1
|
Rodrigues GZP, Finkler M, Dos Santos TG, Kayser JM, Lima DDD, Burghausen JH, de Oliveira DL, Ziulkoski AL, Gehlen G. Chronic Exposure of Zebrafish to Iron and Aluminum: Evaluation of Reversal and Generational Transposition of Behavioral, Histopathological, and Genotoxic Changes. ENVIRONMENTAL TOXICOLOGY 2025; 40:583-597. [PMID: 39575842 DOI: 10.1002/tox.24443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 10/24/2024] [Accepted: 11/11/2024] [Indexed: 03/18/2025]
Abstract
This study aimed to report the effects of chronic exposure of zebrafish exposed to environmentally relevant concentrations of 0.5, 2.4, and 5.0 mg L-1 iron (Fe) and 0.2, 0.4, and 2.0 mg L-1 aluminum (Al). We also evaluated the reversal and generational transposition (F1) of possible histopathological, behavioral, and genotoxic changes in the species. Locomotion changes that may have been caused by the increase in the number of apoptotic cells and in the telencephalic mitochondrial activity were observed especially after the 30 days exposure to Al and persisted after recovery (30 days). We also observed histopathological changes, such as an increase in the number of intestinal goblet cells, even after the recovery period in these animals. Our results also showed that the Fe concentrations used were insufficient to cause genotoxicity, behavioral and intestinal epithelium changes. The adult offspring (F1) of animals exposed to Al showed changes in locomotion and in the amount of goblet cells, demonstrating that even in low concentrations this pollutant can harm subsequent generations in the aquatic biota. Animals demonstrate, in general, greater tolerance to Fe which may be related to the physiological demand of this metal by the body. Even so, all concentrations of both metals that caused some change in the species represent Brazilian environmental occurrences or Brazilian legislation. It highlights the need for updating the guidelines and constant monitoring of aquatic environments, since even in the face of a hypothetical decontamination of the environment, some changes could persist and affect different trophic levels.
Collapse
Affiliation(s)
- Gabriela Zimmermann Prado Rodrigues
- Post Graduation Program in Environmental Quality, Feevale University, Novo Hamburgo, Rio Grande do Sul, Brazil
- Biomedicine Course, CESUCA University Center, Cachoeirinha, Rio Grande do Sul, Brazil
| | - Mariana Finkler
- Post Graduation Program in Environmental Quality, Feevale University, Novo Hamburgo, Rio Grande do Sul, Brazil
| | - Thainá Garbino Dos Santos
- Post Graduation Program in Biological Sciences, Biochemistry, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Juliana Machado Kayser
- Master's Degree in Toxicology and Toxicological Analysis, Feevale University, Novo Hamburgo, Rio Grande do Sul, Brazil
| | - Diego Del Duca Lima
- Post Graduation Program in Biological Sciences, Biochemistry, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Jorge Henrique Burghausen
- Post Graduation Program in Environmental Quality, Feevale University, Novo Hamburgo, Rio Grande do Sul, Brazil
| | - Diogo Losch de Oliveira
- Post Graduation Program in Biological Sciences, Biochemistry, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Ana Luiza Ziulkoski
- Post Graduation Program in Environmental Quality, Feevale University, Novo Hamburgo, Rio Grande do Sul, Brazil
| | - Günther Gehlen
- Post Graduation Program in Environmental Quality, Feevale University, Novo Hamburgo, Rio Grande do Sul, Brazil
| |
Collapse
|
2
|
Rajput N, Parikh K, Squires A, Fields KK, Wong M, Kanani D, Kenney JW. Whole-brain mapping in adult zebrafish and identification of the functional brain network underlying the novel tank test. eNeuro 2025; 12:ENEURO.0382-24.2025. [PMID: 40068875 PMCID: PMC11936448 DOI: 10.1523/eneuro.0382-24.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 01/10/2025] [Accepted: 01/13/2025] [Indexed: 03/19/2025] Open
Abstract
Zebrafish have gained prominence as a model organism in neuroscience over the past several decades, generating key insight into the development and functioning of the vertebrate brain. However, techniques for whole brain mapping in adult stage zebrafish are lacking. Here, we describe a pipeline built using open-source tools for whole-brain activity mapping in adult zebrafish. Our pipeline combines advances in histology, microscopy, and machine learning to capture cfos activity across the entirety of the brain. Following tissue clearing, whole brain images are captured using light-sheet microscopy and registered to the recently created adult zebrafish brain atlas (AZBA) for automated segmentation. By way of example, we used our pipeline to measure brain activity after zebrafish were subject to the novel tank test, one of the most widely used behaviors in adult zebrafish. Cfos levels peaked 15 minutes following behavior and several regions, including those containing serotoninergic and dopaminergic neurons, were active during exploration. Finally, we generated a novel tank test functional brain network. This revealed that several regions of the subpallium form a cohesive sub-network during exploration. Functional interconnections between the subpallium and other regions appear to be mediated primarily by ventral nucleus of the ventral telencephalon (Vv), the olfactory bulb, and the anterior part of the parvocellular preoptic nucleus (PPa). Taken together, our pipeline enables whole-brain activity mapping in adult zebrafish while providing insight into neural basis for the novel tank test.Significance statement Zebrafish have grown in popularity as a model organism over the past several decades due to their low cost, ease of genetic manipulation, and similarity to other vertebrates like humans and rodents. However, to date, tools for whole-brain mapping in adult stage animals has been lacking. Here, we present an open-source pipeline for whole-brain mapping in adult zebrafish. We demonstrate the use of our pipeline by generating a functional brain network for one of the most widely used behavioral assays in adult zebrafish, the novel tank test. We found that exploration of a novel tank engages the olfactory bulb and a network of subpallial regions that correspond to the mammalian subpallial amygdala and basal ganglia.
Collapse
Affiliation(s)
- Neha Rajput
- Department of Biological Sciences, Wayne State University, Detroit, Michigan 48202
| | - Kush Parikh
- Department of Biological Sciences, Wayne State University, Detroit, Michigan 48202
| | - Ada Squires
- Department of Biological Sciences, Wayne State University, Detroit, Michigan 48202
| | - Kailyn K. Fields
- Department of Biological Sciences, Wayne State University, Detroit, Michigan 48202
| | - Matheu Wong
- Department of Biological Sciences, Wayne State University, Detroit, Michigan 48202
| | - Dea Kanani
- Department of Biological Sciences, Wayne State University, Detroit, Michigan 48202
| | - Justin W. Kenney
- Department of Biological Sciences, Wayne State University, Detroit, Michigan 48202
| |
Collapse
|
3
|
da Silva HC, das Chagas Lima Pinto F, Silva Marinho E, Alencar de Menezes JES, Kueirislene Amâncio Ferreira M, da Silva AW, Machado Marinho E, Marinho MM, Pessoa Bezerra de Menezes RRP, Washington Cavalcante J, Silva Dos Santos H, Pessoa ODL, Santiago GMP. Anxiolytic and Anticonvulsant Effects of Fisetin Isolated from Bauhinia pentandra on Adult Zebrafish (Danio rerio). Chem Biodivers 2024; 21:e202401207. [PMID: 39088251 DOI: 10.1002/cbdv.202401207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 08/02/2024]
Abstract
Anxiety and epilepsy are common worldwide and represent a primary global health concern. Fisetin, a flavonoid isolated from Bauhinia pentandra, has a wide range of biological activities may be a promising alternative to combat diseases related to the central nervous system (CNS). The present study aimed to investigate the anxiolytic and anticonvulsant effects of fisetin on adult zebrafish. Furthermore, molecular docking simulations were performed to improve the results. Fisetin did not present toxicity and caused anxiolytic behavior and delayed seizures in animals. This effect may occur through serotonin neurotransmission at 5-HT3A and/or 5-HT3B receptors. Molecular docking simulations showed that fisetin interacts with the orthosteric site of the 5-HT3A receptor with strong H-bond interactions with the Trp156 residue, with a strong contribution from the catechol ring, a behavior similar to that of the antagonist co-crystallized inhibitor granisetron (CWB). Fisetin may be a promising alternative to combat diseases related to the central nervous system.
Collapse
Affiliation(s)
- Horlando Carlota da Silva
- Programa de Pós-Graduação em Química, Universidade Federal do Ceará, Campus do Pici, 60021-940, Fortaleza, CE, Brazil
| | | | - Emmanuel Silva Marinho
- Programa de Pós-Graduação em Ciências Naturais, Universidade Estadual de Ceará, Campus do Itaperi, 60714-242, Fortaleza, CE, Brazil
| | | | | | - Antonio Wlisses da Silva
- Programa de Pós-Graduação em Ciências Naturais, Universidade Estadual de Ceará, Campus do Itaperi, 60714-242, Fortaleza, CE, Brazil
| | - Emanuelle Machado Marinho
- Programa de Pós-Graduação em Química, Universidade Federal do Ceará, Campus do Pici, 60021-940, Fortaleza, CE, Brazil
| | - Márcia Machado Marinho
- Curso de Química, Centro de Ciências e Tecnologia, Universidade Estadual do Vale do Acaraú, 62.040-370, Sobral, CE, Brazil
| | | | - John Washington Cavalcante
- Departamento de Análises Clínicas e Toxicológicas, Universidade Federal do Ceará, Rua Pastor Samuel Munguba 1210, Campus do Porangabussu, 60430-370, Fortaleza, CE, Brazil
| | - Hélcio Silva Dos Santos
- Curso de Química, Centro de Ciências e Tecnologia, Universidade Estadual do Vale do Acaraú, 62.040-370, Sobral, CE, Brazil
| | | | - Gilvandete Maria Pinheiro Santiago
- Programa de Pós-Graduação em Química, Universidade Federal do Ceará, Campus do Pici, 60021-940, Fortaleza, CE, Brazil
- Departamento de Farmácia, Universidade Federal do Ceará, Rua Pastor Samuel Munguba 1210, Campus do Porangabussu, 60430-370, Fortaleza, CE, Brazil
| |
Collapse
|
4
|
Tea M, Pan YK, Lister JGR, Perry SF, Gilmour KM. Effects of serta and sertb knockout on aggression in zebrafish (Danio rerio). J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2024; 210:785-799. [PMID: 38416162 DOI: 10.1007/s00359-024-01693-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/12/2024] [Accepted: 02/01/2024] [Indexed: 02/29/2024]
Abstract
Zebrafish (Danio rerio) are unusual in having two paralogues of the serotonin re-uptake transporter (Sert), slc6a4a (serta) and slc6a4b (sertb), the transporter that serves in serotonin re-uptake from a synapse into the pre-synaptic cell or in serotonin uptake from the extracellular milieu into cells in the peripheral tissues. To address a knowledge gap concerning the specific roles of these paralogues, we used CRISPR/Cas9 technology to generate zebrafish knockout lines predicted to lack functional expression of Serta or Sertb. The consequences of loss-of-function of Serta or Sertb were assessed at the gene expression level, focusing on the serotonergic signalling pathway, and at the behaviour level, focusing on aggression. Whereas serta mRNA was expressed in all tissues examined, with high expression in the heart, gill and brain, only the brain displayed substantial sertb mRNA expression. In both serta-/- and sertb-/- fish, changes in transcript abundances of multiple components of the serotonin signalling pathway were detected, including proteins involved in serotonin synthesis (tph1a, tph1b, tph2, ddc), packaging (vmat2) and degradation (mao), and serotonin receptors (htr1aa, htr1ab). Using a mirror aggression test, serta-/- male but not female fish exhibited greater aggression than wildtype fish. However, both male and female sertb-/- fish displayed less aggression than their wildtype counterparts. These differences in behaviour between serta-/- and sertb-/- individuals hold promise for increasing our understanding of the neurophysiological basis of aggression in zebrafish.
Collapse
Affiliation(s)
- Michael Tea
- Department of Biology, University of Ottawa, 30 Marie Curie Pvt, Ottawa, ON, K1N 6N5, Canada
| | - Yihang Kevin Pan
- Department of Biology, University of Ottawa, 30 Marie Curie Pvt, Ottawa, ON, K1N 6N5, Canada
| | - Joshua G R Lister
- Department of Biology, University of Ottawa, 30 Marie Curie Pvt, Ottawa, ON, K1N 6N5, Canada
| | - Steve F Perry
- Department of Biology, University of Ottawa, 30 Marie Curie Pvt, Ottawa, ON, K1N 6N5, Canada
| | - Kathleen M Gilmour
- Department of Biology, University of Ottawa, 30 Marie Curie Pvt, Ottawa, ON, K1N 6N5, Canada.
| |
Collapse
|
5
|
Rajput N, Parikh K, Squires A, Fields KK, Wong M, Kanani D, Kenney JW. Whole-brain mapping in adult zebrafish and identification of a novel tank test functional connectome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.16.607981. [PMID: 39229236 PMCID: PMC11370427 DOI: 10.1101/2024.08.16.607981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Identifying general principles of brain function requires the study of structure-function relationships in a variety of species. Zebrafish have recently gained prominence as a model organism in neuroscience, yielding important insights into vertebrate brain function. Although methods have been developed for mapping neural activity in larval animals, we lack similar techniques for adult zebrafish that have the advantage of a fully developed neuroanatomy and larger behavioral repertoire. Here, we describe a pipeline built around open-source tools for whole-brain activity mapping in freely swimming adult zebrafish. Our pipeline combines recent advances in histology, microscopy, and machine learning to capture cfos activity across the entirety of the adult brain. Images captured using light-sheet microscopy are registered to the recently created adult zebrafish brain atlas (AZBA) for automated segmentation using advanced normalization tools (ANTs). We used our pipeline to measure brain activity after zebrafish were subject to the novel tank test. We found that cfos levels peaked 15 minutes following behavior and that several regions containing serotoninergic, dopaminergic, noradrenergic, and cholinergic neurons were active during exploration. Finally, we generated a novel tank test functional connectome. Functional network analysis revealed that several regions of the medial ventral telencephalon form a cohesive sub-network during exploration. We also found that the anterior portion of the parvocellular preoptic nucleus (PPa) serves as a key connection between the ventral telencephalon and many other parts of the brain. Taken together, our work enables whole-brain activity mapping in adult zebrafish for the first time while providing insight into neural basis for the novel tank test.
