1
|
LaCombe JM, Sloan K, Thomas JR, Blackwell MP, Crawford I, Bishop F, Wallace JM, Roper RJ. Sex-specific trisomic Dyrk1a-related skeletal phenotypes during development in a Down syndrome model. Dis Model Mech 2024; 17:dmm050914. [PMID: 39136051 PMCID: PMC11449447 DOI: 10.1242/dmm.050914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/04/2024] [Indexed: 08/21/2024] Open
Abstract
Skeletal insufficiency affects all individuals with Down syndrome (DS) or trisomy 21 and may alter bone strength throughout development due to a reduced period of bone formation and early attainment of peak bone mass compared to those in typically developing individuals. Appendicular skeletal deficits also appear in males before females with DS. In femurs of male Ts65Dn DS model mice, cortical deficits were pronounced throughout development, but trabecular deficits and Dyrk1a overexpression were transitory until postnatal day (P) 30, when there were persistent trabecular and cortical deficits and Dyrk1a was trending toward overexpression. Correction of DS-related skeletal deficits by a purported DYRK1A inhibitor or through genetic means beginning at P21 was not effective at P30, but germline normalization of Dyrk1a improved male bone structure by P36. Trabecular and cortical deficits in female Ts65Dn mice were evident at P30 but subsided by P36, typifying periodic developmental skeletal normalizations that progressed to more prominent bone deficiencies. Sex-dependent differences in skeletal deficits with a delayed impact of trisomic Dyrk1a are important to find temporally specific treatment periods for bone and other phenotypes associated with trisomy 21.
Collapse
Affiliation(s)
- Jonathan M LaCombe
- Department of Biology, Indiana University Indianapolis, Indianapolis, IN 46202, USA
- Labcorp Early Development Laboratories, Inc., Greenfield, IN 46140, USA
| | - Kourtney Sloan
- Department of Biology, Indiana University Indianapolis, Indianapolis, IN 46202, USA
| | - Jared R Thomas
- Department of Biology, Indiana University Indianapolis, Indianapolis, IN 46202, USA
| | - Matthew P Blackwell
- Department of Biology, Indiana University Indianapolis, Indianapolis, IN 46202, USA
| | - Isabella Crawford
- Department of Biology, Indiana University Indianapolis, Indianapolis, IN 46202, USA
| | - Flannery Bishop
- Department of Biology, Indiana University Indianapolis, Indianapolis, IN 46202, USA
| | - Joseph M Wallace
- Department of Biomedical Engineering, Purdue University, Indianapolis, IN 46202, USA
| | - Randall J Roper
- Department of Biology, Indiana University Indianapolis, Indianapolis, IN 46202, USA
| |
Collapse
|
2
|
LaCombe JM, Sloan K, Thomas JR, Blackwell MP, Crawford I, Wallace JM, Roper RJ. Sex specific emergence of trisomic Dyrk1a-related skeletal phenotypes in the development of a Down syndrome mouse model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.24.595804. [PMID: 38826419 PMCID: PMC11142220 DOI: 10.1101/2024.05.24.595804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Skeletal insufficiency affects all individuals with Down syndrome (DS) or Trisomy 21 (Ts21) and may alter bone strength throughout development due to a reduced period of bone formation and early attainment of peak bone mass compared to typically developing individuals. Appendicular skeletal deficits also appear in males before females with DS. In femurs of male Ts65Dn DS model mice, cortical deficits were pronounced throughout development, but trabecular deficits and Dyrk1a overexpression were transitory until postnatal day (P) 30 when there were persistent trabecular and cortical deficits and Dyrk1a was trending overexpression. Correction of DS-related skeletal deficits by a purported DYRK1A inhibitor or through genetic means beginning at P21 was not effective at P30, but germline normalization of Dyrk1a improved male bone structure by P36. Trabecular and cortical deficits in female Ts65Dn mice were evident at P30 but subsided by P36, typifying periodic developmental skeletal normalizations that progressed to more prominent bone deficiencies. Sex-dependent differences in skeletal deficits with a delayed impact of trisomic Dyrk1a are important to find temporally specific treatment periods for bone and other phenotypes associated with Ts21.
Collapse
Affiliation(s)
- Jonathan M. LaCombe
- Department of Biology, Indiana University-Indianapolis, IN, USA
- Labcorp Early Development Laboratories, Inc., Greenfield, IN, USA
| | - Kourtney Sloan
- Department of Biology, Indiana University-Indianapolis, IN, USA
| | - Jared R. Thomas
- Department of Biology, Indiana University-Indianapolis, IN, USA
| | | | | | - Joseph M. Wallace
- Department of Biomedical Engineering, Purdue University, Indianapolis, IN, USA
| | | |
Collapse
|
3
|
Llambrich S, Tielemans B, Saliën E, Atzori M, Wouters K, Van Bulck V, Platt M, Vanherp L, Gallego Fernandez N, Grau de la Fuente L, Poptani H, Verlinden L, Himmelreich U, Croitor A, Attanasio C, Callaerts-Vegh Z, Gsell W, Martínez-Abadías N, Vande Velde G. Pleiotropic effects of trisomy and pharmacologic modulation on structural, functional, molecular, and genetic systems in a Down syndrome mouse model. eLife 2024; 12:RP89763. [PMID: 38497812 PMCID: PMC10948151 DOI: 10.7554/elife.89763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024] Open
Abstract
Down syndrome (DS) is characterized by skeletal and brain structural malformations, cognitive impairment, altered hippocampal metabolite concentration and gene expression imbalance. These alterations were usually investigated separately, and the potential rescuing effects of green tea extracts enriched in epigallocatechin-3-gallate (GTE-EGCG) provided disparate results due to different experimental conditions. We overcame these limitations by conducting the first longitudinal controlled experiment evaluating genotype and GTE-EGCG prenatal chronic treatment effects before and after treatment discontinuation. Our findings revealed that the Ts65Dn mouse model reflected the pleiotropic nature of DS, exhibiting brachycephalic skull, ventriculomegaly, neurodevelopmental delay, hyperactivity, and impaired memory robustness with altered hippocampal metabolite concentration and gene expression. GTE-EGCG treatment modulated most systems simultaneously but did not rescue DS phenotypes. On the contrary, the treatment exacerbated trisomic phenotypes including body weight, tibia microarchitecture, neurodevelopment, adult cognition, and metabolite concentration, not supporting the therapeutic use of GTE-EGCG as a prenatal chronic treatment. Our results highlight the importance of longitudinal experiments assessing the co-modulation of multiple systems throughout development when characterizing preclinical models in complex disorders and evaluating the pleiotropic effects and general safety of pharmacological treatments.
