1
|
Amodeo LR, Wills DN, Benedict J, Ehlers CL. Effects of daridorexant on rest/wake activity patterns and drinking in adult rats exposed to chronic ethanol vapor in adolescence. Alcohol 2025; 124:35-46. [PMID: 39870333 PMCID: PMC11975496 DOI: 10.1016/j.alcohol.2025.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/21/2025] [Accepted: 01/23/2025] [Indexed: 01/29/2025]
Abstract
Disturbance in sleep and activity rhythms are significant health risks associated with alcohol use during adolescence. Many investigators support the theory of a reciprocal relationship between disrupted circadian rhythms, sleep patterns, and alcohol usage. However, in human studies it is difficult to disentangle other factors (i.e. lifestyle, psychiatric, genetic) when determining what is causal in the relationship between substance use and sleep/activity disruptions. To this end, we used an animal model of adolescent alcohol exposure whereby male and female Wistar rats are exposed to 5 weeks of intermittent alcohol vapor during adolescence (P22-P57). Five days after ethanol vapor rats were allowed to select to drink alcohol or water in a two-bottle choice procedure for a period of 5 h, 4 days a week for 6 weeks. Activity data was collected using a "Fitbit-like" device during vapor exposure, during acute withdrawal, and after 3 weeks of protracted withdrawal. Significant changes in rest/wake activity and circadian measures were seen during 24-h withdrawal and after 3 weeks of withdrawal. Four weeks following withdrawal, the effects of the dual orexin antagonist, Daridorexant, (DAX 30 mg, 100 mg, or vehicle control), on alcohol drinking and rest and activity rhythms were assessed over a 24 h period. Both daridorexant doses led to changes in circadian measures and rest/wake activity patterns. These results showed that daridorexant reduced activity, but it did not improve rest quality as measured by the mean inactive episode duration and inactive fragmentation ratio. Additionally, we did not find a significant difference in drinking behavior in animals treated with the orexin antagonist. Thus, it appears that data from this animal model do not support the use of this drug to improve adolescent alcohol-induced sleep disturbance and/or to decrease alcohol drinking.
Collapse
Affiliation(s)
- L R Amodeo
- Department of Psychology, California State University San Bernardino, San Bernardino, CA 92407, USA
| | - D N Wills
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - J Benedict
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - C L Ehlers
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
2
|
Roberts HA, Mattoni M, McMakin DL, Olino TM. Depression in High-Risk Offspring: The Mediating Role of Sleep Problems. Res Child Adolesc Psychopathol 2025; 53:349-362. [PMID: 39831924 DOI: 10.1007/s10802-024-01285-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2024] [Indexed: 01/22/2025]
Abstract
Parental depression is associated with offspring depression and sleep problems are prospectively associated with the development of depression. However, little work has examined sleep problems in the offspring of depressed parents and whether these problems partially account for the association between parent and offspring depression. This longitudinal study examined the indirect effect of sleep problems on the association between parent psychopathology and offspring depression in a sample of 10,953 10 to 12-year-old children participating in the Adolescent Brain and Cognitive Development (ABCD) study. Controlling for age, sex, and other forms of parent psychopathology, we found significant indirect effects of parent to offspring depression through parent and youth reports of youth insomnia and hypersomnia. We also found indirect effects of parent history of anxiety and drug use problems to offspring depression through insomnia, and indirect effects of parent history of anxiety, drug use problems, and alcohol use problems to offspring depression through hypersomnia. Our findings show that sleep may be a mechanism of the transmission of parent depression, anxiety, drug use problems, and alcohol use problems to offspring depression. Mitigating sleep problems represents a potential avenue for preventative interventions in youth with a heightened susceptibility to depression.
Collapse
Affiliation(s)
- Hannah A Roberts
- Department of Psychology and Neuroscience, Temple University, 1701 N. 13th St, Philadelphia, PA, 19122, USA.
| | - Matthew Mattoni
- Department of Psychology and Neuroscience, Temple University, 1701 N. 13th St, Philadelphia, PA, 19122, USA
| | - Dana L McMakin
- Department of Psychology, Florida International University, Miami, FL, 33199, USA
| | - Thomas M Olino
- Department of Psychology and Neuroscience, Temple University, 1701 N. 13th St, Philadelphia, PA, 19122, USA
| |
Collapse
|
3
|
Gulledge M, Carlezon WA, McHugh RK, Kinard EA, Prerau MJ, Chartoff EH. Spontaneous oxycodone withdrawal disrupts sleep, diurnal, and electrophysiological dynamics in rats. PLoS One 2025; 20:e0312794. [PMID: 39823427 PMCID: PMC11741586 DOI: 10.1371/journal.pone.0312794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 10/13/2024] [Indexed: 01/19/2025] Open
Abstract
Opioid dependence is defined by an aversive withdrawal syndrome upon drug cessation that can motivate continued drug-taking, development of opioid use disorder, and precipitate relapse. An understudied but common opioid withdrawal symptom is disrupted sleep, reported as both insomnia and daytime sleepiness. Despite the prevalence and severity of sleep disturbances during opioid withdrawal, there is a gap in our understanding of their interactions. The goal of this study was to establish an in-depth, temporal signature of spontaneous oxycodone withdrawal effects on the diurnal composition of discrete sleep stages and the dynamic spectral properties of the electroencephalogram (EEG) signal in male rats. We continuously recorded EEG and electromyography (EMG) signals for 8 d of spontaneous withdrawal after a 14-d escalating-dose oxycodone regimen (0.5-8.0 mg/kg, 2×d; SC). During withdrawal, there was a profound loss (peaking on days 2-3) and gradual return of diurnal structure in sleep, body temperature, and locomotor activity, as well as decreased sleep and wake bout durations dependent on lights on/off. Withdrawal was associated with significant alterations in the slope of the aperiodic 1/f component of the EEG power spectrum, an established biomarker of arousal level. Early in withdrawal, NREM exhibited an acute flattening and return to baseline of both low (1-4 Hz) and high (15-50 Hz) frequency components of the 1/f spectrum. These findings suggest temporally dependent withdrawal effects on sleep, reflecting the complex way in which the allostatic forces of opioid withdrawal impinge upon sleep and diurnal processes. These foundational data based on continuous tracking of vigilance state, sleep stage composition, and spectral EEG properties provide a detailed construct with which to form and test hypotheses on the mechanisms of opioid-sleep interactions.
Collapse
Affiliation(s)
- Michael Gulledge
- Dept. of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, Massachusetts, United States of America
- Graduate Program in Neuroscience, Harvard Medical School, Boston, Massachusetts, United States of America
| | - William A. Carlezon
- Dept. of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, Massachusetts, United States of America
| | - R. Kathryn McHugh
- Dept. of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, Massachusetts, United States of America
| | - Elizabeth A. Kinard
- Dept. of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, Massachusetts, United States of America
| | - Michael J. Prerau
- Division of Sleep Medicine, Dept. of Medicine, Harvard Medical School, Brigham & Women’s Hospital, Boston, Massachusetts, United States of America
| | - Elena H. Chartoff
- Dept. of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, Massachusetts, United States of America
| |
Collapse
|
4
|
Khan A, Minbay M, Attia Z, Ay AA, Ingram KK. Sex- and Substance-Specific Associations of Circadian-Related Genes with Addiction in the UK Biobank Cohort Implicate Neuroplasticity Pathways. Brain Sci 2024; 14:1282. [PMID: 39766481 PMCID: PMC11674644 DOI: 10.3390/brainsci14121282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 12/11/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND/OBJECTIVES The circadian clockwork is implicated in the etiology of addiction, with circadian rhythm disruptions bidirectionally linked to substance abuse, but the molecular mechanisms that underlie this connection are not well known. METHODS Here, we use machine learning to reveal sex- and substance-specific associations with addiction in variants from 51 circadian-related genes (156,702 SNPs) in 98,800 participants from a UK Biobank cohort. We further analyze SNP associations in a subset of the cohort for substance-specific addictions (alcohol, illicit drugs (narcotics), and prescription drugs (opioids)). RESULTS We find robust (OR > 10) and novel sex-specific and substance-specific associations with variants in synaptic transcription factors (ZBTB20, CHRNB3) and hormone receptors (RORA), particularly in individuals addicted to narcotics and opioids. Circadian-related gene variants associated with male and female addiction were non-overlapping; variants in males primarily involve dopaminergic pathways, while variants in females factor in metabolic and inflammation pathways, with a novel gene association of female addiction with DELEC1, a gene of unknown function. CONCLUSIONS Our findings underscore the complexity of genetic pathways associated with addiction, involving core clock genes and circadian-regulated pathways, and reveal novel circadian-related gene associations that will aid the development of targeted, sex-specific therapeutic interventions for substance abuse.
Collapse
Affiliation(s)
- Ayub Khan
- Department of Biology, Colgate University, Hamilton, NY 13346, USA; (A.K.); (A.A.A.)
- Department of Computer Science, Colgate University, Hamilton, NY 13346, USA; (M.M.); (Z.A.)
| | - Mete Minbay
- Department of Computer Science, Colgate University, Hamilton, NY 13346, USA; (M.M.); (Z.A.)
| | - Ziad Attia
- Department of Computer Science, Colgate University, Hamilton, NY 13346, USA; (M.M.); (Z.A.)
- Department of Mathematics, Colgate University, Hamilton, NY 13346, USA
| | - Ahmet Ali Ay
- Department of Biology, Colgate University, Hamilton, NY 13346, USA; (A.K.); (A.A.A.)
- Department of Mathematics, Colgate University, Hamilton, NY 13346, USA
| | - Krista K. Ingram
- Department of Biology, Colgate University, Hamilton, NY 13346, USA; (A.K.); (A.A.A.)
| |
Collapse
|
5
|
Miranda A, Holloway BM, Perry W, Minassian A, McCarthy M. Co-morbid cannabis use disorder and chronotype are associated with mood symptom onset in people with bipolar disorder. J Psychiatr Res 2024; 180:327-332. [PMID: 39515185 PMCID: PMC11646053 DOI: 10.1016/j.jpsychires.2024.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/25/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024]
Abstract
Comorbid cannabis use disorder (CUD) is disproportionately high in people with bipolar disorder (BD) and has been associated with worsening of BD symptoms. However, many people with BD report regularly using cannabis to ameliorate symptoms, including sleep disturbances. Sleep and circadian rhythm disturbances are hallmark features of BD that often precede the onset of mood symptoms. Genetic studies indicate that circadian disruption may predispose individuals towards both problematic cannabis use and BD, rather than cannabis use directly impacting BD symptoms. To further disentangle these hypotheses, we aimed to investigate the relationship between chronotype, cannabis use disorder (CUD) and BD mood symptoms. Data from 212 participants with BD I from the Pharmacogenomics of Bipolar Disorder study dataset were analyzed for this study. Participants were stratified by those diagnosed with co-morbid CUD and BD symptom variables, including the mean number of mood episodes per year and age of mood symptom onset for both depression and mania symptoms. The Basic Language Morningness scale (BALM) was used to assess chronotype. There was no interaction between morningness levels and CUD on BD symptoms, however both lower morningness and CUD were independently associated with earlier age of mood symptom onset. However, patients who reported initiating cannabis use post mood symptom onset had an earlier mood symptom age of onset compared to those who reported initiating cannabis use prior to mood symptom onset. These findings could provide further evidence that circadian rhythm disruption could be an underlying factor that predisposes individuals toward both CUD and BD.
