1
|
Chen H, Qi Y, Wang Y, Liu J, Lu R, Zhao X, Chen R, Wang Y, Zhu L, Sun S, Hu J, Yang L, An G. LsBLH2-LsOFP6-LsKANT3 module regulates bolting by orchestrating the gibberellin biosynthesis and metabolism in lettuce. PLANT BIOTECHNOLOGY JOURNAL 2025; 23:1668-1682. [PMID: 39932895 PMCID: PMC12018825 DOI: 10.1111/pbi.14614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/21/2025] [Accepted: 01/22/2025] [Indexed: 02/13/2025]
Abstract
Lettuce is one of the most important vegetables worldwide. Bolting time is an important agronomic trait in lettuce production. Premature bolting reduces crop quality and marketability. Here, we genetically clone the LsBLH2 gene controlling bolting time in lettuce. LsBLH2 encodes a BEL1-like homeodomain protein. In the late bolting parent, the LsBLH2 had a 1-bp deletion in exon 1 which leads to a premature stop codon. CRISPR/cas9 knocking out and complementary tests showed that the loss-of-function of LsBLH2 delays bolting in lettuce. ChIP-seq, gene expression and phytohormone analysis showed that LsBLH2 regulates the gibberellin (GA) biosynthesis and metabolism. LsBLH2 binds to the promoter of the LsGA20ox1 and LsGA2ox8 and regulates their expression, leading to the bioactive GA accumulation during the vegetative-to-reproductive phase transition. Both LsOFP6 and LsKNAT3 interact with LsBLH2 and regulate bolting in a LsBLH2-dependent manner. LsOFP6 promotes, while LsKNAT3 suppresses the effects of LsBLH2 on GA biosynthesis during the transition and rosette stage in lettuce, respectively. In summary, the LsBLH2-LsOFP6-LsKANT3 module orchestrates bioactive GA accumulation to regulate bolting in lettuce, which provides insight into the bolting development process and offers new approaches for lettuce breeding to prevent premature bolting.
Collapse
Affiliation(s)
- Haoyu Chen
- College of HorticultureHenan Agricultural UniversityZhengzhouChina
| | | | - Yong Wang
- College of HorticultureHenan Agricultural UniversityZhengzhouChina
| | - Jie Liu
- Henan OULAND Seed Industry Co., Ltd.ZhengzhouChina
| | - Ruirui Lu
- Weihui Bureau of Agriculture and Rural AffairsXinxiangChina
| | - Xinhui Zhao
- College of HorticultureHenan Agricultural UniversityZhengzhouChina
| | - Ruiyu Chen
- College of HorticultureHenan Agricultural UniversityZhengzhouChina
| | - Yueji Wang
- College of HorticultureHenan Agricultural UniversityZhengzhouChina
| | - Lei Zhu
- College of HorticultureHenan Agricultural UniversityZhengzhouChina
| | - Shouru Sun
- College of HorticultureHenan Agricultural UniversityZhengzhouChina
| | - Jianbin Hu
- College of HorticultureHenan Agricultural UniversityZhengzhouChina
| | - Luming Yang
- College of HorticultureHenan Agricultural UniversityZhengzhouChina
| | - Guanghui An
- College of HorticultureHenan Agricultural UniversityZhengzhouChina
| |
Collapse
|
2
|
Liu L, Lu W, Fan S, Yang Y. Genome-wide identification and characterization of the KNOX gene family in Vitis amurensis. PeerJ 2025; 13:e19250. [PMID: 40226548 PMCID: PMC11992975 DOI: 10.7717/peerj.19250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 03/12/2025] [Indexed: 04/15/2025] Open
Abstract
Background The KNOX (KNOTTED1-like homeobox gene) gene family plays a pivotal role in controlling plant growth, maturation, and morphogenesis. However, the function of KNOX in Vitis amurensis has not yet been reported. This study identified and characterized the entire KNOX gene family in Vitis amurensis. Methods By employing bioinformatic approaches, the phylogenetic relationships, chromosomal positions, gene architectures, conserved motifs, cis-regulatory elements present in promoter regions, and gene expression profiles of KNOX gene family members in Vitis amurensis were identified and analyzed. Results Ten KNOX genes spanning nine chromosomes were discovered, and these genes were subsequently categorized into two distinct subclasses. The promoter regions of members of the KNOX gene family include cis-acting elements that are involved in plant growth, hormonal regulation, and stress and light responses. An examination of the expression profiles of KNOX genes in different tissues of Vitis amurensis revealed that genes in Class I presented tissue-specific expression patterns, whereas genes belonging to Class II presented more ubiquitous expression across various tissues. The expression levels of Vitis amurensis KNOTTED1-like homeobox (VaKNOX)2, VaKNOX3, and VaKNOX5 were highest in fruits. VaKNOX2, VaKNOX3, and VaKNOX5 can serve as candidate genes for enhancing fruit quality. The expression levels of VaKNOX6 and VaKNOX7 were much higher in cold environments than in normal conditions. Through in-depth research into the functions of VaKNOX6 and VaKNOX7, we aimed to improve the cold resistance of grapevine varieties.