Collapse
Affiliation(s)
- Neha Rajput
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202
| | - Kush Parikh
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202
| | - Ada Squires
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202
| | - Kailyn K Fields
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202
| | - Matheu Wong
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202
| | - Dea Kanani
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202
| | - Justin W Kenney
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202
| |
Collapse
|
6
|
Shafiq A, Andrade M, Matthews R, Umbarger A, Petrunich-Rutherford ML. Acute clomipramine exposure elicits dose-dependent surfacing behavior in adult zebrafish ( Danio rerio). PeerJ 2024; 12:e17803. [PMID: 39040938 PMCID: PMC11262300 DOI: 10.7717/peerj.17803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 07/03/2024] [Indexed: 07/24/2024] Open
Abstract
Chronic treatment with clomipramine, a tricyclic antidepressant drug, reduces symptoms of obsessive-compulsive disorder (OCD) and can influence the activity of the hypothalamic-pituitary-adrenal axis. However, little is known regarding the effects of acute clomipramine on the immediate expression of stress responses. Serotonergic drugs can elicit surfacing, a behavioral profile potentially related to toxicity in fish, although surfacing has not yet been observed after clomipramine exposure. The present study investigated the impact of acute exposure to clomipramine on basal and stress-induced behaviors in the novel tank test and cortisol levels in mixed-sex, wild-type, adult zebrafish (Danio rerio). The findings show clomipramine-exposed groups (regardless of stress exposure) spent much more time in the top of the novel tank and had significantly less overall motor activity in the behavioral task compared to the fish not exposed to the drug. Then, the dose-dependent effects of acute clomipramine on activity in the surface of the novel tank (top third of the top half) were investigated further. Clomipramine dose-dependently increased surface-dwelling and elicited a dose-dependent hypoactivity in overall motor behavior. There were no statistically significant differences in whole-body cortisol levels in either experiment. Like other serotonin-acting drugs, clomipramine strongly elicited surface-dwelling and depressed motor behavior in adult zebrafish. Additional testing is needed to elucidate whether surfacing represents a toxic state and how serotonin regulates surfacing.
Collapse
Affiliation(s)
- Adeel Shafiq
- Department of Psychology, Indiana University Northwest, Gary, IN, United States of America
| | - Mercedes Andrade
- Department of Psychology, Indiana University Northwest, Gary, IN, United States of America
| | - Richanne Matthews
- Department of Psychology, Indiana University Northwest, Gary, IN, United States of America
| | - Alexandria Umbarger
- Department of Psychology, Indiana University Northwest, Gary, IN, United States of America
| | | |
Collapse
|
7
|
Beigloo F, Davidson CJ, Gjonaj J, Perrine SA, Kenney JW. Individual differences in the boldness of female zebrafish are associated with alterations in serotonin function. J Exp Biol 2024; 227:jeb247483. [PMID: 38842023 PMCID: PMC11213521 DOI: 10.1242/jeb.247483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 05/14/2024] [Indexed: 06/07/2024]
Abstract
One of the most prevalent axes of behavioral variation in both humans and animals is risk taking, where individuals that are more willing to take risk are characterized as bold while those that are more reserved are regarded as shy. Brain monoamines (i.e. serotonin, dopamine and noradrenaline) have been found to play a role in a variety of behaviors related to risk taking. Using zebrafish, we investigated whether there was a relationship between monoamine function and boldness behavior during exploration of a novel tank. We found a correlation between serotonin metabolism (5-HIAA:5-HT ratio) and boldness during the initial exposure to the tank in female animals. The DOPAC:DA ratio correlated with boldness behavior on the third day in male fish. There was no relationship between boldness and noradrenaline. To probe differences in serotonergic function in bold and shy fish, we administered a selective serotonin reuptake inhibitor, escitalopram, and assessed exploratory behavior. We found that escitalopram had opposing effects on thigmotaxis in bold and shy female animals: the drug caused bold fish to spend more time near the center of the tank and shy fish spent more time near the periphery. Taken together, our findings indicate that variation in serotonergic function has sex-specific contributions to individual differences in risk-taking behavior.
Collapse
Affiliation(s)
- Fatemeh Beigloo
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA
| | - Cameron J. Davidson
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Joseph Gjonaj
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA
| | - Shane A. Perrine
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Justin W. Kenney
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA
| |
Collapse
|
8
|
Ilyin NP, Nabiullin AD, Kozlova AD, Kupriyanova OV, Shevyrin VA, Gloriozova T, Filimonov D, Lagunin A, Galstyan DS, Kolesnikova TO, Mor MS, Efimova EV, Poroikov V, Yenkoyan KB, de Abreu MS, Demin KA, Kalueff AV. Chronic Behavioral and Neurochemical Effects of Four Novel N-Benzyl-2-phenylethylamine Derivatives Recently Identified as "Psychoactive" in Adult Zebrafish Screens. ACS Chem Neurosci 2024; 15:2006-2017. [PMID: 38683969 DOI: 10.1021/acschemneuro.4c00017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024] Open
Abstract
Potently affecting human and animal brain and behavior, hallucinogenic drugs have recently emerged as potentially promising agents in psychopharmacotherapy. Complementing laboratory rodents, the zebrafish (Danio rerio) is a powerful model organism for screening neuroactive drugs, including hallucinogens. Here, we tested four novel N-benzyl-2-phenylethylamine (NBPEA) derivatives with 2,4- and 3,4-dimethoxy substitutions in the phenethylamine moiety and the -F, -Cl, and -OCF3 substitutions in the ortho position of the phenyl ring of the N-benzyl moiety (34H-NBF, 34H-NBCl, 24H-NBOMe(F), and 34H-NBOMe(F)), assessing their behavioral and neurochemical effects following chronic 14 day treatment in adult zebrafish. While the novel tank test behavioral data indicate anxiolytic-like effects of 24H-NBOMe(F) and 34H-NBOMe(F), neurochemical analyses reveal reduced brain norepinephrine by all four drugs, and (except 34H-NBCl) - reduced dopamine and serotonin levels. We also found reduced turnover rates for all three brain monoamines but unaltered levels of their respective metabolites. Collectively, these findings further our understanding of complex central behavioral and neurochemical effects of chronically administered novel NBPEAs and highlight the potential of zebrafish as a model for preclinical screening of small psychoactive molecules.
Collapse
Affiliation(s)
- Nikita P Ilyin
- Almazov National Medical Research Centre, St. Petersburg 197341, Russia
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
| | - Arslan D Nabiullin
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
| | - Anna D Kozlova
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
| | - Olga V Kupriyanova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
- Kazan State Medical University, Kazan 420012, Russia
| | - Vadim A Shevyrin
- Institute of Chemical Engineering, Ural Federal University, 19 Mira Str. ,Ekaterinburg 620002, Russia
| | - Tatyana Gloriozova
- Institute of Biomedical Chemistry, Pogodinskaya str., 10, bldg. 8 ,Moscow 119121, Russia
| | - Dmitry Filimonov
- Institute of Biomedical Chemistry, Pogodinskaya str., 10, bldg. 8 ,Moscow 119121, Russia
| | - Alexey Lagunin
- Institute of Biomedical Chemistry, Pogodinskaya str., 10, bldg. 8 ,Moscow 119121, Russia
| | - David S Galstyan
- Almazov National Medical Research Centre, St. Petersburg 197341, Russia
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
| | - Tatiana O Kolesnikova
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
- Neuroscience Laboratory, Cobrain Center, Yerevan State Medical University after Mkhitar Heratsi, Yerevan 0025, Armenia
| | - Mikael S Mor
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
| | - Evgeniya V Efimova
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
| | - Vladimir Poroikov
- Institute of Biomedical Chemistry, Pogodinskaya str., 10, bldg. 8 ,Moscow 119121, Russia
| | - Konstantin B Yenkoyan
- Neuroscience Laboratory, Cobrain Center, Yerevan State Medical University after Mkhitar Heratsi, Yerevan 0025, Armenia
- Biochemistry Department, Yerevan State Medical University after Mkhitar Heratsi, Yerevan 0025, Armenia
| | - Murilo S de Abreu
- Graduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre, Porto Alegre 900050, Brazil
| | - Konstantin A Demin
- Almazov National Medical Research Centre, St. Petersburg 197341, Russia
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
| | - Allan V Kalueff
- Almazov National Medical Research Centre, St. Petersburg 197341, Russia
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
- Neurobiology Program, Sirius University of Science and Technology, Sochi 354340, Russia
- Suzhou Key Laboratory of Neurobiology and Cell Signalling, Department of Biological Sciences, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
| |
Collapse
|
9
|
Santos Oliveira L, Kueirislene Amâncio Ferreira M, Wagner de Queiroz Almeida-Neto F, Wlisses da Silva A, Ivo Lima Pinto Filho J, Nunes da Rocha M, Machado Marinho E, Henrique Ferreira Ribeiro W, Machado Marinho M, Silva Marinho E, Eire Silva Alencar de Menezes J, Dos Santos HS. Synthesis, molecular docking, ADMET, and evaluation of the anxiolytic effect in adult zebrafish of synthetic chalcone (E)-3-(4-(dimethylamino)phenyl)-1-(2-hydroxyphenyl)prop-2-en-1-one: An in vivo and in silico approach. Fundam Clin Pharmacol 2024; 38:290-306. [PMID: 37845792 DOI: 10.1111/fcp.12960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 08/17/2023] [Accepted: 09/29/2023] [Indexed: 10/18/2023]
Abstract
BACKGROUND Anxiety disorders represent the complex interaction between biological, psychological, temperamental, and environmental factors; drugs available to treat anxiety such as benzodiazepines (BZDs) are associated with several unwanted side effects. Although there are useful treatments, there is still a need for more effective anxiolytics with better safety profiles than BZDs. Chalcones or 1,3-diphenyl-2-proper-1-ones can be an alternative since this class of compounds has shown therapeutic potential mainly due to interactions with GABAA receptors and serotonergic system. OBJECTIVES This study evaluated the anxiolytic potential of chalcone (E)-3-(4-(dimethylamino)phenyl)-1-(2-hydroxyphenyl)prop-2-en-1-one (C2OHPDA) in adult zebrafish (Danio rerio) (ZFa). METHODS Each animal (n = 6/group) was treated intraperitoneally (i.p.; 20 μL) with the chalcone (4, 20, and 40 mg/kg) and with the vehicle (DMSO 3%; 20 μL), being submitted to the tests of locomotor activity and 96-h acute toxicity. The light/dark test was also performed, and the serotonergic mechanism (5-HT) was evaluated through the antagonists of the 5-HTR1 , 5-HTR2A/2C , and 5-HTR3A/3B receptors. It was investigated the prediction of the chalcone's position and preferential orientation concerning its receptor, as well as the pharmacokinetic parameters (ADMET) involved in the process after administration. RESULTS As a result, C2OHPDA was not toxic and reduced the locomotor activity of ZFa. Furthermore, chalcone demonstrated an anxiolytic effect on the central nervous system (CNS), mediated by the serotonergic system, with action on 5-HT2A and 5-HTR3A/3B receptors. The interaction of C2OHPDA with 5-HT2A R and 5-HT3A receptors was confirmed by molecular docking study, the affinity energy observed was -8.7 and -9.1 kcal/mol, respectively. CONCLUSION Thus, this study adds new evidence and highlights that chalcone can potentially be used to develop compounds with anxiolytic properties.
Collapse
Affiliation(s)
- Larissa Santos Oliveira
- Science and Technology, Graduate Program in Natural Sciences, State University of Ceará, Fortaleza, Ceará, Brazil
| | | | | | - Antonio Wlisses da Silva
- Northeast Biotechnology Network, Graduate Program of Biotechnology, State University of Ceará, Fortaleza, Ceará, Brazil
| | | | - Matheus Nunes da Rocha
- Science and Technology, Graduate Program in Natural Sciences, State University of Ceará, Fortaleza, Ceará, Brazil
| | - Emanuelle Machado Marinho
- Department of Organic and Inorganic Chemistry, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | | | | | - Emmanuel Silva Marinho
- Science and Technology, Graduate Program in Natural Sciences, State University of Ceará, Fortaleza, Ceará, Brazil
| | | | - Hélcio Silva Dos Santos
- Science and Technology, Graduate Program in Natural Sciences, State University of Ceará, Fortaleza, Ceará, Brazil
- Northeast Biotechnology Network, Graduate Program of Biotechnology, State University of Ceará, Fortaleza, Ceará, Brazil
- Chemistry Course, State University of Vale do Acaraú, Sobral, Ceará, Brazil
| |
Collapse
|
10
|
Braun D, Rosenberg AM, Rabaniam E, Haruvi R, Malamud D, Barbara R, Aiznkot T, Levavi-Sivan B, Kawashima T. High-resolution tracking of unconfined zebrafish behavior reveals stimulatory and anxiolytic effects of psilocybin. Mol Psychiatry 2024; 29:1046-1062. [PMID: 38233467 PMCID: PMC11176078 DOI: 10.1038/s41380-023-02391-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 12/12/2023] [Accepted: 12/19/2023] [Indexed: 01/19/2024]
Abstract
Serotonergic psychedelics are emerging therapeutics for psychiatric disorders, yet their underlying mechanisms of action in the brain remain largely elusive. Here, we developed a wide-field behavioral tracking system for larval zebrafish and investigated the effects of psilocybin, a psychedelic serotonin receptor agonist. Machine learning analyses of precise body kinematics identified latent behavioral states reflecting spontaneous exploration, visually-driven rapid swimming, and irregular swim patterns following stress exposure. Using this method, we found that acute psilocybin treatment has two behavioral effects: [i] facilitation of spontaneous exploration ("stimulatory") and [ii] prevention of irregular swim patterns following stress exposure ("anxiolytic"). These effects differed from the effect of acute SSRI treatment and were rather similar to the effect of ketamine treatment. Neural activity imaging in the dorsal raphe nucleus suggested that psilocybin inhibits serotonergic neurons by activating local GABAergic neurons, consistent with psychedelic-induced suppression of serotonergic neurons in mammals. These findings pave the way for using larval zebrafish to elucidate neural mechanisms underlying the behavioral effects of serotonergic psychedelics.
Collapse
Affiliation(s)
- Dotan Braun
- Department of Brain Sciences, Weizmann Institute of Science, 234 Herzl Street, Rehovot, Israel
- The Jerusalem Mental Health Center, Jerusalem, Israel
| | - Ayelet M Rosenberg
- Department of Brain Sciences, Weizmann Institute of Science, 234 Herzl Street, Rehovot, Israel
| | - Elad Rabaniam
- Department of Brain Sciences, Weizmann Institute of Science, 234 Herzl Street, Rehovot, Israel
| | - Ravid Haruvi
- Department of Brain Sciences, Weizmann Institute of Science, 234 Herzl Street, Rehovot, Israel
| | - Dorel Malamud
- Department of Brain Sciences, Weizmann Institute of Science, 234 Herzl Street, Rehovot, Israel
| | - Rani Barbara
- Department of Brain Sciences, Weizmann Institute of Science, 234 Herzl Street, Rehovot, Israel
| | - Tomer Aiznkot
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food, and Environment, Hebrew University of Jerusalem, 229 Herzl Street, Rehovot, Israel
| | - Berta Levavi-Sivan
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food, and Environment, Hebrew University of Jerusalem, 229 Herzl Street, Rehovot, Israel
| | - Takashi Kawashima
- Department of Brain Sciences, Weizmann Institute of Science, 234 Herzl Street, Rehovot, Israel.
| |
Collapse
|
11
|
Beigloo F, Davidson CJ, Gjonaj J, Perrine SA, Kenney JW. Individual differences in the boldness of female zebrafish are associated with alterations in serotonin function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.13.580160. [PMID: 38405806 PMCID: PMC10888793 DOI: 10.1101/2024.02.13.580160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
One of the most prevalent axes of behavioral variation in both humans and animals is risk taking, where individuals that are more willing to take risk are characterized as bold while those that are more reserved as shy. Brain monoamines (i.e., serotonin, dopamine, and norepinephrine) have been found to play a role in a variety of behaviors related to risk taking. Genetic variation related to monoamine function have also been linked to personality in both humans and animals. Using zebrafish, we investigated the relationship between monoamine function and boldness behavior during exploration of a novel tank. We found a sex-specific correlation between serotonin metabolism (5-HIAA:5-HT ratio) and boldness that was limited to female animals; there were no relationships between boldness and dopamine or norepinephrine. To probe differences in serotonergic function, we administered a serotonin reuptake inhibitor, escitalopram, to bold and shy fish, and assessed their exploratory behavior. We found that escitalopram had opposing effects on thigmotaxis in female animals with bold fish spending more time near the center of the tank and shy fish spent more time near the periphery. Taken together, our findings suggest that variation in serotonergic function makes sex-specific contributions to individual differences in risk taking behavior.