Collapse
Affiliation(s)
- Sergi Llambrich
- Biomedical MRI, Department of Imaging and Pathology, KU LeuvenLeuvenBelgium
| | - Birger Tielemans
- Biomedical MRI, Department of Imaging and Pathology, KU LeuvenLeuvenBelgium
| | - Ellen Saliën
- Biomedical MRI, Department of Imaging and Pathology, KU LeuvenLeuvenBelgium
| | - Marta Atzori
- Department of Human Genetics, KU LeuvenLeuvenBelgium
| | - Kaat Wouters
- Laboratory of Biological Psychology, KU LeuvenLeuvenBelgium
| | | | - Mark Platt
- Centre for Preclinical Imaging, Department of Molecular and Clinical Cancer Medicine, University of LiverpoolLiverpoolUnited Kingdom
| | - Laure Vanherp
- Biomedical MRI, Department of Imaging and Pathology, KU LeuvenLeuvenBelgium
| | - Nuria Gallego Fernandez
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals (BEECA), Facultat de Biologia, Universitat de BarcelonaBarcelonaSpain
| | - Laura Grau de la Fuente
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals (BEECA), Facultat de Biologia, Universitat de BarcelonaBarcelonaSpain
| | - Harish Poptani
- Centre for Preclinical Imaging, Department of Molecular and Clinical Cancer Medicine, University of LiverpoolLiverpoolUnited Kingdom
| | - Lieve Verlinden
- Clinical and Experimental Endocrinology, KU LeuvenLeuvenBelgium
| | - Uwe Himmelreich
- Biomedical MRI, Department of Imaging and Pathology, KU LeuvenLeuvenBelgium
| | - Anca Croitor
- Biomedical MRI, Department of Imaging and Pathology, KU LeuvenLeuvenBelgium
| | | | | | - Willy Gsell
- Biomedical MRI, Department of Imaging and Pathology, KU LeuvenLeuvenBelgium
| | - Neus Martínez-Abadías
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals (BEECA), Facultat de Biologia, Universitat de BarcelonaBarcelonaSpain
| | | |
Collapse
|
4
|
Llambrich S, González-Colom R, Wouters J, Roldán J, Salassa S, Wouters K, Van Bulck V, Sharpe J, Callaerts-Vegh Z, Vande Velde G, Martínez-Abadías N. Green Tea Catechins Modulate Skeletal Development with Effects Dependent on Dose, Time, and Structure in a down Syndrome Mouse Model. Nutrients 2022; 14:nu14194167. [PMID: 36235819 PMCID: PMC9572077 DOI: 10.3390/nu14194167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/30/2022] [Accepted: 10/03/2022] [Indexed: 11/26/2022] Open
Abstract
Altered skeletal development in Down syndrome (DS) results in a brachycephalic skull, flattened face, shorter mandibular ramus, shorter limbs, and reduced bone mineral density (BMD). Our previous study showed that low doses of green tea extract enriched in epigallocatechin-3-gallate (GTE-EGCG), administered continuously from embryonic day 9 to postnatal day 29, reduced facial dysmorphologies in the Ts65Dn (TS) mouse model of DS, but high doses could exacerbate them. Here, we extended the analyses to other skeletal structures and systematically evaluated the effects of high and low doses of GTE-EGCG treatment over postnatal development in wild-type (WT) and TS mice using in vivo µCT and geometric morphometrics. TS mice developed shorter and wider faces, skulls, and mandibles, together with shorter and narrower humerus and scapula, and reduced BMD dynamically over time. Besides facial morphology, GTE-EGCG did not rescue any other skeletal phenotype in TS treated mice. In WT mice, GTE-EGCG significantly altered the shape of the skull and mandible, reduced the length and width of the long bones, and lowered the BMD. The disparate effects of GTE-EGCG depended on the dose, developmental timepoint, and anatomical structure analyzed, emphasizing the complex nature of DS and the need to further investigate the simultaneous effects of GTE-EGCG supplementation.
Collapse
Affiliation(s)
- Sergi Llambrich
- Biomedical MRI, Department of Imaging and Pathology, University of Leuven (KU Leuven), 3000 Leuven, Belgium
| | - Rubèn González-Colom
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals (BEECA), Facultat de Biologia, Universitat de Barcelona (UB), 08028 Barcelona, Spain
| | - Jens Wouters
- Biomedical MRI, Department of Imaging and Pathology, University of Leuven (KU Leuven), 3000 Leuven, Belgium
| | - Jorge Roldán
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals (BEECA), Facultat de Biologia, Universitat de Barcelona (UB), 08028 Barcelona, Spain
| | - Sara Salassa
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals (BEECA), Facultat de Biologia, Universitat de Barcelona (UB), 08028 Barcelona, Spain
| | - Kaat Wouters
- Laboratory of Biological Psychology, University of Leuven (KU Leuven), 3000 Leuven, Belgium
| | - Vicky Van Bulck
- Laboratory of Biological Psychology, University of Leuven (KU Leuven), 3000 Leuven, Belgium
| | - James Sharpe
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), 08003 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08003 Barcelona, Spain
- EMBL Barcelona, European Molecular Biology Laboratory, 08003 Barcelona, Spain
| | | | - Greetje Vande Velde
- Biomedical MRI, Department of Imaging and Pathology, University of Leuven (KU Leuven), 3000 Leuven, Belgium
- Correspondence: (G.V.V.); (N.M.-A.); Tel.: +32-16330924 (G.V.V.); +34-934034564 (N.M.-A.)
| | - Neus Martínez-Abadías
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals (BEECA), Facultat de Biologia, Universitat de Barcelona (UB), 08028 Barcelona, Spain
- Correspondence: (G.V.V.); (N.M.-A.); Tel.: +32-16330924 (G.V.V.); +34-934034564 (N.M.-A.)
| |
Collapse
|
5
|
Noll C, Kandiah J, Moroy G, Gu Y, Dairou J, Janel N. Catechins as a Potential Dietary Supplementation in Prevention of Comorbidities Linked with Down Syndrome. Nutrients 2022; 14:2039. [PMID: 35631180 PMCID: PMC9147372 DOI: 10.3390/nu14102039] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/08/2022] [Accepted: 05/10/2022] [Indexed: 11/24/2022] Open
Abstract
Plant-derived polyphenols flavonoids are increasingly being recognized for their medicinal potential. These bioactive compounds derived from plants are gaining more interest in ameliorating adverse health risks because of their low toxicity and few side effects. Among them, therapeutic approaches demonstrated the efficacy of catechins, a major group of flavonoids, in reverting several aspects of Down syndrome, the most common genomic disorder that causes intellectual disability. Down syndrome is characterized by increased incidence of developing Alzheimer's disease, obesity, and subsequent metabolic disorders. In this focused review, we examine the main effects of catechins on comorbidities linked with Down syndrome. We also provide evidence of catechin effects on DYRK1A, a dosage-sensitive gene encoding a protein kinase involved in brain defects and metabolic disease associated with Down syndrome.
Collapse
Affiliation(s)
- Christophe Noll
- Division of Endocrinology, Department of Medicine, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada;
| | - Janany Kandiah
- Unité de Biologie Fonctionnelle et Adaptative, UMR 8251 CNRS, Université Paris Cité, F-75013 Paris, France; (J.K.); (Y.G.)
| | - Gautier Moroy
- Unité de Biologie Fonctionnelle et Adaptative, INSERM CNRS, Université Paris Cité, F-75013 Paris, France;
| | - Yuchen Gu
- Unité de Biologie Fonctionnelle et Adaptative, UMR 8251 CNRS, Université Paris Cité, F-75013 Paris, France; (J.K.); (Y.G.)
| | - Julien Dairou
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, UMR 8601 CNRS, Université Paris Cité, F-75006 Paris, France;
| | - Nathalie Janel
- Unité de Biologie Fonctionnelle et Adaptative, UMR 8251 CNRS, Université Paris Cité, F-75013 Paris, France; (J.K.); (Y.G.)
| |
Collapse
|
6
|
Stagni F, Bartesaghi R. The Challenging Pathway of Treatment for Neurogenesis Impairment in Down Syndrome: Achievements and Perspectives. Front Cell Neurosci 2022; 16:903729. [PMID: 35634470 PMCID: PMC9130961 DOI: 10.3389/fncel.2022.903729] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 04/19/2022] [Indexed: 12/17/2022] Open
Abstract
Down syndrome (DS), also known as trisomy 21, is a genetic disorder caused by triplication of Chromosome 21. Gene triplication may compromise different body functions but invariably impairs intellectual abilities starting from infancy. Moreover, after the fourth decade of life people with DS are likely to develop Alzheimer’s disease. Neurogenesis impairment during fetal life stages and dendritic pathology emerging in early infancy are thought to be key determinants of alterations in brain functioning in DS. Although the progressive improvement in medical care has led to a notable increase in life expectancy for people with DS, there are currently no treatments for intellectual disability. Increasing evidence in mouse models of DS reveals that pharmacological interventions in the embryonic and neonatal periods may greatly benefit brain development and cognitive performance. The most striking results have been obtained with pharmacotherapies during embryonic life stages, indicating that it is possible to pharmacologically rescue the severe neurodevelopmental defects linked to the trisomic condition. These findings provide hope that similar benefits may be possible for people with DS. This review summarizes current knowledge regarding (i) the scope and timeline of neurogenesis (and dendritic) alterations in DS, in order to delineate suitable windows for treatment; (ii) the role of triplicated genes that are most likely to be the key determinants of these alterations, in order to highlight possible therapeutic targets; and (iii) prenatal and neonatal treatments that have proved to be effective in mouse models, in order to rationalize the choice of treatment for human application. Based on this body of evidence we will discuss prospects and challenges for fetal therapy in individuals with DS as a potential means of drastically counteracting the deleterious effects of gene triplication.