Collapse
Affiliation(s)
- Alannah Miranda
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA.
| | - Breanna M Holloway
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - William Perry
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - Arpi Minassian
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA; Veterans Affairs San Diego Healthcare System, La Jolla, CA, USA
| | - Michael McCarthy
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA; Veterans Affairs San Diego Healthcare System, La Jolla, CA, USA
| |
Collapse
|
6
|
Samanta S, Bagchi D, Gold MS, Badgaiyan RD, Barh D, Blum K. A Complex Relationship Among the Circadian Rhythm, Reward Circuit and Substance Use Disorder (SUD). Psychol Res Behav Manag 2024; 17:3485-3501. [PMID: 39411118 PMCID: PMC11479634 DOI: 10.2147/prbm.s473310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024] Open
Abstract
The human brain not only controls the various physiological functions but is also the prime regulator of circadian rhythms, rewards, and behaviors. Environmental factors, professional stress, and social disintegration are regarded as the initial causative factors of addiction behavior. Shift work, artificial light exposure at night, and chronic and acute jet lag influence circadian rhythm dysfunction. The result is impaired neurotransmitter release, dysfunction of neural circuits, endocrine disturbance, and metabolic disorder, leading to advancement in substance use disorder. There is a bidirectional relationship between chronodisruption and addiction behavior. Circadian rhythm dysfunction, neuroadaptation in the reward circuits, and alteration in clock gene expression in the mesolimbic areas influence substance use disorder (SUD), and chronotherapy has potential benefits in the treatment strategies. This review explores the relationship among the circadian rhythm dysfunction, reward circuit, and SUD. The impact of chronotherapy on SUD has also been discussed.
Collapse
Affiliation(s)
- Saptadip Samanta
- Department of Physiology, Midnapore College, Midnapore, West Bengal, 721101, India
| | - Debasis Bagchi
- Department of Biology, College of Arts and Sciences, Adelphi University, Garden City, NY, USA and Department of Psychology, Gordon F. Derner School of Psychology, Adelphi University, Garden City, NY, USA
- Department of Pharmaceutical Sciences, College of Pharmacy, Southern University, Houston, TX, 77004, USA
| | - Mark S Gold
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Rajendra D Badgaiyan
- Department of Psychiatry, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Debmalya Barh
- Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, BeloHorizonte, 31270-901, Brazil
- Institute of Integrative Omics and Applied Biotechnology, Nonakuri, Purba Medinipur, 721172, West Bengal, India
| | - Kenneth Blum
- Division of Addiction Research & Education, Center for Sports, Exercise, and Mental Health, Western University Health Sciences, Pomona, CA, 91766, USA
- Institute of Psychology, Eotvos Loránd University, Budapest, 1053, Hungary
- Department of Psychiatry, Wright State University Boonshoft School of Medicine and Dayton VA Medical Center, Dayton, OH, 45435, USA
- Department of Psychiatry, University of Vermont, Burlington, VT, 05405, USA
- Division of Nutrigenomics, The Kenneth Blum Behavioral & Neurogenetic Institute, Austin, TX, 78701, USA
- Department of Molecular Biology, Adelson School of Medicine, Ariel University, Ariel, Israel
| |
Collapse
|
7
|
Sharma P, Nelson RJ. Disrupted Circadian Rhythms and Substance Use Disorders: A Narrative Review. Clocks Sleep 2024; 6:446-467. [PMID: 39189197 PMCID: PMC11348162 DOI: 10.3390/clockssleep6030030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/12/2024] [Accepted: 08/15/2024] [Indexed: 08/28/2024] Open
Abstract
Substance use disorder is a major global health concern, with a high prevalence among adolescents and young adults. The most common substances of abuse include alcohol, marijuana, cocaine, nicotine, and opiates. Evidence suggests that a mismatch between contemporary lifestyle and environmental demands leads to disrupted circadian rhythms that impair optimal physiological and behavioral function, which can increase the vulnerability to develop substance use disorder and related problems. The circadian system plays an important role in regulating the sleep-wake cycle and reward processing, both of which directly affect substance abuse. Distorted substance use can have a reciprocal effect on the circadian system by influencing circadian clock gene expression. Considering the detrimental health consequences and profound societal impact of substance use disorder, it is crucial to comprehend its complex association with circadian rhythms, which can pave the way for the generation of novel chronotherapeutic treatment approaches. In this narrative review, we have explored the potential contributions of disrupted circadian rhythms and sleep on use and relapse of different substances of abuse. The involvement of circadian clock genes with drug reward pathways is discussed, along with the potential research areas that can be explored to minimize disordered substance use by improving circadian hygiene.
Collapse
Affiliation(s)
- Pallavi Sharma
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA;
| | | |
Collapse
|
8
|
Nelson MJ, Soliman PS, Rhew R, Cassidy RN, Haass-Koffler CL. Disruption of circadian rhythms promotes alcohol use: a systematic review. Alcohol Alcohol 2024; 59:agad083. [PMID: 38123479 PMCID: PMC10794164 DOI: 10.1093/alcalc/agad083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 11/15/2023] [Accepted: 11/19/2023] [Indexed: 12/23/2023] Open
Abstract
This systematic review investigates the bidirectional relationship between alcohol consumption and disrupted circadian rhythms. The goal of this study was to identify (i) the types of circadian rhythm disruptors (i.e. social jet lag, extreme chronotypes, and night shift work) associated with altered alcohol use and (ii) whether sex differences in the consequences of circadian disruption exist. We conducted a search of PubMed, Embase, and PsycINFO exclusively on human research. We identified 177 articles that met the inclusion criteria. Our analyses revealed that social jet lag and the extreme chronotype referred to as eveningness were consistently associated with increased alcohol consumption. Relationships between night shift work and alcohol consumption were variable; half of articles reported no effect of night shift work on alcohol consumption. Both sexes were included as participants in the majority of the chronotype and social jet lag papers, with no sex difference apparent in alcohol consumption. The night shift research, however, contained fewer studies that included both sexes. Not all forms of circadian disruption are associated with comparable patterns of alcohol use. The most at-risk individuals for increased alcohol consumption are those with social jet lag or those of an eveningness chronotype. Direct testing of the associations in this review should be conducted to evaluate the relationships among circadian disruption, alcohol intake, and sex differences to provide insight into temporal risk factors associated with development of alcohol use disorder.
Collapse
Affiliation(s)
- Morgan J Nelson
- Biotechnology Graduate Program, Warren Alpert Medical School, Brown University, Providence, RI 02912, United States
- Center for Alcohol and Addiction Studies, Warren Alpert Medical School, Brown University, Providence, RI 02912, United States
| | - Paul S Soliman
- Center for Alcohol and Addiction Studies, Warren Alpert Medical School, Brown University, Providence, RI 02912, United States
- Department of Neuroscience, Warren Alpert Medical School, Brown University, Providence, RI 02912, United States
| | - Ryan Rhew
- Center for Alcohol and Addiction Studies, Warren Alpert Medical School, Brown University, Providence, RI 02912, United States
- Department of Neuroscience, Warren Alpert Medical School, Brown University, Providence, RI 02912, United States
| | - Rachel N Cassidy
- Center for Alcohol and Addiction Studies, Warren Alpert Medical School, Brown University, Providence, RI 02912, United States
- Department of Behavioral and Social Sciences, School of Public Health, Warren Alpert Medical School, Brown University, Providence, RI 02912, United States
| | - Carolina L Haass-Koffler
- Center for Alcohol and Addiction Studies, Warren Alpert Medical School, Brown University, Providence, RI 02912, United States
- Department of Behavioral and Social Sciences, School of Public Health, Warren Alpert Medical School, Brown University, Providence, RI 02912, United States
- Department of Psychiatry and Human Behavior, Warren Alpert Medical School, Brown University, Providence, RI 02912, United States
- Carney Institute for Brain Science, Brown University, Providence, RI 02912, United States
| |
Collapse
|
9
|
Holloway AL, Lerner TN. Hidden variables in stress neurobiology research. Trends Neurosci 2024; 47:9-17. [PMID: 37985263 PMCID: PMC10842876 DOI: 10.1016/j.tins.2023.10.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/11/2023] [Accepted: 10/31/2023] [Indexed: 11/22/2023]
Abstract
Among the central goals of stress neurobiology research is to understand the mechanisms by which stressors change neural circuit function to precipitate or exacerbate psychiatric symptoms. Yet despite decades of effort, psychiatric medications that target the biological substrates of the stress response are largely lacking. We propose that the clinical advancement of stress response-based therapeutics for psychiatric disorders may be hindered by 'hidden variables' in stress research, including considerations of behavioral study design (stressors and outcome measures), individual variability, sex differences, and the interaction of the body's stress hormone system with endogenous circadian and ultradian rhythms. We highlight key issues and suggest ways forward in stress neurobiology research that may improve the ability to assess stress mechanisms and translate preclinical findings.
Collapse
Affiliation(s)
- Ashley L Holloway
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Northwestern University Interdepartmental Neuroscience Program (NUIN), Evanston, IL, USA
| | - Talia N Lerner
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Northwestern University Interdepartmental Neuroscience Program (NUIN), Evanston, IL, USA.
| |
Collapse
|
10
|
Slivicki RA, Wang JG, Nhat VTT, Kravitz AV, Creed MC, Gereau RW. Impact of Δ 9-Tetrahydrocannabinol and oxycodone co-administration on measures of antinociception, dependence, circadian activity, and reward in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.04.569809. [PMID: 38105953 PMCID: PMC10723318 DOI: 10.1101/2023.12.04.569809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Oxycodone is commonly prescribed for moderate to severe pain disorders. While efficacious, long-term use can result in tolerance, physical dependence, and the development of opioid use disorder. Cannabis and its derivatives such as Δ9-Tetrahydrocannabinol (Δ9-THC) have been reported to enhance oxycodone analgesia in animal models and in humans. However, it remains unclear if Δ9-THC may facilitate unwanted aspects of oxycodone intake, such as tolerance, dependence, and reward at analgesic doses. This study sought to evaluate the impact of co-administration of Δ9-THC and oxycodone across behavioral measures related to antinociception, dependence, circadian activity, and reward in both male and female mice. Oxycodone and Δ9-THC produced dose-dependent antinociceptive effects in the hotplate assay that were similar between sexes. Repeated treatment (twice daily for 5 days) resulted in antinociceptive tolerance. Combination treatment of oxycodone and Δ9-THC produced a greater antinociceptive effect than either administered alone, and delayed the development of antinociceptive tolerance. Repeated treatment with oxycodone produced physical dependence and alterations in circadian activity, neither of which were exacerbated by co-treatment with Δ9-THC. Combination treatment of oxycodone and Δ9-THC produced CPP when co-administered at doses that did not produce preference when administered alone. These data indicate that Δ9-THC may facilitate oxycodone-induced antinociception without augmenting certain unwanted features of opioid intake (e.g. dependence, circadian rhythm alterations). However, our findings also indicate that Δ9-THC may facilitate rewarding properties of oxycodone at therapeutically relevant doses which warrant consideration when evaluating this combination for its potential therapeutic utility.