Collapse
Affiliation(s)
- Fatemeh Beigloo
- Department of Biological Sciences Wayne State University, Detroit, MI 48202, USA
| | - Cameron J Davidson
- Department of Psychiatry and Behavioral Neurosciences Wayne State University School of Medicine, Detroit, MI 48201, USA
- Current address: Department of Foundational Medical Studies, Oakland University William Beaumont School of Medicine, Rochester, MI 48309, USA
| | - Joseph Gjonaj
- Department of Biological Sciences Wayne State University, Detroit, MI 48202, USA
| | - Shane A Perrine
- Department of Psychiatry and Behavioral Neurosciences Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Justin W Kenney
- Department of Biological Sciences Wayne State University, Detroit, MI 48202, USA
| |
Collapse
|
12
|
de Menezes JFS, Sá Pires Silva AM, Aparecida Faria de Almeida E, da Silva AF, Morais Bomfim De Lima J, da Silva AW, Ferreira MKA, de Menezes JESA, Dos Santos HS, Marinho ES, Marinho GS, Marques da Fonseca A. Synthesis and anxiolytic effect of europium metallic complex containing lapachol [Eu(DBM) 3. LAP] in adult zebrafish through serotonergic neurotransmission: in vivo and in silico approach. J Biomol Struct Dyn 2024; 42:1280-1292. [PMID: 37029769 DOI: 10.1080/07391102.2023.2199087] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/29/2023] [Indexed: 04/09/2023]
Abstract
Anxiety-related mental health problems are estimated at 3.6% globally, benzodiazepines (BZDs) are the class of drugs indicated for the treatment of anxiety, including lorazepam and diazepam. However, concerns have been raised about the short- and long-term risks associated with BZDs. Therefore, despite anxiolytic and antidepressant drugs, there is a need to develop more effective pharmacotherapies with fewer side effects than existing drugs. The present work reported the synthesis, anxiolytic activity, mechanism of action in Adult Zebrafish (Danio rerio) and in silico study of a europium metallic complex with Lapachol, [Eu(DBM)3. LAP]. Each animal (n = 6/group) was treated intraperitoneally (i.p.; 20 µL) with the synthesized complex (4, 20 and 40 mg/Kg) and with the vehicle (DMSO 3%; 20 µL), being submitted to the tests of locomotor activity and 96h acute toxicity. The light/dark test was also performed, and the serotonergic mechanism (5-HT) was evaluated through the antagonists of the 5-HTR1, 5-HTR2A/2C and 5-HTR3A/3B receptors. The complex was characterized using spectrometric techniques, and the anxiolytic effect of complex may be involved the neuromodulation of receptors 5-HT3A/3B, since the pre-treatment with pizotifen and cyproheptadine did not block the anxiolytic effect of [Eu(DBM)3. LAP], unlike fluoxetine had its anxiolytic effect reversed. In addition, molecular docking showed interaction between the [Eu(DBM)3. LAP] and 5HT3A receptor with binding energy -7.8 kcal/mol and the ADMET study showed that complex has low toxic risk. It is expected that the beginning of this study will allow the application of the new anxiolytic drugs, given the pharmacological potential of the lapachol complex.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Jorge Fernando Silva de Menezes
- Center for Teacher Training, Federal University of Recôncavo da Bahia, Amargosa, Bahia, Brazil
- INCT - Energia e Meio Ambiente, UFBA, Rua Barão de Jeremoabo, Salvador, Bahia, Brazil
| | | | | | - Ananias Freire da Silva
- Postgraduate Program in Energy and Environment - PGEA, Institute of Engineering and Sustainable Development, University of International Integration of Afro-Brazilian Lusofonia, Acarape, Ceará, Brazil
| | | | | | | | | | - Hélcio Silva Dos Santos
- State University of Ceará, Graduate Program in Natural Sciences, Fortaleza, Ceará, Brazil
- State University of Vale do Acaraú, Chemistry Course, Sobral, Ceará, Brazil
| | - Emmanuel Silva Marinho
- State University of Ceará, Graduate Program in Natural Sciences, Fortaleza, Ceará, Brazil
- Degree Course in Computer Science, Ceará State University, Fortaleza, Ceará, Brazil
| | | | - Aluísio Marques da Fonseca
- Postgraduate Program in Energy and Environment - PGEA, Institute of Engineering and Sustainable Development, University of International Integration of Afro-Brazilian Lusofonia, Acarape, Ceará, Brazil
| |
Collapse
|
13
|
Cesário HPSDF, Silva FCO, Ferreira MKA, de Menezes JESA, Dos Santos HS, Marques da Fonseca A, Nogueira CES, Marinho MM, Marinho ES, Teixeira AMR, Silveira ER, Pessoa ODL. Anxiolytic effects of N-(4,5-dihydro-5-oxo-1,2-dithiolo-[4,3,b]-pyrrole-6-yl)- N-methylformamide, a pyrroloformamide isolated from a marine Streptomyces sp., in adult zebrafish by the 5-HT system. J Biomol Struct Dyn 2024; 42:445-460. [PMID: 37038661 DOI: 10.1080/07391102.2023.2193988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 03/15/2023] [Indexed: 04/12/2023]
Abstract
General anxiety disorders are among the most prevalent mental health problems worldwide. The emergence and development of anxiety disorders can be due to genetic (30-50%) or non-genetic (50-70%) factors. Despite medical progress, available pharmacotherapies are sometimes ineffective or can cause undesirable side effects. Thus, it becomes necessary to discover new safe and effective drugs against anxiety. This study evaluated the anxiolytic effect in adult zebrafish (Danio rerio) of a natural pyrroloformamide (PFD), N-(4,5-dihydro-5-oxo-1,2-dithiolo-[4,3,b]-pyrrole-6-yl)-N-methylformamide, isolated from a Streptomyces sp. bacterium strain recovered from the ascidian Eudistoma vannamei. The complete structure of PFD was determined by a detailed NMR analysis, including 1H-13C and 1H-15N-HBMC data. In addition, conformational and DFT computational studies also were performed. A group of fishes (n = 6) was treated orally with PFD (0.1, 0.5 and 1.0 mg/mL; 20 μL) and subjected to locomotor activity and light/dark tests, as well as, acute toxicity 96 h. The involvement of the GABAergic and serotonergic (5-HT) systems was investigated using flumazenil (a silent modulator of GABA receptor) and 5-HT1, 5-HT2A/2C and 5-HTR3A/3B receptors antagonists, known as pizotifen, granisetron and cyproheptadine, respectively. PFD was nontoxic, reduced locomotor activity and promoted the anxiolytic effect in zebrafish. Flumazenil did not inhibit the anxiolytic effect of the PFD via the GABAergic system. This effect was reduced by a pretreatment with pizotifen and granisetron, and was not reversed after treatment with cyproheptadine. Molecular docking and dynamics studies confirmed the interaction of PFD with the 5-HT receptor.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | | | | | | | - Hélcio S Dos Santos
- Laboratory of Chemistry of Natural Products, Synthesis and Biocatalysis of Organic Compounds, Vale do Acaraú University, Sobral, CE, Brazil
| | - Aluísio Marques da Fonseca
- Academic Master in Sociobiodiversity and Sustainable Technologies - MASTS, Institute of Engineering and Sustainable Development, University of International Integration of Afro-Brazilian Lusofonia, Acarape, CE, Brazil
| | - Carlos Emídio S Nogueira
- Department of Biological Chemistry, Regional University of Cariri, Crato, CE, Brazil
- Department of Physics, Regional University of Cariri, Crato, CE, Brazil
| | - Marcia M Marinho
- Laboratory of Chemistry of Natural Products, Synthesis and Biocatalysis of Organic Compounds, Vale do Acaraú University, Sobral, CE, Brazil
| | | | - Alexandre Magno R Teixeira
- Department of Biological Chemistry, Regional University of Cariri, Crato, CE, Brazil
- Course of Physics, State University of Ceará, Fortaleza, CE, Brazil
| | - Edilberto R Silveira
- Department of Organic and Inorganic Chemistry, Science Center, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Otília Deusdênia L Pessoa
- Department of Organic and Inorganic Chemistry, Science Center, Federal University of Ceará, Fortaleza, CE, Brazil
| |
Collapse
|
14
|
Ferreira CSS, Venâncio C, Kille P, Oliveira M. Are early and young life stages of fish affected by paroxetine? A case study with Danio rerio. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165706. [PMID: 37499832 DOI: 10.1016/j.scitotenv.2023.165706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/08/2023] [Accepted: 07/20/2023] [Indexed: 07/29/2023]
Abstract
Paroxetine (PAR) is a selective serotonin reuptake inhibitor (SSRI) antidepressant increasingly detected in surface waters worldwide. Its environmental presence raises concerns about the potential detrimental effects on non-target organisms. Thus, this study aimed to increase knowledge on PAR's potential environmental impacts, assessing the effects of commercial formulation (PAR-c) and active ingredient (PAR-a) on fish. Therefore, the short-term exposure effects of PAR-c and PAR-a were assessed on zebrafish (Danio rerio) embryos/larvae to determine the most toxic formulation [through median lethal (LC50) and effective concentrations (EC50)]. PAR-c and PAR-a induced morphological abnormalities (scoliosis) in a dose-dependent manner from 96 hours post-fertilization onwards, suggesting the involvement of a fully functional biotransformation system. As PAR-c exhibited higher toxicity, it was selected to be tested in the subsequent stage (juvenile stage), which was more sensitive (lower LC50). PAR-c significantly decreased fish swimming activity and disrupted fish stress response. Overall, the results highlight the ability of PAR-c to adversely affect fish swimming performance, an effect that persisted even after exposure ceases (21-day depuration), suggesting that PAR-c may impair individual fitness.
Collapse
Affiliation(s)
- Carla S S Ferreira
- Centre for Marine and Environmental Studies (CESAM), Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Cátia Venâncio
- Centre for Marine and Environmental Studies (CESAM), Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Peter Kille
- School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK
| | - Miguel Oliveira
- Centre for Marine and Environmental Studies (CESAM), Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| |
Collapse
|
15
|
Tang G, Guo Y, Zhang L, Wang T, Li R, Yang J, Wang Y, Liu J. 5-HT 1B receptors in the basolateral amygdaloid nucleus regulate anxiety-like behaviors through AC-PKA signal pathway in a rat model of Parkinson's disease. Behav Brain Res 2023; 449:114488. [PMID: 37169129 DOI: 10.1016/j.bbr.2023.114488] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 05/07/2023] [Accepted: 05/08/2023] [Indexed: 05/13/2023]
Abstract
BACKGROUND Parkinson's disease (PD) is commonly accompanied with anxiety, multiple studies indicate that the basolateral amygdaloid nucleus (BLA) is closely related to modulation of anxiety and expresses serotonin1B (5-HT1B) receptors, however, effects of BLA 5-HT1B receptors on anxiety-like behaviors are unclear, particularly in PD-related anxiety. METHODS The open-field and elevated plus maze tests were used to examine anxiety-like behaviors. In vivo electrophysiology and microdialysis were performed to observe the firing activity of BLA neurons and GABA, glutamate, dopamine (DA) and 5-HT release in the BLA, respectively. Western blotting was used to analyze protein expression of 5-HT1B receptors, adenylate cyclase (AC) and phosphorylated protein kinase A at threonine 197 site (p-PKA-Thr197) in the BLA. RESULTS Intra-BLA injection of 5-HT1B receptor agonist CP93129 produced anxiety-like effects and antagonist SB216641 induced anxiolytic-like responses in sham-operated and 6-hydroxydopamine-lesioned rats. Further, pretreatment with AC inhibitor SQ22536 and PKA inhibitor KT5720 blocked the behavioral effects of CP93129, respectively. Intra-BLA injection of CP93129 increased the firing rate of BLA glutamate neurons and decreased GABA/glutamate ratio and DA and 5-HT levels in the BLA of sham-operated and the lesioned rats, while SB216641 induced the opposite effects. Compared with sham-operated rats, effects of CP93129 and SB216641 on behaviors, electrophysiology and microdialysis were decreased in the lesioned rats, which were associated with decreased expression of 5-HT1B receptors, AC and p-PKA-Thr197 in the BLA. CONCLUSION These findings suggest that 5-HT1B receptor-AC-PKA signal pathway in the BLA is involved in the regulation of PD-related anxiety.
Collapse
Affiliation(s)
- Guoyi Tang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Yuan Guo
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Li Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Tao Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Ruotong Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Jie Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Yixuan Wang
- Department of Rehabilitation Medicine, The Second Hospital, Xi'an Jiaotong University, Xi'an, 710004, China
| | - Jian Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China.
| |
Collapse
|
16
|
Nonato CDFA, de Melo EVS, Camilo CJ, Ferreira MKA, de Meneses JEA, da Silva AW, dos Santos HS, Ribeiro-Filho J, Paolla Raimundo e Silva J, Tavares JF, de Menezes IRA, Coutinho HDM, Kowalska G, Baj T, Kowalski R, da Costa JGM. Antibacterial Activity and Anxiolytic Effect in Adult Zebrafish of Genus Lippia L. Species. PLANTS (BASEL, SWITZERLAND) 2023; 12:1675. [PMID: 37111898 PMCID: PMC10142117 DOI: 10.3390/plants12081675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/02/2023] [Accepted: 04/13/2023] [Indexed: 06/19/2023]
Abstract
Species belonging to the genus Lippia are used worldwide as foods, beverages, and seasonings. Studies have demonstrated that these species have antioxidant, sedative, analgesic, anti-inflammatory, and antipyretic activities. This work aimed to evaluate the antibacterial activity and anxiolytic effect by different pathways of essential oils and ethanolic extracts of three species of Lippia (Lippia alba, Lippia sidoides, and Lippia gracilis). The ethanolic extracts were characterized by HPLC-DAD-ESI-MSn and their phenolics were quantified. The antibacterial activity was evaluated by determining the minimal inhibitory concentration and modulation of antibiotic activity, and toxic and anxiolytic effects were evaluated in the zebrafish model. The extracts showed compositions with a low ratio and shared compounds. L. alba and L. gracilis showed higher amounts of phenols and flavonoids, respectively. All extracts and essential oils presented antibacterial activity, especially those obtained from L. sidoides. On the other hand, L. alba extract presented the most significant antibiotic-enhancing effect. The samples were not toxic after 96 h of exposure, but showed an anxiolytic effect through modulation of the GABAA receptor, while L. alba extract acted via modulation of the 5-HT receptor. This new pharmacological evidence opens horizons for therapeutic approaches targeting anxiolytic and antibacterial therapies and food conservation using these species and their constituents.