Collapse
Affiliation(s)
- Fiorenza Stagni
- Department for Life Quality Studies, University of Bologna, Rimini, Italy
| | - Renata Bartesaghi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
- *Correspondence: Renata Bartesaghi,
| |
Collapse
|
7
|
Jamal R, LaCombe J, Patel R, Blackwell M, Thomas JR, Sloan K, Wallace JM, Roper RJ. Increased dosage and treatment time of Epigallocatechin-3-gallate (EGCG) negatively affects skeletal parameters in normal mice and Down syndrome mouse models. PLoS One 2022; 17:e0264254. [PMID: 35196359 PMCID: PMC8865638 DOI: 10.1371/journal.pone.0264254] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 02/07/2022] [Indexed: 12/15/2022] Open
Abstract
Bone abnormalities affect all individuals with Down syndrome (DS) and are linked to abnormal expression of DYRK1A, a gene found in three copies in people with DS and Ts65Dn DS model mice. Previous work in Ts65Dn male mice demonstrated that both genetic normalization of Dyrk1a and treatment with ~9 mg/kg/day Epigallocatechin-3-gallate (EGCG), the main polyphenol found in green tea and putative DYRK1A inhibitor, improved some skeletal deficits. Because EGCG treatment improved mostly trabecular skeletal deficits, we hypothesized that increasing EGCG treatment dosage and length of administration would positively affect both trabecular and cortical bone in Ts65Dn mice. Treatment of individuals with DS with green tea extract (GTE) containing EGCG also showed some weight loss in individuals with DS, and we hypothesized that weights would be affected in Ts65Dn mice after EGCG treatment. Treatment with ~20 mg/kg/day EGCG for seven weeks showed no improvements in male Ts65Dn trabecular bone and only limited improvements in cortical measures. Comparing skeletal analyses after ~20mg/kg/day EGCG treatment with previously published treatments with ~9, 50, and 200 mg/kg/day EGCG showed that increased dosage and treatment time increased cortical structural deficits leading to weaker appendicular bones in male mice. Weight was not affected by treatment in mice, except for those given a high dose of EGCG by oral gavage. These data indicate that high doses of EGCG, similar to those reported in some treatment studies of DS and other disorders, may impair long bone structure and strength. Skeletal phenotypes should be monitored when high doses of EGCG are administered therapeutically.
Collapse
Affiliation(s)
- Raza Jamal
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana, United States of America
| | - Jonathan LaCombe
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana, United States of America
| | - Roshni Patel
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana, United States of America
| | - Matthew Blackwell
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana, United States of America
| | - Jared R. Thomas
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana, United States of America
| | - Kourtney Sloan
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana, United States of America
| | - Joseph M. Wallace
- Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana, United States of America
| | - Randall J. Roper
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana, United States of America
| |
Collapse
|
8
|
Llambrich S, González R, Albaigès J, Wouters J, Marain F, Himmelreich U, Sharpe J, Dierssen M, Gsell W, Martínez-Abadías N, Vande Velde G. Multimodal in vivo Imaging of the Integrated Postnatal Development of Brain and Skull and Its Co-modulation With Neurodevelopment in a Down Syndrome Mouse Model. Front Med (Lausanne) 2022; 9:815739. [PMID: 35223915 PMCID: PMC8874331 DOI: 10.3389/fmed.2022.815739] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/14/2022] [Indexed: 11/13/2022] Open
Abstract
The brain and skeletal systems are intimately integrated during development through common molecular pathways. This is evidenced by genetic disorders where brain and skull dysmorphologies are associated. However, the mechanisms underlying neural and skeletal interactions are poorly understood. Using the Ts65Dn mouse model of Down syndrome (DS) as a case example, we performed the first longitudinal assessment of brain, skull and neurobehavioral development to determine alterations in the coordinated morphogenesis of brain and skull. We optimized a multimodal protocol combining in vivo micro-computed tomography (μCT) and magnetic resonance imaging (μMRI) with morphometric analyses and neurodevelopmental tests to longitudinally monitor the different systems' development trajectories during the first postnatal weeks. We also explored the impact of a perinatal treatment with green tea extracts enriched in epigallocatechin-3-gallate (GTE-EGCG), which can modulate cognition, brain and craniofacial development in DS. Our analyses quantified alterations associated with DS, with skull dysmorphologies appearing before brain anomalies, reduced integration and delayed acquisition of neurodevelopmental traits. Perinatal GTE-EGCG induced disparate effects and disrupted the magnitude of integration and covariation patterns between brain and skull. Our results exemplify how a longitudinal research approach evaluating the development of multiple systems can reveal the effect of morphological integration modulating the response of pathological phenotypes to treatment, furthering our understanding of complex genetic disorders.
Collapse
Affiliation(s)
- Sergi Llambrich
- Biomedical MRI, Department of Imaging and Pathology, KU Leuven, Flanders, Belgium
| | - Rubèn González
- Grup de Recerca en Antropologia Biológica (GREAB), Department of Biologia Evolutiva, Ecologia i Ciències Ambientals (BEECA), Universitat de Barcelona, Barcelona, Spain
- Center for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Julia Albaigès
- Center for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- Centro de Investigación Biomédica en Red Enfermedades Raras (CIBERER), Barcelona, Spain
| | - Jens Wouters
- Biomedical MRI, Department of Imaging and Pathology, KU Leuven, Flanders, Belgium
| | - Fopke Marain
- Biomedical MRI, Department of Imaging and Pathology, KU Leuven, Flanders, Belgium
| | - Uwe Himmelreich
- Biomedical MRI, Department of Imaging and Pathology, KU Leuven, Flanders, Belgium
| | - James Sharpe
- Center for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
- European Molecular Biology Laboratory (EMBL) Barcelona, European Molecular Biology Laboratory, Barcelona, Spain
| | - Mara Dierssen
- Center for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- Centro de Investigación Biomédica en Red Enfermedades Raras (CIBERER), Barcelona, Spain
| | - Willy Gsell
- Biomedical MRI, Department of Imaging and Pathology, KU Leuven, Flanders, Belgium
| | - Neus Martínez-Abadías
- Grup de Recerca en Antropologia Biológica (GREAB), Department of Biologia Evolutiva, Ecologia i Ciències Ambientals (BEECA), Universitat de Barcelona, Barcelona, Spain
- Center for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- European Molecular Biology Laboratory (EMBL) Barcelona, European Molecular Biology Laboratory, Barcelona, Spain
- *Correspondence: Neus Martínez-Abadías
| | - Greetje Vande Velde
- Biomedical MRI, Department of Imaging and Pathology, KU Leuven, Flanders, Belgium
- Greetje Vande Velde
| |
Collapse
|
9
|
Therapeutic Effects of Catechins in Less Common Neurological and Neurodegenerative Disorders. Nutrients 2021; 13:nu13072232. [PMID: 34209677 PMCID: PMC8308206 DOI: 10.3390/nu13072232] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 12/18/2022] Open
Abstract
In recent years, neurological and neurodegenerative disorders research has focused on altered molecular mechanisms in search of potential pharmacological targets, e.g., imbalances in mechanisms of response to oxidative stress, inflammation, apoptosis, autophagy, proliferation, differentiation, migration, and neuronal plasticity, which occur in less common neurological and neurodegenerative pathologies (Huntington disease, multiple sclerosis, fetal alcohol spectrum disorders, and Down syndrome). Here, we assess the effects of different catechins (particularly of epigalocatechin-3-gallate, EGCG) on these disorders, as well as their use in attenuating age-related cognitive decline in healthy individuals. Antioxidant and free radical scavenging properties of EGCG -due to their phenolic hydroxyl groups-, as well as its immunomodulatory, neuritogenic, and autophagic characteristics, makes this catechin a promising tool against neuroinflammation and microglia activation, common in these pathologies. Although EGCG promotes the inhibition of protein aggregation in experimental Huntington disease studies and improves the clinical severity in multiple sclerosis in animal models, its efficacy in humans remains controversial. EGCG may normalize DYRK1A (involved in neural plasticity) overproduction in Down syndrome, improving behavioral and neural phenotypes. In neurological pathologies caused by environmental agents, such as FASD, EGCG enhances antioxidant defense and regulates placental angiogenesis and neurodevelopmental processes. As demonstrated in animal models, catechins attenuate age-related cognitive decline, which results in improvements in long-term outcomes and working memory, reduction of hippocampal neuroinflammation, and enhancement of neuronal plasticity; however, further studies are needed. Catechins are valuable compounds for treating and preventing certain neurodegenerative and neurological diseases of genetic and environmental origin. However, the use of different doses of green tea extracts and EGCG makes it difficult to reach consistent conclusions for different populations.