Collapse
Affiliation(s)
- Richard A. Slivicki
- Washington University Pain Center and Department of Anesthesiology, Washington University, St. Louis, MO
| | - Justin G. Wang
- Washington University Pain Center and Department of Anesthesiology, Washington University, St. Louis, MO
- Neuroscience Graduate Program, Division of Biology & Biomedical Sciences, Washington University, St. Louis, MO
| | - Vy Trinh Tran Nhat
- Washington University Pain Center and Department of Anesthesiology, Washington University, St. Louis, MO
| | - Alexxai V. Kravitz
- Washington University Pain Center and Department of Anesthesiology, Washington University, St. Louis, MO
- Department of Psychiatry, Washington University, St. Louis, MO
- Department of Neuroscience, Washington University, St. Louis, MO
| | - Meaghan C. Creed
- Washington University Pain Center and Department of Anesthesiology, Washington University, St. Louis, MO
- Department of Neuroscience, Washington University, St. Louis, MO
| | - Robert W. Gereau
- Washington University Pain Center and Department of Anesthesiology, Washington University, St. Louis, MO
- Department of Neuroscience, Washington University, St. Louis, MO
- Department of Biomedical Engineering, Washington University, St. Louis, MO
| |
Collapse
|
11
|
Towers EB, Shapiro DA, Abel JM, Bakhti-Suroosh A, Kupkova K, Auble DT, Grant PA, Lynch WJ. Transcriptional Profile of Exercise-Induced Protection Against Relapse to Cocaine Seeking in a Rat Model. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2023; 3:734-745. [PMID: 37881559 PMCID: PMC10593899 DOI: 10.1016/j.bpsgos.2023.01.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 02/05/2023] Open
Abstract
Background Exercise has shown promise as a treatment for cocaine use disorder; however, the mechanism underlying its efficacy has remained elusive. Methods We used a rat model of relapse (cue-induced reinstatement) and exercise (wheel running, 2 hours/day) coupled with RNA sequencing to establish transcriptional profiles associated with the protective effects of exercise (during early withdrawal [days 1-7] or throughout withdrawal [days 1-14]) versus noneffective exercise (during late withdrawal [days 8-14]) against cocaine-seeking and sedentary conditions. Results As expected, cue-induced cocaine seeking was highest in the sedentary and late-withdrawal exercise groups; both groups also showed upregulation of a Grin1-associated transcript and enrichment of Drd1-Nmdar1 complex and glutamate receptor complex terms. Surprisingly, these glutamate markers were also enriched in the early- and throughout-withdrawal exercise groups, despite lower levels of cocaine seeking. However, a closer examination of the Grin1-associated transcript revealed a robust loss of transcripts spanning exons 9 and 10 in the sedentary condition relative to saline controls that was normalized by early- and throughout-withdrawal exercise, but not late-withdrawal exercise, indicating that these exercise conditions may normalize RNA mis-splicing induced by cocaine seeking. Our findings also revealed novel mechanisms by which exercise initiated during early withdrawal may modulate glutamatergic signaling in dorsomedial prefrontal cortex (e.g., via transcripts associated with non-NMDA glutamate receptors or those affecting signaling downstream of NMDA receptors), along with mechanisms outside of glutamatergic signaling such as circadian rhythm regulation and neuronal survival. Conclusions These findings provide a rich resource for future studies aimed at manipulating these molecular networks to better understand how exercise decreases cocaine seeking.
Collapse
Affiliation(s)
- Eleanor Blair Towers
- Department of Psychiatry and Neurobehavioral Sciences, University of Virginia, Charlottesville, Virginia
- Medical Scientist Training Program, University of Virginia, Charlottesville, Virginia
| | - Daniel A. Shapiro
- Center for Brain Immunology and Glia, Department of Neuroscience, University of Virginia, Charlottesville, Virginia
| | - Jean M. Abel
- Department of Psychiatry and Neurobehavioral Sciences, University of Virginia, Charlottesville, Virginia
| | - Anousheh Bakhti-Suroosh
- Department of Psychiatry and Neurobehavioral Sciences, University of Virginia, Charlottesville, Virginia
| | - Kristyna Kupkova
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia
| | - David T. Auble
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia
| | - Patrick A. Grant
- Department of Biomedical Science, Florida Atlantic University, Boca Raton, Florida
| | - Wendy J. Lynch
- Department of Psychiatry and Neurobehavioral Sciences, University of Virginia, Charlottesville, Virginia
| |
Collapse
|
12
|
Xie X, Chen R, Wang X, Smith L, Wang J. Activity-dependent labeling and manipulation of fentanyl-recruited striatal ensembles using ArcTRAP approach. STAR Protoc 2023; 4:102369. [PMID: 37354458 PMCID: PMC10320278 DOI: 10.1016/j.xpro.2023.102369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/27/2023] [Accepted: 05/17/2023] [Indexed: 06/26/2023] Open
Abstract
Understanding the memory substrates underlying substance abuse requires the permanent tagging and manipulation of drug-recruited neural ensembles. Here, we present a protocol for activity-dependent labeling and chemogenetic manipulation of fentanyl-activated striatal ensembles using the ArcTRAP approach. We outline the necessary steps to breed ArcTRAP mice, prepare drugs and reagents, conduct behavioral training, and perform tagging and manipulation. This approach can be adapted to investigate drug-recruited ensembles in other brain regions, providing a versatile tool for exploring the neural mechanisms underlying addiction. For complete details on the use and execution of this protocol, please refer to Wang et al.1.
Collapse
Affiliation(s)
- Xueyi Xie
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA.
| | - Ruifeng Chen
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA
| | - Xuehua Wang
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA
| | - Laura Smith
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA
| | - Jun Wang
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA.
| |
Collapse
|
13
|
Marilac Soalheiro L, de Jesus Brandão B, Paiva RVN, Dias Carvalho L, Menezes Paranhos RD, Ribeiro Barbosa PC, Guerrero-Vargas NN, Tamura EK. Familiarity of Brazilian psychologists with basic concepts in sleep science and chronobiology. Chronobiol Int 2023; 40:1072-1083. [PMID: 37661786 DOI: 10.1080/07420528.2023.2250870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/16/2023] [Accepted: 08/17/2023] [Indexed: 09/05/2023]
Abstract
Desynchronization of circadian rhythms and sleep-wake patterns impacts biochemical, physiological, and behavioral functions, including mental processes. The complex relationship between circadian rhythms and mental health makes it challenging to determine causality between circadian desynchronization and mental disorders. Regarding the fact that psychologists act as the front line for initial mental health care, we aimed to assess the knowledge and use of sleep science and basic chronobiology by professional psychologists in Brazil. Data were collected via an online questionnaire completed by 1384 professional psychologists between October 2018 and May 2019. Our findings revealed that ±80% of psychologists reported that at least half of their patients presented some sleep-related complaints; however, only ±27% routinely inquired about sleep quality even in the absence of patient complaints. Additionally, only ±66% initiated treatments to understand these complaints, potentially influenced by the lack of prior academic exposure to biological rhythms as reported by ±76% of Brazilian psychologists interviewed. Importantly, ±15% did not believe in an association between mental health and biological rhythms, and even a significant ±67% were unfamiliar with the term chronobiology and ±63% were not able to describe any other biological rhythm except for the sleep-wake cycle. These results demonstrate that fundamental concepts in chronobiology and sleep science are unknown to a substantial proportion of Brazilian psychologists. In conclusion, we propose that this subject could be more effectively integrated into psychologists' academic training, potentially promoting benefits through the incorporation of a chronobiological approach in mental health practice.
Collapse
Affiliation(s)
| | | | | | - Lázaro Dias Carvalho
- Department of Health Sciences, Universidade Estadual de Santa Cruz, Ilhéus, Brazil
| | | | - Paulo César Ribeiro Barbosa
- Department of Human Sciences and Philosophy, Universidade Estadual de Feira de Santana, Feira de Santana, Brazil
| | - Natali N Guerrero-Vargas
- Department of Anatomy, Faculty of Medicine, Universidad Nacional Autonóma de México, México City, México
| | - Eduardo Koji Tamura
- Department of Health Sciences, Universidade Estadual de Santa Cruz, Ilhéus, Brazil
| |
Collapse
|
14
|
Ehlers CL, Wills D, Benedict J, Amodeo LR. Use of a Fitbit-like device in rats: Sex differences, relation to EEG sleep, and use to measure the long-term effects of adolescent ethanol exposure. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2023; 47:1055-1066. [PMID: 37335518 PMCID: PMC10330894 DOI: 10.1111/acer.15079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/27/2023] [Accepted: 04/01/2023] [Indexed: 06/21/2023]
Abstract
BACKGROUND Sleep difficulties and rhythm disturbances are some of the problems associated with adolescent binge drinking. Recently, animal models of alcohol-induced insomnia have been developed. However, studies in human subjects have recently focused not only on nighttime EEG findings but also on daytime sleepiness and disrupted activity levels as typically measured by activity tracking devices such as the "Fitbit." We sought to develop and test a Fitbit-like device (the "FitBite") in rats and use it to track rest-activity cycles following adolescent alcohol exposure. METHODS The effects of 5 weeks of adolescent ethanol vapor or control conditions were evaluated in 48 male and female Wistar rats using FitBite activity while intoxicated, and during acute (24 h post-vapor exposure) and chronic withdrawal (4 weeks post-vapor exposure). Data were analyzed using activity count and cosinor analyses. Fourteen rats were subsequently implanted with cortical electrodes, and data from the FitBite were compared with EEG data to determine how well the FitBite could identify sleep and activity cycles. RESULTS Female rats were generally more active than males, with higher circadian rhythm amplitudes and mesors (rhythm-adjusted means) across a 24-h period. There were significant correlations between EEG-estimated sleep and activity counts using the FitBite. When the rats were tested during intoxication after 4 weeks of ethanol vapor exposure, they had significantly less overall activity. Disruptions in circadian rhythm were also found with significant decreases in the circadian amplitude, mesor, and a later shift in the acrophase. At 24 h of ethanol withdrawal, rats had more episodes of activity with shorter durations during the daytime, when rats are expected to spend more of their time sleeping. This effect remained at 4 weeks following withdrawal, but circadian rhythm disruptions were no longer present. CONCLUSIONS A Fitbit-like device can be successfully used in rats to assess rest-activity cycles. Adolescent alcohol exposure produced circadian rhythm disturbances that were not observed after withdrawal. Fragmentation of ultradian rest-activity cycles during the light period was found at 24 h and 4 weeks after withdrawal and support data demonstrating the presence of sleep disturbance long after alcohol withdrawal.
Collapse
Affiliation(s)
- Cindy L. Ehlers
- Department of Neuroscience, The Scripps Research Institute, La Jolla CA 92037
| | - Derek Wills
- Department of Neuroscience, The Scripps Research Institute, La Jolla CA 92037
| | - Jessica Benedict
- Department of Neuroscience, The Scripps Research Institute, La Jolla CA 92037
| | - Leslie R. Amodeo
- Department of Psychology, California State University San Bernardino, San Bernardino CA 92407
| |
Collapse
|
15
|
Gendy MNS, Frey BN, Van Ameringen M, Kuhathasan N, MacKillop J. Cannabidiol as a candidate pharmacotherapy for sleep disturbance in alcohol use disorder. Alcohol Alcohol 2023:7150867. [PMID: 37139966 DOI: 10.1093/alcalc/agad031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 04/03/2023] [Accepted: 04/06/2023] [Indexed: 05/05/2023] Open
Abstract
Among individuals with alcohol use disorder (AUD), it is estimated that the majority suffer from persistent sleep disturbances for which few candidate medications are available. Our aim wass to critically review the potential for cannabidiol (CBD) as a treatment for AUD-induced sleep disturbance. As context, notable side effects and abuse liability for existing medications for AUD-induced sleep disturbance reduce their clinical utility. CBD modulation of the endocannabinoid system and favorable safety profile have generated substantial interest in its potential therapeutic use for various medical conditions. A number of preclinical and clinical studies suggest promise for CBD in restoring the normal sleep-wake cycle and in enhancing sleep quality in patients diagnosed with AUD. Based on its pharmacology and the existing literature, albeit primarily preclinical and indirect, CBD is a credible candidate to address alcohol-induced sleep disturbance. Well-designed RCTs will be necessary to test its potential in managing this challenging feature of AUD.