Collapse
Affiliation(s)
- Carla de Fatima Alves Nonato
- Postgraduate Program in Biological Chemistry, Department of Biological Chemistry, Regional University of Cariri, Crato 63105-000, CE, Brazil
- Research Laboratory of Natural Products, Department of Biological Chemistry, Regional University of Cariri, Crato 63105-000, CE, Brazil
| | - Emerson Vinicius Silva de Melo
- Research Laboratory of Natural Products, Department of Biological Chemistry, Regional University of Cariri, Crato 63105-000, CE, Brazil
| | - Cicera Janaine Camilo
- Research Laboratory of Natural Products, Department of Biological Chemistry, Regional University of Cariri, Crato 63105-000, CE, Brazil
| | | | - Jane Eire Alencar de Meneses
- Postgraduate Program in Biotechnology, Northeast Biotechnology Network, State University of Ceará, Fortaleza 60714-903, CE, Brazil
| | - Antonio Wlisses da Silva
- Postgraduate Program in Natural Sciences, State University of Ceará, Fortaleza 60714-903, CE, Brazil
| | - Hélcio Silva dos Santos
- Postgraduate Program in Biological Chemistry, Department of Biological Chemistry, Regional University of Cariri, Crato 63105-000, CE, Brazil
- Postgraduate Program in Biotechnology, Northeast Biotechnology Network, State University of Ceará, Fortaleza 60714-903, CE, Brazil
- Postgraduate Program in Natural Sciences, State University of Ceará, Fortaleza 60714-903, CE, Brazil
| | - Jaime Ribeiro-Filho
- General Coordination, Oswaldo Cruz Foundation (FIOCRUZ), Eusébio 61773-270, CE, Brazil
| | | | - Josean Fechine Tavares
- Multiuser Laboratory of Characterization and Analysis, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil
| | - Irwin Rose Alencar de Menezes
- Postgraduate Program in Biological Chemistry, Department of Biological Chemistry, Regional University of Cariri, Crato 63105-000, CE, Brazil
- Laboratory of Pharmacology and Molecular Chemistry, Department of Biological Chemistry, Regional University of Cariri, Crato 63105-000, CE, Brazil
| | - Henrique Douglas Melo Coutinho
- Postgraduate Program in Biological Chemistry, Department of Biological Chemistry, Regional University of Cariri, Crato 63105-000, CE, Brazil
- Laboratory of Microbiology and Molecular Biology, Department of Biological Chemistry, Regional University of Cariri, Crato 63105-000, CE, Brazil
| | - Grażyna Kowalska
- Department of Tourism and Recreation, University of Life Sciences in Lublin, 15 Akademicka Str., 20-950 Lublin, Poland
| | - Tomasz Baj
- Department of Pharmacognosy with Medicinal Plants Garden, Medical University of Lublin, 1 Chodźki Str., 20-093 Lublin, Poland
| | - Radosław Kowalski
- Department of Analysis and Food Quality Assessment, University of Life Sciences in Lublin, 8 Skromna Str., 20-704 Lublin, Poland
| | - José Galberto Martins da Costa
- Postgraduate Program in Biological Chemistry, Department of Biological Chemistry, Regional University of Cariri, Crato 63105-000, CE, Brazil
- Research Laboratory of Natural Products, Department of Biological Chemistry, Regional University of Cariri, Crato 63105-000, CE, Brazil
- Postgraduate Program in Biotechnology, Northeast Biotechnology Network, State University of Ceará, Fortaleza 60714-903, CE, Brazil
| |
Collapse
|
17
|
Environmentally-relevant concentrations of the antipsychotic drugs sulpiride and clozapine induce abnormal dopamine and serotonin signaling in zebrafish brain. Sci Rep 2022; 12:17973. [PMID: 36289270 PMCID: PMC9606268 DOI: 10.1038/s41598-022-22169-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 10/11/2022] [Indexed: 01/24/2023] Open
Abstract
The presence of drugs in surface and groundwaters adversely affects the physiological function of non-target organisms due special activities that can pose a serious threats to various forms of aquatic life. Psychotropic drugs are one of the most commonly used drugs in the world. Hence, the aim of this study was to investigate the effect of environmentally-relevant concentrations of the antipsychotic drugs, sulpiride and clozapine, on dopaminergic (DAergic) and serotonergic (5-HTergic) neurotransmitter systems in the brain of zebrafish. Adult zebrafish (AB strain) were exposed to the environmentally-relevant concentrations of sulpiride, clozapine, or a mixture of sulpiride and clozapine. The effects of the drugs on the mRNA and protein levels of major functional molecules in DAergic and 5-HTergic systems were then analyzed in the telencephalon and diencephalon. Both drugs induced abnormal mRNA and protein levels of important functional molecules of the DA and 5-HT signaling pathways in both telencephalon and diencephalon, as shown by the abnormal transcriptional levels of TH, DAT, DR D1, DR D2, MAO, TPH, serotonin transporter (SERT), 5-HTR 1AA, 5-HTR 1B, 5-THR 2AA, and 5-HTR 2B, and the abnormal translational levels of DAT, DR D2, SERT, 5-HTR 1A, 5-HTR 1B, and 5-HTR 2B. In addition, we observed a specificity in the adverse effects of these antipsychotic drugs, in terms of doses and brain parts. Compared to their effects alone, the drug mixture had a weaker effect on the DA and 5-HT systems, suggesting an antagonistic interaction between sulpiride and clozapine. Our findings suggest that sulpiride and clozapine interfere with DAergic and 5-HTergic neurotransmitter systems in the telencephalon and diencephalon of zebrafish, resulting in possible effects on brain functions and posing a serious threat to the health of zebrafish.
Collapse
|
18
|
Tan JXM, Ang RJW, Wee CL. Larval Zebrafish as a Model for Mechanistic Discovery in Mental Health. Front Mol Neurosci 2022; 15:900213. [PMID: 35813062 PMCID: PMC9263853 DOI: 10.3389/fnmol.2022.900213] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 04/25/2022] [Indexed: 12/23/2022] Open
Abstract
Animal models are essential for the discovery of mechanisms and treatments for neuropsychiatric disorders. However, complex mental health disorders such as depression and anxiety are difficult to fully recapitulate in these models. Borrowing from the field of psychiatric genetics, we reiterate the framework of 'endophenotypes' - biological or behavioral markers with cellular, molecular or genetic underpinnings - to reduce complex disorders into measurable behaviors that can be compared across organisms. Zebrafish are popular disease models due to the conserved genetic, physiological and anatomical pathways between zebrafish and humans. Adult zebrafish, which display more sophisticated behaviors and cognition, have long been used to model psychiatric disorders. However, larvae (up to 1 month old) are more numerous and also optically transparent, and hence are particularly suited for high-throughput screening and brain-wide neural circuit imaging. A number of behavioral assays have been developed to quantify neuropsychiatric phenomena in larval zebrafish. Here, we will review these assays and the current knowledge regarding the underlying mechanisms of their behavioral readouts. We will also discuss the existing evidence linking larval zebrafish behavior to specific human behavioral traits and how the endophenotype framework can be applied. Importantly, many of the endophenotypes we review do not solely define a diseased state but could manifest as a spectrum across the general population. As such, we make the case for larval zebrafish as a promising model for extending our understanding of population mental health, and for identifying novel therapeutics and interventions with broad impact.
Collapse
Affiliation(s)
| | | | - Caroline Lei Wee
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| |
Collapse
|
19
|
Nozari A, Gagné R, Lu C, Yauk C, Trudeau VL. Brief Developmental Exposure to Fluoxetine Causes Life-Long Alteration of the Brain Transcriptome in Zebrafish. Front Endocrinol (Lausanne) 2022; 13:847322. [PMID: 35573988 PMCID: PMC9097470 DOI: 10.3389/fendo.2022.847322] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 03/23/2022] [Indexed: 11/25/2022] Open
Abstract
Fluoxetine (FLX) and other selective serotonin reuptake inhibitors are widely used to treat depressive disorders during pregnancy. Early-life exposure to FLX is known to disrupt the normal function of the stress axis in humans, rodents, and teleosts. We used a zebrafish line with a cortisol-inducible fluorescent transgene to study the effects of developmental daily exposure to FLX (54 µg/L) on the transcriptomic profile of brain tissues in exposed larvae and later as 6-month-old adults. High throughput RNA sequencing was conducted on brain tissues in unstressed and stressed conditions. Long-lasting effects of FLX were observed in telencephalon (Tel) and hypothalamus (Hyp) of adult zebrafish with 1927 and 5055 genes significantly (≥1.2 fold-change, false-discovery p-value < 0.05) dysregulated in unstressed condition, respectively. Similar findings were observed in Hyp with 1245 and 723 genes being significantly dysregulated in stressed adults, respectively. Differentially expressed genes converted to Homo sapiens orthologues were used for Ingenuity Pathway Analysis. The results showed alteration of pathways involved in neuroendocrine signaling, cholesterol metabolism and synaptogenesis. Enriched networks included lipid metabolism, molecular transport, and nervous system development. Analysis of putative upstream transcription regulators showed potential dysregulation of clocka and nr3c1 which control circadian rhythm, stress response, cholesterol metabolism and histone modifications. Several genes involved in epigenetic regulation were also affected by FLX, including dnmt3a, adarb1, adarb2, hdac4, hdac5, hdac8, and atf2. We report life-long disruptive effects of FLX on pathways associated with neuroendocrine signaling, stress response and the circadian rhythm, and all of which are implicated in the development of depressive disorders in humans. Our results raise concern for the persistent endocrine-disrupting potential of brief antidepressant exposure during embryonic development.
Collapse
Affiliation(s)
- Amin Nozari
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Remi Gagné
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Chunyu Lu
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Carole Yauk
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Vance L. Trudeau
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
- *Correspondence: Vance L. Trudeau,
| |
Collapse
|
20
|
Araújo JRC, Campos AR, Ferreira MKA, Santos SAAR, de Barros Mamede Vidal Damasceno M, Magalhães FEA, de Azevedo Moreira R, de Oliveira Monteiro-Moreira AC. Dioclea Altissima Seed Lectin (DAL) Prevents Anxiety-like Behavioral Responses in Adult Zebrafish (Danio Rerio): Involvement of GABAergic and 5-HT Systems. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2022; 21:95-103. [PMID: 33583388 DOI: 10.2174/1871527320666210212112651] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/27/2020] [Accepted: 09/11/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Plant lectins have shown promising neuropharmacological activities in animal models. OBJECTIVE This study evaluated the effect of Dioclea altissima seed lectin (DAL) on adult zebrafish behavior. METHOD Zebrafish (n=6/group) were treated (i.p.; 20 μL) with DAL (0.025; 0.05 or 0.1 mg/mL), vehicle or diazepam (DZP) and submitted to several tests (open field, light/dark preference or novel tank). Flumazenil, pizotifen or granisetron were administered 15 min before DAL (0.05 mg/mL), and the animals were evaluated on light/dark preference test. It was also verified whether the DAL effect depended on its structural integrity and ability to interact with carbohydrates. RESULTS DAL decreased the locomotor activity of adult zebrafish (0.025; 0.05 or 0.1 mg/mL), increased the time spent in the upper region of the aquarium (0.025 mg/mL), and decreased the latency time of adult zebrafish to enter the upper region on the novel tank test. DAL (0.05 mg/mL) also increased their permanence in the light zone of the light/dark preference test. The effect of DAL was dependent on carbohydrate interaction and protein structure integrity and was prevented by pizotifen, granizetron and flumazenil. CONCLUSION DAL was found to have an anxiolytic-like effect mediated by the 5-HT and GABAergic receptors.
Collapse
Affiliation(s)
| | - Adriana Rolim Campos
- Experimental Biology Centre (NUBEX), University of Fortaleza (UNIFOR), Fortaleza, Ceará,Brazil
| | | | | | | | - Francisco Ernani Alves Magalhães
- Laboratory of Natural Products Chemistry, Synthesis and Biocatalysis of Organic Compounds (LBPNSB), State University of Vale do Acaraú, Betânia Campus, Sobral, Ceará,Brazil
| | | | | |
Collapse
|
21
|
Daniels S, Lemaire D, Lapointe T, Limebeer C, Parker L, Leri F. Effects of inescapable stress on responses to social incentive stimuli and modulation by escitalopram. Psychopharmacology (Berl) 2021; 238:3239-3247. [PMID: 34328518 DOI: 10.1007/s00213-021-05940-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 07/15/2021] [Indexed: 12/16/2022]
Abstract
RATIONALE Stress is a well-known risk factor for anhedonia, and its impacts on social reward functions may be mitigated by its controllability. Moreover, there are questions about the effectiveness of selective serotonin reuptake inhibitors (SSRIs) on improving social hedonic functioning deficits characteristic of major depression. OBJECTIVES The current study in male Sprague-Dawley rats investigated the effects of uncontrollable stress on responses to social incentive stimuli and possible modulation by the SSRI escitalopram (ESC). METHODS The effects of inescapable foot-shocks on preferential responses to a conspecific, and to a compartment that was previously paired with the presence of a conspecific, were assessed in a Y-apparatus in rats that received 0, 5, or 10 mg/kg ESC. RESULTS Although inescapable foot-shock exposure did not significantly alter the investigation of the conspecific, it did impair the response to the social-paired compartment and, importantly, this impairment was reversed by ESC. CONCLUSION These results indicate that psychophysical stress can negatively impact reactivity to learned social rewards and that SSRI administration can have positive therapeutic effects.
