNRS UMR 5287, University of Bordeaux, Bordeaux, France
| | - Laura Cardoit
- Institut des Neurosciences Cognitives et Intégratives d'Aquitaine, CNRS UMR 5287, University of Bordeaux, Bordeaux, France
| | - Muriel Thoby-Brisson
- Institut des Neurosciences Cognitives et Intégratives d'Aquitaine, CNRS UMR 5287, University of Bordeaux, Bordeaux, France
| | - Olivier Brissaud
- Institut des Neurosciences Cognitives et Intégratives d'Aquitaine, CNRS UMR 5287, University of Bordeaux, Bordeaux, France.,Pediatric Intensive Care Unit, Teacher's hospital of Children Pellegrin, Bordeaux, France
| |
Collapse
|
13
|
PIEŠOVÁ M, KOPRDOVÁ R, UJHÁZY E, KRŠKOVÁ L, OLEXOVÁ L, MOROVÁ M, SENKO T, MACH M. Impact of Prenatal Hypoxia on the Development and Behavior of the Rat Offspring. Physiol Res 2020. [DOI: 10.33549/physiolres.934614] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The healthy development of the fetus depends on the exact course of pregnancy and delivery. Therefore, prenatal hypoxia remains between the greatest threats to the developing fetus. Our study aimed to assess the impact of prenatal hypoxia on postnatal development and behavior of the rats, whose mothers were exposed to hypoxia (10.5 % O2) during a critical period of brain development on GD20 for 12 h. This prenatal insult resulted in a delay of sensorimotor development of hypoxic pups compared to the control group. Hypoxic pups also had lowered postnatal weight which in males persisted up to adulthood. In adulthood, hypoxic males showed anxiety-like behavior in the OF, higher sucrose preference, and lower levels of grimace scale (reflecting the degree of negative emotions) in the immobilization chamber compared to the control group. Moreover, hypoxic animals showed hyperactivity in EPM and LD tests, and hypoxic females had reduced sociability compared to the control group. In conclusion, our results indicate a possible relationship between prenatal hypoxia and changes in sociability, activity, and impaired emotion regulation in ADHD, ASD, or anxiety disorders. The fact that changes in observed parameters are manifested mostly in males confirms that male sex is more sensitive to prenatal insults.
Collapse
Affiliation(s)
- M PIEŠOVÁ
- Institute of Experimental Pharmacology and Toxicology, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - R KOPRDOVÁ
- Institute of Experimental Pharmacology and Toxicology, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - E UJHÁZY
- Institute of Experimental Pharmacology and Toxicology, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - L KRŠKOVÁ
- Department of Animal Physiology and Ethology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovak Republic
| | - L OLEXOVÁ
- Department of Animal Physiology and Ethology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovak Republic
| | - M MOROVÁ
- Department of Animal Physiology and Ethology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovak Republic
| | - T SENKO
- Department of Animal Physiology and Ethology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovak Republic
| | - M MACH
- Institute of Experimental Pharmacology and Toxicology, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovak Republic
| |
Collapse
|
14
|
da Silva TFG, de Bem GF, da Costa CA, Santos IB, Soares RDA, Ognibene DT, Rito-Costa F, Cavalheira MA, da Conceição SP, Ferraz MR, Resende AC. Prenatal hypoxia predisposes vascular functional and structural changes associated with oxidative stress damage and depressive behavior in adult offspring male rats. Physiol Behav 2020; 230:113293. [PMID: 33338483 DOI: 10.1016/j.physbeh.2020.113293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 12/11/2020] [Accepted: 12/12/2020] [Indexed: 01/05/2023]
Abstract
Intrauterine hypoxia-ischemia (HI) provides a strong stimulus for a developmental origin of both the central nervous system and cardiovascular diseases. This study aimed to investigate vascular functional and structural changes, oxidative stress damage, and behavioral alterations in adult male offspring submitted to HI during pregnancy. The pregnant Wistar rats had a uterine artery clamped for 45 min on the 18th gestational day, submitting the offspring to hypoxic-ischemic conditions. The Sham group passed to the same surgical procedure as the HI rats, without occlusion of the maternal uterine artery, and the controls consisted of non-manipulated healthy animals. After weaning, the male pups were divided into three groups: control, sham, and HI, according to the maternal procedure. At postnatal day 90 (P90), the adult male offspring performed the open field and forced swim tests. In P119, the rats had their blood pressure checked and were euthanized. Prenatal HI induced a depressive behavior in adult male offspring associated with a reduced vasodilator response to acetylcholine in perfused mesenteric arterial bed, and reduced superoxide dismutase and glutathione peroxidase activities in the aorta compared to control and sham groups. Prenatal HI also increased the vasoconstrictor response to norepinephrine, the media thickness, collagen deposition, and the oxidative damage in the aorta from adult male offspring compared to control and sham groups. Our results suggest an association among prenatal HI and adult vascular structural and functional changes, oxidative stress damage, and depressive behavior.