Collapse
|
10
|
Epigallocatechin-3-Gallate Plus Omega-3 Restores the Mitochondrial Complex I and F 0F 1-ATP Synthase Activities in PBMCs of Young Children with Down Syndrome: A Pilot Study of Safety and Efficacy. Antioxidants (Basel) 2021; 10:antiox10030469. [PMID: 33809669 PMCID: PMC8002266 DOI: 10.3390/antiox10030469] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/05/2021] [Accepted: 03/14/2021] [Indexed: 12/15/2022] Open
Abstract
Down syndrome (DS) is a major genetic cause of intellectual disability. DS pathogenesis has not been fully elucidated, and no specific pharmacological therapy is available. DYRK1A overexpression, oxidative stress and mitochondrial dysfunction were described in trisomy 21. Epigallocatechin-3-gallate (EGCG) is a multimodal nutraceutical with antioxidant properties. EGCG inhibits DYRK1A overexpression and corrects DS mitochondrial dysfunction in vitro. The present study explores safety profiles in DS children aged 1–8 years treated with EGCG (10 mg/kg/die, suspended in omega-3, per os, in fasting conditions, for 6 months) and EGCG efficacy in restoring mitochondrial complex I and F0F1-ATP synthase (complex V) deficiency, assessed on PBMCs. The Griffiths Mental Developmental Scales—Extended Revised (GMDS-ER) was used for developmental profiling. Results show that decaffeinated EGCG (>90%) plus omega-3 is safe in DS children and effective in reverting the deficit of mitochondrial complex I and V activities. Decline of plasma folates was observed in 21% of EGCG-treated patients and should be carefully monitored. GMDS-ER scores did not show differences between the treated group compared to the DS control group. In conclusion, EGCG plus omega-3 can be safely administered under medical supervision in DS children aged 1–8 years to normalize mitochondria respiratory chain complex activities, while results on the improvement of developmental performance are still inconclusive.
Collapse
|
11
|
Roper RJ, Goodlett CR, Martínez de Lagrán M, Dierssen M. Behavioral Phenotyping for Down Syndrome in Mice. ACTA ACUST UNITED AC 2020; 10:e79. [PMID: 32780566 DOI: 10.1002/cpmo.79] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Down syndrome (DS) is the most frequent genetic cause of intellectual disability, characterized by alterations in different behavioral symptom domains: neurodevelopment, motor behavior, and cognition. As mouse models have the potential to generate data regarding the neurological basis for the specific behavioral profile of DS, and may indicate pharmacological treatments with the potential to affect their behavioral phenotype, it is important to be able to assess disease-relevant behavioral traits in animal models in order to provide biological plausibility to the potential findings. The field is at a juncture that requires assessments that may effectively translate the findings acquired in mouse models to humans with DS. In this article, behavioral tests are described that are relevant to the domains affected in DS. A neurodevelopmental behavioral screen, the balance beam test, and the Multivariate Concentric Square Field test to assess multiple behavioral phenotypes and locomotion are described, discussing the ways to merge these findings to more fully understand cognitive strengths and weaknesses in this population. New directions for approaches to cognitive assessment in mice and humans are discussed. © 2020 Wiley Periodicals LLC. Basic Protocol 1: Preweaning neurodevelopmental battery Basic Protocol 2: Balance beam Basic Protocol 3: Multivariate concentric square field test (MCSF).
Collapse
Affiliation(s)
| | | | - María Martínez de Lagrán
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Mara Dierssen
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain.,Biomedical Research Networking Center on Rare Diseases (CIBERER), Institute of Health Carlos III, Madrid, Spain
| |
Collapse
|
12
|
Goodlett CR, Stringer M, LaCombe J, Patel R, Wallace JM, Roper RJ. Evaluation of the therapeutic potential of Epigallocatechin-3-gallate (EGCG) via oral gavage in young adult Down syndrome mice. Sci Rep 2020; 10:10426. [PMID: 32591597 PMCID: PMC7319987 DOI: 10.1038/s41598-020-67133-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 05/29/2020] [Indexed: 01/09/2023] Open
Abstract
Epigallocatechin-3-gallate (EGCG) is a candidate therapeutic for Down syndrome (DS) phenotypes based on in vitro inhibition of DYRK1A, a triplicated gene product of Trisomy 21 (Ts21). Consumption of green tea extracts containing EGCG improved some cognitive and behavioral outcomes in DS mouse models and in humans with Ts21. In contrast, treatment with pure EGCG in DS mouse models did not improve neurobehavioral phenotypes. This study tested the hypothesis that 200 mg/kg/day of pure EGCG, given via oral gavage, would improve neurobehavioral and skeletal phenotypes in the Ts65Dn DS mouse model. Serum EGCG levels post-gavage were significantly higher in trisomic mice than in euploid mice. Daily EGCG gavage treatments over three weeks resulted in growth deficits in both euploid and trisomic mice. Compared to vehicle treatment, EGCG did not significantly improve behavioral performance of Ts65Dn mice in the multivariate concentric square field, balance beam, or Morris water maze tasks, but reduced swimming speed. Furthermore, EGCG resulted in reduced cortical bone structure and strength in Ts65Dn mice. These outcomes failed to support the therapeutic potential of EGCG, and the deleterious effects on growth and skeletal phenotypes underscore the need for caution in high-dose EGCG supplements as an intervention in DS.
Collapse
Affiliation(s)
- Charles R Goodlett
- IUPUI Department of Psychology, 402 North Blackford Street, LD 124, Indianapolis, IN, 46202-3275, USA
| | - Megan Stringer
- IUPUI Department of Psychology, 402 North Blackford Street, LD 124, Indianapolis, IN, 46202-3275, USA
| | - Jonathan LaCombe
- IUPUI Department of Biology, 723 West Michigan Street; SL 306, Indianapolis, IN, 46202-3275, USA
| | - Roshni Patel
- IUPUI Department of Biology, 723 West Michigan Street; SL 306, Indianapolis, IN, 46202-3275, USA
| | - Joseph M Wallace
- IUPUI Department of Biomedical Engineering, 723 West Michigan Street; SL 220B, Indianapolis, IN, 46202-3275, USA
| | - Randall J Roper
- IUPUI Department of Biology, 723 West Michigan Street; SL 306, Indianapolis, IN, 46202-3275, USA.
| |
Collapse
|
13
|
Unno K, Pervin M, Taguchi K, Konishi T, Nakamura Y. Green Tea Catechins Trigger Immediate-Early Genes in the Hippocampus and Prevent Cognitive Decline and Lifespan Shortening. Molecules 2020; 25:molecules25071484. [PMID: 32218277 PMCID: PMC7181211 DOI: 10.3390/molecules25071484] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/21/2020] [Accepted: 03/23/2020] [Indexed: 12/14/2022] Open
Abstract
Senescence-accelerated mouse prone 10 (SAMP10) mice, after ingesting green tea catechins (GT-catechin, 60 mg/kg), were found to have suppressed aging-related decline in brain function. The dose dependence of brain function on GT-catechin indicated that intake of 1 mg/kg or more suppressed cognitive decline and a shortened lifespan. Mice that ingested 1 mg/kg GT-catechin had the longest median survival, but the dose was less effective at suppressing cognitive decline. The optimal dose for improving memory acquisition was 60 mg/kg, and memory retention was higher in mice that ingested 30 mg/kg or more. To elucidate the mechanism by which cognitive decline is suppressed by GT-catechin, changes in gene expression in the hippocampus of SAMP10 mice one month after ingesting GT-catechin were analyzed. The results show that the expression of immediate-early genes such as nuclear receptor subfamily 4 (Nr4a), FBJ osteosarcoma oncogene (Fos), early growth response 1 (Egr1), neuronal PAS domain protein 4 (Npas4), and cysteine-rich protein 61 (Cyr61) was significantly increased. These results suggest that GT-catechin suppresses age-related cognitive decline via increased expression of immediate-early genes that are involved in long-term changes in plasticity of synapses and neuronal circuits.
Collapse
Affiliation(s)
- Keiko Unno
- Tea Science Center, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan; (M.P.); (K.T.); (Y.N.)