Collapse
Affiliation(s)
- Marie N S Gendy
- Peter Boris Centre for Addictions Research, McMaster University & St. Joseph's Healthcare Hamilton, Hamilton, ON L8P 3R2, Canada
- Department of Psychiatry and Behavioral Neurosciences, McMaster University, Hamilton, ON L8N 3K7, Canada
| | - Benicio N Frey
- Department of Psychiatry and Behavioral Neurosciences, McMaster University, Hamilton, ON L8N 3K7, Canada
- Women's Health Concerns Clinic at St. Joseph's Healthcare Hamilton, Hamilton, ON L8N 3K7, Canada
- Mood Disorders Program, St. Joseph's Healthcare Hamilton, Hamilton, ON L8N 3K7, Canada
| | - Michael Van Ameringen
- Department of Psychiatry and Behavioral Neurosciences, McMaster University, Hamilton, ON L8N 3K7, Canada
| | - Nirushi Kuhathasan
- Department of Psychiatry and Behavioral Neurosciences, McMaster University, Hamilton, ON L8N 3K7, Canada
- Mood Disorders Program, St. Joseph's Healthcare Hamilton, Hamilton, ON L8N 3K7, Canada
- Michael G. DeGroote Centre for Medicinal Cannabis Research, McMaster University & St. Joseph's Healthcare Hamilton, Hamilton, ON L8S 4K1, Canada
| | - James MacKillop
- Peter Boris Centre for Addictions Research, McMaster University & St. Joseph's Healthcare Hamilton, Hamilton, ON L8P 3R2, Canada
- Department of Psychiatry and Behavioral Neurosciences, McMaster University, Hamilton, ON L8N 3K7, Canada
- Women's Health Concerns Clinic at St. Joseph's Healthcare Hamilton, Hamilton, ON L8N 3K7, Canada
- Mood Disorders Program, St. Joseph's Healthcare Hamilton, Hamilton, ON L8N 3K7, Canada
- Michael G. DeGroote Centre for Medicinal Cannabis Research, McMaster University & St. Joseph's Healthcare Hamilton, Hamilton, ON L8S 4K1, Canada
| |
Collapse
|
16
|
Olejniczak I, Begemann K, Wilhelm I, Oster H. The circadian neurobiology of reward. Acta Physiol (Oxf) 2023; 237:e13928. [PMID: 36625310 DOI: 10.1111/apha.13928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/29/2022] [Accepted: 01/02/2023] [Indexed: 01/11/2023]
Abstract
Circadian clocks are important regulators of physiology and behavior. In the brain, circadian clocks have been described in many centers of the central reward system. They affect neurotransmitter signaling, neuroendocrine circuits, and the sensitivity to external stimulation. Circadian disruption affects reward signaling, promoting the development of behavioral and substance use disorders. In this review, we summarize our current knowledge of circadian clock-reward crosstalk. We show how chronodisruption affects reward signaling in different animal models. We then translate these findings to circadian aspects of human reward (dys-) function and its clinical implications. Finally, we devise approaches to and challenges in implementing the concepts of circadian medicine in the therapy of substance use disorders.
Collapse
Affiliation(s)
- Iwona Olejniczak
- Institute of Neurobiology, University of Lübeck, Lübeck, Germany.,Center of Brain, Behavior, and Metabolism, University of Lübeck, Lübeck, Germany
| | - Kimberly Begemann
- Institute of Neurobiology, University of Lübeck, Lübeck, Germany.,Center of Brain, Behavior, and Metabolism, University of Lübeck, Lübeck, Germany
| | - Ines Wilhelm
- Center of Brain, Behavior, and Metabolism, University of Lübeck, Lübeck, Germany.,Translational Psychiatry Unit, Department of Psychiatry and Psychotherapy, University of Lübeck, Lübeck, Germany
| | - Henrik Oster
- Institute of Neurobiology, University of Lübeck, Lübeck, Germany.,Center of Brain, Behavior, and Metabolism, University of Lübeck, Lübeck, Germany
| |
Collapse
|
17
|
García-Luna C, Prieto I, Soberanes-Chávez P, Alvarez-Salas E, Torre-Villalvazo I, Matamoros-Trejo G, de Gortari P. Effects of Intermittent Fasting on Hypothalamus-Pituitary-Thyroid Axis, Palatable Food Intake, and Body Weight in Stressed Rats. Nutrients 2023; 15:nu15051164. [PMID: 36904162 PMCID: PMC10005667 DOI: 10.3390/nu15051164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023] Open
Abstract
Dietary regimens that are focused on diminishing total caloric intake and restricting palatable food ingestion are the most common strategies for weight control. However, restrictive diet therapies have low adherence rates in obese patients, particularly in stressed individuals. Moreover, food restriction downregulates the hypothalamic-pituitary-thyroid axis (HPT) function, hindering weight loss. Intermittent fasting (IF) has emerged as an option to treat obesity. We compared the effects of IF to an all-day feeding schedule on palatable diet (PD)-stress (S)-induced hyperphagia, HPT axis function, accumbal thyrotropin-releasing hormone (TRH), and dopamine D2 receptor expression in association with adipocyte size and PPARƔ coactivator 1α (PGC1α) and uncoupling protein 1 (UCP1) expression in stressed vs. non-stressed rats. After 5 weeks, S-PD rats showed an increased energy intake and adipocyte size, fewer beige cells, and HPT axis deceleration-associated low PGC1α and UCP1 expression, as well as decreased accumbal TRH and D2 expression. Interestingly, IF reversed those parameters to control values and increased the number of beige adipocytes, UCP1, and PGC1α mRNAs, which may favor a greater energy expenditure and a reduced body weight, even in stressed rats. Our results showed that IF modulated the limbic dopaminergic and TRHergic systems that regulate feeding and HPT axis function, which controls the metabolic rate, supporting this regimen as a suitable non-pharmacologic strategy to treat obesity, even in stressed individuals.
Collapse
Affiliation(s)
- Cinthia García-Luna
- Laboratorio de Neurofisiología Molecular, Departamento de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico
| | - Ixchel Prieto
- Laboratorio de Neurofisiología Molecular, Departamento de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico
- Escuela de Dietética y Nutrición, ISSSTE, Mexico City 14070, Mexico
| | - Paulina Soberanes-Chávez
- Laboratorio de Neurofisiología Molecular, Departamento de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico
| | - Elena Alvarez-Salas
- Laboratorio de Neurofisiología Molecular, Departamento de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico
| | - Iván Torre-Villalvazo
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Mexico City 14080, Mexico
| | - Gilberto Matamoros-Trejo
- Laboratorio de Neurofisiología Molecular, Departamento de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico
| | - Patricia de Gortari
- Laboratorio de Neurofisiología Molecular, Departamento de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico
- Correspondence: ; Tel.: +52-55-4160-5056
| |
Collapse
|
18
|
Bumgarner JR, McCray EW, Nelson RJ. The disruptive relationship among circadian rhythms, pain, and opioids. Front Neurosci 2023; 17:1109480. [PMID: 36875657 PMCID: PMC9975345 DOI: 10.3389/fnins.2023.1109480] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 01/26/2023] [Indexed: 02/17/2023] Open
Abstract
Pain behavior and the systems that mediate opioid analgesia and opioid reward processing display circadian rhythms. Moreover, the pain system and opioid processing systems, including the mesolimbic reward circuitry, reciprocally interact with the circadian system. Recent work has demonstrated the disruptive relationship among these three systems. Disruption of circadian rhythms can exacerbate pain behavior and modulate opioid processing, and pain and opioids can influence circadian rhythms. This review highlights evidence demonstrating the relationship among the circadian, pain, and opioid systems. Evidence of how disruption of one of these systems can lead to reciprocal disruptions of the other is then reviewed. Finally, we discuss the interconnected nature of these systems to emphasize the importance of their interactions in therapeutic contexts.
Collapse
Affiliation(s)
- Jacob R Bumgarner
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, United States
| | - Evan W McCray
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, United States
| | - Randy J Nelson
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, United States
| |
Collapse
|
19
|
Meyer C, Schoettner K, Amir S. The effects of circadian desynchronization on alcohol consumption and affective behavior during alcohol abstinence in female rats. Front Behav Neurosci 2022; 16:1044783. [PMID: 36620855 PMCID: PMC9813852 DOI: 10.3389/fnbeh.2022.1044783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022] Open
Abstract
Disruption of circadian rhythmicity distorts physiological and psychological processes and has major consequences on health and well-being. A chronic misalignment within the internal time-keeping system modulates alcohol consumption and contributes to stress-related psychiatric disorders which are known to trigger alcohol misuse and relapse. While there is growing evidence of the deleterious impact of circadian disruption on male physiology and behavior, knowledge about the effect in females remains limited. The present study aims to fill the gap by assessing the relationship between internal desynchronization and alcohol intake behavior in female rats. Female Wistar rats kept under standard 24-h, 22-h light-dark conditions, or chronic 6-h advanced phase shifts, were given intermittent access to 20% alcohol followed by an extended alcohol deprivation period. Alcohol consumption under altered light-dark (LD) conditions was assessed and emotional behavior during alcohol abstinence was evaluated. Internally desynchronization in female rats does not affect alcohol consumption but alters scores of emotionality during alcohol abstinence. Changes in affective-like behaviors were accompanied by reduced body weight gain and estrous irregularities under aberrant LD conditions. Our data suggest that internal desynchronization caused by environmental factors is not a major factor contributing to the onset and progression of alcohol abuse, but highlights the need of maintaining circadian hygiene as a supportive remedy during alcohol rehabilitation.
Collapse
|
20
|
Valeri J, O’Donovan SM, Wang W, Sinclair D, Bollavarapu R, Gisabella B, Platt D, Stockmeier C, Pantazopoulos H. Altered expression of somatostatin signaling molecules and clock genes in the hippocampus of subjects with substance use disorder. Front Neurosci 2022; 16:903941. [PMID: 36161151 PMCID: PMC9489843 DOI: 10.3389/fnins.2022.903941] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 08/16/2022] [Indexed: 11/13/2022] Open
Abstract
Substance use disorders are a debilitating group of psychiatric disorders with a high degree of comorbidity with major depressive disorder. Sleep and circadian rhythm disturbances are commonly reported in people with substance use disorder and major depression and associated with increased risk of relapse. Hippocampal somatostatin signaling is involved in encoding and consolidation of contextual memories which contribute to relapse in substance use disorder. Somatostatin and clock genes also have been implicated in depression, suggesting that these molecules may represent key converging pathways involved in contextual memory processing in substance use and major depression. We used hippocampal tissue from a cohort of subjects with substance use disorder (n = 20), subjects with major depression (n = 20), subjects with comorbid substance use disorder and major depression (n = 24) and psychiatrically normal control subjects (n = 20) to test the hypothesis that expression of genes involved in somatostatin signaling and clock genes is altered in subjects with substance use disorder. We identified decreased expression of somatostatin in subjects with substance use disorder and in subjects with major depression. We also observed increased somatostatin receptor 2 expression in subjects with substance use disorder with alcohol in the blood at death and decreased expression in subjects with major depression. Expression of the clock genes Arntl, Nr1d1, Per2 and Cry2 was increased in subjects with substance use disorder. Arntl and Nr1d1 expression in comparison was decreased in subjects with major depression. We observed decreased expression of Gsk3β in subjects with substance use disorder. Subjects with comorbid substance use disorder and major depression displayed minimal changes across all outcome measures. Furthermore, we observed a significant increase in history of sleep disturbances in subjects with substance use disorder. Our findings represent the first evidence for altered somatostatin and clock gene expression in the hippocampus of subjects with substance use disorder and subjects with major depression. Altered expression of these molecules may impact memory consolidation and contribute to relapse risk.