Collapse
Affiliation(s)
- Linling Liu
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Wenpeng Lu
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Shutian Fan
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Yiming Yang
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| |
Collapse
|
3
|
Liu P, Tang J, Lei Y, Zhang L, Ye J, Wang C, Zhou L, Liu Y, Wang Z, Jiang J, Chen F, Song A. Construction of the KNOX-BELL interaction network and functional analysis of CmBLH2 under cold stress in Chrysanthemum morifolium. Int J Biol Macromol 2025; 293:139365. [PMID: 39743079 DOI: 10.1016/j.ijbiomac.2024.139365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 12/23/2024] [Accepted: 12/29/2024] [Indexed: 01/04/2025]
Abstract
The three-amino-acid-loop-extension (TALE) homeodomain transcription factor family, including the KNOX and BELL subfamilies, is one of the largest gene families in plants. This family encodes plant-specific transcription factors that play critical roles in regulating plant growth, development, and stress responses. However, their interaction network, as well as resistant functional mechanism in is rarely reported. In this study, 60 members of the TALE transcription factor family in chrysanthemum (Chrysanthemum morifolium) were systematically identified. These genes are distributed across 27 chromosomes, with most originating from whole-genome duplication events. Through comprehensive analyses of evolution, gene structure, and cis-regulatory elements, the expression patterns of these genes were elucidated, highlighting their roles in various developmental stages and stress responses, thereby expanding our understanding of the TALE gene family's functions in plants. Additionally, a KNOX-BELL protein interaction network in chrysanthemum was constructed, revealing 31 interaction pairs, including seven previously unreported combinations. The study also finds that the overexpression of CmBLH2 enhanced the activity of antioxidant system, reducing cellular damage under cold stress, while RNAi lines exhibited lower reactive oxygen species scavenging capacity. This research lays the foundation for further investigation of the TALE gene family's roles in development and stress responses in chrysanthemum and other species.
Collapse
Affiliation(s)
- Peixue Liu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Sanya Institute of Nanjing Agricultural University, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing 210014, China.
| | - Jing Tang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Sanya Institute of Nanjing Agricultural University, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing 210014, China.
| | - Yating Lei
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Sanya Institute of Nanjing Agricultural University, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing 210014, China.
| | - Lingling Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Sanya Institute of Nanjing Agricultural University, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing 210014, China.
| | - Jingxuan Ye
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Sanya Institute of Nanjing Agricultural University, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing 210014, China.
| | - Chun Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Sanya Institute of Nanjing Agricultural University, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing 210014, China.
| | - Lijie Zhou
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Sanya Institute of Nanjing Agricultural University, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing 210014, China.
| | - Ye Liu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Sanya Institute of Nanjing Agricultural University, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing 210014, China.
| | - Zhenxing Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Sanya Institute of Nanjing Agricultural University, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing 210014, China.
| | - Jiafu Jiang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Sanya Institute of Nanjing Agricultural University, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing 210014, China.
| | - Fadi Chen
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Sanya Institute of Nanjing Agricultural University, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing 210014, China.
| | - Aiping Song
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Sanya Institute of Nanjing Agricultural University, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing 210014, China.
| |
Collapse
|
4
|
Guo J, Luo D, Chen Y, Li F, Gong J, Yu F, Zhang W, Qi J, Guo C. Spatiotemporal transcriptome atlas reveals gene regulatory patterns during the organogenesis of the rapid growing bamboo shoots. THE NEW PHYTOLOGIST 2024; 244:1057-1073. [PMID: 39140996 DOI: 10.1111/nph.20059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/30/2024] [Indexed: 08/15/2024]
Abstract
Bamboo with its remarkable growth rate and economic significance, offers an ideal system to investigate the molecular basis of organogenesis in rapidly growing plants, particular in monocots, where gene regulatory networks governing the maintenance and differentiation of shoot apical and intercalary meristems remain a subject of controversy. We employed both spatial and single-nucleus transcriptome sequencing on 10× platform to precisely dissect the gene functions in various tissues and early developmental stages of bamboo shoots. Our comprehensive analysis reveals distinct cell trajectories during shoot development, uncovering critical genes and pathways involved in procambium differentiation, intercalary meristem formation, and vascular tissue development. Spatial and temporal expression patterns of key regulatory genes, particularly those related to hormone signaling and lipid metabolism, strongly support the hypothesis that intercalary meristem origin from surrounded parenchyma cells. Specific gene expressions in intercalary meristem exhibit regular and dispersed distribution pattern, offering clues for understanding the intricate molecular mechanisms that drive the rapid growth of bamboo shoots. The single-nucleus and spatial transcriptome analysis reveal a comprehensive landscape of gene activity, enhancing the understanding of the molecular architecture of organogenesis and providing valuable resources for future genomic and genetic studies relying on identities of specific cell types.
Collapse
Affiliation(s)
- Jing Guo
- Jiangxi Provincial Key Laboratory for Bamboo Germplasm Resources and Utilization, Forestry College, Jiangxi Agricultural University, Nanchang, 330045, China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Dan Luo
- Jiangxi Provincial Key Laboratory for Bamboo Germplasm Resources and Utilization, Forestry College, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Yamao Chen
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Fengjiao Li
- Jiangxi Provincial Key Laboratory for Bamboo Germplasm Resources and Utilization, Forestry College, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Jiajia Gong
- Jiangxi Provincial Key Laboratory for Bamboo Germplasm Resources and Utilization, Forestry College, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Fen Yu
- Jiangxi Provincial Key Laboratory for Bamboo Germplasm Resources and Utilization, Forestry College, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Wengen Zhang
- Jiangxi Provincial Key Laboratory for Bamboo Germplasm Resources and Utilization, Forestry College, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Ji Qi