- Correspondence: ; Tel.: +81-54-264-5822
| | - Monira Pervin
- Tea Science Center, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan; (M.P.); (K.T.); (Y.N.)
| | - Kyoko Taguchi
- Tea Science Center, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan; (M.P.); (K.T.); (Y.N.)
| | - Tomokazu Konishi
- Faculty of Bioresources Sciences, Akita Prefectural University, Shimoshinjo Nakano, Akita 010-0195, Japan;
| | - Yoriyuki Nakamura
- Tea Science Center, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan; (M.P.); (K.T.); (Y.N.)
| |
Collapse
|
14
|
Gu Y, Moroy G, Paul JL, Rebillat AS, Dierssen M, de la Torre R, Cieuta-Walti C, Dairou J, Janel N. Molecular Rescue of Dyrk1A Overexpression Alterations in Mice with Fontup ® Dietary Supplement: Role of Green Tea Catechins. Int J Mol Sci 2020; 21:E1404. [PMID: 32092951 PMCID: PMC7073110 DOI: 10.3390/ijms21041404] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/12/2020] [Accepted: 02/15/2020] [Indexed: 12/12/2022] Open
Abstract
Epigallocatechin gallate (EGCG) is an inhibitor of DYRK1A, a serine/threonine kinase considered to be a major contributor of cognitive dysfunctions in Down syndrome (DS). Two clinical trials in adult patients with DS have shown the safety and efficacy to improve cognitive phenotypes using commercial green tea extract containing EGCG (45% content). In the present study, we performed a preclinical study using FontUp®, a new nutritional supplement with a chocolate taste specifically formulated for the nutritional needs of patients with DS and enriched with a standardized amount of EGCG in young mice overexpressing Dyrk1A (TgBACDyrk1A). This preparation is differential with previous one used, because its green tea extract has been purified to up 94% EGCG of total catechins. We analyzed the in vitro effect of green tea catechins not only for EGCG, but for others residually contained in FontUp®, on DYRK1A kinase activity. Like EGCG, epicatechin gallate was a noncompetitive inhibitor against ATP, molecular docking computations confirming these results. Oral FontUp® normalized brain and plasma biomarkers deregulated in TgBACDyrk1A, without negative effect on liver and cardiac functions. We compared the bioavailability of EGCG in plasma and brain of mice and have demonstrated that EGCG had well crossed the blood-brain barrier.
Collapse
Affiliation(s)
- Yuchen Gu
- Université de Paris, BFA, UMR 8251, CNRS, F-75013 Paris, France;
| | - Gautier Moroy
- Université de Paris, BFA, UMR 8251, CNRS, ERL U1133, Inserm, F-75013 Paris, France;
| | - Jean-Louis Paul
- Department of Biochemistry, Georges Pompidou European Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), F-75013 Paris, France;
| | | | - Mara Dierssen
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain;
- Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain;
| | - Rafael de la Torre
- Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain;
- Integrative Pharmacology and Systems Neuroscience Research Group, Neurosciences Research Program, IMIM (Hospital del Mar Medical Research Institute), 08003 Barcelona, Spain
| | | | - Julien Dairou
- Université de Paris, Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologique, UMR 8601, CNRS, F-75013 Paris, France;
| | - Nathalie Janel
- Université de Paris, BFA, UMR 8251, CNRS, F-75013 Paris, France;
| |
Collapse
|
15
|
Martínez Cué C, Dierssen M. Plasticity as a therapeutic target for improving cognition and behavior in Down syndrome. PROGRESS IN BRAIN RESEARCH 2020; 251:269-302. [DOI: 10.1016/bs.pbr.2019.11.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
16
|
De Toma I, Ortega M, Aloy P, Sabidó E, Dierssen M. DYRK1A Overexpression Alters Cognition and Neural-Related Proteomic Pathways in the Hippocampus That Are Rescued by Green Tea Extract and/or Environmental Enrichment. Front Mol Neurosci 2019; 12:272. [PMID: 31803016 PMCID: PMC6873902 DOI: 10.3389/fnmol.2019.00272] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 10/24/2019] [Indexed: 12/18/2022] Open
Abstract
Down syndrome (DS), caused by trisomy of chromosome 21, is the most common genetic cause of intellectual disability. We recently discovered that green tea extracts containing epigallocatechin-3-gallate (EGCG) improve cognition in mice transgenic for Dyrk1a (TgDyrk1A) and in a trisomic DS mouse model (Ts65Dn). Interestingly, paired with cognitive stimulation, green tea has beneficial pro-cognitive effects in DS individuals. Dual Specificity Tyrosine-Phosphorylation-Regulated Kinase 1A (DYRK1A) is a major candidate to explain the cognitive phenotypes of DS, and inhibiting its activity is a promising pro-cognitive therapy. DYRK1A kinase activity can be normalized in the hippocampus of transgenic DYRK1A mice administering green tea extracts, but also submitting the animals to environmental enrichment (EE). However, many other mechanisms could also explain the pro-cognitive effects of green tea extracts and EE. To underpin the overall alterations arising upon DYRK1A overexpression and the molecular processes underneath the pro-cognitive effects, we used quantitative proteomics. We investigated the hippocampal (phospho)proteome in basal conditions and after treatment with a green tea extract containing EGCG and/or EE in TgDyrk1A and control mice. We found that Dyrk1A overexpression alters protein and phosphoprotein levels of key postsynaptic and plasticity-related pathways and that these alterations were rescued upon the cognitive enhancer treatments.
Collapse
Affiliation(s)
- Ilario De Toma
- Systems Biology Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Mireia Ortega
- Systems Biology Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Patrick Aloy
- Institute for Research in Biomedicine (IRB), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Eduard Sabidó
- Universitat Pompeu Fabra (UPF), Barcelona, Spain.,Proteomic Unit, Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Mara Dierssen
- Systems Biology Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Valencia, Spain
| |
Collapse
|
17
|
Long R, Drawbaugh ML, Davis CM, Goodlett CR, Williams JR, Roper RJ. Usage of and attitudes about green tea extract and Epigallocathechin-3-gallate (EGCG) as a therapy in individuals with Down syndrome. Complement Ther Med 2019; 45:234-241. [PMID: 31331567 PMCID: PMC6929204 DOI: 10.1016/j.ctim.2019.07.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 06/28/2019] [Accepted: 07/01/2019] [Indexed: 02/02/2023] Open
Abstract
OBJECTIVE Usage of and views concerning alternative therapies in the DS community are not well documented. Some positive effects of green tea extracts (GTE) containing Epigallocathechin-3-gallate (EGCG) have been reported in individuals with DS and DS mouse models, but minimal improvements or detrimental effects of pure EGCG treatment have been reported in DS mouse models. Given the uncertainty about the effectiveness of these supplements, the goal of this study was to determine the relative prevalence of and attitudes about GTE/EGCG treatments among DS caregivers. METHODS An anonymous survey about attitudes and usage of GTE/EGCG in individuals with DS was completed by caregivers of these individuals. RESULTS GTE/EGCG treatment was provided by 18% of responding caregivers who were mostly younger, highly educated, and utilized scientific sources and other parents to influence their decision to use GTE/EGCG. Individuals with DS who received GTE/EGCG were characterized as less severely disabled. Most caregivers who did not give GTE/EGCG reported concerns about potential side effects and lack of effectiveness. Few caregivers consulted with medical providers about GTE/EGCG usage. CONCLUSIONS These results demonstrate a need for communication between caregivers, medical providers, and scientists about potential benefits and risks for adverse effects of GTE, EGCG, and other nutritional supplements in individuals with DS.
Collapse
Affiliation(s)
- Rachel Long
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, United States
| | - Montana L Drawbaugh
- Department of Psychology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, United States
| | - Charlene M Davis
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Charles R Goodlett
- Department of Psychology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, United States
| | - Jane R Williams
- Department of Psychology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, United States
| | - Randall J Roper
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, United States.
| |
Collapse
|
18
|
Down syndrome: Neurobiological alterations and therapeutic targets. Neurosci Biobehav Rev 2019; 98:234-255. [DOI: 10.1016/j.neubiorev.2019.01.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 01/02/2019] [Accepted: 01/02/2019] [Indexed: 12/12/2022]
|
19
|
Farkhondeh T, Yazdi HS, Samarghandian S. The Protective Effects of Green Tea Catechins in the Management of Neurodegenerative Diseases: A Review. Curr Drug Discov Technol 2019; 16:57-65. [PMID: 29468975 DOI: 10.2174/1570163815666180219115453] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 01/03/2018] [Accepted: 01/26/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND The therapeutic strategies to manage neurodegenerative diseases remain limited and it is necessary to discover new agents for their prevention and control. Oxidative stress and inflammation play a main role in the pathogenesis of neurodegenerative diseases. The aim of this study is to review the effects of green tea catechins against the Neurodegenerative Diseases. METHODS In this study, we extensively reviewed all articles on the terms of Green tea, catechins, CNS disorders, and different diseases in PubMed, Science Direct, Scopus, and Google Scholar databases between the years 1990 and 2017. RESULTS The present study found that catechins, the major flavonoids in green tea, are powerful antioxidants and radical scavengers which possess the potential roles in the management of neurodegenerative diseases. Catechins modulate the cellular and molecular mechanisms through the inflammation-related NF-κB and the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathways. CONCLUSION The findings of the present review shows catechins could be effective against neurodegenerative diseases due to their antioxidation and anti-inflammation effects and the involved biochemical pathways including Nrf2 and NF-kB signaling pathways.