Collapse
Affiliation(s)
- Jake Valeri
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, United States
- Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS, United States
| | - Sinead M. O’Donovan
- Department of Neuroscience, University of Toledo Medical Center, Toledo, OH, United States
| | - Wei Wang
- Department of Medicine and Neurology, Brigham and Women’s Hospital, Boston, MA, United States
| | - David Sinclair
- Department of Neuroscience, University of Toledo Medical Center, Toledo, OH, United States
| | - Ratna Bollavarapu
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, United States
| | - Barbara Gisabella
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, United States
- Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS, United States
| | - Donna Platt
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, United States
- Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS, United States
| | - Craig Stockmeier
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, United States
- Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS, United States
| | - Harry Pantazopoulos
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, United States
- Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS, United States
- *Correspondence: Harry Pantazopoulos,
| |
Collapse
|
21
|
Bauer M, Glenn T, Achtyes ED, Alda M, Agaoglu E, Altınbaş K, Andreassen OA, Angelopoulos E, Ardau R, Aydin M, Ayhan Y, Baethge C, Bauer R, Baune BT, Balaban C, Becerra-Palars C, Behere AP, Behere PB, Belete H, Belete T, Belizario GO, Bellivier F, Belmaker RH, Benedetti F, Berk M, Bersudsky Y, Bicakci Ş, Birabwa-Oketcho H, Bjella TD, Brady C, Cabrera J, Cappucciati M, Castro AMP, Chen WL, Cheung EYW, Chiesa S, Crowe M, Cuomo A, Dallaspezia S, Del Zompo M, Desai P, Dodd S, Etain B, Fagiolini A, Fellendorf FT, Ferensztajn-Rochowiak E, Fiedorowicz JG, Fountoulakis KN, Frye MA, Geoffroy PA, Gonzalez-Pinto A, Gottlieb JF, Grof P, Haarman BCM, Harima H, Hasse-Sousa M, Henry C, Høffding L, Houenou J, Imbesi M, Isometsä ET, Ivkovic M, Janno S, Johnsen S, Kapczinski F, Karakatsoulis GN, Kardell M, Kessing LV, Kim SJ, König B, Kot TL, Koval M, Kunz M, Lafer B, Landén M, Larsen ER, Lenger M, Lewitzka U, Licht RW, Lopez-Jaramillo C, MacKenzie A, Madsen HØ, Madsen SAKA, Mahadevan J, Mahardika A, Manchia M, Marsh W, Martinez-Cengotitabengoa M, Martiny K, Mashima Y, McLoughlin DM, Meesters Y, Melle I, Meza-Urzúa F, Mok YM, Monteith S, Moorthy M, Morken G, Mosca E, Mozzhegorov AA, et alBauer M, Glenn T, Achtyes ED, Alda M, Agaoglu E, Altınbaş K, Andreassen OA, Angelopoulos E, Ardau R, Aydin M, Ayhan Y, Baethge C, Bauer R, Baune BT, Balaban C, Becerra-Palars C, Behere AP, Behere PB, Belete H, Belete T, Belizario GO, Bellivier F, Belmaker RH, Benedetti F, Berk M, Bersudsky Y, Bicakci Ş, Birabwa-Oketcho H, Bjella TD, Brady C, Cabrera J, Cappucciati M, Castro AMP, Chen WL, Cheung EYW, Chiesa S, Crowe M, Cuomo A, Dallaspezia S, Del Zompo M, Desai P, Dodd S, Etain B, Fagiolini A, Fellendorf FT, Ferensztajn-Rochowiak E, Fiedorowicz JG, Fountoulakis KN, Frye MA, Geoffroy PA, Gonzalez-Pinto A, Gottlieb JF, Grof P, Haarman BCM, Harima H, Hasse-Sousa M, Henry C, Høffding L, Houenou J, Imbesi M, Isometsä ET, Ivkovic M, Janno S, Johnsen S, Kapczinski F, Karakatsoulis GN, Kardell M, Kessing LV, Kim SJ, König B, Kot TL, Koval M, Kunz M, Lafer B, Landén M, Larsen ER, Lenger M, Lewitzka U, Licht RW, Lopez-Jaramillo C, MacKenzie A, Madsen HØ, Madsen SAKA, Mahadevan J, Mahardika A, Manchia M, Marsh W, Martinez-Cengotitabengoa M, Martiny K, Mashima Y, McLoughlin DM, Meesters Y, Melle I, Meza-Urzúa F, Mok YM, Monteith S, Moorthy M, Morken G, Mosca E, Mozzhegorov AA, Munoz R, Mythri SV, Nacef F, Nadella RK, Nakanotani T, Nielsen RE, O'Donovan C, Omrani A, Osher Y, Ouali U, Pantovic-Stefanovic M, Pariwatcharakul P, Petite J, Pfennig A, Ruiz YP, Pinna M, Pompili M, Porter R, Quiroz D, Rabelo-da-Ponte FD, Ramesar R, Rasgon N, Ratta-Apha W, Ratzenhofer M, Redahan M, Reddy MS, Reif A, Reininghaus EZ, Richards JG, Ritter P, Rybakowski JK, Sathyaputri L, Scippa ÂM, Simhandl C, Smith D, Smith J, Stackhouse PW, Stein DJ, Stilwell K, Strejilevich S, Su KP, Subramaniam M, Sulaiman AH, Suominen K, Tanra AJ, Tatebayashi Y, Teh WL, Tondo L, Torrent C, Tuinstra D, Uchida T, Vaaler AE, Vieta E, Viswanath B, Yoldi-Negrete M, Yalcinkaya OK, Young AH, Zgueb Y, Whybrow PC. Association between polarity of first episode and solar insolation in bipolar I disorder. J Psychosom Res 2022; 160:110982. [PMID: 35932492 PMCID: PMC7615104 DOI: 10.1016/j.jpsychores.2022.110982] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 06/14/2022] [Accepted: 06/22/2022] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Circadian rhythm disruption is commonly observed in bipolar disorder (BD). Daylight is the most powerful signal to entrain the human circadian clock system. This exploratory study investigated if solar insolation at the onset location was associated with the polarity of the first episode of BD I. Solar insolation is the amount of electromagnetic energy from the Sun striking a surface area of the Earth. METHODS Data from 7488 patients with BD I were collected at 75 sites in 42 countries. The first episode occurred at 591 onset locations in 67 countries at a wide range of latitudes in both hemispheres. Solar insolation values were obtained for every onset location, and the ratio of the minimum mean monthly insolation to the maximum mean monthly insolation was calculated. This ratio is largest near the equator (with little change in solar insolation over the year), and smallest near the poles (where winter insolation is very small compared to summer insolation). This ratio also applies to tropical locations which may have a cloudy wet and clear dry season, rather than winter and summer. RESULTS The larger the change in solar insolation throughout the year (smaller the ratio between the minimum monthly and maximum monthly values), the greater the likelihood the first episode polarity was depression. Other associated variables were being female and increasing percentage of gross domestic product spent on country health expenditures. (All coefficients: P ≤ 0.001). CONCLUSION Increased awareness and research into circadian dysfunction throughout the course of BD is warranted.
Collapse
Affiliation(s)
- Michael Bauer
- Department of Psychiatry and Psychotherapy, University Hospital Carl Gustav Carus, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany.
| | - Tasha Glenn
- ChronoRecord Association, Fullerton, CA, USA
| | - Eric D Achtyes
- Michigan State University College of Human Medicine, Division of Psychiatry & Behavioral Medicine, Grand Rapids, MI, USA; Pine Rest Christian Mental Health Services, Grand Rapids, MI, USA
| | - Martin Alda
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
| | - Esen Agaoglu
- Department of Psychiatry, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Kürşat Altınbaş
- Department of Psychiatry, Selcuk University Faculty of Medicine, Mazhar Osman Mood Center, Konya, Turkey
| | - Ole A Andreassen
- NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Elias Angelopoulos
- Department of Psychiatry, National and Capodistrian University of Athens, Medical School, Eginition Hospital, Athens, Greece
| | - Raffaella Ardau
- Section of Neurosciences and Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari, Sardinia, Italy
| | - Memduha Aydin
- Department of Psychiatry, Selcuk University Faculty of Medicine, Konya, Turkey
| | - Yavuz Ayhan
- Department of Psychiatry, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Christopher Baethge
- Department of Psychiatry and Psychotherapy, University of Cologne Medical School, Cologne, Germany
| | - Rita Bauer
- Department of Psychiatry and Psychotherapy, University Hospital Carl Gustav Carus, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Bernhard T Baune
- Department of Psychiatry, University of Münster, Münster, Germany; Department of Psychiatry, Melbourne Medical School, The University of Melbourne, Melbourne, Australia; The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Ceylan Balaban
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Johann Wolfgang Goethe-Universität Frankfurt am Main, Frankfurt am Main, Germany
| | | | - Aniruddh P Behere
- Department of Pediatrics and Human Development, Michigan State University, Grand Rapids, MI, USA
| | - Prakash B Behere
- Department of Psychiatry, Jawaharlal Nehru Medical College, Datta Meghe Institute of Medical Sciences (Deemed University), Wardha, India
| | - Habte Belete
- Department of Psychiatry, College of Medicine and Health Sciences, Bahir Dar University, Bahir Dar, Ethiopia
| | - Tilahun Belete
- Department of Psychiatry, College of Medicine and Health Sciences, Bahir Dar University, Bahir Dar, Ethiopia
| | - Gabriel Okawa Belizario
- Bipolar Disorder Research Program, Department of Psychiatry, University of São Paulo Medical School, São Paulo, Brazil
| | - Frank Bellivier
- Département de Psychiatrie et de Médecine Addictologique, Assistance Publique - Hôpitaux de Paris, INSERM UMR-S1144, Université de Paris, FondaMental Foundation, Paris, France
| | - Robert H Belmaker
- Professor Emeritus of Psychiatry, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Francesco Benedetti
- University Vita-Salute San Raffaele, Milan, Italy; Psychiatry & Clinical Psychobiology, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Michael Berk
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Orygen, The National Centre of Excellence in Youth Mental Health, Centre for Youth Mental Health, Florey Institute for Neuroscience and Mental Health and the Department of Psychiatry, The University of Melbourne, Melbourne, Australia
| | - Yuly Bersudsky
- Department of Psychiatry, Faculty of Health Sciences, Beer Sheva Mental Health Center, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Şule Bicakci
- Department of Psychiatry, Hacettepe University Faculty of Medicine, Ankara, Turkey; Department of Psychiatry, Baskent University Faculty of Medicine, Ankara, Turkey
| | | | - Thomas D Bjella
- NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Conan Brady
- Department of Psychiatry, Trinity College Dublin, St Patrick's University Hospital, Dublin, Ireland
| | - Jorge Cabrera
- Mood Disorders Clinic, Dr. Jose Horwitz Psychiatric Institute, Santiago de Chile, Chile
| | | | - Angela Marianne Paredes Castro
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Wei-Ling Chen
- Department of Psychiatry, Chiayi Branch, Taichung Veterans General Hospital, Chiayi, Taiwan
| | | | - Silvia Chiesa
- Department of Mental Health and Substance Abuse, Piacenza, Italy
| | - Marie Crowe
- Department of Psychological Medicine, University of Otago, Christchurch, New Zealand
| | - Alessandro Cuomo
- Department of Molecular Medicine, University of Siena School of Medicine, Siena, Italy
| | - Sara Dallaspezia
- Psychiatry & Clinical Psychobiology, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Maria Del Zompo
- Section of Neurosciences and Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari, Sardinia, Italy
| | | | - Seetal Dodd
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Department of Psychiatry, University of Melbourne, Parkville, Victoria, Australia
| | - Bruno Etain
- Département de Psychiatrie et de Médecine Addictologique, Assistance Publique - Hôpitaux de Paris, INSERM UMR-S1144, Université de Paris, FondaMental Foundation, Paris, France
| | - Andrea Fagiolini
- Department of Molecular Medicine, University of Siena School of Medicine, Siena, Italy
| | - Frederike T Fellendorf
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University Graz, Graz, Austria
| | | | - Jess G Fiedorowicz
- Department of Psychiatry, School of Epidemiology and Public Health, University of Ottawa, Ottawa, ON, Canada
| | - Kostas N Fountoulakis
- 3rd Department of Psychiatry, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Mark A Frye
- Department of Psychiatry & Psychology, Mayo Clinic Depression Center, Mayo Clinic, Rochester, MN, USA
| | - Pierre A Geoffroy
- Département de psychiatrie et d'addictologie, AP-HP, GHU Paris Nord, DMU Neurosciences, Hopital Bichat - Claude Bernard, F-75018 Paris, France; GHU Paris - Psychiatry & Neurosciences, 1 rue Cabanis, 75014 Paris, France; Université de Paris, NeuroDiderot, Inserm, FHU I2-D2, F-75019 Paris, France
| | - Ana Gonzalez-Pinto
- BIOARABA. Department of Psychiatry, University Hospital of Alava, University of the Basque Country, CIBERSAM, Vitoria, Spain
| | - John F Gottlieb
- Department of Psychiatry, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Paul Grof
- Mood Disorders Center of Ottawa and the Department of Psychiatry, University of Toronto, Canada
| | - Bartholomeus C M Haarman
- Department of Psychiatry, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Hirohiko Harima
- Department of Psychiatry, Tokyo Metropolitan Matsuzawa Hospital, Setagaya, Tokyo, Japan
| | - Mathias Hasse-Sousa
- Department of Psychiatry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Chantal Henry
- Department of Psychiatry, GHU Paris Psychiatrie & Neurosciences, F-75014, Paris France, Université de Paris, F-75006 Paris, France
| | - Lone Høffding
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Josselin Houenou
- Université Paris Est Créteil, INSERM, IMRB, Translational Neuropsychiatry, APHP, Mondor Univ Hospitals, Fondation FondaMental, F-94010 Créteil, France; Université Paris Saclay, CEA, Neurospin, F-91191 Gif-sur-Yvette, France
| | | | - Erkki T Isometsä