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Chunce Guo
- Jiangxi Provincial Key Laboratory for Bamboo Germplasm Resources and Utilization, Forestry College, Jiangxi Agricultural University, Nanchang, 330045, China
| |
Collapse
|
5
|
Jiao Y, Tan J, Guo H, Huang B, Ying Y, Ramakrishnan M, Zhang Z. Genome-wide analysis of the KNOX gene family in Moso bamboo: insights into their role in promoting the rapid shoot growth. BMC PLANT BIOLOGY 2024; 24:213. [PMID: 38528453 DOI: 10.1186/s12870-024-04883-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 03/04/2024] [Indexed: 03/27/2024]
Abstract
BACKGROUND KNOTTED1-like homeobox (KNOX) genes, plant-specific homologous box transcription factors (TFs), play a central role in regulating plant growth, development, organ formation, and response to biotic and abiotic stresses. However, a comprehensive genome-wide identification of the KNOX genes in Moso bamboo (Phyllostachys edulis), the fastest growing plant, has not yet been conducted, and the specific biological functions of this family remain unknown. RESULTS The expression profiles of 24 KNOX genes, divided into two subfamilies, were determined by integrating Moso bamboo genome and its transcriptional data. The KNOX gene promoters were found to contain several light and stress-related cis-acting elements. Synteny analysis revealed stronger similarity with rice KNOX genes than with Arabidopsis KNOX genes. Additionally, several conserved structural domains and motifs were identified in the KNOX proteins. The expansion of the KNOX gene family was primarily regulated by tandem duplications. Furthermore, the KNOX genes were responsive to naphthaleneacetic acid (NAA) and gibberellin (GA) hormones, exhibiting distinct temporal expression patterns in four different organs of Moso bamboo. Short Time-series Expression Miner (STEM) analysis and quantitative real-time PCR (qRT-PCR) assays demonstrated that PeKNOX genes may play a role in promoting rapid shoot growth. Additionally, Gene Ontology (GO) and Protein-Protein Interaction (PPI) network enrichment analyses revealed several functional annotations for PeKNOXs. By regulating downstream target genes, PeKNOXs are involved in the synthesis of AUX /IAA, ultimately affecting cell division and elongation. CONCLUSIONS In the present study, we identified and characterized a total of 24 KNOX genes in Moso bamboo and investigated their physiological properties and conserved structural domains. To understand their functional roles, we conducted an analysis of gene expression profiles using STEM and RNA-seq data. This analysis successfully revealed regulatory networks of the KNOX genes, involving both upstream and downstream genes. Furthermore, the KNOX genes are involved in the AUX/IAA metabolic pathway, which accelerates shoot growth by influencing downstream target genes. These results provide a theoretical foundation for studying the molecular mechanisms underlying the rapid growth and establish the groundwork for future research into the functions and transcriptional regulatory networks of the KNOX gene family.
Collapse
Affiliation(s)
- Yang Jiao
- Bamboo Industry Institute, Zhejiang A&F University, Lin'an, Hangzhou, 311300, Zhejiang, China
| | - Jiaqi Tan
- Bamboo Industry Institute, Zhejiang A&F University, Lin'an, Hangzhou, 311300, Zhejiang, China
| | - Hui Guo
- Bamboo Industry Institute, Zhejiang A&F University, Lin'an, Hangzhou, 311300, Zhejiang, China
| | - Bin Huang
- Bamboo Industry Institute, Zhejiang A&F University, Lin'an, Hangzhou, 311300, Zhejiang, China
| | - Yeqing Ying
- Bamboo Industry Institute, Zhejiang A&F University, Lin'an, Hangzhou, 311300, Zhejiang, China
| | - Muthusamy Ramakrishnan
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, School of Life Sciences, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Zhijun Zhang
- Bamboo Industry Institute, Zhejiang A&F University, Lin'an, Hangzhou, 311300, Zhejiang, China.
| |
Collapse
|
6
|
Gong X, Chen J, Chen Y, He Y, Jiang D. Advancements in Rice Leaf Development Research. PLANTS (BASEL, SWITZERLAND) 2024; 13:904. [PMID: 38592944 PMCID: PMC10976080 DOI: 10.3390/plants13060904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/14/2024] [Accepted: 03/18/2024] [Indexed: 04/11/2024]
Abstract
Rice leaf morphology is a pivotal component of the ideal plant architecture, significantly impacting rice yield. The process of leaf development unfolds through three distinct stages: the initiation of leaf primordia, the establishment and maintenance of polarity, and leaf expansion. Genes regulating leaf morphology encompass transcription factors, hormones, and miRNAs. An in-depth synthesis and categorization of genes associated with leaf development, particularly those successfully cloned, hold paramount importance in unraveling the complexity of rice leaf development. Furthermore, it provides valuable insights into the potential for molecular-level manipulation of rice leaf types. This comprehensive review consolidates the stages of rice leaf development, the genes involved, molecular regulatory pathways, and the influence of plant hormones. Its objective is to establish a foundational understanding of the creation of ideal rice leaf forms and their practical application in molecular breeding.
Collapse
Affiliation(s)
| | | | | | | | - Dagang Jiang
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; (X.G.); (J.C.); (Y.C.); (Y.H.)
| |
Collapse
|
7
|
Jiao P, Jiang Z, Miao M, Wei X, Wang C, Liu S, Guan S, Ma Y. Zmhdz9, an HD-Zip transcription factor, promotes drought stress resistance in maize by modulating ABA and lignin accumulation. Int J Biol Macromol 2024; 258:128849. [PMID: 38113999 DOI: 10.1016/j.ijbiomac.2023.128849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 12/21/2023]
Abstract
Maize is the largest crop in the world in terms of both planting area and total yield, and it plays a crucial role in ensuring global food and feed security. However, in recent years, with climate deterioration, environmental changes, and the scarcity of freshwater resources, drought has become a serious limiting factor for maize yield and quality. Drought stress-induced signals undergo a series of transmission processes to regulate the expression of specific genes, thereby affecting the drought tolerance of plants at the tissue, cellular, physiological and biochemical levels. Therefore, in this study we investigated the HD-Zip transcription factor gene Zmhdz9, and yeast activation experiments demonstrated that Zmhdz9 exhibited transcriptional activation activity. Under drought stress, high abscisic acid (ABA) and lignin levels significantly improved drought resistance in maize. Yeast two-hybrid, bimolecular fluorescence complementation (BIFC) and pull-down experiments showed that Zmhdz9 interacted with ZmWRKY120 and ZmTCP9, respectively. Overexpression of Zmhdz9 and gene editing of ZmWRKY120 or ZmTCP9 improved maize drought resistance, indicating their importance in the drought stress response. Furthermore, Zmhdz9 promoted the direct transcription of ZmWRKY120 in the W-box, activating elements of the ZmNCED1 promoter, which encodes a key enzyme in ABA biosynthesis. Additionally, Zmhdz9 promoted direct transcription of ZmTCP9 in the GGTCA motif, activating elements of the ZmKNOX8 promoter, which encodes a key enzyme in lignin synthesis. This study showed that the regulation of ABA and lignin by Zmhdz9 is essential for drought stress resistance in maize.