Collapse
Affiliation(s)
| | - Graziele Freitas de Bem
- Department of Pharmacology, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Cristiane Aguiar da Costa
- Department of Pharmacology, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Izabelle Barcellos Santos
- Department of Pharmacology, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Ricardo de Andrade Soares
- Department of Pharmacology, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Dayane Teixeira Ognibene
- Department of Pharmacology, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Fernanda Rito-Costa
- Department of Pharmacology, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Mariana Alencar Cavalheira
- Department of Pharmacology, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | | | - Marcos Rochedo Ferraz
- Department of Pharmacology, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Angela Castro Resende
- Department of Pharmacology, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, Brazil.
| |
Collapse
|
15
|
Silvestro S, Calcaterra V, Pelizzo G, Bramanti P, Mazzon E. Prenatal Hypoxia and Placental Oxidative Stress: Insights from Animal Models to Clinical Evidences. Antioxidants (Basel) 2020; 9:E414. [PMID: 32408702 PMCID: PMC7278841 DOI: 10.3390/antiox9050414] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/10/2020] [Accepted: 05/11/2020] [Indexed: 02/07/2023] Open
Abstract
Hypoxia is a common form of intrauterine stress characterized by exposure to low oxygen concentrations. Gestational hypoxia is associated with the generation of reactive oxygen species. Increase in oxidative stress is responsible for damage to proteins, lipids and DNA with consequent impairment of normal cellular functions. The purpose of this review is to propose a summary of preclinical and clinical evidences designed to outline the correlation between fetal hypoxia and oxidative stress. The results of the studies described show that increases of oxidative stress in the placenta is responsible for changes in fetal development. Specifically, oxidative stress plays a key role in vascular, cardiac and neurological disease and reproductive function dysfunctions. Moreover, the different finding suggests that the prenatal hypoxia-induced oxidative stress is associated with pregnancy complications, responsible for changes in fetal programming. In this way, fetal hypoxia predisposes the offspring to congenital anomalies and chronic diseases in future life. Several antioxidant agents, such as melatonin, erythropoietin, vitamin C, resveratrol and hydrogen, shown potential protective effects in prenatal hypoxia. However, future investigations will be needed to allow the implementation of these antioxidants in clinical practice for the promotion of health in early intrauterine life, in fetuses and children.
Collapse
Affiliation(s)
- Serena Silvestro
- Departmnent of Experimental Neurology, IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy; (S.S.); (P.B.)
| | - Valeria Calcaterra
- Pediatric and Adolescent Unit, Department of Internal Medicine, University of Pavia, 27100 Pavia, Italy;
| | - Gloria Pelizzo
- Department of Biomedical and Clinical Science “L. Sacco”, and Pediatric Surgery Department “V. Buzzi” Children’s Hospital, University of Milano, 20100 Milano, Italy;
| | - Placido Bramanti
- Departmnent of Experimental Neurology, IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy; (S.S.); (P.B.)
| | - Emanuela Mazzon
- Departmnent of Experimental Neurology, IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy; (S.S.); (P.B.)
| |
Collapse
|
16
|
Abstract
Perinatal hypoxia is still one of the greatest threats to the newborn child, even in developed countries. However, there is a lack of works which summarize up-to-date information about that huge topic. Our review covers a broader spectrum of recent results from studies on mechanisms leading to hypoxia-induced injury. It also resumes possible primary causes and observed behavioral outcomes of perinatal hypoxia. In this review, we recognize two types of hypoxia, according to the localization of its primary cause: environmental and placental. Later we analyze possible pathways of prenatal hypoxia-induced injury including gene expression changes, glutaminergic excitatory damage (and a role of NMDA receptors in it), oxidative stress with ROS and RNS production, inflammation and apoptosis. Moreover, we focus on the impact of these pathophysiological changes on the structure and development of the brain, especially on its regions: corpus striatum and hippocampus. These brain changes of the offspring lead to impairments in their postnatal growth and sensorimotor development, and in their motor functions, activity, emotionality and learning ability in adulthood. Later we compare various animal models used to investigate the impact of prenatal and postnatal injury (hypoxic, ischemic or combinatory) on living organisms, and show their advantages and limitations.