Collapse
Affiliation(s)
- Stephen Daniels
- Department of Psychology & Neuroscience, University of Guelph, 50 Stone Road East, Guelph, Ontario, N1G 2W1, Canada
| | - Danielle Lemaire
- Department of Psychology & Neuroscience, University of Guelph, 50 Stone Road East, Guelph, Ontario, N1G 2W1, Canada
| | - Thomas Lapointe
- Department of Psychology & Neuroscience, University of Guelph, 50 Stone Road East, Guelph, Ontario, N1G 2W1, Canada
| | - Cheryl Limebeer
- Department of Psychology & Neuroscience, University of Guelph, 50 Stone Road East, Guelph, Ontario, N1G 2W1, Canada
| | - Linda Parker
- Department of Psychology & Neuroscience, University of Guelph, 50 Stone Road East, Guelph, Ontario, N1G 2W1, Canada
| | - Francesco Leri
- Department of Psychology & Neuroscience, University of Guelph, 50 Stone Road East, Guelph, Ontario, N1G 2W1, Canada.
| |
Collapse
|
22
|
Chivite M, Leal E, Míguez JM, Cerdá-Reverter JM. Distribution of two isoforms of tryptophan hydroxylase in the brain of rainbow trout (Oncorhynchus mykiss). An in situ hybridization study. Brain Struct Funct 2021; 226:2265-2278. [PMID: 34213591 PMCID: PMC8354878 DOI: 10.1007/s00429-021-02322-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 06/15/2021] [Indexed: 11/02/2022]
Abstract
Serotonin (5-HT) is one of the principal neurotransmitters in the nervous system of vertebrates. It is initially synthesized by hydroxylation of tryptophan (Trp) by means of tryptophan hydroxylase or TPH which is the rate-limiting enzyme in the production of 5-HT. In most vertebrates, there are two isoforms of TPH present, TPH1 and TPH2, which exhibit different catalytic or substrate specificity as well as different expression domains. Studies carried out in mammals show that only tph2 is expressed in the brain whereas tph1-mRNA is primarily localized in the enterochromaffin cells and pineal gland. A large number of neurons are also considered to be serotonergic or "pseudo-serotonergic" as they accumulate and release 5-HT yet do not produce it as no amine-synthetic enzymes are expressed, yet a combination of 5-HT transporters is observed. Therefore, tph expression is considered to be the only specific marker of 5-HT-producing neurons that can discriminate true 5-HT from pseudo-serotonergic neurons. This work examined in situ hybridization to study the mRNA distribution of one paralogue for tph1 and tph2 in the central nervous system of rainbow trout. Results show a segregated expression for both paralogues that predominantly match previous immunocytochemical studies. This study thus adds valuable information to the scarce analyses focusing on the central distribution of the expression of serotonergic markers, particularly tphs, in the vertebrate brain thus characterizing the true serotonergic brain territories.
Collapse
Affiliation(s)
- Mauro Chivite
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro de Investigación Mariña, Universidade de Vigo, 36310, Vigo, Spain
| | - Esther Leal
- Food Intake Control Group, Departamento de Fisiología y Biotecnología de Peces, Instituto de Acuicultura de Torre de la Sal, Consejo Superior de Investigaciones Científicas (IATS-CSIC), 12595, Castellón, Spain
| | - Jesús M Míguez
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro de Investigación Mariña, Universidade de Vigo, 36310, Vigo, Spain
| | - Jose Miguel Cerdá-Reverter
- Food Intake Control Group, Departamento de Fisiología y Biotecnología de Peces, Instituto de Acuicultura de Torre de la Sal, Consejo Superior de Investigaciones Científicas (IATS-CSIC), 12595, Castellón, Spain.
| |
Collapse
|
23
|
da Silva AW, Ferreira MKA, Rebouças EL, Mendes FRS, Dos S Moura AL, de Menezes JESA, Marinho MM, Marinho ES, Santos HS, Teixeira AMR. Anxiolytic-like effect of natural product 2-hydroxy-3,4,6-trimethoxyacetophenone isolated from Croton anisodontus in adult zebrafish via serotonergic neuromodulation involvement of the 5-HT system. Naunyn Schmiedebergs Arch Pharmacol 2021; 394:2023-2032. [PMID: 34251503 DOI: 10.1007/s00210-021-02116-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/22/2021] [Indexed: 10/20/2022]
Abstract
Benzodiazepines are highly effective in combating anxiety; however, they have considerable adverse effects, so it is important to discover new safe anxiolytic agents. This study was designed to investigate the effect of the natural product 2-hydroxy-3,4,6-trimethoxyacetophenone (HTMCX) on anxiety and seizure behavior in adult zebrafish and its possible mechanisms of action. The acute toxicity of 96 h of HTMCX was analyzed, and the open and light/dark field tests (n = 6 animals/group) were used to assess the anxiety behavior of animals treated with HTMCX. In addition, the mechanisms of action were investigated with antagonists of the GABAA, 5-HT receptors, and molecular anchorage study. Pentylenetetrazole (PTZ) was used to induce seizure by immersion. As a result, acetophenone HTMCX (1, 3 and 10 mg/kg; v.o.) was non-toxic and affected locomotor activity. The higher doses (3 and 10 mg/kg; v.o.) produced signs of anxiolytic action in the light/dark test, and this effect was reversed by the pizotifen (antagonist 5HTR1 and 5HTR2A/2C), having the potential to form a complex with 5HTR1B. However, the anxiolytic effect of HTMCX has not been abolished by flumazenil (antagonist GABAA), cyproheptadine (antagonist 5HTR2A), and granisetron (antagonist 5HTR3A/3B). Therefore, HTMCX demonstrated an anxiolytic effect, suggesting that the 5HTR1 and 5HTR2C receptors may be involved in the pharmacological performance of this acetophenone in the central nervous system.
Collapse
Affiliation(s)
- Antonio Wlisses da Silva
- Graduate Program in Biotechnology, Northeast Biotechnology Network, State University of Ceará, Fortaleza, CE, Brazil
| | - Maria Kueirislene A Ferreira
- Graduate Program in Natural Sciences, Natural Products Chemistry Laboratory, State University of Ceará, Fortaleza, CE, Brazil
| | - Emanuela L Rebouças
- Graduate Program in Biotechnology, Northeast Biotechnology Network, State University of Ceará, Fortaleza, CE, Brazil
| | - Francisco Rogenio S Mendes
- Graduate Program in Biological Chemistry, Department of Biological Chemistry, Regional University of Cariri, Crato, CE, Brasil
| | - Atilano Lucas Dos S Moura
- Graduate Program in Natural Sciences, Natural Products Chemistry Laboratory, State University of Ceará, Fortaleza, CE, Brazil
| | - Jane Eire S A de Menezes
- Graduate Program in Natural Sciences, Natural Products Chemistry Laboratory, State University of Ceará, Fortaleza, CE, Brazil
| | - Márcia Machado Marinho
- Faculty of Philosophy Dom Aureliano Matos, State University of Ceará, Limoeiro do Norte, CE, Brazil
| | - Emmanuel Silva Marinho
- Faculty of Philosophy Dom Aureliano Matos, State University of Ceará, Limoeiro do Norte, CE, Brazil
| | - Hélcio S Santos
- Graduate Program in Biotechnology, Northeast Biotechnology Network, State University of Ceará, Fortaleza, CE, Brazil.,Graduate Program in Natural Sciences, Natural Products Chemistry Laboratory, State University of Ceará, Fortaleza, CE, Brazil.,Graduate Program in Biological Chemistry, Department of Biological Chemistry, Regional University of Cariri, Crato, CE, Brasil.,Science and Technology Centre, Course of Chemistry, State University Vale do Acaraú, Sobral, CE, Brazil
| | - Alexandre M R Teixeira
- Graduate Program in Biotechnology, Northeast Biotechnology Network, State University of Ceará, Fortaleza, CE, Brazil. .,Graduate Program in Biological Chemistry, Department of Biological Chemistry, Regional University of Cariri, Crato, CE, Brasil.
| |
Collapse
|
24
|
Audira G, Lee JS, Siregar P, Malhotra N, Rolden MJM, Huang JC, Chen KHC, Hsu HS, Hsu Y, Ger TR, Hsiao CD. Comparison of the chronic toxicities of graphene and graphene oxide toward adult zebrafish by using biochemical and phenomic approaches. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 278:116907. [PMID: 33744786 DOI: 10.1016/j.envpol.2021.116907] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/27/2021] [Accepted: 03/05/2021] [Indexed: 05/14/2023]
Abstract
Graphene (GR) and graphene oxide (GO) are widely being used as promising candidates for biomedical applications, as well as for bio-sensing, drug delivery, and anticancer therapy. However, their undesirable side effects make it necessary to assess further the toxicity and safety of using these materials. The main objective of the current study was to investigate the toxicities of GR and GO in predicted environmental relevant concentrations in adult zebrafish (Danio rerio), particularly on their behaviors, and conducted biochemical assays to elucidate the possible mechanism that underlies their toxicities. Zebrafish was chronically (∼14 days) exposed to two different doses of GR (0.1 and 0.5 ppm) or GO (0.1 and 1 ppm). At 14 ± 1 days, a battery of behavioral tests was conducted, followed by enzyme-linked immunosorbent assays (ELISA) test on the following day to inspect the alterations in antioxidant activity, oxidative stress, and neurotransmitters in the treated zebrafish brain. An alteration in predator avoidance behavior was observed in all treated groups, while GR-treated fish exhibited abnormal exploratory behavior. Furthermore, altered locomotor activity was displayed by most of the treated groups, except for the high concentration of the GR group. From the ELISA results, we discovered a high concentration of GR exposure significantly decreased several neurotransmitters and cortisol levels. Meanwhile, elevated reactive oxygen species (ROS) were displayed by the group treated with low and high doses of GR and GO, respectively. These significant changes would possibly affect zebrafish behaviors and might suggest the potential toxicity from GR and GO exposures. To sum up, the present study presented new evidence for the effects of GR and GO in zebrafish behavioral dysregulation. We hope these assessments can contribute to our understanding of graphene and graphene oxide biosafety.
Collapse
Affiliation(s)
- Gilbert Audira
- Department of Chemistry, Chung Yuan Christian University, Chung-Li, 320314, Taiwan; Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li, 320314, Taiwan
| | - Jiann-Shing Lee
- Department of Applied Physics, National Pingtung University, Pingtung, 90003, Taiwan
| | - Petrus Siregar
- Department of Chemistry, Chung Yuan Christian University, Chung-Li, 320314, Taiwan; Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li, 320314, Taiwan
| | - Nemi Malhotra
- Department of Biomedical Engineering, Chung Yuan Christian University, Chung-Li, 320314, Taiwan
| | - Marri Jmelou M Rolden
- Faculty of Pharmacy and the Graduate School, University of Santo Tomas, Manila, 1008, Philippines
| | - Jong-Chin Huang
- Department of Applied Chemistry, National Pingtung University, Pingtung, 90003, Taiwan
| | - Kelvin H-C Chen
- Department of Applied Chemistry, National Pingtung University, Pingtung, 90003, Taiwan
| | - Hua-Shu Hsu
- Department of Applied Physics, National Pingtung University, Pingtung, 90003, Taiwan
| | - Yuchun Hsu
- Department of Applied Physics, National Pingtung University, Pingtung, 90003, Taiwan
| | - Tzong-Rong Ger
- Department of Biomedical Engineering, Chung Yuan Christian University, Chung-Li, 320314, Taiwan; Center for Nanotechnology, Chung Yuan Christian University, Chung-Li, 320314, Taiwan
| | - Chung-Der Hsiao
- Department of Chemistry, Chung Yuan Christian University, Chung-Li, 320314, Taiwan; Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li, 320314, Taiwan; Center for Nanotechnology, Chung Yuan Christian University, Chung-Li, 320314, Taiwan.
| |
Collapse
|
25
|
de Abreu MS, Giacomini ACVV, Demin KA, Galstyan DS, Zabegalov KN, Kolesnikova TO, Amstislavskaya TG, Strekalova T, Petersen EV, Kalueff AV. Unconventional anxiety pharmacology in zebrafish: Drugs beyond traditional anxiogenic and anxiolytic spectra. Pharmacol Biochem Behav 2021; 207:173205. [PMID: 33991579 DOI: 10.1016/j.pbb.2021.173205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 12/14/2022]
Abstract
Anxiety is the most prevalent brain disorder and a common cause of human disability. Animal models are critical for understanding anxiety pathogenesis and its pharmacotherapy. The zebrafish (Danio rerio) is increasingly utilized as a powerful model organism in anxiety research and anxiolytic drug screening. High similarity between human, rodent and zebrafish molecular targets implies shared signaling pathways involved in anxiety pathogenesis. However, mounting evidence shows that zebrafish behavior can be modulated by drugs beyond conventional anxiolytics or anxiogenics. Furthermore, these effects may differ from human and/or rodent responses, as such 'unconventional' drugs may affect zebrafish behavior despite having no such profiles (or exerting opposite effects) in humans or rodents. Here, we discuss the effects of several putative unconventional anxiotropic drugs (aspirin, lysergic acid diethylamide (LSD), nicotine, naloxone and naltrexone) and their potential mechanisms of action in zebrafish. Emphasizing the growing utility of zebrafish models in CNS drug discovery, such unconventional anxiety pharmacology may provide important, evolutionarily relevant insights into complex regulation of anxiety in biological systems. Albeit seemingly complicating direct translation from zebrafish into clinical phenotypes, this knowledge may instead foster the development of novel CNS drugs, eventually facilitating innovative treatment of patients based on novel 'unconventional' targets identified in fish models.
Collapse
Affiliation(s)
- Murilo S de Abreu
- Bioscience Institute, University of Passo Fundo, Passo Fundo, Brazil; Laboratory of Cell and Molecular Biology and Neurobiology, Moscow Institute of Physics and Technology, Moscow, Russia; The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA, USA.
| | - Ana C V V Giacomini
- Bioscience Institute, University of Passo Fundo, Passo Fundo, Brazil; Postgraduate Program in Environmental Sciences, University of Passo Fundo, Passo Fundo, Brazil
| | - Konstantin A Demin
- Institute of Experimental Medicine, Almazov Medical Research Center, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia; Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - David S Galstyan
- Institute of Experimental Medicine, Almazov Medical Research Center, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia; Granov Scientific Research Center of Radiology and Surgical Technologies, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia
| | - Konstantin N Zabegalov
- Ural Federal University, Ekaterinburg, Russia; Neurobiology Program, Sirius University, Sochi, Russia
| | - Tatyana O Kolesnikova
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia; School of Chemistry, Ural Federal University, Ekaterinburg, Russia; Neurobiology Program, Sirius University, Sochi, Russia
| | - Tamara G Amstislavskaya
- Scientific Research Institute of Neuroscience and Medicine, Novosibirsk, Russia; Novosibirsk State University, Novosibirsk, Russia
| | - Tatyana Strekalova
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands; Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov 1st Moscow State Medical University, Moscow, Russia; Institute of General Pathology and Pathophysiology, Moscow, Russia; Department of Preventive Medicine, Maastricht Medical Center Annadal, Maastricht, Netherlands
| | - Elena V Petersen
- Laboratory of Cell and Molecular Biology and Neurobiology, Moscow Institute of Physics and Technology, Moscow, Russia
| | - Allan V Kalueff
- School of Pharmacy, Southwest University, Chongqing, China; School of Chemistry, Ural Federal University, Ekaterinburg, Russia; Neurobiology Program, Sirius University, Sochi, Russia.
| |
Collapse
|
26
|
Thoré ESJ, Brendonck L, Pinceel T. Natural daily patterns in fish behaviour may confound results of ecotoxicological testing. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 276:116738. [PMID: 33611201 DOI: 10.1016/j.envpol.2021.116738] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/26/2021] [Accepted: 02/09/2021] [Indexed: 06/12/2023]
Abstract
Low doses of neuroactive chemicals end up in the environment and disrupt behaviour of non-target organisms. Although a whole range of studies have documented pollutant-induced changes in behaviour, natural daily variability in behaviour is rarely taken into account. This is surprising because biological rhythms may affect the outcome of experiments, are adaptive and are expected to be sensitive to neurochemical exposure. Here, we exploit daily behavioural variation in the fish model Nothobranchius furzeri to examine if behavioural effects of chronic exposure (74 days) to an environmentally relevant level (28 ng/L) of the neurochemical fluoxetine depend on the time of day. Fluoxetine exposure induced an increase in anxiety-related behaviour that was slightly more pronounced in the evening compared to the morning. Moreover, open-field locomotor activity was disrupted and daily patterns in activity lifted upon exposure to the compound. These results imply that short-term behavioural variability should be considered both to standardise ecological risk assessment of neuroactive chemicals as well as to better understand the environmental impact of such compounds in aquatic ecosystems.