Collapse
Affiliation(s)
- Peng Jiao
- College of Agronomy, Jilin Agricultural University, Changchun 130118, China; Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Zhenzhong Jiang
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Ming Miao
- College of Agronomy, Jilin Agricultural University, Changchun 130118, China; Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Xiaotong Wei
- College of Agronomy, Jilin Agricultural University, Changchun 130118, China; Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Chunlai Wang
- College of Agronomy, Jilin Agricultural University, Changchun 130118, China; Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Siyan Liu
- College of Agronomy, Jilin Agricultural University, Changchun 130118, China; Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Shuyan Guan
- College of Agronomy, Jilin Agricultural University, Changchun 130118, China; Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Jilin Agricultural University, Changchun 130118, China.
| | - Yiyong Ma
- College of Agronomy, Jilin Agricultural University, Changchun 130118, China; Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
8
|
Dai H, Zheng S, Zhang C, Huang R, Yuan L, Tong H. Identification and expression analysis of the KNOX genes during organogenesis and stress responseness in Camellia sinensis (L.) O. Kuntze. Mol Genet Genomics 2023; 298:1559-1578. [PMID: 37922102 DOI: 10.1007/s00438-023-02075-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 09/28/2023] [Indexed: 11/05/2023]
Abstract
Tea plant (Camellia sinensis L.), whose leaves are the major reproductive organs, has been cultivated and consumed widely for its economic and health benefits. The Knotted1-like Homeobox (KNOX) proteins play significant roles in leaf morphology formation and development. However, the functions of KNOX proteins in tea plants are still unknown. Here, 11 CsKNOX genes from the tea plants were cloned and divided into Class I, II, and KNATM clades based on their protein sequences. These 11 CsKNOX genes were mapped on 8 out of 15 tea plant chromosomes, all localized in the nucleus. Specific spatiotemporal expression patterns of CsKNOX genes were found in various tissues and different development periods of buds, flowers, and roots of tea plants. Meanwhile, transcript levels of CsKNOX in tea leaves were strongly correlated with the accumulation of flavan-3-ols and proanthocyanidins. It was found that most of the CsKNOX genes could respond to drought, salt, cold, and exogenous MeJA and GA3 by analysis of transcriptomics data and promoter elements. The protein interaction analysis showed that CsKNOX could cooperate with CsAS1 and other critical functional proteins. In conclusion, this research provided the basic information for the functions of the CsKNOX family during organogenesis and stress response in tea plants, which was necessary for further functional characterization verification.
Collapse
Affiliation(s)
- Hongwei Dai
- College of Food Science, Southwest University, Chongqing, 400715, People's Republic of China
| | - Shuting Zheng
- College of Food Science, Southwest University, Chongqing, 400715, People's Republic of China
| | - Cheng Zhang
- Nanchuan District's Agricultural Characteristic Industry Development Center of Chongqing Municipality, Chongqing, 408400, People's Republic of China
| | - Rui Huang
- College of Food Science, Southwest University, Chongqing, 400715, People's Republic of China
| | - Lianyu Yuan
- College of Food Science, Southwest University, Chongqing, 400715, People's Republic of China.
| | - Huarong Tong
- College of Food Science, Southwest University, Chongqing, 400715, People's Republic of China.
| |
Collapse
|
9
|
Yu J, Song G, Guo W, Le L, Xu F, Wang T, Wang F, Wu Y, Gu X, Pu L. ZmBELL10 interacts with other ZmBELLs and recognizes specific motifs for transcriptional activation to modulate internode patterning in maize. THE NEW PHYTOLOGIST 2023; 240:577-596. [PMID: 37583092 DOI: 10.1111/nph.19192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/15/2023] [Indexed: 08/17/2023]
Abstract
Plant height is an important agronomic trait that affects crop yield. Elucidating the molecular mechanism underlying plant height regulation is also an important question in developmental biology. Here, we report that a BELL transcription factor, ZmBELL10, positively regulates plant height in maize (Zea mays). Loss of ZmBELL10 function resulted in shorter internodes, fewer nodes, and smaller kernels, while ZmBELL10 overexpression increased plant height and hundred-kernel weight. Transcriptome analysis and chromatin immunoprecipitation followed by sequencing showed that ZmBELL10 recognizes specific sequences in the promoter of its target genes and activates cell division- and cell elongation-related gene expression, thereby influencing node number and internode length in maize. ZmBELL10 interacted with several other ZmBELL proteins via a spatial structure in its POX domain to form protein complexes involving ZmBELL10. All interacting proteins recognized the same DNA sequences, and their interaction with ZmBELL10 increased target gene expression. We identified the key residues in the POX domain of ZmBELL10 responsible for its protein-protein interactions, but these residues did not affect its transactivation activity. Collectively, our findings shed light on the functions of ZmBELL10 protein complexes and provide potential targets for improving plant architecture and yield in maize.