Collapse
Affiliation(s)
- M Piešová
- Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovak Republic.
| | | |
Collapse
|
17
|
Zhuravin IA, Dubrovskaya NM, Vasilev DS, Postnikova TY, Zaitsev AV. Prenatal hypoxia produces memory deficits associated with impairment of long-term synaptic plasticity in young rats. Neurobiol Learn Mem 2019; 164:107066. [PMID: 31400467 DOI: 10.1016/j.nlm.2019.107066] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 07/31/2019] [Accepted: 08/06/2019] [Indexed: 12/18/2022]
Abstract
Prenatal hypoxia often results in dramatic alterations in developmental profiles and behavioral characteristics, including learning and memory, in later life. Despite the accumulation of considerable amounts of experimental data, the mechanisms underlying developmental deficits caused by prenatal hypoxia remain unclear. In the present study, we investigated whether prenatal hypoxia on embryonic day 14 (E14) affected synaptic properties in the hippocampus and hippocampal-related cognitive functions in young rats. We found that 20- to 30-d-old rats subjected to prenatal hypoxia had significantly disturbed basal synaptic transmission in CA3-CA1 synapses and a two-fold decrease in hippocampal long-term synaptic potentiation. These alterations were accompanied by a significant decline in the protein level of GluN2B but not GluN2A NMDA receptor subunits. In addition, the number of synaptopodin-positive dendritic spines in the CA1 area of the hippocampus was reduced in the rats exposed to prenatal hypoxia. These changes resulted in significant learning and memory deficits in a novel object recognition test.
Collapse
Affiliation(s)
- Igor A Zhuravin
- Sechenov Institute of Evolutionary Physiology and Biochemistry of RAS (IEPhB), 44, Toreza pr., Saint Petersburg 194223, Russia
| | - Nadezhda M Dubrovskaya
- Sechenov Institute of Evolutionary Physiology and Biochemistry of RAS (IEPhB), 44, Toreza pr., Saint Petersburg 194223, Russia
| | - Dmitry S Vasilev
- Sechenov Institute of Evolutionary Physiology and Biochemistry of RAS (IEPhB), 44, Toreza pr., Saint Petersburg 194223, Russia
| | - Tatyana Yu Postnikova
- Sechenov Institute of Evolutionary Physiology and Biochemistry of RAS (IEPhB), 44, Toreza pr., Saint Petersburg 194223, Russia
| | - Aleksey V Zaitsev
- Sechenov Institute of Evolutionary Physiology and Biochemistry of RAS (IEPhB), 44, Toreza pr., Saint Petersburg 194223, Russia; Institute of Experimental Medicine, Almazov National Medical Research Centre, 2 Akkuratova Street, Saint Petersburg 197341, Russia.