Collapse
Affiliation(s)
- Eli S J Thoré
- Animal Ecology, Global Change and Sustainable Development, KU Leuven, Leuven, Belgium.
| | - Luc Brendonck
- Animal Ecology, Global Change and Sustainable Development, KU Leuven, Leuven, Belgium; Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa.
| | - Tom Pinceel
- Animal Ecology, Global Change and Sustainable Development, KU Leuven, Leuven, Belgium; Centre for Environmental Management, University of the Free State, Bloemfontein, South Africa.
| |
Collapse
|
27
|
Yang H, Liang X, Zhao Y, Gu X, Mao Z, Zeng Q, Chen H, Martyniuk CJ. Molecular and behavioral responses of zebrafish embryos/larvae after sertraline exposure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111700. [PMID: 33396031 DOI: 10.1016/j.ecoenv.2020.111700] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 11/13/2020] [Accepted: 11/18/2020] [Indexed: 06/12/2023]
Abstract
Sertraline (SER) is one of the most frequently detected antidepressant drugs in aquatic environments. However, knowledge regarding SER-induced behavioral alterations in fish is insufficient, as well as the mechanisms underlying SER-induced toxicity. The present study aimed to determine behavioral and molecular responses in larval fish following SER exposure with a focus on its mode of action. Zebrafish embryos (~6 h-post-fertilization, hpf) were exposed to one of three concentrations of SER (1, 10, 100 μg/L) for 6 days, respectively. Evaluated parameters included development, behavior, transcripts related to serotonin signaling, serotonin levels, and acetylcholinesterase activity. Accelerated hatching of zebrafish embryos was observed for those fish exposed to 100 μg/L SER at 54 hpf. Locomotor activity (e.g. distance moved and mobile cumulative duration) was significantly reduced in larval zebrafish following exposure to 10 and 100 μg/L SER. Conversely, larval fish showed increased dark-avoidance after exposure to 1-100 μg/L SER. Of the measured transcripts related to serotonin signaling, only serotonin transporter (serta) and serotonin receptor 2c (5-ht2c) mRNA levels were increased in fish in response to 10 μg/L SER treatment. However, serotonin levels were unaltered in larvae exposed to SER. There were no differences among groups in acetylcholinesterase activity at any concentration tested. Taking together, the results evidenced that exposure to SER alters behavioral responses in early-staged zebrafish, which may be related to the abnormal expression of 5-ht2c. This study elucidates molecular responses to SER and characterizes targets that may be sensitive to antidepressant pharmaceuticals in larval fish.
Collapse
Affiliation(s)
- Huiting Yang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Xuefang Liang
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Yanyan Zhao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Xiaohong Gu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Zhigang Mao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Qingfei Zeng
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Huihui Chen
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, China.
| | - Christopher J Martyniuk
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611 USA
| |
Collapse
|
28
|
Thoré ESJ, Van Hooreweghe F, Philippe C, Brendonck L, Pinceel T. Generation-specific and interactive effects of pesticide and antidepressant exposure in a fish model call for multi-stressor and multigenerational testing. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 232:105743. [PMID: 33460950 DOI: 10.1016/j.aquatox.2021.105743] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 12/22/2020] [Accepted: 01/04/2021] [Indexed: 06/12/2023]
Abstract
Ecological risks of a pollutant are typically assessed via short-term exposure of model organisms to that single compound. Such tests are informative, but cannot ascertain effects of long-term and multigenerational mixed-stressor exposure with which organisms are often confronted in their natural environment. Therefore, full life-cycle and multigenerational tests are needed. Yet, these are hampered due to long lifespans and generation times of many standard laboratory species, in particular for vertebrates such as fish. With a typical lifespan of 6 months and a generation time of about 3 months, the turquoise killifish (Nothobranchius furzeri) may be an ideal model for multigenerational testing. In this study, we assessed the impact of full life-cycle exposure to the emerging pollutant fluoxetine (0, 0.5 μg/L) in combination with chronic exposure during adulthood to the pesticide 3,4-dichloroaniline (0, 50, 100 μg/L) over two successive generations of N. furzeri. Overall, both life-history and behaviour were affected by exposure to fluoxetine and 3,4-DCA. Inhibitory effects of single chemical exposure on growth and fecundity were generation-dependent, while enhanced swimming acceleration and feeding in response to fluoxetine were dependent on the presence of 3,4-DCA. Together, these findings show the relevance of a multi-stressor approach across successive generations. Although full life-cycle and multigenerational tests are typically assumed to be impractical and costly for fish, we deliver an effective demonstration that such studies are possible within a timespan of less than 6 months with the killifish N. furzeri as a model organism.
Collapse
Affiliation(s)
- Eli S J Thoré
- Animal Ecology, Global Change and Sustainable Development, KU Leuven, Ch. Deberiotstraat 32, 3000, Leuven, Belgium.
| | - Floor Van Hooreweghe
- Animal Ecology, Global Change and Sustainable Development, KU Leuven, Ch. Deberiotstraat 32, 3000, Leuven, Belgium.
| | - Charlotte Philippe
- Animal Ecology, Global Change and Sustainable Development, KU Leuven, Ch. Deberiotstraat 32, 3000, Leuven, Belgium.
| | - Luc Brendonck
- Animal Ecology, Global Change and Sustainable Development, KU Leuven, Ch. Deberiotstraat 32, 3000, Leuven, Belgium; Water Research Group, Unit for Environmental Sciences and Management, North-West University, Private Bag X6001, 2520, Potchefstroom, South Africa.
| | - Tom Pinceel
- Animal Ecology, Global Change and Sustainable Development, KU Leuven, Ch. Deberiotstraat 32, 3000, Leuven, Belgium; Centre for Environmental Management, University of the Free State, P. O. Box 339, 9300, Bloemfontein, South Africa.
| |
Collapse
|
29
|
An Integrated In Silico and In Vivo Approach to Identify Protective Effects of Palonosetron in Cisplatin-Induced Nephrotoxicity. Pharmaceuticals (Basel) 2020; 13:ph13120480. [PMID: 33419241 PMCID: PMC7766590 DOI: 10.3390/ph13120480] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/17/2020] [Accepted: 12/17/2020] [Indexed: 11/17/2022] Open
Abstract
Cisplatin is widely used to treat various types of cancers, but it is often limited by nephrotoxicity. Here, we employed an integrated in silico and in vivo approach to identify potential treatments for cisplatin-induced nephrotoxicity (CIN). Using publicly available mouse kidney and human kidney organoid transcriptome datasets, we first identified a 208-gene expression signature for CIN and then used the bioinformatics database Cmap and Lincs Unified Environment (CLUE) to identify drugs expected to counter the expression signature for CIN. We also searched the adverse event database, Food and Drug Administration. Adverse Event Reporting System (FAERS), to identify drugs that reduce the reporting odds ratio of developing cisplatin-induced acute kidney injury. Palonosetron, a serotonin type 3 receptor (5-hydroxytryptamine receptor 3 (5-HT3R)) antagonist, was identified by both CLUE and FAERS analyses. Notably, clinical data from 103 patients treated with cisplatin for head and neck cancer revealed that palonosetron was superior to ramosetron in suppressing cisplatin-induced increases in serum creatinine and blood urea nitrogen levels. Moreover, palonosetron significantly increased the survival rate of zebrafish exposed to cisplatin but not to other 5-HT3R antagonists. These results not only suggest that palonosetron can suppress CIN but also support the use of in silico and in vivo approaches in drug repositioning studies.
Collapse
|
30
|
Ribeiro LNM, Rodrigues da Silva GH, Couto VM, Castro SR, Breitkreitz MC, Martinez CS, Igartúa DE, Prieto MJ, de Paula E. Functional Hybrid Nanoemulsions for Sumatriptan Intranasal Delivery. Front Chem 2020; 8:589503. [PMID: 33282832 PMCID: PMC7689160 DOI: 10.3389/fchem.2020.589503] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 09/08/2020] [Indexed: 11/17/2022] Open
Abstract
In recent years, advanced nanohybrid materials processed as pharmaceuticals have proved to be very advantageous. Triptans, such as the commercially available intranasal sumatriptan (SMT), are drugs employed in the treatment of painful migraine symptoms. However, SMT effectiveness by the intranasal route is limited by its high hydrophilicity and poor mucoadhesion. Therefore, we designed hybrid nanoemulsions (NE) composed of copaiba oil as the organic component plus biopolymers (xanthan, pectin, alginate) solubilized in the continuous aqueous phase, aiming at the intranasal release of SMT (2% w/v). Firstly, drug-biopolymer complexes were optimized in order to decrease the hydrophilicity of SMT. The resultant complexes were further encapsulated in copaiba oil-based nanoparticles, forming NE formulations. Characterization by FTIR-ATR, DSC, and TEM techniques exposed details of the molecular arrangement of the hybrid systems. Long-term stability of the hybrid NE at 25°C was confirmed over a year, regarding size (~ 120 nm), polydispersity (~ 0.2), zeta potential (~ −25 mV), and nanoparticle concentration (~ 2.1014 particles/mL). SMT encapsulation efficiency in the formulations ranged between 41–69%, extending the in vitro release time of SMT from 5 h (free drug) to more than 24 h. The alginate-based NE was selected as the most desirable system and its in vivo nanotoxicity was evaluated in a zebrafish model. Hybrid NE treatment did not affect spontaneous movement or induce morphological changes in zebrafish larvae, and there was no evidence of mortality or cardiotoxicity after 48 h of treatment. With these results, we propose alginate-based nanoemulsions as a potential treatment for migraine pain.
Collapse
Affiliation(s)
- Lígia N. M. Ribeiro
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Gustavo H. Rodrigues da Silva
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Verônica M. Couto
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Simone R. Castro
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Márcia C. Breitkreitz
- Department of Analytical Chemistry, Institute of Chemistry, University of Campinas, Campinas, Brazil
| | - Carolina S. Martinez
- Department of Science and Technology, National University of Quilmes, Bernal, Argentina
| | - Daniela E. Igartúa
- Department of Science and Technology, National University of Quilmes, Bernal, Argentina
| | - Maria J. Prieto
- Department of Science and Technology, National University of Quilmes, Bernal, Argentina
| | - Eneida de Paula
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
- *Correspondence: Eneida de Paula
| |
Collapse
|
31
|
Kellner M, Olsén KH. Divergent Response to the SSRI Citalopram in Male and Female Three-Spine Sticklebacks (Gasterosteus aculeatus). ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 79:478-487. [PMID: 33151376 PMCID: PMC7688600 DOI: 10.1007/s00244-020-00776-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 10/12/2020] [Indexed: 06/09/2023]
Abstract
Selective serotonin reuptake inhibitors (SSRIs) are psychotropic pharmaceuticals used as antidepressants. SSRIs are commonly found in surface waters in populated areas across the globe. They exert their effect by blocking the serotonin re-uptake transporter in the presynaptic nerve ending. The present study examined whether behavioural effects to exposure to SSRI citalopram depend on personality and sex in the stickleback (Gasterosteus aculeatus). Three aspects of stickleback behaviour are examined: feeding behaviour, aggression, and boldness. We exposed sticklebacks to 350-380 ng/l citalopram for 3 weeks. Feeding and aggressive behaviour were recorded before and after exposure, whereas scototaxis behaviour was tested after exposure. The results show treatment effects in feeding and aggressive behaviour. Feeding is suppressed only in the male group (χ2 = 20.4, P < 0.001) but not in the females (χ2 = 0.91, P = 0.339). Aggressive behaviour was significantly affected by treatment (χ2 = 161.9, P < 0.001), sex (χ2 = 86.3, P < 0.001), and baseline value (χ2 = 58.8, P < 0.001). Aggressiveness was suppressed by citalopram treatment. In addition, the fish showed no change in aggression and feeding behaviour over time regardless of sex and treatment, which indicate personality traits. Only females are affected by treatment in the scototaxis test. The exposed females spent significantly (χ2 = 5.02, P = 0.050) less time in the white zone than the female controls.
Collapse
Affiliation(s)
- Martin Kellner
- School of Natural Sciences, Technology and Environmental Studies, Södertörn University, Alfred Nobels allé 7, 141 89, Huddinge, Sweden
| | - K Håkan Olsén
- School of Natural Sciences, Technology and Environmental Studies, Södertörn University, Alfred Nobels allé 7, 141 89, Huddinge, Sweden.
| |
Collapse
|
32
|
Chen H, Wang F, Ni X, Rigui Y, Bai Y, Xu L, Yang J, Zhang X, Deng J, Li J, Yin X, Ao W, Kwok KWH, Dong W. Aconitine disrupts serotonin neurotransmission via 5-hydroxytryptamine receptor in zebrafish embryo. J Appl Toxicol 2020; 41:483-492. [PMID: 33085127 DOI: 10.1002/jat.4059] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 07/14/2020] [Accepted: 08/08/2020] [Indexed: 12/11/2022]
Abstract
Medicinal plants of the genus Aconitum are one of the most commonly used herbs in traditional medicine in East Asia to treat conditions related to the heart, pain, or inflammation. However, these herbs are also dangerous as accidental poisoning due to misuse is a recurring issue. These plants contain a number of diester-diterpenoid alkaloid compounds and aconitine is the most abundant and active one. This study investigated neurotoxicity of aconitine to zebrafish embryos in early development in relation to serotonin regulation. Experimental results showed that aconitine exposure (1, 10, and 100 μM) increased frequency of coiling behavior in zebrafish embryos in a dose-dependent manner and this effect can be triggered by either exposure to 5-hydroxytryptamine 1A (5-HT1A) receptor agonist (±)-8-hydroxy-2-(dipropylamino)tetralin (8-OH-DPAT) or overexpression of serotonin receptor 5-htr1ab. At the same time, coiling behavior caused by aconitine exposure could be rescued by co-exposure to 5-HT1A receptor antagonist WAY-100635 Maleate (WAY100635) and knockdown of 5-htr1ab using morpholino. Exposure to aconitine also significantly increased serotonin receptor 5-htr1ab and 5-htr1bd gene expression at 24 h post fertilization (hpf), but decreased their expression and protein expression of the serotonin receptor at 96 hpf with the high dose. These results suggest that neurotoxicity caused by aconitine is mediated through the 5-HT receptor.