Collapse
Affiliation(s)
- Jia Yu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Guangshu Song
- Maize Research Institute, Jilin Academy of Agricultural Sciences, Gongzhuling, 136100, China
| | - Weijun Guo
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Liang Le
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Fan Xu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ting Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Shangrao Normal University, Shangrao, 334001, China
| | - Fanhua Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yue Wu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiaofeng Gu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Li Pu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
10
|
Zhou R, Fan M, Zhao M, Jiang X, Liu Q. Overexpression of LtKNOX1 from Lilium tsingtauense in Nicotiana benthamiana affects the development of leaf morphology. PLANT SIGNALING & BEHAVIOR 2022; 17:2031783. [PMID: 35139775 PMCID: PMC9176240 DOI: 10.1080/15592324.2022.2031783] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 01/18/2022] [Accepted: 01/18/2022] [Indexed: 05/27/2023]
Abstract
Leaves are the main vegetative organs of the aboveground part of plants and play an important role in plant morphogenesis. KNOTTED-LIKE HOMEOBOX (KNOX) plays a crucial role in regulating leaf cell fate and maintaining leaf development. In this study, we analyzed LtKNOX1 from Lilium tsingtauense and illustrated its function in transgenic plants. Tissue-specific expression analysis indicated that LtKNOX1 was highly expressed in stems, young flower buds, and shoot apical meristems (SAMs). Ectopic overexpression of LtKNOX1 in Nicotiana benthamiana suggested that transformants with mild phenotypes were characterized by foliar wrinkles and mildly curled leaves; transformants with intermediate phenotypes showed severely crimped blades and narrow leaf angles, and the most severe phenotypes lacked normal SAMs and leaves. Moreover, the expression levels of genes involved in the regulation of KNOX in transgenic plants were detected, including ASYMMETRIC LEAVES1, PIN-FORMED 1, GA20-oxidase, CUP-SHAPED COTYLEDON 2, CLAVATA 1 and WUSCHEL(WUS), and the expression of other genes were down-regulated except WUS. This study contributes to our understanding of the LtKNOX1 function.
Collapse
Affiliation(s)
- Rui Zhou
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Menglong Fan
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang, China
| | - Mei Zhao
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Xinqiang Jiang
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Qinghua Liu
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, Shandong, China
| |
Collapse
|
11
|
Genome-Wide Identification of Wheat KNOX Gene Family and Functional Characterization of TaKNOX14-D in Plants. Int J Mol Sci 2022; 23:ijms232415918. [PMID: 36555558 PMCID: PMC9784718 DOI: 10.3390/ijms232415918] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
The KNOX genes play important roles in maintaining SAM and regulating the development of plant leaves. However, the TaKNOX genes in wheat are still not well understood, especially their role in abiotic stress. In this study, a total of 36 KNOX genes were identified, and we demonstrated the function of the TaKNOX14-D gene under mechanical injury and cold stress. Thirty-six TaKNOX genes were divided into two groups, and thirty-four TaKNOX genes were predicted to be located in the nucleus by Cell-PLoc. These genes contained five tandem duplications. Fifteen collinear gene pairs were exhibited in wheat and rice, one collinear gene pair was exhibited in wheat and Arabidopsis. The phylogenetic tree and motif analysis suggested that the TaKNOX gene appeared before C3 and C4 diverged. Gene structure showed that the numbers of exons and introns in TaKNOX gene are different. Wheat TaKNOX genes showed different expression patterns during the wheat growth phase, with seven TaKNOX genes being highly expressed in the whole growth period. These seven genes were also highly expressed in most tissues, and also responded to most abiotic stress. Eleven TaKNOX genes were up-regulated in the tillering node during the leaf regeneration period after mechanical damage. When treating the wheat with different hormones, the expression patterns of TaKNOX were changed, and results showed that ABA promoted TaKNOX expression and seven TaKNOX genes were up-regulated under cytokinin and auxin treatment. Overexpression of the TaKNOX14-D gene in Arabidopsis could increase the leaf size, plant height and seed size. This gene overexpression in Arabidopsis also increased the compensatory growth capacity after mechanical damage. Overexpression lines also showed high resistance to cold stress. This study provides a better understanding of the TaKNOX genes.
Collapse
|
12
|
Borah P, Ni F, Ying W, Zhuang H, Chong SL, Hu XG, Yang J, Lin EP, Huang H. Genome-wide identification and characterization of OVATE family proteins in Betula luminifera reveals involvement of BlOFP3 and BlOFP5 genes in leaf development. FRONTIERS IN PLANT SCIENCE 2022; 13:950936. [PMID: 36311104 PMCID: PMC9613114 DOI: 10.3389/fpls.2022.950936] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
Ovate family proteins (OFP) are plant-specific transcription factors involved in regulating morphologies of the lateral organs, plant growth and development. However, the functional roles of OFP genes in Betula luminifera, an important timber tree species, are not well studied. In this study, we identified 20 BlOFP genes and analyzed their phylogenetic relationship, gene structure, conserved motifs, and cis-elements. Further, expression analysis indicates that BlOFP genes were up-regulated in leaves on the one-year-old branch compared to leaves on the current-year branch and bract, except BlOFP7, BlOFP11, BlOFP14 and BlOFP12. The overexpression of BlOFP3 and BlOFP5 in Arabidopsis thaliana not only resulted in a slower growth rate but also produced sawtooth shape, flatter and darker green rosette leaves. Further investigation showed that the leaf thickness of the transgenic plants was more than double that of the wild type, which was caused by the increasement in the number and size of palisade tissue cells. Furthermore, the expression analysis also indicated that the expressions of several genes related to leaf development were significantly changed in the transgene plants. These results suggested the significant roles of BlOFP3 and BlOFP5 in leaf development. Moreover, protein-protein interaction studies showed that BlOFP3 interacts with BlKNAT5, and BlOFP5 interacts with BlKNAT5, BlBLH6 and BlBLH7. In conclusion, our study demonstrates that BlOFP3 and BlOFP5 were involved in leaf shape and thickness regulation by forming a complex with BlKNAT5, BlBLH6 and BlBLH7. In addition, our study serves as a guide for future functional genomic studies of OFP genes of the B. luminifera.