- Department of Psychiatry, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; National Institute for Health and Welfare, Helsinki, Finland
| | - Maja Ivkovic
- University Clinical Center of Serbia, Clinic for Psychiatry, Belgrade, Serbia
| | - Sven Janno
- Department of Psychiatry, University of Tartu, Tartu, Estonia
| | - Simon Johnsen
- Unit for Psychiatric Research, Aalborg University Hospital, Aalborg, Denmark
| | - Flávio Kapczinski
- Department of Psychiatry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Gregory N Karakatsoulis
- 3rd Department of Psychiatry, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Mathias Kardell
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Lars Vedel Kessing
- Copenhagen Affective Disorder Research Center (CADIC), Psychiatric Center Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Seong Jae Kim
- Department of Psychiatry, Chosun University School of Medicine, Gwangju, Republic of Korea
| | - Barbara König
- BIPOLAR Zentrum Wiener Neustadt, Wiener Neustadt, Austria
| | - Timur L Kot
- Khanty-Mansiysk Clinical Psychoneurological Hospital, Khanty-Mansiysk, Russia
| | - Michael Koval
- Department of Neuroscience, Michigan State University, East Lansing, MI, USA
| | - Mauricio Kunz
- Department of Psychiatry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Beny Lafer
- Bipolar Disorder Research Program, Department of Psychiatry, University of São Paulo Medical School, São Paulo, Brazil
| | - Mikael Landén
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Erik R Larsen
- Mental Health Department Odense, University Clinic and Department of Regional Health Research, University of Southern Denmark, Esbjerg, Denmark
| | - Melanie Lenger
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University Graz, Graz, Austria
| | - Ute Lewitzka
- Department of Psychiatry and Psychotherapy, University Hospital Carl Gustav Carus, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Rasmus W Licht
- Psychiatry - Aalborg University Hospital, Aalborg, Denmark; Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Carlos Lopez-Jaramillo
- Mood Disorders Program, Hospital Universitario San Vicente Fundación, Research Group in Psychiatry, Department of Psychiatry, Faculty of Medicine, Universidad de Antioquia, Medellín, Colombia
| | - Alan MacKenzie
- Forensic Psychiatry, University of Glasgow, NHS Greater Glasgow and Clyde, Glasgow, UK
| | | | | | - Jayant Mahadevan
- Department of Psychiatry, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, India
| | - Agustine Mahardika
- Department of Psychiatry, Faculty of Medicine, Mataram University, Mataram, Indonesia
| | - Mirko Manchia
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada; Section of Psychiatry, Department of Medical Science and Public Health, University of Cagliari, Cagliari, Italy; Unit of Clinical Psychiatry, University Hospital Agency of Cagliari, Cagliari, Italy
| | - Wendy Marsh
- Department of Psychiatry, University of Massachusetts Medical School, Worcester, MA, USA
| | - Monica Martinez-Cengotitabengoa
- Osakidetza, Basque Health Service, BioAraba Health Research Institute, University of the Basque Country, Spain; The Psychology Clinic of East Anglia, Norwich, United Kingdom
| | - Klaus Martiny
- Copenhagen University Hospitals, Psychiatric Centre Copenhagen, Copenhagen, Denmark
| | - Yuki Mashima
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Declan M McLoughlin
- Dept of Psychiatry & Trinity College Institute of Neuroscience, Trinity College Dublin, St Patrick's University Hospital, Dublin, Ireland
| | - Ybe Meesters
- Department of Psychiatry, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Ingrid Melle
- NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Fátima Meza-Urzúa
- Department of Child and Adolescent Psychiatry und Psychotherapy, SHG Klinikum, Idar-Oberstein, Germany
| | - Yee Ming Mok
- Department of Mood and Anxiety disorders, Institute of Mental Health, Singapore City, Singapore
| | - Scott Monteith
- Michigan State University College of Human Medicine, Traverse City Campus, Traverse City, MI, USA
| | - Muthukumaran Moorthy
- Department of Psychiatry, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, India
| | - Gunnar Morken
- Department of Mental Health, Norwegian University of Science and Technology - NTNU, Trondheim, Norway; Department of Psychiatry, St Olavs' University Hospital, Trondheim, Norway
| | - Enrica Mosca
- Section of Neurosciences and Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari, Sardinia, Italy
| | | | - Rodrigo Munoz
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - Starlin V Mythri
- Makunda Christian Leprosy and General Hospital, Bazaricherra, Assam 788727, India
| | - Fethi Nacef
- Razi Hospital, Faculty of Medicine, University of Tunis-El Manar, Tunis, Tunisia
| | - Ravi K Nadella
- Department of Psychiatry, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, India
| | - Takako Nakanotani
- Affective Disorders Research Project, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo, Japan
| | - René Ernst Nielsen
- Psychiatry - Aalborg University Hospital, Aalborg, Denmark; Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Claire O'Donovan
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
| | - Adel Omrani
- Tunisian Bipolar Forum, Érable Médical Cabinet 324, Lac 2, Tunis, Tunisia
| | - Yamima Osher
- Department of Psychiatry, Faculty of Health Sciences, Beer Sheva Mental Health Center, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Uta Ouali
- Razi Hospital, Faculty of Medicine, University of Tunis-El Manar, Tunis, Tunisia
| | | | - Pornjira Pariwatcharakul
- Department of Psychiatry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Joanne Petite
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
| | - Andrea Pfennig
- Department of Psychiatry and Psychotherapy, University Hospital Carl Gustav Carus, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | | | - Marco Pinna
- Section of Psychiatry, Department of Medical Science and Public Health, University of Cagliari, Cagliari, Italy; Lucio Bini Mood Disorder Center, Cagliari, Italy
| | - Maurizio Pompili
- Department of Neurosciences, Mental Health and Sensory Organs, Sant'Andrea Hospital, Sapienza University of Rome, Rome, Italy
| | - Richard Porter
- Department of Psychological Medicine, University of Otago, Christchurch, New Zealand
| | - Danilo Quiroz
- Deparment of Psychiatry, Diego Portales University, Santiago de Chile, Chile
| | | | - Raj Ramesar
- SA MRC Genomic and Precision Medicine Research Unit, Division of Human Genetics, Department of Pathology, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, South Africa
| | - Natalie Rasgon
- Department of Psychiatry and Behavioral Sciences, Stanford School of Medicine, Palo Alto, CA, USA
| | - Woraphat Ratta-Apha
- Department of Psychiatry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Michaela Ratzenhofer
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University Graz, Graz, Austria
| | - Maria Redahan
- Department of Psychiatry, Trinity College Dublin, St Patrick's University Hospital, Dublin, Ireland
| | - M S Reddy
- Asha Bipolar Clinic, Asha Hospital, Hyderabad, Telangana, India
| | - Andreas Reif
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Johann Wolfgang Goethe-Universität Frankfurt am Main, Frankfurt am Main, Germany
| | - Eva Z Reininghaus
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University Graz, Graz, Austria
| | - Jenny Gringer Richards
- Departments of Psychiatry, Epidemiology, and Internal Medicine, Iowa Neuroscience Institute, The University of Iowa, Iowa City, IA, USA
| | - Philipp Ritter
- Department of Psychiatry and Psychotherapy, University Hospital Carl Gustav Carus, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Janusz K Rybakowski
- Department of Adult Psychiatry, Poznan University of Medical Sciences, Poznan, Poland
| | - Leela Sathyaputri
- Departments of Psychiatry, Epidemiology, and Internal Medicine, Iowa Neuroscience Institute, The University of Iowa, Iowa City, IA, USA
| | - Ângela M Scippa
- Department of Neuroscience and Mental Health, Federal University of Bahia, Salvador, Brazil
| | - Christian Simhandl
- Bipolar Zentrum Wiener Neustadt, Sigmund Freud Privat Universität, Vienna, Austria
| | - Daniel Smith
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, Scotland, UK
| | - José Smith
- AREA, Assistance and Research in Affective Disorders, Buenos Aires, Argentina
| | - Paul W Stackhouse
- Science Directorate/Climate Science Branch, NASA Langley Research Center, Hampton, VA, USA
| | - Dan J Stein
- Department of Psychiatry, MRC Unit on Risk & Resilience in Mental Disorders, University of Cape Town, Cape Town, South Africa
| | - Kellen Stilwell
- Pine Rest Christian Mental Health Services, Grand Rapids, MI, USA
| | - Sergio Strejilevich
- AREA, Assistance and Research in Affective Disorders, Buenos Aires, Argentina
| | - Kuan-Pin Su
- College of Medicine, China Medical University (CMU), Taichung, Taiwan; An-Nan Hospital, China Medical University, Tainan, Taiwan
| | | | - Ahmad Hatim Sulaiman
- Department of Psychological Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Kirsi Suominen
- Department of Social Services and Health Care, Psychiatry, City of Helsinki, Helsinki, Finland
| | - Andi J Tanra
- Department of Psychiatry, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Yoshitaka Tatebayashi
- Affective Disorders Research Project, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo, Japan
| | - Wen Lin Teh
- Research Division, Institute of Mental Health, Singapore
| | - Leonardo Tondo
- McLean Hospital-Harvard Medical School, Boston, MA, USA; Mood Disorder Lucio Bini Centers, Cagliari e Roma, Italy
| | - Carla Torrent
- Clinical Institute of Neuroscience, Hospital Clinic, University of Barcelona, IDIBAPS, CIBERSAM, Barcelona, Catalonia, Spain
| | - Daniel Tuinstra
- Pine Rest Christian Mental Health Services, Grand Rapids, MI, USA
| | - Takahito Uchida
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan; Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Melbourne, Australia
| | - Arne E Vaaler
- Department of Mental Health, Norwegian University of Science and Technology - NTNU, Trondheim, Norway; Department of Psychiatry, St Olavs' University Hospital, Trondheim, Norway
| | - Eduard Vieta
- Clinical Institute of Neuroscience, Hospital Clinic, University of Barcelona, IDIBAPS, CIBERSAM, Barcelona, Catalonia, Spain
| | - Biju Viswanath
- Department of Psychiatry, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, India
| | - Maria Yoldi-Negrete
- Subdirección de Investigaciones Clínicas. Instituto Nacional de Psiquiatría Ramón de la Fuente Muñíz, Mexico City, Mexico
| | - Oguz Kaan Yalcinkaya
- Department of Psychiatry, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Allan H Young
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Yosra Zgueb
- Razi Hospital, Faculty of Medicine, University of Tunis-El Manar, Tunis, Tunisia
| | - Peter C Whybrow
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles (UCLA), Los Angeles, CA, USA
| |
Collapse
|
22
|
Foo JC, Meinhardt MW, Skorodumov I, Spanagel R. Alcohol solution strength preference predicts compulsive-like drinking behavior in rats. Alcohol Clin Exp Res 2022; 46:1710-1719. [PMID: 35871774 DOI: 10.1111/acer.14910] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 06/09/2022] [Accepted: 07/11/2022] [Indexed: 01/31/2023]
Abstract
BACKGROUND Understanding compulsive drinking behavior is key to improving outcomes in the treatment of addiction. In the present study, we investigated compulsive-like drinking in alcohol-addicted rats using the alcohol deprivation effect (ADE) model of relapse behavior, which involves repeated deprivation and reintroduction phases; the latter approximate relapse. METHODS High-resolution longitudinal drinking and locomotor data were measured while rats (n = 30) underwent a four-bottle (water, 5%, 10%, 20% alcohol v/v) free-choice ADE paradigm. Alcohol bottles were adulterated with the bitter compound quinine during a reintroduction phase to test for compulsive behavior. We characterized how drinking and locomotor behavior during ADE + quinine differed from a regular ADE and how, at the individual level, behavioral parameters extracted from the regular ADE related to compulsive-like drinking. Associations of drinking with locomotor activity were also examined. RESULTS In the ADE with quinine, we observed reduced consumption of alcohol and a shift to preference for stronger alcohol. Quinine acted by decreasing both the access size and frequency of drinking of 5% alcohol while increasing the frequency of consumption of 20% alcohol. Preference for higher alcohol concentrations prior to the quinine challenge was associated with greater compulsive-like drinking behavior; higher baseline consumption of 20% alcohol correlated with more drinking of quinine-adulterated solutions while high frequency and amount of 5% alcohol consumption at baseline were correlated with being more strongly affected by quinine. Associations between locomotor activity and drinking behavior were observed at the hourly level. These associations reflected changing preferences across experimental phases. CONCLUSION Drinking patterns, and specifically solution preference, may offer insights into the presentation of compulsive-like drinking. The findings provide a preclinical basis for observations from epidemiological studies that link higher risk and burden of alcohol-related disease to stronger alcohol concentrations and encourage further translational studies to better understand the underlying mechanisms.