Collapse
Affiliation(s)
- Hao Chen
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, Collage of Animal Science and Technology, Inner Mongolia University for Nationalities, Tongliao, China
| | - Feng Wang
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, Collage of Animal Science and Technology, Inner Mongolia University for Nationalities, Tongliao, China
| | - Xuan Ni
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, Collage of Animal Science and Technology, Inner Mongolia University for Nationalities, Tongliao, China
| | - Yi Rigui
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, Collage of Animal Science and Technology, Inner Mongolia University for Nationalities, Tongliao, China
| | - Yuxia Bai
- College of Traditional Mongolian Medicine and Pharmacy, Inner Mongolia University for the Nationalities, Tongliao, China
| | - Liang Xu
- College of Chemistry and Chemical Engineering, Inner Mongolia University for the Nationalities, Tongliao, China
| | - Jingfeng Yang
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, Collage of Animal Science and Technology, Inner Mongolia University for Nationalities, Tongliao, China
| | - Xuefu Zhang
- Analysis and Test Center, Inner Mongolia University for the Nationalities, Tongliao, China
| | - Jiang Deng
- Key Lab for Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine, Zunyi Medical College, Zunyi, China
| | - Jiawei Li
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, Collage of Animal Science and Technology, Inner Mongolia University for Nationalities, Tongliao, China
| | - Xiaoyu Yin
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, Collage of Animal Science and Technology, Inner Mongolia University for Nationalities, Tongliao, China
| | - Wuliji Ao
- College of Traditional Mongolian Medicine and Pharmacy, Inner Mongolia University for the Nationalities, Tongliao, China
| | - Kevin W H Kwok
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
| | - Wu Dong
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, Collage of Animal Science and Technology, Inner Mongolia University for Nationalities, Tongliao, China
| |
Collapse
|
33
|
Rehman NU, Esmaeilpour K, Joushi S, Abbas M, Al-Rashida M, Rauf K, Masoumi-Ardakani Y. Effect of 4-Fluoro-N-(4-sulfamoylbenzyl) Benzene Sulfonamide on cognitive deficits and hippocampal plasticity during nicotine withdrawal in rats. Biomed Pharmacother 2020; 131:110783. [PMID: 33152941 DOI: 10.1016/j.biopha.2020.110783] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/03/2020] [Accepted: 09/17/2020] [Indexed: 12/11/2022] Open
Abstract
Withdrawal from chronic nicotine has damaging effects on a variety of learning and memory tasks. Various Sulfonamides that act as carbonic anhydrase inhibitors have documented role in modulation of various cognitive, learning, and memory processing. We investigated the effects of 4-Fluoro-N-(4-sulfamoylbenzyl) Benzene Sulfonamide (4-FBS) on nicotine withdrawal impairments in rats using Morris water maze (MWM), Novel object recognition, Passive avoidance, and open field tasks. Also, Brain-derived neurotrophic factor (BDNF) profiling and in vivo field potential recording were assessed. Rats were exposed to saline or chronic nicotine 3.8 mg/kg subcutaneously for 14 days in four divided doses, spontaneous nicotine withdrawal was induced by quitting nicotine for 72 h (hrs). Animals received 4-FBS at 20, 40, and 60 mg/kg after 72 h of withdrawal in various behavioral and electrophysiological paradigms. Nicotine withdrawal causes a deficit in learning and long-term memory in the MWM task. No significant difference was found in novel object recognition tasks among all groups while in passive avoidance task nicotine withdrawal resulted in a deficit of hippocampus-dependent fear learning. Anxiety like behavior was observed during nicotine withdrawal. Plasma BDNF level was reduced during nicotine withdrawal as compared to the saline group reflecting mild cognitive impairment, stress, and depression. Withdrawal from chronic nicotine altered hippocampal plasticity, caused suppression of long-term potentiation (LTP) in the CA1 area of the hippocampus. Our results showed that 4-FBS at 40 and 60 mg/kg significantly prevented nicotine withdrawal-induced cognitive deficits in behavioral as well as electrophysiological studies. 4-FBS at 60 mg/kg upsurge nicotine withdrawal-induced decrease in plasma BDNF. We conclude that 4-FBS at 40 and 60 mg /kg effectively prevented chronic nicotine withdrawal-induced impairment in long term potentiation and cognitive performance.
Collapse
Affiliation(s)
- Naeem Ur Rehman
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran; Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Pakistan
| | - Khadijeh Esmaeilpour
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| | - Sara Joushi
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Muzaffar Abbas
- Department of Pharmacy, Capital University of Science and Technology (CUST), Islamabad, Pakistan
| | - Mariya Al-Rashida
- Department of Chemistry, Forman Christian College (A Chartered University), Ferozepur Road, Lahore, 54600, Pakistan
| | - Khalid Rauf
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Pakistan.
| | - Yaser Masoumi-Ardakani
- Physiology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
34
|
Anxiolytic-like effect of chalcone N-{4'[(2E)-3-(3-nitrophenyl)-1-(phenyl)prop-2-en-1-one]} acetamide on adult zebrafish (Danio rerio): Involvement of the 5-HT system. Biochem Biophys Res Commun 2020; 526:505-511. [PMID: 32241546 DOI: 10.1016/j.bbrc.2020.03.129] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 03/21/2020] [Indexed: 02/05/2023]
Abstract
The action of anxiolytic compounds that act on selective serotonin receptors (SSRIs) have been scarcely evaluated. Serotonergic drugs have been shown to be effective in treating anxiety without presenting adverse effects as benzodiazepines. However, the anxiolytic effects take days to occur. This study aimed to evaluate the anxiolytic effect of the synthetic chalcone, 4'-[(2E) -3- (3-nitrophenyl) -1- (phenyl) prop-2-en-1-one] acetamide (PAAMNBA), and its possible mechanism of action in adult zebrafish (Danio rerio). PAAMNBA was synthesized with a yield of 51.3% and its chemical structure was determined by 1H and 13C NMR. Initially, PAAPMNBA was intraperitoneally administered to zebrafish (n = 6/group) at doses of 4, 12, or 40 mg/kg, and the animals were subsequently subjected to acute and open field toxicity tests. PAAMNBA was administered to the other groups (n = 6/group) for analyzing its effect in the light and dark test. The involvement of the serotonergic (5HT) system was also evaluated using 5-HTR 1, 5-HTR 2A/2C, and 5-HTR 3A/3B receptor antagonists, namely, pizotifeo, granizetron, and ciproeptadina, respectively. Molecular coupling was performed using the 5-HT1 receptor. PAAMNBA was found to be non-toxic, reduced the locomotor activity, and had an anxiolytic effect in adult zebrafish. The effect was reduced by pretreatment with pizotifene and was not reversed by treatment with granizetron and cyproeptadine. A previous in vivo molecular coupling study indicated that chalcones interact with the 5-HT1 receptor. The results suggested that the chalcone, PAAPMNBA, has anxiolytic activity, that is mediated by the serotonergic system via the 5-HT1 receptor. The interaction of PAAPMNBA with the 5-HT1 receptor was confirmed by molecular docking studies.
Collapse
|
35
|
Lima‐Maximino M, Pyterson MP, Carmo Silva RX, Gomes GCV, Rocha SP, Herculano AM, Rosemberg DB, Maximino C. Phasic and tonic serotonin modulate alarm reactions and post‐exposure behavior in zebrafish. J Neurochem 2020; 153:495-509. [DOI: 10.1111/jnc.14978] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 02/03/2020] [Accepted: 02/03/2020] [Indexed: 01/15/2023]
Affiliation(s)
- Monica Lima‐Maximino
- Laboratório de Neurofarmacologia e Biofísica Centro de Ciências Biológicas e da Saúde Departamento de Morfologia e Ciências Fisiológicas Universidade do Estado do Pará Marabá Brazil
| | - Maryana Pereira Pyterson
- Laboratório de Neurociências e Comportamento “Frederico Guilherme Graeff” Faculdade de Psicologia Universidade Federal do Sul e Sudeste do Pará Marabá Brazil
| | - Rhayra Xavier Carmo Silva
- Laboratório de Neurociências e Comportamento “Frederico Guilherme Graeff” Faculdade de Psicologia Universidade Federal do Sul e Sudeste do Pará Marabá Brazil
- Programa de Pós‐Graduação em Neurociências e Biologia Celular Instituto de Ciências Biológicas Universidade Federal do Pará Belém Brazil
| | - Gabriela Cristini Vidal Gomes
- Laboratório de Neurociências e Comportamento “Frederico Guilherme Graeff” Faculdade de Psicologia Universidade Federal do Sul e Sudeste do Pará Marabá Brazil
| | - Sueslene Prado Rocha
- Laboratório de Neurofarmacologia e Biofísica Centro de Ciências Biológicas e da Saúde Departamento de Morfologia e Ciências Fisiológicas Universidade do Estado do Pará Marabá Brazil
| | - Anderson Manoel Herculano
- Laboratório de Neurofarmacologia Experimental Instituto de Ciências Biológicas Universidade Federal do Pará Belém Brazil
| | - Denis Broock Rosemberg
- Laboratório de Neuropsicobiologia Experimental Departamento de Bioquímica e Biologia Molecular Centro de Ciências Naturais e Exatas Universidade Federal de Santa Maria Santa Maria Brazil
| | - Caio Maximino
- Laboratório de Neurociências e Comportamento “Frederico Guilherme Graeff” Faculdade de Psicologia Universidade Federal do Sul e Sudeste do Pará Marabá Brazil
| |
Collapse
|
36
|
Gonçalves NGG, de Araújo JIF, Magalhães FEA, Mendes FRS, Lobo MDP, Moreira ACDOM, Moreira RDA. Protein fraction from Artocarpus altilis pulp exhibits antioxidant properties and reverses anxiety behavior in adult zebrafish via the serotoninergic system. J Funct Foods 2020. [DOI: 10.1016/j.jff.2019.103772] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
37
|
Abreu MS, Maximino C, Banha F, Anastácio PM, Demin KA, Kalueff AV, Soares MC. Emotional behavior in aquatic organisms? Lessons from crayfish and zebrafish. J Neurosci Res 2019; 98:764-779. [DOI: 10.1002/jnr.24550] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 09/24/2019] [Accepted: 10/15/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Murilo S. Abreu
- Bioscience Institute University of Passo Fundo (UPF) Passo Fundo Brazil
- The International Zebrafish Neuroscience Research Consortium (ZNRC) Slidell LA USA
| | - Caio Maximino
- The International Zebrafish Neuroscience Research Consortium (ZNRC) Slidell LA USA
- Institute of Health and Biological Studies Federal University of Southern and Southeastern Pará, Unidade III Marabá Brazil
| | - Filipe Banha
- Department of Landscape, Environment and Planning MARE – Marine and Environmental Sciences Centre University of Évora Évora Portugal
| | - Pedro M. Anastácio
- Department of Landscape, Environment and Planning MARE – Marine and Environmental Sciences Centre University of Évora Évora Portugal
| | - Konstantin A. Demin
- Institute of Experimental Medicine Almazov National Medical Research Center Ministry of Healthcare of Russian Federation St. Petersburg Russia
- Institute of Translational Biomedicine St. Petersburg State University St. Petersburg Russia
| | - Allan V. Kalueff
- School of Pharmacy Southwest University Chongqing China
- Ural Federal University Ekaterinburg Russia
| | - Marta C. Soares
- CIBIO, Research Centre in Biodiversity and Genetic Resources University of Porto Porto Portugal
| |
Collapse
|
38
|
|
39
|
Amador MHB, McDonald MD. The serotonin transporter and nonselective transporters are involved in peripheral serotonin uptake in the Gulf toadfish, Opsanus beta. Am J Physiol Regul Integr Comp Physiol 2018; 315:R1154-R1166. [PMID: 30303705 DOI: 10.1152/ajpregu.00137.2018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
In mammals, circulating serotonin [5-hydroxytryptamine (5-HT)] is sequestered by platelets via the 5-HT transporter (SERT) to prevent unintended signaling by this potent signaling molecule. Teleost fish appear to lack a similar circulating storage pool, although the diverse effects of 5-HT in teleosts likely necessitate an alternative method of tight regulation, such as uptake by peripheral tissues. Here, a 5-HT radiotracer was used to explore the 5-HT uptake capacity of peripheral tissues in the Gulf toadfish, Opsanus beta, and to elucidate the primary excretion routes of 5-HT and its metabolites. Pharmacological inhibition of SERT and other transporters enabled assessment of the SERT dependence of peripheral 5-HT uptake and excretion. The results indicated a rapid and substantial uptake of 5-HT by the heart atrium, heart ventricle, and gill that was at least partly SERT dependent. The results also supported the presence of a partial blood-brain barrier that prevented rapid changes in brain 5-HT content despite fluctuating plasma 5-HT concentrations. The renal pathway appeared to be the dominant excretory route for 5-HT and its metabolites over shorter time frames (up to ~30 min), but hepatic excretion was substantial over several hours. SERT inhibition ultimately reduced the excretion of 5-HT and its metabolites by urinary, biliary, and/or intestinal pathways. In addition, branchial excretion of 5-HT and its metabolites could not be ruled out. In summary, this study reveals that the toadfish heart and gill play active roles in regulating circulating 5-HT and yields important insights into the control of peripheral 5-HT in this teleost fish.
Collapse
Affiliation(s)
- Molly H B Amador
- Rosenstiel School of Marine and Atmospheric Science, University of Miami , Miami, Florida
| | - M Danielle McDonald
- Rosenstiel School of Marine and Atmospheric Science, University of Miami , Miami, Florida
| |
Collapse
|
40
|
do Carmo Silva RX, Lima-Maximino MG, Maximino C. The aversive brain system of teleosts: Implications for neuroscience and biological psychiatry. Neurosci Biobehav Rev 2018; 95:123-135. [DOI: 10.1016/j.neubiorev.2018.10.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 10/03/2018] [Accepted: 10/04/2018] [Indexed: 12/24/2022]
|
41
|
Soares MC, Gerlai R, Maximino C. The integration of sociality, monoamines and stress neuroendocrinology in fish models: applications in the neurosciences. JOURNAL OF FISH BIOLOGY 2018; 93:170-191. [PMID: 30043474 DOI: 10.1111/jfb.13757] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 07/12/2018] [Indexed: 06/08/2023]
Abstract
Animal-focused research has been crucial for scientific advancement, but rodents are still taking a starring role. Starting as merely supporting evidence found in rodents, the use of fish models has slowly taken a more central role and expanded its overall contributions in areas such as social sciences, evolution, physiology and recently in translational medical research. In the neurosciences, zebrafish Danio rerio have been widely adopted, contributing to our understanding of the genetic control of brain processes and the effects of pharmacological manipulations. However, discussion continues regarding the paradox of function versus structure, when fishes and mammals are compared and on the potentially evolutionarily conserved nature of behaviour across fish species. From a behavioural standpoint, we explore aversive-stress and social behaviour in selected fish models and refer to the extensive contributions of stress and monoaminergic systems. We suggest that, in spite of marked neuroanatomical differences between fishes and mammals, stress and sociality are conserved at the behavioural and molecular levels. We also suggest that stress and sociality are mediated by monoamines in predictable and non-trivial ways and that monoamines could bridge the relationship between stress and social behaviour. To reconcile the level of divergence with the level of similarity, we need neuroanatomical, pharmacological, behavioural and ecological studies conducted in the laboratory and in nature. These areas need to add to each other to enhance our understanding of fish behaviour and ultimately how this all may lead to better model systems for translational studies.