Collapse
Affiliation(s)
- Priyanka Borah
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Fei Ni
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Weiyang Ying
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Hebi Zhuang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Sun-Li Chong
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Xian-Ge Hu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Jun Yang
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai, China
| | - Er-pei Lin
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Huahong Huang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| |
Collapse
|
13
|
Wang Y, Strauss S, Liu S, Pieper B, Lymbouridou R, Runions A, Tsiantis M. The cellular basis for synergy between RCO and KNOX1 homeobox genes in leaf shape diversity. Curr Biol 2022; 32:3773-3784.e5. [PMID: 36029772 DOI: 10.1016/j.cub.2022.08.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/28/2022] [Accepted: 08/10/2022] [Indexed: 11/18/2022]
Abstract
Leaves of seed plants provide an attractive system to study the development and evolution of form. Leaves show varying degrees of margin complexity ranging from simple, as in Arabidopsis thaliana, to fully dissected into leaflets in the closely related species Cardamine hirsuta. Leaflet formation requires actions of Class I KNOTTED1-LIKE HOMEOBOX (KNOX1) and REDUCED COMPLEXITY (RCO) homeobox genes, which are expressed in the leaves of C. hirsuta but not A. thaliana. Evolutionary studies indicate that diversification of KNOX1 and RCO genes was repeatedly associated with increased leaf complexity. However, whether this gene combination represents a developmentally favored avenue for leaflet formation remains unknown, and the cell-level events through which the combined action of these genes drives leaflet formation are also poorly understood. Here we show, through a genetic screen, that when a C. hirsuta RCO transgene is expressed in A. thaliana, then ectopic KNOX1 expression in leaves represents a preferred developmental path for leaflet formation. Using time-lapse growth analysis, we demonstrate that KNOX1 expression in the basal domain of leaves leads to prolonged and anisotropic cell growth. This KNOX1 action, in synergy with local growth repression by RCO, is instrumental in generating rachises and petiolules, the linear geometrical elements, that bear leaflets in complex leaves. Our results show how the combination of cell-level growth analyses and genetics can help us understand how evolutionary modifications in expression of developmentally important genes are translated into diverse leaf shapes.
Collapse
Affiliation(s)
- Yi Wang
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl von Linne Weg 10, 50829 Cologne, Germany
| | - Sören Strauss
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl von Linne Weg 10, 50829 Cologne, Germany
| | - Shanda Liu
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl von Linne Weg 10, 50829 Cologne, Germany
| | - Bjorn Pieper
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl von Linne Weg 10, 50829 Cologne, Germany
| | - Rena Lymbouridou
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl von Linne Weg 10, 50829 Cologne, Germany
| | - Adam Runions
- Department of Computer Science, University of Calgary, Calgary, AB T2N1N4, Canada
| | - Miltos Tsiantis
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl von Linne Weg 10, 50829 Cologne, Germany.
| |
Collapse
|
14
|
Xia Z, Liu L, Wei Z, Wang F, Shen H, Yan Y. Analysis of Comparative Transcriptome and Positively Selected Genes Reveal Adaptive Evolution in Leaf-Less and Root-Less Whisk Ferns. PLANTS 2022; 11:plants11091198. [PMID: 35567199 PMCID: PMC9103481 DOI: 10.3390/plants11091198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/13/2022] [Accepted: 04/25/2022] [Indexed: 12/01/2022]
Abstract
While roots and leaves have evolved independently in lycophytes, ferns and seed plants, there is still confusion regarding the morphological evolution of ferns, especially in whisk ferns, which lack true leaves and roots and instead only exhibit leaf-like appendages and absorptive rhizoids. In this study, analyses of comparative transcriptomics on positively selected genes were performed to provide insights into the adaptive evolution of whisk fern morphologies. Significantly clustered gene families specific to whisk ferns were mainly enriched in Gene Ontology (GO) terms “binding proteins” and “transmembrane transporter activity”, and positive selection was detected in genes involved in transmembrane transporter activities and stress response (e.g., sodium/hydrogen exchanger and heat shock proteins), which could be related to the adaptive evolution of tolerance to epiphytic environments. The analysis of TF/TR gene family sizes indicated that some rapidly evolving gene families (e.g., the GRF and the MADS-MIKC families) related to the development of morphological organs were commonly reduced in whisk ferns and ophioglossoid ferns. Furthermore, the WUS homeobox-containing (WOX) gene family and the knotted1-like homeobox (KNOX) gene family, both associated with root and leaf development, were phylogenetically conserved in whisk ferns and ophioglossoid ferns. In general, our results suggested that adaptive evolution to epiphytic environments might have occurred in whisk ferns. We propose that the simplified and reduced leaf and root system in whisk ferns is the result of reduction from the common ancestor of whisk ferns and ophioglossoid ferns, rather than an independent origin.
Collapse
Affiliation(s)
- Zengqiang Xia
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, The National Orchid Conservation Center of China and The Orchid Conservation and Research Center of Shenzhen, Shenzhen 518114, China; (Z.X.); (Z.W.)
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
- CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China;
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Liu
- CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China;
| | - Zuoying Wei
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, The National Orchid Conservation Center of China and The Orchid Conservation and Research Center of Shenzhen, Shenzhen 518114, China; (Z.X.); (Z.W.)
- College of Life and Sciences, Shanghai Normal University, Shanghai 201602, China
| | - Faguo Wang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China;
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Hui Shen
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
- Correspondence: (H.S.); (Y.Y.)
| | - Yuehong Yan
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, The National Orchid Conservation Center of China and The Orchid Conservation and Research Center of Shenzhen, Shenzhen 518114, China; (Z.X.); (Z.W.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: (H.S.); (Y.Y.)