Collapse
Affiliation(s)
- Jerome C Foo
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Marcus W Meinhardt
- Institute for Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.,Department of Molecular Neuroimaging, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Ivan Skorodumov
- Institute for Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Rainer Spanagel
- Institute for Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| |
Collapse
|
23
|
Objective sleep outcomes in randomized-controlled trials in persons with substance use disorders: A systematic review. Drug Alcohol Depend 2022; 237:109509. [PMID: 35660222 DOI: 10.1016/j.drugalcdep.2022.109509] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 05/16/2022] [Accepted: 05/18/2022] [Indexed: 11/21/2022]
Abstract
BACKGROUND Improving sleep health is an important target for substance use disorder (SUD) research. However, there is little guidance for SUD researchers regarding the use of technologies to objectively assess sleep outcomes in randomized-controlled trials (RCTs). This systematic review aimed to describe the use of technologies to objectively measure sleep outcomes in RCTs conducted in persons with SUDs, in order to inform future sleep intervention studies in SUD populations. METHODS This study was registered in the International Prospective Register of Systematic Reviews (PROSPERO) on May 7th, 2020 (CRD42020182004). RCTs were reviewed here if they were peer-reviewed manuscripts that included objective measures of sleep in RCTs that sought to improve sleep in persons with SUDs. RESULTS The initial search yielded 13,403 potential articles, with 27 meeting a priori criteria to be included in this review. The most common SUD was alcohol use disorder (59%). The most common technology used to assess sleep was polysomnography (41%), followed by actigraphy (37%), ambulatory polysomnography or components of polysomnography (e.g., electroencephalography; 19%), and at-home sleep apnea testing (7%). The most common sleep outcome reported was total sleep time (96%). CONCLUSIONS There are a range of options to assess objective sleep outcomes. Polysomnography or ambulatory devices that directly measure brain activity are critical to advance medications through the regulatory process for the indication of improving sleep duration, continuity, and/or sleep onset latency outcomes. Actigraphy is also useful in preliminary investigations and in detecting the relationship between diurnal and SUD-related behaviors.
Collapse
|
24
|
Jia S, Guo X, Chen Z, Li S, Liu XA. The roles of the circadian hormone melatonin in drug addiction. Pharmacol Res 2022; 183:106371. [PMID: 35907435 DOI: 10.1016/j.phrs.2022.106371] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/19/2022] [Accepted: 07/26/2022] [Indexed: 10/16/2022]
Abstract
Given the devastating social and health consequences of drug addiction and the limitations of current treatments, a new strategy is needed. Circadian system disruptions are frequently associated with drug addiction. Correcting abnormal circadian rhythms and improving sleep quality may thus be beneficial in the treatment of patients with drug addiction. Melatonin, an essential circadian hormone that modulates the biological clock, has anti-inflammatory, analgesic, anti-depressive, and neuroprotective effects via gut microbiota regulation and epigenetic modifications. It has attracted scientists' attention as a potential solution to drug abuse. This review summarized scientific evidence on the roles of melatonin in substance use disorders at the cellular, circuitry, and system levels, and discussed its potential applications as an intervention strategy for drug addiction.
Collapse
Affiliation(s)
- Shuhui Jia
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China; University of Chinese Academy of Sciences, Beijing, China
| | - Xuantong Guo
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China; University of Chinese Academy of Sciences, Beijing, China
| | - Zuxin Chen
- Shenzhen Key Laboratory of Drug Addiction, Shenzhen Neher Neural Plasticity Laboratory, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China; University of Chinese Academy of Sciences, Beijing, China.
| | - Shupeng Li
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Xin-An Liu
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
25
|
Hisler GC, Pedersen SL, Hasler BP. The 24-hour rhythm in alcohol craving and individual differences in sleep characteristics and alcohol use frequency. Alcohol Res 2022; 46:1084-1093. [PMID: 35383960 DOI: 10.1111/acer.14826] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 02/15/2022] [Accepted: 03/30/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Evidence implicates sleep/circadian factors in alcohol use, suggesting the existence of a 24-h rhythm in alcohol craving, which may vary by individual differences in sleep factors and alcohol use frequency. This study sought to (1) replicate prior findings of a 24-h rhythm in alcohol craving, and (2) examine whether individual differences in sleep timing, sleep duration, or alcohol use frequency are related to differences in the timing of the peak of the craving rhythm (i.e., the acrophase) or magnitude of fluctuation of the rhythm (i.e., amplitude). Finally, whether such associations varied by sex or racial identity was explored. METHODS Two-hundred fifteen adult drinkers (21 to 35 years of age, 72% male, 66% self-identified as White) completed a baseline assessment of alcohol use frequency and then smartphone reports of alcohol craving intensity six times a day across 10 days. Sleep timing was also recorded each morning of the 10-day period. Multilevel cosinor analysis was used to test the presence of a 24-h rhythm and to estimate acrophase and amplitude. RESULTS Multilevel cosinor analysis revealed a 24-h rhythm in alcohol craving. Individual differences in sleep timing or sleep duration did not predict rhythm acrophase or amplitude. However, alcohol use frequency moderated this rhythm wherein individuals who used alcohol more frequently in the 30 days prior to beginning the study had higher mean levels of craving and greater rhythm amplitudes (i.e., greater rhythmic fluctuations). Associations did not vary by sex or racial identity. CONCLUSIONS Results show that alcohol craving exhibits a systematic rhythm over the course of the 24 h and that the frequency of alcohol use may be relevant to the shape of this rhythm. Consideration of daily rhythms in alcohol craving may further our understanding of the mechanisms that drive alcohol use.
Collapse
Affiliation(s)
- Garrett C Hisler
- University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Sarah L Pedersen
- University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Brant P Hasler
- University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
26
|
Cousin L, Roucoux G, Petit AS, Baumann-Coblentz L, Torrente OR, Cannafarina A, Chassany O, Duracinsky M, Carrieri P. Perceived stigma, substance use and self-medication in night-shift healthcare workers: a qualitative study. BMC Health Serv Res 2022; 22:698. [PMID: 35610623 PMCID: PMC9128768 DOI: 10.1186/s12913-022-08018-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 04/06/2022] [Indexed: 11/10/2022] Open
Abstract
Background Many risk factors related to altered circadian rhythms impact the health of night-shift hospital workers (NSHW), resulting in mental and somatic disorders. Easy access to psychoactive substances (PS) may facilitate addictive behaviors in NSHW. They are also exposed to a stressful work environment, which may further affect sleep quality. This study aimed to explore the link between sleep deprivation, work-related psychosocial stress and psychoactive substance use as a self-medication response in NSHW. Methods Qualitative study to verify the plausibility of the self-medication theory applied to addictive behaviors. Semi-structured interviews (N = 18 NSHW) and thematic analysis, following consolidated criteria for reporting qualitative research recommendations. Results Stigma against NSHW was a primary element of a stressful work environment. The stressful and stigmatizing environment, together with night-shift work, further affected NSHW sleep and their mental and physical health. The use of PS appeared to be for self-medication, encouraged by social and professional environments, source(s) of stress, discrimination, and isolation. The work environment, through aggravated sleep disorders, led NSHW to use non-prescribed sleeping pills. Alcohol after work and smoking were used as a social break but also as a means to reduce stress. Conclusion Anti-stigma interventions in the healthcare setting and screening of mental/somatic disorders in NSHW can help reduce harmful self-medication behaviors and improve hospital care in the COVID-19 era. Supplementary Information The online version contains supplementary material available at 10.1186/s12913-022-08018-x.
Collapse
Affiliation(s)
- Lorraine Cousin
- Unité de Recherche Clinique en Economie de La Santé (URC-ECO), AP-HP, Hôpital Hôtel-Dieu, F-75004, Paris, France. .,Patient-Reported Outcomes Unit (PROQOL), UMRS 1123, Université Paris Cité, INSERM, F-75004, Paris, France. .,Groupe de Recherche en Psychologie Sociale (UR GRePS), Université Lyon 2, Bron, France.
| | - Guillaume Roucoux
- Unité de Recherche Clinique en Economie de La Santé (URC-ECO), AP-HP, Hôpital Hôtel-Dieu, F-75004, Paris, France.,Patient-Reported Outcomes Unit (PROQOL), UMRS 1123, Université Paris Cité, INSERM, F-75004, Paris, France
| | - Anne Sophie Petit
- Unité de Recherche Clinique en Economie de La Santé (URC-ECO), AP-HP, Hôpital Hôtel-Dieu, F-75004, Paris, France.,Groupe de Recherche en Psychologie Sociale (UR GRePS), Université Lyon 2, Bron, France
| | | | - Olivia Rousset Torrente
- Unité de Recherche Clinique en Economie de La Santé (URC-ECO), AP-HP, Hôpital Hôtel-Dieu, F-75004, Paris, France.,Patient-Reported Outcomes Unit (PROQOL), UMRS 1123, Université Paris Cité, INSERM, F-75004, Paris, France
| | - Adriano Cannafarina
- Unité de Recherche Clinique en Economie de La Santé (URC-ECO), AP-HP, Hôpital Hôtel-Dieu, F-75004, Paris, France.,Patient-Reported Outcomes Unit (PROQOL), UMRS 1123, Université Paris Cité, INSERM, F-75004, Paris, France
| | - Olivier Chassany
- Unité de Recherche Clinique en Economie de La Santé (URC-ECO), AP-HP, Hôpital Hôtel-Dieu, F-75004, Paris, France.,Patient-Reported Outcomes Unit (PROQOL), UMRS 1123, Université Paris Cité, INSERM, F-75004, Paris, France
| | - Martin Duracinsky
- Unité de Recherche Clinique en Economie de La Santé (URC-ECO), AP-HP, Hôpital Hôtel-Dieu, F-75004, Paris, France.,Patient-Reported Outcomes Unit (PROQOL), UMRS 1123, Université Paris Cité, INSERM, F-75004, Paris, France.,Département de Médecine Interne Et d'immunologie Clinique, Hôpital Bicêtre, AP-HP, 94275, Kremlin Bicêtre, France
| | - Patrizia Carrieri
- Aix Marseille Univ, Inserm, IRD, SESSTIM, Sciences Economiques & Sociales de la Santé et Traitement de l'Information Médicale, ISSPAM, Marseille, France
| |
Collapse
|
27
|
Becker-Krail DD, Walker WH, Nelson RJ. The Ventral Tegmental Area and Nucleus Accumbens as Circadian Oscillators: Implications for Drug Abuse and Substance Use Disorders. Front Physiol 2022; 13:886704. [PMID: 35574492 PMCID: PMC9094703 DOI: 10.3389/fphys.2022.886704] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/04/2022] [Indexed: 12/15/2022] Open
Abstract
Circadian rhythms convergently evolved to allow for optimal synchronization of individuals’ physiological and behavioral processes with the Earth’s 24-h periodic cycling of environmental light and temperature. Whereas the suprachiasmatic nucleus (SCN) is considered the primary pacemaker of the mammalian circadian system, many extra-SCN oscillatory brain regions have been identified to not only exhibit sustainable rhythms in circadian molecular clock function, but also rhythms in overall region activity/function and mediated behaviors. In this review, we present the most recent evidence for the ventral tegmental area (VTA) and nucleus accumbens (NAc) to serve as extra-SCN oscillators and highlight studies that illustrate the functional significance of the VTA’s and NAc’s inherent circadian properties as they relate to reward-processing, drug abuse, and vulnerability to develop substance use disorders (SUDs).