Collapse
Affiliation(s)
- Marta C Soares
- Centro de Investigação em Biodiversidade e Recursos Genéticos - CIBIO, Universidade do Porto, Vairão, Portugal
| | - Robert Gerlai
- Department of Psychology, University of Toronto Mississauga, Mississauga, Canada
| | - Caio Maximino
- Laboratório de Neurociências e Comportamento 'Frederico Guilherme Graeff', Instituto de Estudos em Saúde e Biológicas - IESB, Universidade Federal do Sul e Sudeste do Pará, Marabá, Brazil
| |
Collapse
|
42
|
The 5-HT 1B receptor - a potential target for antidepressant treatment. Psychopharmacology (Berl) 2018; 235:1317-1334. [PMID: 29546551 PMCID: PMC5919989 DOI: 10.1007/s00213-018-4872-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 02/26/2018] [Indexed: 11/23/2022]
Abstract
Major depressive disorder (MDD) is the leading cause of disability worldwide. The serotonin hypothesis may be the model of MDD pathophysiology with the most support. The majority of antidepressants enhance synaptic serotonin levels quickly, while it usually takes weeks to discern MDD treatment effect. It has been hypothesized that the time lag between serotonin increase and reduction of MDD symptoms is due to downregulation of inhibitory receptors such as the serotonin 1B receptor (5-HT1BR). The research on 5-HT1BR has previously been hampered by a lack of selective ligands for the receptor. The last extensive review of 5-HT1BR in the pathophysiology of depression was published 2009, and based mainly on findings from animal studies. Since then, selective radioligands for in vivo quantification of brain 5-HT1BR binding with positron emission tomography has been developed, providing new knowledge on the role of 5-HT1BR in MDD and its treatment. The main focus of this review is the role of 5-HT1BR in relation to MDD and its treatment, although studies of 5-HT1BR in obsessive-compulsive disorder, alcohol dependence, and cocaine dependence are also reviewed. The evidence outlined range from animal models of disease, effects of 5-HT1B receptor agonists and antagonists, case-control studies of 5-HT1B receptor binding postmortem and in vivo, with positron emission tomography, to clinical studies of 5-HT1B receptor effects of established treatments for MDD. Low 5-HT1BR binding in limbic regions has been found in MDD patients. When 5-HT1BR ligands are administered to animals, 5-HT1BR agonists most consistently display antidepressant-like properties, though it is not yet clear how 5-HT1BR is best approached for optimal MDD treatment.
Collapse
|
43
|
McDonald MD. An AOP analysis of selective serotonin reuptake inhibitors (SSRIs) for fish. Comp Biochem Physiol C Toxicol Pharmacol 2017; 197:19-31. [PMID: 28288906 DOI: 10.1016/j.cbpc.2017.03.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 02/16/2017] [Accepted: 03/07/2017] [Indexed: 12/11/2022]
Abstract
Pharmaceuticals and personal care products (PPCPs) are found in measureable quantities within the aquatic environment. Selective serotonin reuptake inhibitor (SSRI) antidepressants are one class of pharmaceutical compound that has received a lot of attention. Consistent with most PPCPs, the pharmacokinetics and physiological impacts of SSRI treatment have been well-studied in small mammals and humans and this, combined with the evolutionary conservation of the serotonergic system across vertebrates, allows for the read-across of known SSRI effects in mammals to potential SSRI impacts on aquatic organisms. Using an Adverse Outcome Pathway (AOP) framework, this review examines the similarities and differences between the mammalian and teleost fish SSRI target, the serotonin transporter (SERT; SLC6A4), and the downstream impacts of elevated extracellular serotonin (5-HT; 5-hydroxytryptamine), the consequence of SERT inhibition, on organ systems and physiological processes within teleost fish. This review also intends to reveal potentially understudied endpoints for SSRI toxicity based on what is known to be controlled by 5-HT in fish.
Collapse
Affiliation(s)
- M Danielle McDonald
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL 33149, USA.
| |
Collapse
|
44
|
Re-examining the factors affecting choice in the light–dark preference test in zebrafish. Behav Brain Res 2017; 327:21-28. [DOI: 10.1016/j.bbr.2017.03.040] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 03/22/2017] [Accepted: 03/23/2017] [Indexed: 11/22/2022]
|
45
|
Tran S, Fulcher N, Nowicki M, Desai P, Tsang B, Facciol A, Chow H, Gerlai R. Time-dependent interacting effects of caffeine, diazepam, and ethanol on zebrafish behaviour. Prog Neuropsychopharmacol Biol Psychiatry 2017; 75:16-27. [PMID: 28025019 DOI: 10.1016/j.pnpbp.2016.12.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 12/04/2016] [Accepted: 12/20/2016] [Indexed: 01/08/2023]
Abstract
Zebrafish have become a popular animal model for behavioural pharmacology due to their small size, rapid development, and amenability to high throughput behavioural drug screens. Furthermore, water-soluble compounds can be administered via immersion of the fish in the drug solution, which provides a non-invasive drug delivery method. Numerous studies have demonstrated stimulant effects of alcohol. Diazepam and caffeine, on the other hand have been found to have inhibitory effect on locomotor activity in zebrafish. However, the time-dependent changes induced by these psychoactive drugs are rarely reported, and potential drug interactions have not been examined in zebrafish, despite the translational relevance of this question. In the current study, we examine time- and dose-dependent changes in zebrafish following exposure to caffeine, diazepam, and ethanol quantifying four different behavioural parameters over a 30min recording session. We subsequently analyze potential drug-drug interactions by co-administering the three drugs in different combinations. Our time-course and dose-response analyses for each of the three drugs represent so far the most detailed studies available serving as a foundation for future psychopharmacology experiments with zebrafish. Furthermore, we report significant interactions between the three drugs corroborating findings obtained with rodent models as well as in humans, providing translational relevance for the zebrafish model.
Collapse
Affiliation(s)
- Steven Tran
- University of Toronto, Department of Cell and Systems Biology, Canada.
| | - Niveen Fulcher
- University of Toronto Mississauga, Department of Psychology, Canada
| | - Magda Nowicki
- University of Toronto Mississauga, Department of Psychology, Canada
| | - Priyanka Desai
- University of Toronto Mississauga, Department of Psychology, Canada
| | - Benjamin Tsang
- University of Toronto Mississauga, Department of Psychology, Canada
| | - Amanda Facciol
- University of Toronto Mississauga, Department of Psychology, Canada
| | - Hayden Chow
- University of Western Ontario, Department of Physiology and Pharmacology, Canada
| | - Robert Gerlai
- University of Toronto, Department of Cell and Systems Biology, Canada; University of Toronto Mississauga, Department of Psychology, Canada.
| |
Collapse
|
46
|
Tran S, Chow H, Tsang B, Facciol A, Gandhi P, Desai P, Gerlai R. Zebrafish Are Able to Detect Ethanol in Their Environment. Zebrafish 2017; 14:126-132. [DOI: 10.1089/zeb.2016.1372] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Affiliation(s)
- Steven Tran
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| | - Hayden Chow
- Department of Physiology and Pharmacology, University of Western Ontario, London, Canada
| | - Benjamin Tsang
- Department of Psychology, University of Toronto Mississauga, Mississauga, Canada
| | - Amanda Facciol
- Department of Psychology, University of Toronto Mississauga, Mississauga, Canada
| | - Prabhlene Gandhi
- Department of Psychology, University of Toronto Mississauga, Mississauga, Canada
| | - Priyanka Desai
- Department of Psychology, University of Toronto Mississauga, Mississauga, Canada
| | - Robert Gerlai
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
- Department of Psychology, University of Toronto Mississauga, Mississauga, Canada
| |
Collapse
|
47
|
Fulcher N, Tran S, Shams S, Chatterjee D, Gerlai R. Neurochemical and Behavioral Responses to Unpredictable Chronic Mild Stress Following Developmental Isolation: The Zebrafish as a Model for Major Depression. Zebrafish 2017; 14:23-34. [DOI: 10.1089/zeb.2016.1295] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Niveen Fulcher
- Department of Psychology, University of Toronto Mississauga, Mississauga, Canada
| | - Steven Tran
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| | - Soaleha Shams
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| | - Diptendu Chatterjee
- Department of Psychology, University of Toronto Mississauga, Mississauga, Canada
| | - Robert Gerlai
- Department of Psychology, University of Toronto Mississauga, Mississauga, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| |
Collapse
|
48
|
Tran S, Facciol A, Nowicki M, Chatterjee D, Gerlai R. Acute alcohol exposure increases tyrosine hydroxylase protein expression and dopamine synthesis in zebrafish. Behav Brain Res 2016; 317:237-241. [PMID: 27666381 DOI: 10.1016/j.bbr.2016.09.048] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 09/18/2016] [Accepted: 09/20/2016] [Indexed: 10/20/2022]
Abstract
Zebrafish have become a popular animal model for investigating the effects of alcohol on the brain and behaviour. Acute exposure to alcohol has been shown to alter dopaminergic signalling in zebrafish, but the underlying mechanisms have not been well defined. In the current study, we characterize the effects of alcohol on the zebrafish dopaminergic system by focusing on tyrosine hydroxylase, the rate-limiting enzyme in dopamine synthesis. Using western blot analysis, we demonstrate that a 60min exposure to 1% alcohol increases tyrosine hydroxylase protein expression in the zebrafish brain. Enzymatic activity assays confirmed that alcohol also increases tyrosine hydroxylase enzymatic activity, whereas HPLC analysis demonstrated increased levels of whole-brain dopamine and its metabolite DOPAC. In addition to activation of the dopaminergic system, behavioural analysis revealed accompanying increase of distance traveled following 1% alcohol exposure. These findings suggest that acute alcohol exposure elevates dopamine synthesis via increased tyrosine hydroxylase protein expression. Our results support the hypothesis that alcohol alters dopaminergic signalling in the zebrafish brain in a similar manner as compared to mammals.
Collapse
Affiliation(s)
- Steven Tran
- University of Toronto, Department of Cell and Systems Biology, Canada.
| | - Amanda Facciol
- University of Toronto Mississauga, Department of Psychology, Canada
| | - Magda Nowicki
- University of Toronto Mississauga, Department of Psychology, Canada
| | | | - Robert Gerlai
- University of Toronto, Department of Cell and Systems Biology, Canada; University of Toronto Mississauga, Department of Psychology, Canada.
| |
Collapse
|
49
|
Alcohol-induced behavioral changes in zebrafish: The role of dopamine D2-like receptors. Psychopharmacology (Berl) 2016; 233:2119-2128. [PMID: 26955840 DOI: 10.1007/s00213-016-4264-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 02/23/2016] [Indexed: 01/04/2023]
Abstract
RATIONALE The dopaminergic system has been proposed to mediate alcohol-induced locomotor activity, yet the mechanisms underlying this behavioral response remain poorly understood. OBJECTIVES This study was conducted to investigate the role of dopamine D2-like receptors in mediating alcohol-induced behavioral responses. METHODS In experiment 1, we examined the effects of high concentrations (0, 2.5, 5, 10 μM) of haloperidol on motor responses. In experiment 2, we examined the effects of low concentrations (0, 0.625, 1.25, 2.5 μM) of haloperidol on anxiety-like behavioral responses using the novel tank test. In experiment 3, we examined the effect of pre-treating zebrafish with different concentrations of haloperidol (0, 0.625, 2.5 μM) and subsequently exposing them to 0 or 1 % alcohol. RESULTS In experiment 1, haloperidol induced an inverted U-shaped concentration-dependent increase in locomotor activity. In experiment 2, haloperidol (2.5 μM) reduced the absolute turn angle and freezing behavior in a new environment. In experiment 3, acute alcohol exposure significantly increased locomotor activity and decreased anxiety-like behavioral responses. Pre-treating zebrafish with the lower dose of haloperidol (0.625 μM) abolished the alcohol-induced locomotor activity, without altering anxiety-like behavioral responses. However, pre-treating with the higher dose of haloperidol (2.5 μM) abolished both alcohol-induced increase of locomotor activity and reduction of anxiety-like behavioral responses. CONCLUSION The results suggest alcohol-induced locomotor hyperactivity in zebrafish is mediated via activation of dopamine D2-like receptors, whereas anxiety-like behavioral responses may only be altered by a high haloperidol concentration, at which dose the drug may affect receptors other than D2-R.
Collapse
|
50
|
McCarroll MN, Gendelev L, Keiser MJ, Kokel D. Leveraging Large-scale Behavioral Profiling in Zebrafish to Explore Neuroactive Polypharmacology. ACS Chem Biol 2016; 11:842-9. [PMID: 26845413 DOI: 10.1021/acschembio.5b00800] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Many psychiatric drugs modulate the nervous system through multitarget mechanisms. However, systematic identification of multitarget compounds has been difficult using traditional in vitro screening assays. New approaches to phenotypic profiling in zebrafish can help researchers identify novel compounds with complex polypharmacology. For example, large-scale behavior-based chemical screens can rapidly identify large numbers of structurally diverse and phenotype-related compounds. Once these compounds have been identified, a systems-level analysis of their structures may help to identify statistically enriched target pathways. Together, systematic behavioral profiling and multitarget predictions may help researchers identify new behavior-modifying pathways and CNS therapeutics.
Collapse
Affiliation(s)
- Matthew N. McCarroll
- University of California San Francisco, Institute of Neurodegenerative
Diseases, 675 Nelson Rising
Lane, San Francisco, California 94143, United States
| | - Leo Gendelev
- University of California San Francisco, Institute of Neurodegenerative
Diseases, 675 Nelson Rising
Lane, San Francisco, California 94143, United States
| | - Michael J. Keiser
- University of California San Francisco, Institute of Neurodegenerative
Diseases, 675 Nelson Rising
Lane, San Francisco, California 94143, United States
| | - David Kokel
- University of California San Francisco, Institute of Neurodegenerative
Diseases, 675 Nelson Rising
Lane, San Francisco, California 94143, United States
| |
Collapse
|