| |
Collapse
|
15
|
Kusnandar AS, Itoh JI, Sato Y, Honda E, Hibara KI, Kyozuka J, Naramoto S. NARROW AND DWARF LEAF 1, the Ortholog of Arabidopsis ENHANCER OF SHOOT REGENERATION1/DORNRÖSCHEN, Mediates Leaf Development and Maintenance of the Shoot Apical Meristem in Oryza sativa L. PLANT & CELL PHYSIOLOGY 2022; 63:265-278. [PMID: 34865135 DOI: 10.1093/pcp/pcab169] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 11/26/2021] [Accepted: 12/02/2021] [Indexed: 06/13/2023]
Abstract
The molecular basis for leaf development, a major focus in developmental biology, remains unclear in the monocotyledonous grass, rice (Oryza sativa). Here, we performed a mutant screen in rice and identified an AP2-type transcription factor family protein, NARROW AND DWARF LEAF1 (NDL1). NDL1 is the ortholog of Arabidopsis thaliana (subsequently called Arabidopsis) ENHANCER OF SHOOT REGENERATION1 (ESR1)/DORNRÖSCHEN (DRN) and mediates leaf development and maintenance of the shoot apical meristem (SAM). Loss of function of NDL1 results in bladeless leaves and SAMs that are flat, rather than dome-shaped, and lack cell proliferation activity. This loss of function also causes reduced auxin signaling. Moreover, as is the case with Arabidopsis ESR1/DRN, NDL1 plays crucial roles in shoot regeneration. Importantly, we found that NDL1 is not expressed in the SAM but is expressed in leaf primordia. We propose that NDL1 cell autonomously regulates leaf development, but non-cell autonomously regulates SAM maintenance in rice.
Collapse
Affiliation(s)
| | - Jun-Ichi Itoh
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657 Japan
| | - Yutaka Sato
- Department of Genomics and Evolutionary Biology, National Institute of Genetics, Mishima, Shizuoka, 411-8540 Japan
| | - Eriko Honda
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657 Japan
| | - Ken-Ichiro Hibara
- Graduate School of Agricultural Regional Vitalization, Kibi International University, Minamiawaji, Hyogo, 656-0484 Japan
| | - Junko Kyozuka
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, 980-8577 Japan
| | - Satoshi Naramoto
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo, Hokkaido, 060-0810 Japan
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, 980-8577 Japan
| |
Collapse
|
16
|
Wang H, Tong X, Tang L, Wang Y, Zhao J, Li Z, Liu X, Shu Y, Yin M, Adegoke TV, Liu W, Wang S, Xu H, Ying J, Yuan W, Yao J, Zhang J. RLB (RICE LATERAL BRANCH) recruits PRC2-mediated H3K27 tri-methylation on OsCKX4 to regulate lateral branching. PLANT PHYSIOLOGY 2022; 188:460-476. [PMID: 34730827 PMCID: PMC8774727 DOI: 10.1093/plphys/kiab494] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 09/24/2021] [Indexed: 05/26/2023]
Abstract
Lateral branches such as shoot and panicle are determining factors and target traits for rice (Oryza sativa L.) yield improvement. Cytokinin promotes rice lateral branching; however, the mechanism underlying the fine-tuning of cytokinin homeostasis in rice branching remains largely unknown. Here, we report the map-based cloning of RICE LATERAL BRANCH (RLB) encoding a nuclear-localized, KNOX-type homeobox protein from a rice cytokinin-deficient mutant showing more tillers, sparser panicles, defected floret morphology as well as attenuated shoot regeneration from callus. RLB directly binds to the promoter and represses the transcription of OsCKX4, a cytokinin oxidase gene with high abundance in panicle branch meristem. OsCKX4 over-expression lines phenocopied rlb, which showed upregulated OsCKX4 levels. Meanwhile, RLB physically binds to Polycomb repressive complex 2 (PRC2) components OsEMF2b and co-localized with H3K27me3, a suppressing histone modification mediated by PRC2, in the OsCKX4 promoter. We proposed that RLB recruits PRC2 to the OsCKX4 promoter to epigenetically repress its transcription, which suppresses the catabolism of cytokinin, thereby promoting rice lateral branching. Moreover, antisense inhibition of OsCKX4 under the LOG promoter successfully increased panicle size and spikelet number per plant without affecting other major agronomic traits. This study provides insight into cytokinin homeostasis, lateral branching in plants, and also promising target genes for rice genetic improvement.
Collapse
Affiliation(s)
- Huimei Wang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
| | - Xiaohong Tong
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
| | - Liqun Tang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
| | - Yifeng Wang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
| | - Juan Zhao
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
| | - Zhiyong Li
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
| | - Xixi Liu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
| | - Yazhou Shu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
| | - Man Yin
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
| | - Tosin Victor Adegoke
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
| | - Wanning Liu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
| | - Shuang Wang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
| | - Huayu Xu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
| | - Jiezheng Ying
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
| | - Wenya Yuan
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Jialing Yao
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jian Zhang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
| |
Collapse
|
17
|
Zhang D, Lan S, Yin WL, Liu ZJ. Genome-Wide Identification and Expression Pattern Analysis of KNOX Gene Family in Orchidaceae. FRONTIERS IN PLANT SCIENCE 2022; 13:901089. [PMID: 35712569 PMCID: PMC9197187 DOI: 10.3389/fpls.2022.901089] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 04/19/2022] [Indexed: 05/13/2023]
Abstract
The establishment of lateral organs and subsequent plant architecture involves factors intrinsic to the stem apical meristem (SAM) from which they are derived. KNOTTED1-LIKE HOMEOBOX (KNOX) genes are a family of plant-specific homeobox transcription factors that especially act in determining stem cell fate in SAM. Although KNOXs have been studied in many land plants for decades, there is a dearth of knowledge on KNOX's role in Orchidaceae, the largest and most diverse lineage of flowering plants. In this study, a total of 32 putative KNOX genes were identified in the genomes of five orchid species and further designated into two classes (Class I and Class II) based on phylogenetic relationships. Sequence analysis showed that most orchid KNOX proteins retain four conserved domains (KNOX1, KNOX2, ELK, and Homeobox_KN). Comparative analysis of gene structure showed that the exon-intron structure is conserved in the same clade but most orchids exhibited longer intron, which may be a unique feature of Orchidaceae. Cis-elements identified in the promoter region of orchid KNOXs were found mostly enriched in a function of light responsiveness, followed by MeJA and ABA responsiveness, indicative of their roles in modulating light and phytohormones. Collinear analysis unraveled a one-to-one correspondence among KNOXs in orchids, and all KNOX genes experienced strong purifying selection, indicating the conservation of this gene family has been reinforced across the Orchidaceae lineage. Expression profiles based on transcriptomic data and real-time reverse transcription-quantitative PCR (RT-qPCR) revealed a stem-specific expression of KNOX Class I genes and a broader expression pattern of Class II genes. Taken together, our results provided a comprehensive analysis to uncover the underlying function of KNOX genes in Orchidaceae.