Collapse
Affiliation(s)
- Darius D Becker-Krail
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, United States
| | - William H Walker
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, United States
| | - Randy J Nelson
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, United States
| |
Collapse
|
28
|
Sharma R, Parikh M, Mishra V, Sahota P, Thakkar M. Activation of dopamine D2 receptors in the medial shell region of the nucleus accumbens increases Per1 expression to enhance alcohol consumption. Addict Biol 2022; 27:e13133. [PMID: 35032086 DOI: 10.1111/adb.13133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 10/04/2021] [Accepted: 12/10/2021] [Indexed: 11/28/2022]
Abstract
Circadian genes, including Per1, in the medial shell region of nucleus accumbens (mNAcSh), regulate binge alcohol consumption. However, the upstream mechanism regulating circadian genes-induced alcohol consumption is not known. Since activation of dopamine D2 receptors (D2R) increases Per1 gene expression, we hypothesised that local infusion of quinpirole, a D2R agonist, by increasing Per1 gene expression in the mNAcSh, will increase binge alcohol consumption in mice. We performed two experiments on male C57BL/6J mice, instrumented with bilateral guide cannulas above the mNAcSh, and exposed to a 4-day drinking-in-dark (DID) paradigm. The first experiment determined the effects of bilateral infusion of quinpirole (100 ng/300 nl/site) or DMSO (Vehicle group) in the mNAcSh on Per1 gene expression and alcohol consumption. The second experiment determined the effect of antisense-induced downregulation of Per1 in the mNAcSh on the quinpirole-induced increase in alcohol consumption. Control experiments were performed by exposing the animals to sucrose (10% w/v). After the experiment, animals were euthanised, brains removed and processed for localisation of injection sites and analysis of Per1 gene expression in the mNAcSh. As compared with the DMSO, local bilateral infusion of quinpirole significantly increased the expression of Per1 in the mNAcSh along with an increase in the amount of alcohol consumed in mice exposed to DID paradigm. In addition, local antisense-induced downregulation of Per1 significantly attenuated the effects of intro-accumbal infusion of quinpirole on alcohol consumption. Our results suggest that Per1 in the mNAcSh mediates D2R activation-induced increase in alcohol consumption.
Collapse
Affiliation(s)
- Rishi Sharma
- Harry S. Truman Memorial Veterans Hospital and Department of Neurology, University of Missouri, Columbia, Missouri, USA
| | - Meet Parikh
- Harry S. Truman Memorial Veterans Hospital and Department of Neurology, University of Missouri, Columbia, Missouri, USA
| | - Vaibhav Mishra
- Harry S. Truman Memorial Veterans Hospital and Department of Neurology, University of Missouri, Columbia, Missouri, USA
| | - Pradeep Sahota
- Harry S. Truman Memorial Veterans Hospital and Department of Neurology, University of Missouri, Columbia, Missouri, USA
| | - Mahesh Thakkar
- Harry S. Truman Memorial Veterans Hospital and Department of Neurology, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
29
|
Berro LF, Roehrs T. Catching up on sleep: Recent evidence on the role of sleep in substance use disorders. Pharmacol Biochem Behav 2022; 213:173330. [PMID: 34995638 DOI: 10.1016/j.pbb.2022.173330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The objective of this editorial is to summarize the findings published in the special issue on "Sleep and Drug Abuse". The manuscripts in this issue include review articles as well as original investigations, and cover topics ranging from pre-clinical investigation to epidemiological-based clinical studies. Together, these papers provide evidence that sleep and drug abuse share a bidirectional relationship, with sleep playing a prominent role in substance use disorders. The knowledge included here can inform treatment development and future research endeavors, clearly pointing to the need for attention that focuses on sleep quality in the treatment of substance use disorders.
Collapse
Affiliation(s)
- Laís F Berro
- Department of Psychiatry & Human Behavior, University of Mississippi Medical Center, 2500 N State Street, Jackson, MS 39216, USA.
| | - Timothy Roehrs
- Department of Psychiatry and Behavioral Neurosciences, School of Medicine, Wayne State University, Detroit, MI, USA; Sleep Disorders Center, Henry Ford Health System, Detroit, MI, USA
| |
Collapse
|
30
|
Babenko V, Redina O, Smagin D, Kovalenko I, Galyamina A, Babenko R, Kudryavtseva N. Dorsal Striatum Transcriptome Profile Profound Shift in Repeated Aggression Mouse Model Converged to Networks of 12 Transcription Factors after Fighting Deprivation. Genes (Basel) 2021; 13:genes13010021. [PMID: 35052361 PMCID: PMC8774333 DOI: 10.3390/genes13010021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/11/2021] [Accepted: 12/18/2021] [Indexed: 01/18/2023] Open
Abstract
Both aggressive and aggression-deprived (AD) species represent pathologic cases intensely addressed in psychiatry and substance abuse disciplines. Previously, we reported that AD mice displayed a higher aggressive behavior score than the aggressive group, implying the manifestation of a withdrawal effect. We employed an animal model of chronic social conflicts, curated in our lab for more than 30 years. In the study, we pursued the task of evaluating key events in the dorsal striatum transcriptome of aggression experienced mice and AD species compared to controls using RNA-Seq profiling. Aggressive species were subjected to repeated social conflict encounters (fights) with regular positive (winners) experience in the course of 20 consecutive days (A20 group). This led to a profoundly shifted transcriptome expression profile relative to the control group, outlined by more than 1000 differentially expressed genes (DEGs). RNA-Seq cluster analysis revealed that elevated cyclic AMP (cAMP) signaling cascade and associated genes comprising 170 differentially expressed genes (DEGs) in aggressive (A20) species were accompanied by a downturn in the majority of other metabolic/signaling gene networks (839 DEGs) via the activation of transcriptional repressor DEGs. Fourteen days of a consecutive fighting deprivation period (AD group) featured the basic restoration of the normal (control) transcriptome expression profile yielding only 62 DEGs against the control. Notably, we observed a network of 12 coordinated DEG Transcription Factor (TF) activators from 62 DEGs in total that were distinctly altered in AD compared to control group, underlining the distinct transcription programs featuring AD group, partly retained from the aggressive encounters and not restored to normal in 14 days. We found circadian clock TFs among them, reported previously as a withdrawal effect factor. We conclude that the aggressive phenotype selection with positive reward effect (winning) manifests an addiction model featuring a distinct opioid-related withdrawal effect in AD group. Along with reporting profound transcriptome alteration in A20 group and gaining some insight on its specifics, we outline specific TF activator gene networks associated with transcriptional repression in affected species compared to controls, outlining Nr1d1 as a primary candidate, thus offering putative therapeutic targets in opioid-induced withdrawal treatment.
Collapse
Affiliation(s)
- Vladimir Babenko
- FRC Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (O.R.); (D.S.); (I.K.); (A.G.); (R.B.); (N.K.)
- Correspondence:
| | - Olga Redina
- FRC Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (O.R.); (D.S.); (I.K.); (A.G.); (R.B.); (N.K.)
| | - Dmitry Smagin
- FRC Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (O.R.); (D.S.); (I.K.); (A.G.); (R.B.); (N.K.)
| | - Irina Kovalenko
- FRC Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (O.R.); (D.S.); (I.K.); (A.G.); (R.B.); (N.K.)
| | - Anna Galyamina
- FRC Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (O.R.); (D.S.); (I.K.); (A.G.); (R.B.); (N.K.)
| | - Roman Babenko
- FRC Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (O.R.); (D.S.); (I.K.); (A.G.); (R.B.); (N.K.)
| | - Natalia Kudryavtseva
- FRC Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (O.R.); (D.S.); (I.K.); (A.G.); (R.B.); (N.K.)
- Pavlov Institute of Physiology, Russian Academy of Sciences, 199034 Saint Petersburg, Russia
| |
Collapse
|
31
|
Hashemzadeh I, Marquez-Arrico JE, Hashemzadeh K, Navarro JF, Adan A. Circadian Functioning and Quality of Life in Substance Use Disorder Patients With and Without Comorbid Major Depressive Disorder. Front Psychiatry 2021; 12:750500. [PMID: 34777054 PMCID: PMC8586202 DOI: 10.3389/fpsyt.2021.750500] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/27/2021] [Indexed: 01/04/2023] Open
Abstract
Aim: Although a relationship between circadian disruption and development of several psychiatric disorders, such as major depressive disorder (MDD) and substance use disorder (SUD), has been observed, knowledge on this area is scarce yet. Therefore, this study aims to analyze the circadian functioning and quality of life (QOL) in SUD patients with and without comorbid MDD, two highly prevalent clinical entities with difficult therapeutic management. Methods: One hundred sixty-three male patients under treatment, 81 with SUD and 82 with SUD comorbid major depressive disorder (SUD + MDD), were evaluated. For the circadian functioning assessment, we calculated Social Jet Lag (SJL) and used the reduced Morningness-Eveningness Questionnaire (rMEQ) and the Pittsburgh Sleep Quality Index (PSQI). QOL was measured using the shortened version of the World Health Organization's Quality of Life Questionnaire (WHOQOL-BREF). We collected sociodemographic and clinical variables to evaluate their possible influence on the circadian functioning. Intergroup differences among the variables were examined by different analyses of covariance (ANCOVA and MANCOVA). The possible relationships of quantitative clinical variables with rMEQ, PSQI, and WHOQOL-BREF were explored using bivariate correlation analysis. Results: Lower SJL appears in the SUD + MDD group compared with SUD. The intermediate-type was more prevalent in the SUD group, while a higher percentage of morning-type patients was found in the SUD + MDD. Sleep quality (including latency and daytime dysfunction) was worse for SUD + MDD patients than for SUD even after controlling age and age of SUD onset variables. Last, QOL was poorer in patients with SUD + MDD and, for them, psychological health had a negative relationship with SJL and severity of depression. Conclusions: Our data support and extend previous findings indicating that SUD + MDD is associated with worse clinical characteristics, more sleep problems, and poorer QOL than SUD patients. These results underline the importance of a precise assessment of these measurements in future studies conducted in SUD patients with/without MDD comorbidity that could be considered from a therapeutic point of view.
Collapse
Affiliation(s)
- Iman Hashemzadeh
- Department of Clinical Psychology and Psychobiology, School of Psychology, University of Barcelona, Barcelona, Spain
| | - Julia E Marquez-Arrico
- Department of Clinical Psychology and Psychobiology, School of Psychology, University of Barcelona, Barcelona, Spain
| | - Kosar Hashemzadeh
- Department of Psychology, Fasa Branch, Islamic Azad University, Fasa, Iran
| | | | - Ana Adan
- Department of Clinical Psychology and Psychobiology, School of Psychology, University of Barcelona, Barcelona, Spain.,Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| |
Collapse
|