Collapse
Affiliation(s)
- Tahereh Farkhondeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | | | - Saeed Samarghandian
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran
| |
Collapse
|
20
|
DYRK1A Protein, A Promising Therapeutic Target to Improve Cognitive Deficits in Down Syndrome. Brain Sci 2018; 8:brainsci8100187. [PMID: 30332747 PMCID: PMC6210095 DOI: 10.3390/brainsci8100187] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 09/24/2018] [Accepted: 10/11/2018] [Indexed: 01/16/2023] Open
Abstract
Down syndrome (DS) caused by a trisomy of chromosome 21 (HSA21), is the most common genetic developmental disorder, with an incidence of 1 in 800 live births. Its phenotypic characteristics include intellectual impairment, early onset of Alzheimer’s disease, congenital heart disease, hypotonia, muscle weakness and several other developmental abnormalities, for the majority of which the pathogenetic mechanisms remain unknown. Among the numerous protein coding genes of HSA21, dual-specificity tyrosine-(Y)-phosphorylation-regulated kinase 1A (DYRK1A) encodes a proline-directed serine/threonine and tyrosine kinase that plays pleiotropic roles in neurodevelopment in both physiological and pathological conditions. Numerous studies point to a crucial role of DYRK1A protein for brain defects in patients with DS. Thus, DYRK1A inhibition has shown benefits in several mouse models of DS, including improvement of cognitive behaviour. Lastly, a recent clinical trial has shown that epigallocatechine gallate (EGCG), a DYRK1A inhibitor, given to young patients with DS improved visual recognition memory, working memory performance and adaptive behaviour.
Collapse
|
21
|
Powers BE, Santiago NA, Strupp BJ. Rapid forgetting of social learning in the Ts65Dn mouse model of Down syndrome: New evidence for hippocampal dysfunction. Behav Neurosci 2018; 132:51-56. [PMID: 29553775 DOI: 10.1037/bne0000227] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The Ts65Dn mouse model of Down syndrome recapitulates the hallmark areas of dysfunction that characterize the human disorder, including impaired performance in tasks designed to tap hippocampus-dependent learning and memory. Unfortunately, performance in the water maze tasks most commonly used for this purpose can be affected by behavioral and/or physiological abnormalities characteristic of Ts65Dn mice (e.g., thigmotaxis, susceptibility to hypothermia, stress reactivity), which complicates interpretation of impaired performance. The current study assessed hippocampal function in Ts65Dn mice using the social transmission of food preference (STFP) paradigm, which does not entail water escape or aversive reinforcement, and thus avoids these interpretive confounds. We tested Ts65Dn mice and disomic controls on this task using 1- and 7-day retention intervals. The Ts65Dn mice exhibited normal learning and memory following the 1-day retention interval, but rapid forgetting of the socially acquired information, evidenced by impaired performance following the 7-day retention interval. The STFP paradigm can be a valuable tool for studies using the Ts65Dn mouse model to evaluate potential therapies that may ameliorate hippocampal dysfunction and aging-related cognitive decline in Down syndrome. (PsycINFO Database Record
Collapse
|
22
|
Can EGCG Alleviate Symptoms of Down Syndrome by Altering Proteolytic Activity? Int J Mol Sci 2018; 19:ijms19010248. [PMID: 29342922 PMCID: PMC5796196 DOI: 10.3390/ijms19010248] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 01/10/2018] [Accepted: 01/10/2018] [Indexed: 12/12/2022] Open
Abstract
Down syndrome (DS), also known as "trisomy 21", is a genetic disorder caused by the presence of all or part of a third copy of chromosome 21. Silencing these extra genes is beyond existing technology and seems to be impractical. A number of pharmacologic options have been proposed to change the quality of life and lifespan of individuals with DS. It was reported that treatment with epigallocatechin gallate (EGCG) improves cognitive performance in animal models and in humans, suggesting that EGCG may alleviate symptoms of DS. Traditionally, EGCG has been associated with the ability to reduce dual specificity tyrosine phosphorylation regulated kinase 1A activity, which is overexpressed in trisomy 21. Based on the data available in the literature, we propose an additional way in which EGCG might affect trisomy 21-namely by modifying the proteolytic activity of the enzymes involved. It is known that, in Down syndrome, the nerve growth factor (NGF) metabolic pathway is altered: first by downregulating tissue plasminogen activator (tPA) that activates plasminogen to plasmin, an enzyme converting proNGF to mature NGF; secondly, overexpression of metalloproteinase 9 (MMP-9) further degrades NGF, lowering the amount of mature NGF. EGCG inhibits MMP-9, thus protecting NGF. Urokinase (uPA) and tPA are activators of plasminogen, and uPA is inhibited by EGCG, but regardless of their structural similarity tPA is not inhibited. In this review, we describe mechanisms of proteolytic enzymes (MMP-9 and plasminogen activation system), their role in Down syndrome, their inhibition by EGCG, possible degradation of this polyphenol and the ability of EGCG and its degradation products to cross the blood-brain barrier. We conclude that known data accumulated so far provide promising evidence of MMP-9 inhibition by EGCG in the brain, which could slow down the abnormal degradation of NGF.
Collapse
|
23
|
Stringer M, Goodlett CR, Roper RJ. Targeting trisomic treatments: optimizing Dyrk1a inhibition to improve Down syndrome deficits. Mol Genet Genomic Med 2017; 5:451-465. [PMID: 28944229 PMCID: PMC5606891 DOI: 10.1002/mgg3.334] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 08/21/2017] [Accepted: 08/24/2017] [Indexed: 12/11/2022] Open
Abstract
Overexpression of Dual-specificity tyrosine-phosphorylated regulated kinase 1A (DYRK1A), located on human chromosome 21, may alter molecular processes linked to developmental deficits in Down syndrome (DS). Trisomic DYRK1A is a rational therapeutic target, and although reductions in Dyrk1a genetic dosage have shown improvements in trisomic mouse models, attempts to reduce Dyrk1a activity by pharmacological mechanisms and correct these DS-associated phenotypes have been largely unsuccessful. Epigallocatechin-3-gallate (EGCG) inhibits DYRK1A activity in vitro and this action has been postulated to account for improvement of some DS-associated phenotypes that have been reported in preclinical studies and clinical trials. However, the beneficial effects of EGCG are inconsistent and there is no direct evidence that any observed improvement actually occurs through Dyrk1a inhibition. Inconclusive outcomes likely reflect a lack of knowledge about the tissue-specific patterns of spatial and temporal overexpression and elevated activity of Dyrk1a that may contribute to emerging DS traits during development. Emerging evidence indicates that Dyrk1a expression varies over the life span in DS mouse models, yet preclinical therapeutic treatments targeting Dyrk1a have largely not considered these developmental changes. Therapies intended to improve DS phenotypes through normalizing trisomic Dyrk1a need to optimize the timing and dose of treatment to match the spatiotemporal patterning of excessive Dyrk1a activity in relevant tissues. This will require more precise identification of developmental periods of vulnerability to enduring adverse effects of elevated Dyrk1a, representing the concurrence of increased Dyrk1a expression together with hypothesized tissue-specific-sensitive periods when Dyrk1a regulates cellular processes that shape the long-term functional properties of the tissue. Future efforts targeting inhibition of trisomic Dyrk1a should identify these putative spatiotemporally specific developmental sensitive periods and determine whether normalizing Dyrk1a activity then can lead to improved outcomes in DS phenotypes.
Collapse
Affiliation(s)
- Megan Stringer
- Department of PsychologyIUPUI402 North Blackford Street, LD 124IndianapolisIndiana46202-3275
| | - Charles R Goodlett
- Department of PsychologyIUPUI402 North Blackford Street, LD 124IndianapolisIndiana46202-3275
| | - Randall J Roper
- Department of BiologyIUPUI723 West Michigan Street SL 306IndianapolisIndiana46202-3275
| |
Collapse
|
24
|
Nakano-Kobayashi A, Awaya T, Kii I, Sumida Y, Okuno Y, Yoshida S, Sumida T, Inoue H, Hosoya T, Hagiwara M. Prenatal neurogenesis induction therapy normalizes brain structure and function in Down syndrome mice. Proc Natl Acad Sci U S A 2017; 114:10268-10273. [PMID: 28874550 PMCID: PMC5617268 DOI: 10.1073/pnas.1704143114] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Down syndrome (DS) caused by trisomy of chromosome 21 is the most common genetic cause of intellectual disability. Although the prenatal diagnosis of DS has become feasible, there are no therapies available for the rescue of DS-related neurocognitive impairment. A growth inducer newly identified in our screen of neural stem cells (NSCs) has potent inhibitory activity against dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A) and was found to rescue proliferative deficits in Ts65Dn-derived neurospheres and human NSCs derived from individuals with DS. The oral administration of this compound, named ALGERNON (altered generation of neurons), restored NSC proliferation in murine models of DS and increased the number of newborn neurons. Moreover, administration of ALGERNON to pregnant dams rescued aberrant cortical formation in DS mouse embryos and prevented the development of abnormal behaviors in DS offspring. These data suggest that the neurogenic phenotype of DS can be prevented by ALGERNON prenatal therapy.