| |
Collapse
|
18
|
Nalivaeva NN, Turner AJ, Zhuravin IA. Role of Prenatal Hypoxia in Brain Development, Cognitive Functions, and Neurodegeneration. Front Neurosci 2018; 12:825. [PMID: 30510498 PMCID: PMC6254649 DOI: 10.3389/fnins.2018.00825] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 10/22/2018] [Indexed: 12/15/2022] Open
Abstract
This review focuses on the role of prenatal hypoxia in the development of brain functions in the postnatal period and subsequent increased risk of neurodegenerative disorders in later life. Accumulating evidence suggests that prenatal hypoxia in critical periods of brain formation results in significant changes in development of cognitive functions at various stages of postnatal life which correlate with morphological changes in brain structures involved in learning and memory. Prenatal hypoxia also leads to a decrease in brain adaptive potential and plasticity due to the disturbance in the process of formation of new contacts between cells and propagation of neuronal stimuli, especially in the cortex and hippocampus. On the other hand, prenatal hypoxia has a significant impact on expression and processing of a variety of genes involved in normal brain function and their epigenetic regulation. This results in changes in the patterns of mRNA and protein expression and their post-translational modifications, including protein misfolding and clearance. Among proteins affected by prenatal hypoxia are a key enzyme of the cholinergic system-acetylcholinesterase, and the amyloid precursor protein (APP), both of which have important roles in brain function. Disruption of their expression and metabolism caused by prenatal hypoxia can also result, apart from early cognitive dysfunctions, in development of neurodegeneration in later life. Another group of enzymes affected by prenatal hypoxia are peptidases involved in catabolism of neuropeptides, including amyloid-β peptide (Aβ). The decrease in the activity of neprilysin and other amyloid-degrading enzymes observed after prenatal hypoxia could result over the years in an Aβ clearance deficit and accumulation of its toxic species which cause neuronal cell death and development of neurodegeneration. Applying various approaches to restore expression of neuronal genes disrupted by prenatal hypoxia during postnatal development opens an avenue for therapeutic compensation of cognitive dysfunctions and prevention of Aβ accumulation in the aging brain and the model of prenatal hypoxia in rodents can be used as a reliable tool for assessment of their efficacy.
Collapse
Affiliation(s)
- Natalia N. Nalivaeva
- I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
- Faculty of Biological Sciences, School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
| | - Anthony J. Turner
- Faculty of Biological Sciences, School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
| | - Igor A. Zhuravin
- I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
- Research Centre, Saint-Petersburg State Pediatric Medical University, St. Petersburg, Russia
| |
Collapse
|
19
|
Indriawati R, Aswin S, Susilowati R, Partadiredja G. Prenatal hypoxia–ischemia decreases spatial memory and increases aggression during adolescence. Physiol Int 2018; 105:210-224. [DOI: 10.1556/2060.105.2018.3.21] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Prenatal hypoxia–ischemia (HI) is a major cause of mortality and chronic neurological diseases in newborns. HI contributes to the emergence of several neurological disorders such as cognitive and behavioral deficits due to the atypical brain development. This study aimed at assessing the effects of prenatal HI on the spatial memory and aggression of rats during adolescence. Pregnant rats were divided into treatment and control groups. The rats of the treatment groups underwent unilateral ligation of the uterine artery on pregnancy day 7, 12, or 17. The offspring of these rats were tested for spatial memory and aggression when they reached 33 days of age. It has been found that the percentages of alternations in the Y-maze and the number of crossings in the Morris water maze tests of the HI groups were lower than those of the control groups. The total offense and defense aggression scores of the HI groups were higher than those of the control groups. In conclusion, the longer the duration of HI, the more deficits it causes in the spatial memory and aggression of rats during adolescence.
Collapse
Affiliation(s)
- R Indriawati
- 1 Faculty of Medicine, Public Health, and Nursing, Department of Physiology, Universitas Gadjah Mada, Yogyakarta, Indonesia
- 2 Faculty of Medicine and Health Sciences, Department of Physiology, Universitas Muhammadiyah, Yogyakarta, Indonesia
| | - S Aswin
- 3 Faculty of Medicine, Public Health, and Nursing, Department of Anatomy, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - R Susilowati
- 4 Faculty of Medicine, Public Health, and Nursing, Department of Histology and Cell Biology, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - G Partadiredja
- 1 Faculty of Medicine, Public Health, and Nursing, Department of Physiology, Universitas Gadjah Mada, Yogyakarta, Indonesia
| |
Collapse
|
20
|
Ducsay CA, Goyal R, Pearce WJ, Wilson S, Hu XQ, Zhang L. Gestational Hypoxia and Developmental Plasticity. Physiol Rev 2018; 98:1241-1334. [PMID: 29717932 PMCID: PMC6088145 DOI: 10.1152/physrev.00043.2017] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Hypoxia is one of the most common and severe challenges to the maintenance of homeostasis. Oxygen sensing is a property of all tissues, and the response to hypoxia is multidimensional involving complicated intracellular networks concerned with the transduction of hypoxia-induced responses. Of all the stresses to which the fetus and newborn infant are subjected, perhaps the most important and clinically relevant is that of hypoxia. Hypoxia during gestation impacts both the mother and fetal development through interactions with an individual's genetic traits acquired over multiple generations by natural selection and changes in gene expression patterns by altering the epigenetic code. Changes in the epigenome determine "genomic plasticity," i.e., the ability of genes to be differentially expressed according to environmental cues. The genomic plasticity defined by epigenomic mechanisms including DNA methylation, histone modifications, and noncoding RNAs during development is the mechanistic substrate for phenotypic programming that determines physiological response and risk for healthy or deleterious outcomes. This review explores the impact of gestational hypoxia on maternal health and fetal development, and epigenetic mechanisms of developmental plasticity with emphasis on the uteroplacental circulation, heart development, cerebral circulation, pulmonary development, and the hypothalamic-pituitary-adrenal axis and adipose tissue. The complex molecular and epigenetic interactions that may impact an individual's physiology and developmental programming of health and disease later in life are discussed.