Collapse
Affiliation(s)
- Akiko Nakano-Kobayashi
- Department of Anatomy and Developmental Biology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Tomonari Awaya
- Department of Anatomy and Developmental Biology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Isao Kii
- Department of Anatomy and Developmental Biology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Yuto Sumida
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo 101-0062, Japan
| | - Yukiko Okuno
- Medical Research Support Center, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
| | - Suguru Yoshida
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo 101-0062, Japan
| | - Tomoe Sumida
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo 101-0062, Japan
| | - Haruhisa Inoue
- Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
- Drug-Discovery Cellular Basis Development Team, RIKEN BioResource Center, Kyoto 606-8507, Japan
| | - Takamitsu Hosoya
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo 101-0062, Japan
| | - Masatoshi Hagiwara
- Department of Anatomy and Developmental Biology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan;
| |
Collapse
|
25
|
Stringer M, Abeysekera I, Thomas J, LaCombe J, Stancombe K, Stewart RJ, Dria KJ, Wallace JM, Goodlett CR, Roper RJ. Epigallocatechin-3-gallate (EGCG) consumption in the Ts65Dn model of Down syndrome fails to improve behavioral deficits and is detrimental to skeletal phenotypes. Physiol Behav 2017; 177:230-241. [PMID: 28478033 PMCID: PMC5525541 DOI: 10.1016/j.physbeh.2017.05.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 04/15/2017] [Accepted: 05/01/2017] [Indexed: 12/17/2022]
Abstract
Down syndrome (DS) is caused by three copies of human chromosome 21 (Hsa21) and results in phenotypes including intellectual disability and skeletal deficits. Ts65Dn mice have three copies of ~50% of the genes homologous to Hsa21 and display phenotypes associated with DS, including cognitive deficits and skeletal abnormalities. DYRK1A is found in three copies in humans with Trisomy 21 and in Ts65Dn mice, and is involved in a number of critical pathways including neurological development and osteoclastogenesis. Epigallocatechin-3-gallate (EGCG), the main polyphenol in green tea, inhibits Dyrk1a activity. We have previously shown that EGCG treatment (~10mg/kg/day) improves skeletal abnormalities in Ts65Dn mice, yet the same dose, as well as ~20mg/kg/day did not rescue deficits in the Morris water maze spatial learning task (MWM), novel object recognition (NOR) or balance beam task (BB). In contrast, a recent study reported that an EGCG-containing supplement with a dose of 2-3mg per day (~40-60mg/kg/day) improved hippocampal-dependent task deficits in Ts65Dn mice. The current study investigated if an EGCG dosage similar to that study would yield similar improvements in either cognitive or skeletal deficits. Ts65Dn mice and euploid littermates were given EGCG [0.4mg/mL] or a water control, with treatments yielding average daily intakes of ~50mg/kg/day EGCG, and tested on the multivariate concentric square field (MCSF)-which assesses activity, exploratory behavior, risk assessment, risk taking, and shelter seeking-and NOR, BB, and MWM. EGCG treatment failed to improve cognitive deficits; EGCG also produced several detrimental effects on skeleton in both genotypes. In a refined HPLC-based assay, its first application in Ts65Dn mice, EGCG treatment significantly reduced kinase activity in femora but not in the cerebral cortex, cerebellum, or hippocampus. Counter to expectation, 9-week-old Ts65Dn mice exhibited a decrease in Dyrk1a protein levels in Western blot analysis in the cerebellum. The lack of beneficial therapeutic behavioral effects and potentially detrimental skeletal effects of EGCG found in Ts65Dn mice emphasize the importance of identifying dosages of EGCG that reliably improve DS phenotypes and linking those effects to actions of EGCG (or EGCG-containing supplements) in specific targets in brain and bone.
Collapse
Affiliation(s)
- Megan Stringer
- IUPUI, Department of Psychology, 402 North Blackford Street, LD 124, Indianapolis, IN 46202-3275, United States
| | - Irushi Abeysekera
- IUPUI, Department of Biology, 723 West Michigan Street, SL 306, Indianapolis, IN 46202-3275, United States
| | - Jared Thomas
- IUPUI, Department of Biology, 723 West Michigan Street, SL 306, Indianapolis, IN 46202-3275, United States
| | - Jonathan LaCombe
- IUPUI, Department of Biology, 723 West Michigan Street, SL 306, Indianapolis, IN 46202-3275, United States
| | - Kailey Stancombe
- IUPUI, Department of Psychology, 402 North Blackford Street, LD 124, Indianapolis, IN 46202-3275, United States
| | - Robert J Stewart
- IUPUI, Department of Psychology, 402 North Blackford Street, LD 124, Indianapolis, IN 46202-3275, United States
| | - Karl J Dria
- IUPUI, Department of Chemistry and Chemical Biology, 402 North Blackford Street, LD 326, Indianapolis, IN 46202-3275, United States
| | - Joseph M Wallace
- IUPUI, Department of Biomedical Engineering, 723 West Michigan Street, SL 220B, Indianapolis, IN 46202-3275, United States
| | - Charles R Goodlett
- IUPUI, Department of Psychology, 402 North Blackford Street, LD 124, Indianapolis, IN 46202-3275, United States
| | - Randall J Roper
- IUPUI, Department of Biology, 723 West Michigan Street, SL 306, Indianapolis, IN 46202-3275, United States.
| |
Collapse
|
26
|
Stagni F, Giacomini A, Emili M, Guidi S, Ciani E, Bartesaghi R. Epigallocatechin gallate: A useful therapy for cognitive disability in Down syndrome? NEUROGENESIS 2017; 4:e1270383. [PMID: 28203607 DOI: 10.1080/23262133.2016.1270383] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/14/2016] [Accepted: 12/02/2016] [Indexed: 10/20/2022]
Abstract
Neurodevelopmental alterations and cognitive disability are constant features of Down syndrome (DS), a genetic condition due to triplication of chromosome 21. DYRK1A is one of the triplicated genes that is thought to be strongly involved in brain alterations. Treatment of Dyrk1A transgenic mice with epigallocatechin gallate (EGCG), an inhibitor of DYRK1A, improves cognitive performance, suggesting that EGCG may represent a suitable treatment of DS. Evidence in the Ts65Dn mouse model of DS shows that EGCG restores hippocampal development, although this effect is ephemeral. Other studies, however, show no effects of treatment on hippocampus-dependent memory. On the other hand, a pilot study in young adults with DS shows that EGCG transiently improves some aspects of memory. Interestingly, EGCG plus cognitive training engenders effects that are more prolonged. Studies in various rodent models show a positive impact of EGCG on brain and behavior, but other studies show no effect. In spite of these discrepancies, possibly due to heterogeneity of protocols/timing/species, EGCG seems to exert some beneficial effects on the brain. It is possible that protocols of periodic EGCG administration to individuals with DS (alone or in conjunction with other treatments) may prevent the disappearance of its effects.
Collapse
Affiliation(s)
- Fiorenza Stagni
- Department of Biomedical and Neuromotor Sciences, University of Bologna , Bologna, Italy
| | - Andrea Giacomini
- Department of Biomedical and Neuromotor Sciences, University of Bologna , Bologna, Italy
| | - Marco Emili
- Department of Biomedical and Neuromotor Sciences, University of Bologna , Bologna, Italy
| | - Sandra Guidi
- Department of Biomedical and Neuromotor Sciences, University of Bologna , Bologna, Italy
| | - Elisabetta Ciani
- Department of Biomedical and Neuromotor Sciences, University of Bologna , Bologna, Italy
| | - Renata Bartesaghi
- Department of Biomedical and Neuromotor Sciences, University of Bologna , Bologna, Italy
| |
Collapse
|
27
|
McElyea SD, Starbuck JM, Tumbleson-Brink DM, Harrington E, Blazek JD, Ghoneima A, Kula K, Roper RJ. Influence of prenatal EGCG treatment and Dyrk1a dosage reduction on craniofacial features associated with Down syndrome. Hum Mol Genet 2016; 25:4856-4869. [PMID: 28172997 PMCID: PMC6049609 DOI: 10.1093/hmg/ddw309] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 08/17/2016] [Accepted: 09/01/2016] [Indexed: 12/26/2022] Open
Abstract
Trisomy 21 (Ts21) affects craniofacial precursors in individuals with Down syndrome (DS). The resultant craniofacial features in all individuals with Ts21 may significantly affect breathing, eating and speaking. Using mouse models of DS, we have traced the origin of DS-associated craniofacial abnormalities to deficiencies in neural crest cell (NCC) craniofacial precursors early in development. Hypothetically, three copies of Dyrk1a (dual-specificity tyrosine-(Y)-phosphorylation regulated kinase 1A), a trisomic gene found in most humans with DS and mouse models of DS, may significantly affect craniofacial structure. We hypothesized that we could improve DS-related craniofacial abnormalities in mouse models using a Dyrk1a inhibitor or by normalizing Dyrk1a gene dosage. In vitro and in vivo treatment with Epigallocatechin-3-gallate (EGCG), a Dyrk1a inhibitor, modulated trisomic NCC deficiencies at embryonic time points. Furthermore, prenatal EGCG treatment normalized some craniofacial phenotypes, including cranial vault in adult Ts65Dn mice. Normalization of Dyrk1a copy number in an otherwise trisomic Ts65Dn mice normalized many dimensions of the cranial vault, but did not correct all craniofacial anatomy. These data underscore the complexity of the gene–phenotype relationship in trisomy and suggest that changes in Dyrk1a expression play an important role in morphogenesis and growth of the cranial vault. These results suggest that a temporally specific prenatal therapy may be an effective way to ameliorate some craniofacial anatomical changes associated with DS.
Collapse
Affiliation(s)
- Samantha D McElyea
- Department of Biology, Indiana University-Purdue University Indianapolis, 723 W. Michigan Street, SL306, Indianapolis, IN, USA
| | - John M Starbuck
- Department of Orthodontics and Facial Genetics, Indiana University School of Dentistry, 1121 W. Michigan Street, DS 250B, Indianapolis, IN, USA
- Department of Anthropology, University of Central Florida, 4000 Central Florida Blvd., Howard Phillips Hall, Room 309F, Orlando, FL, USA
| | - Danika M Tumbleson-Brink
- Department of Biology, Indiana University-Purdue University Indianapolis, 723 W. Michigan Street, SL306, Indianapolis, IN, USA
| | - Emily Harrington
- Department of Biology, Indiana University-Purdue University Indianapolis, 723 W. Michigan Street, SL306, Indianapolis, IN, USA
| | - Joshua D Blazek
- Department of Biology, Indiana University-Purdue University Indianapolis, 723 W. Michigan Street, SL306, Indianapolis, IN, USA
| | - Ahmed Ghoneima
- Department of Orthodontics and Facial Genetics, Indiana University School of Dentistry, 1121 W. Michigan Street, DS 250B, Indianapolis, IN, USA
| | - Katherine Kula
- Department of Orthodontics and Facial Genetics, Indiana University School of Dentistry, 1121 W. Michigan Street, DS 250B, Indianapolis, IN, USA
| | - Randall J Roper
- Department of Biology, Indiana University-Purdue University Indianapolis, 723 W. Michigan Street, SL306, Indianapolis, IN, USA
| |
Collapse
|
28
|
Short- and long-term effects of neonatal pharmacotherapy with epigallocatechin-3-gallate on hippocampal development in the Ts65Dn mouse model of Down syndrome. Neuroscience 2016; 333:277-301. [DOI: 10.1016/j.neuroscience.2016.07.031] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 07/15/2016] [Accepted: 07/19/2016] [Indexed: 01/01/2023]
|
29
|
Hall JH, Wiseman FK, Fisher EMC, Tybulewicz VLJ, Harwood JL, Good MA. Tc1 mouse model of trisomy-21 dissociates properties of short- and long-term recognition memory. Neurobiol Learn Mem 2016; 130:118-28. [PMID: 26868479 PMCID: PMC4898594 DOI: 10.1016/j.nlm.2016.02.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 02/02/2016] [Accepted: 02/05/2016] [Indexed: 01/31/2023]
Abstract
The present study examined memory function in Tc1 mice, a transchromosomic model of Down syndrome (DS). Tc1 mice demonstrated an unusual delay-dependent deficit in recognition memory. More specifically, Tc1 mice showed intact immediate (30sec), impaired short-term (10-min) and intact long-term (24-h) memory for objects. A similar pattern was observed for olfactory stimuli, confirming the generality of the pattern across sensory modalities. The specificity of the behavioural deficits in Tc1 mice was confirmed using APP overexpressing mice that showed the opposite pattern of object memory deficits. In contrast to object memory, Tc1 mice showed no deficit in either immediate or long-term memory for object-in-place information. Similarly, Tc1 mice showed no deficit in short-term memory for object-location information. The latter result indicates that Tc1 mice were able to detect and react to spatial novelty at the same delay interval that was sensitive to an object novelty recognition impairment. These results demonstrate (1) that novelty detection per se and (2) the encoding of visuo-spatial information was not disrupted in adult Tc1 mice. The authors conclude that the task specific nature of the short-term recognition memory deficit suggests that the trisomy of genes on human chromosome 21 in Tc1 mice impacts on (perirhinal) cortical systems supporting short-term object and olfactory recognition memory.
Collapse
Affiliation(s)
| | - Frances K Wiseman
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Elizabeth M C Fisher
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Victor L J Tybulewicz
- Francis Crick Institute, The Ridgeway, Mill Hill, London NW7 1AA, UK; Imperial College, London W12 0NN, UK
| | - John L Harwood
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK
| | - Mark A Good
- School of Psychology, Cardiff University, CF10 3AT, UK.
| |
Collapse
|
30
|
Bergstrom HC, Darvesh AS, Berger SP. Inducible Nitric Oxide Inhibitors Block NMDA Antagonist-Stimulated Motoric Behaviors and Medial Prefrontal Cortical Glutamate Efflux. Front Pharmacol 2015; 6:292. [PMID: 26696891 PMCID: PMC4678197 DOI: 10.3389/fphar.2015.00292] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 11/23/2015] [Indexed: 11/20/2022] Open
Abstract
Nitric oxide (NO) plays a critical role in the motoric and glutamate releasing action of N-methyl-D-aspartate (NMDA)-antagonist stimulants. Earlier studies utilized neuronal nitric oxide synthase inhibitors (nNOS) for studying the neurobehavioral effects of non-competitive NMDA-antagonist stimulants such as dizocilpine (MK-801) and phencyclidine (PCP). This study explores the role of the inducible nitric oxide synthase inhibitors (iNOS) aminoguanidine (AG) and (-)-epigallocatechin-3-gallate (EGCG) in NMDA-antagonist induced motoric behavior and prefrontal cortical glutamate efflux. Adult male rats were administered a dose range of AG, EGCG, or vehicle prior to receiving NMDA antagonists MK-801, PCP, or a conventional psychostimulant (cocaine) and tested for motoric behavior in an open arena. Glutamate in the medial prefrontal cortex (mPFC) was measured using in vivo microdialysis after a combination of AG or EGCG prior to MK-801. Acute administration of AG or EGCG dose-dependently attenuated the locomotor and ataxic properties of MK-801 and PCP. Both AG and EGCG were unable to block the motoric effects of cocaine, indicating the acute pharmacologic action of AG and EGCG is specific to NMDA antagonism and not generalizable to all stimulant class drugs. AG and EGCG normalized MK-801-stimulated mPFC glutamate efflux. These data demonstrate that AG and EGCG attenuates NMDA antagonist-stimulated motoric behavior and cortical glutamate efflux. Our results suggest that EGCG-like polyphenol nutraceuticals (contained in “green tea” and chocolate) may be clinically useful in protecting against the adverse behavioral dissociative and cortical glutamate stimulating effects of NMDA antagonists. Medications that interfere with NMDA antagonists such as MK-801 and PCP have been proposed as treatments for schizophrenia.
Collapse
Affiliation(s)
- Hadley C Bergstrom
- Department of Psychology, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie NY, USA
| | - Altaf S Darvesh
- Department of Pharmaceutical Sciences, College of Pharmacy, Northeast Ohio Medical University, Rootstown OH, USA ; Department of Psychiatry, College of Medicine, Northeast Ohio Medical University, Rootstown OH, USA
| | - S P Berger
- Department of Veterans Affairs Medical Center, Portland OR, USA
| |
Collapse
|