Collapse
Affiliation(s)
- Charles A. Ducsay
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Ravi Goyal
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - William J. Pearce
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Sean Wilson
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Xiang-Qun Hu
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Lubo Zhang
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| |
Collapse
|
21
|
Nagano R, Nagano M, Nakai A, Takeshita T, Suzuki H. Differential effects of neonatal SSRI treatments on hypoxia-induced behavioral changes in male and female offspring. Neuroscience 2017; 360:95-105. [PMID: 28778701 DOI: 10.1016/j.neuroscience.2017.07.051] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 07/19/2017] [Accepted: 07/19/2017] [Indexed: 02/07/2023]
Abstract
Prenatal hypoxia induced by transient intrauterine ischemia is a serious clinical problem, and at present, effective treatments are lacking. Currently, it is unknown how prenatal hypoxia affects behaviors in adulthood. Therefore, we developed a mouse model that mimics prenatal hypoxia in humans using uterine artery occlusion in late gestation. We examined whether prenatal hypoxia induces behavioral changes in adult male and female offspring by conducting a series of behavioral tests. In adulthood, longer immobility was observed in the forced swim test in males, whereas females showed decreased inhibition in the prepulse inhibition test. We then investigated the effects of two different selective serotonin reuptake inhibitors (SSRIs), fluoxetine (FLX) and escitalopram (ESC), on these behavioral changes. These drugs affect the neurodevelopmental process and have long-term neurological consequences. FLX treatment from postnatal day 3 (P3) to P21 ameliorated the behavioral changes in both male and female mice. In comparison, ESC treatment ameliorated the behavioral changes only in female mice. Neurochemical analysis revealed that dopamine was increased in the female hippocampus, but not in males. Thus, neonatal SSRI treatment decreases dopamine levels in the hippocampus in females selectively. Our findings suggest that prenatal hypoxia is a risk factor for behavioral abnormalities in adulthood, and that neonatal SSRI treatment might have clinical potential for alleviating these long-term behavioral deficits.
Collapse
Affiliation(s)
- Reiko Nagano
- Department of Obstetrics and Gynecology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8602, Japan.
| | - Masatoshi Nagano
- Department of Pharmacology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8602, Japan.
| | - Akihito Nakai
- Department of Obstetrics and Gynecology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8602, Japan.
| | - Toshiyuki Takeshita
- Department of Obstetrics and Gynecology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8602, Japan.
| | - Hidenori Suzuki
- Department of Pharmacology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8602, Japan.
| |
Collapse
|
22
|
Deferoxamine improves antioxidative protection in the brain of neonatal rats: The role of anoxia and body temperature. Neurosci Lett 2016; 628:116-22. [PMID: 27297770 DOI: 10.1016/j.neulet.2016.06.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 06/08/2016] [Accepted: 06/09/2016] [Indexed: 01/24/2023]
Abstract
After hypoxic-ischemic insult iron deposited in the brain catalyzes formation of reactive oxygen species. Newborn rats, showing reduced physiological body temperature and their hyperthermic counterparts injected with deferoxamine (DF), a chelator of iron, are protected both against iron-mediated neurotoxicity and against depletion of low-molecular antioxidants after perinatal asphyxia. Therefore, we decided to study the effects of DF on activity of antioxidant enzymes (superoxide dismutase-SOD, glutathione peroxidase-GPx and catalase-CAT) in the brain of rats exposed neonatally to a critical anoxia at body temperatures elevated to 39°C. Perinatal anoxia under hyperthermic conditions intensified oxidative stress and depleted the pool of antioxidant enzymes. Both the depletion of antioxidants and lipid peroxidation were prevented by post-anoxic DF injection. The present paper evidenced that deferoxamine may act by recovering of SOD, GPx and CAT activity to reduce anoxia-induced oxidative stress.
Collapse
|
23
|
Neal RE, Jagadapillai R, Chen J, Webb C, Stocke K, Greene RM, Pisano MM. Developmental cigarette smoke exposure II: Hippocampus proteome and metabolome profiles in adult offspring. Reprod Toxicol 2016; 65:436-447. [PMID: 27208486 DOI: 10.1016/j.reprotox.2016.05.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 05/05/2016] [Accepted: 05/13/2016] [Indexed: 11/27/2022]
Abstract
Exposure to cigarette smoke during development is linked to neurodevelopmental delays and cognitive impairment including impulsivity, attention deficit disorder, and lower IQ. Utilizing a murine experimental model of "active" inhalation exposure to cigarette smoke spanning the entirety of gestation and through human third trimester equivalent hippocampal development [gestation day 1 (GD1) through postnatal day 21 (PD21)], we examined hippocampus proteome and metabolome alterations present at a time during which developmental cigarette smoke exposure (CSE)-induced behavioral and cognitive impairments are evident in adult animals from this model system. At six month of age, carbohydrate metabolism and lipid content in the hippocampus of adult offspring remained impacted by prior exposure to cigarette smoke during the critical period of hippocampal ontogenesis indicating limited glycolysis. These findings indicate developmental CSE-induced systemic glucose availability may limit both organism growth and developmental trajectory, including the capacity for learning and memory.
Collapse
Affiliation(s)
- Rachel E Neal
- Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, Louisville, KY, USA; Birth Defects Center, University of Louisville, Louisville, KY, USA.
| | - Rekha Jagadapillai
- Department of Molecular, Cellular, and Craniofacial Biology, ULSD, University of Louisville, Louisville, KY, USA
| | - Jing Chen
- Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, Louisville, KY, USA
| | - Cindy Webb
- Department of Molecular, Cellular, and Craniofacial Biology, ULSD, University of Louisville, Louisville, KY, USA
| | - Kendall Stocke
- Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, Louisville, KY, USA
| | - Robert M Greene
- Department of Molecular, Cellular, and Craniofacial Biology, ULSD, University of Louisville, Louisville, KY, USA; Birth Defects Center, University of Louisville, Louisville, KY, USA
| | - M Michele Pisano
- Department of Molecular, Cellular, and Craniofacial Biology, ULSD, University of Louisville, Louisville, KY, USA; Birth Defects Center, University of Louisville, Louisville, KY, USA
| |
Collapse
|
24
|
Arteaga O, Revuelta M, Urigüen L, Álvarez A, Montalvo H, Hilario E. Pretreatment with Resveratrol Prevents Neuronal Injury and Cognitive Deficits Induced by Perinatal Hypoxia-Ischemia in Rats. PLoS One 2015; 10:e0142424. [PMID: 26544861 PMCID: PMC4636303 DOI: 10.1371/journal.pone.0142424] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Accepted: 10/21/2015] [Indexed: 01/24/2023] Open
Abstract
Despite advances in neonatal care, hypoxic-ischemic brain injury is still a serious clinical problem, which is responsible for many cases of perinatal mortality, cerebral palsy, motor impairment and cognitive deficits. Resveratrol, a natural polyphenol with important anti-oxidant and anti-inflammatory properties, is present in grapevines, peanuts and pomegranates. The aim of the present work was to evaluate the possible neuroprotective effect of resveratrol when administered before or immediately after a hypoxic-ischemic brain event in neonatal rats by analyzing brain damage, the mitochondrial status and long-term cognitive impairment. Our results indicate that pretreatment with resveratrol protects against brain damage, reducing infarct volume, preserving myelination and minimizing the astroglial reactive response. Moreover its neuroprotective effect was found to be long lasting, as behavioral outcomes were significantly improved at adulthood. We speculate that one of the mechanisms for this neuroprotection may be related to the maintenance of the mitochondrial inner membrane integrity and potential, and to the reduction of reactive oxygen species. Curiously, none of these protective features was observed when resveratrol was administered immediately after hypoxia-ischemia.
Collapse
Affiliation(s)
- Olatz Arteaga
- Department of Cell Biology & Histology, School of Medicine & Dentistry, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Miren Revuelta
- Department of Cell Biology & Histology, School of Medicine & Dentistry, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Leyre Urigüen
- Department of Pharmacology, School of Medicine & Dentistry, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
| | - Antonia Álvarez
- Department of Cell Biology & Histology, School of Medicine & Dentistry, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Haizea Montalvo
- Department of Cell Biology & Histology, School of Medicine & Dentistry, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Enrique Hilario
- Department of Cell Biology & Histology, School of Medicine & Dentistry, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| |
Collapse
|
25
|
Ferraz MM, Sab IM, Silva MA, Santos DA, Ferraz MR. Prenatal Hypoxia Ischemia Increases Male Rat Sexual Behavior. J Sex Med 2015; 12:2013-21. [DOI: 10.1111/jsm.13006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
26
|
Jantzie LL, Robinson S. Preclinical Models of Encephalopathy of Prematurity. Dev Neurosci 2015; 37:277-88. [PMID: 25722056 DOI: 10.1159/000371721] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 12/17/2014] [Indexed: 12/13/2022] Open
Abstract
Encephalopathy of prematurity (EoP) encompasses the central nervous system (CNS) abnormalities associated with injury from preterm birth. Although rapid progress is being made, limited understanding exists of how cellular and molecular CNS injury from early birth manifests as the myriad of neurological deficits in children who are born preterm. More importantly, this lack of direct insight into the pathogenesis of these deficits hinders both our ability to diagnose those infants who are at risk in real time and could potentially benefit from treatment and our ability to develop more effective interventions. Current barriers to clarifying the pathophysiology, developmental trajectory, injury timing, and evolution include preclinical animal models that only partially recapitulate the molecular, cellular, histological, and functional abnormalities observed in the mature CNS following EoP. Inflammation from hypoxic-ischemic and/or infectious injury induced in utero in lower mammals, or actual prenatal delivery of more phylogenetically advanced mammals, are likely to be the most clinically relevant EOP models, facilitating translation to benefit infants. Injury timing, type, severity, and pathophysiology need to be optimized to address the specific hypothesis being tested. Functional assays of the mature animal following perinatal injury to mimic EoP should ideally test for the array of neurological deficits commonly observed in preterm infants, including gait, seizure threshold and cognitive and behavioral abnormalities. Here, we review the merits of various preclinical models, identify gaps in knowledge that warrant further study and consider challenges that animal researchers may face in embarking on these studies. While no one model system is perfect, insights relevant to the clinical problem can be gained with interpretation of experimental results within the context of inherent limitations of the chosen model system. Collectively, optimal use of multiple models will address a major challenge facing the field today - to identify the type and severity of CNS injury these vulnerable infants suffer in a safe and timely manner, such that emerging neurointerventions can be tailored to specifically address individual reparative needs.
Collapse
Affiliation(s)
- Lauren L Jantzie
- Department of Pediatrics, University of New Mexico, Albuquerque, N. Mex., USA
| | | |
Collapse
|
27
|
Redox Changes Induced by General Anesthesia in Critically Ill Patients with Multiple Traumas. Mol Biol Int 2015; 2015:238586. [PMID: 26693352 PMCID: PMC4674615 DOI: 10.1155/2015/238586] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 10/15/2015] [Indexed: 01/07/2023] Open
Abstract
The critically ill polytrauma patient is a constant challenge for the trauma team due to the complexity of the complications presented. Intense inflammatory response and infections, as well as multiple organ dysfunctions, significantly increase the rate of morbidity and mortality in these patients. Moreover, due to the physiological and biochemical imbalances present in this type of patients, the bioproduction of free radicals is significantly accelerated, thus installing the oxidative stress. In the therapeutic management of such patients, multiple surgical interventions are required and therefore they are being subjected to repeated general anesthesia. In this paper, we want to present the pathophysiological implications of oxidative stress in critically ill patients with multiple traumas and the implications of general anesthesia on the redox mechanisms of the cell. We also want to summarize the antioxidant treatments able to reduce the intensity of oxidative stress by modulating the biochemical activity of some cellular mechanisms.
Collapse
|