Collapse
Affiliation(s)
- Diyang Zhang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Siren Lan
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wei-Lun Yin
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- *Correspondence: Wei-Lun Yin,
| | - Zhong-Jian Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
- Zhong-Jian Liu,
| |
Collapse
|
18
|
Wang H, Kong F, Zhou C. From genes to networks: The genetic control of leaf development. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:1181-1196. [PMID: 33615731 DOI: 10.1111/jipb.13084] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/16/2021] [Indexed: 05/15/2023]
Abstract
Substantial diversity exists for both the size and shape of the leaf, the main photosynthetic organ of flowering plants. The two major forms of leaf are simple leaves, in which the leaf blade is undivided, and compound leaves, which comprise several leaflets. Leaves form at the shoot apical meristem from a group of undifferentiated cells, which first establish polarity, then grow and differentiate. Each of these processes is controlled by a combination of transcriptional regulators, microRNAs and phytohormones. The present review documents recent advances in our understanding of how these various factors modulate the development of both simple leaves (focusing mainly on the model plant Arabidopsis thaliana) and compound leaves (focusing mainly on the model legume species Medicago truncatula).
Collapse
Affiliation(s)
- Hongfeng Wang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266101, China
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Fanjiang Kong
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Chuanen Zhou
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266101, China
| |
Collapse
|
19
|
Coordinating the morphogenesis-differentiation balance by tweaking the cytokinin-gibberellin equilibrium. PLoS Genet 2021; 17:e1009537. [PMID: 33901177 PMCID: PMC8102002 DOI: 10.1371/journal.pgen.1009537] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 05/06/2021] [Accepted: 04/06/2021] [Indexed: 11/18/2022] Open
Abstract
Morphogenesis and differentiation are important stages in organ development and shape determination. However, how they are balanced and tuned during development is not fully understood. In the compound leaved tomato, an extended morphogenesis phase allows for the initiation of leaflets, resulting in the compound form. Maintaining a prolonged morphogenetic phase in early stages of compound-leaf development in tomato is dependent on delayed activity of several factors that promote differentiation, including the CIN-TCP transcription factor (TF) LA, the MYB TF CLAU and the plant hormone Gibberellin (GA), as well as on the morphogenesis-promoting activity of the plant hormone cytokinin (CK). Here, we investigated the genetic regulation of the morphogenesis-differentiation balance by studying the relationship between LA, CLAU, TKN2, CK and GA. Our genetic and molecular examination suggest that LA is expressed earlier and more broadly than CLAU and determines the developmental context of CLAU activity. Genetic interaction analysis indicates that LA and CLAU likely promote differentiation in parallel genetic pathways. These pathways converge downstream on tuning the balance between CK and GA. Comprehensive transcriptomic analyses support the genetic data and provide insights into the broader molecular basis of differentiation and morphogenesis processes in plants. Morphogenesis and differentiation are crucial steps in the formation and shaping of organs in both plants and animals. A wide array of transcription factors and hormones were shown to act together to support morphogenesis or promote differentiation. However, a comprehensive molecular and genetic understating of how morphogenesis and differentiation are coordinated during development is still missing. We addressed these questions in the context of the development of the tomato compound leaf, for which many regulators have been described. Investigating the coordination among these different actors, we show that several discrete genetic pathways promote differentiation. Downstream of these separate pathways, two important plant hormones, cytokinin and gibberellin, act antagonistically to tweak the morphogenesis-differentiation balance.
Collapse
|
20
|
Yan C, Hu Z, Nie Z, Li J, Yao X, Yin H. CcBLH6, a bell-like homeodomain-containing transcription factor, regulates the fruit lignification pattern. PLANTA 2021; 253:90. [PMID: 33818691 DOI: 10.1007/s00425-021-03610-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 03/24/2021] [Indexed: 05/11/2023]
Abstract
CcBLH6 is a bell-like homeodomain-containing transcription factor that plays an important role of lignin biosynthesis in the control of fruit lignification pattern in Camellia chekiangoleosa. The fruit of Camellia chekiangoleosa has a unique lignification pattern that features with a thick pericarp containing a low level of lignification. Yet the fruit lignification pattern and the regulatory network of responsible gene transcription are poorly understood. Here, we characterized a bell-like homeodomain-containing (BLH) transcription factor from C. chekiangoleosa, CcBLH6, in the control of fruit lignification. CcBLH6 expression was highly correlated with the unique lignification pattern during fruit development. The ectopic expression of CcBLH6 promoted the lignification process of stem and root in Arabidopsis. We found that expression of genes related to lignin biosynthesis and its transcriptional regulation was altered in transgenic lines. In a Camellia callus-transformation system, overexpression of CcBLH6 greatly enhanced the expression of genes related to lignin biosynthesis and its transcriptional regulation was altered in transgenic lines. In the callus-transformation system, overexpression of CcBLH6 greatly enhanced the lignification of parenchymal cells, and the regulation of several genes involved in lignin accumulation was largely consistent between Arabidopsis and Camellia. Our study reveals a positive role of CcBLH6 in the regulation of lignin biosynthesis during fruit lignification in Camellia.
Collapse
Affiliation(s)
- Chao Yan
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, 311400, Zhejiang, China
- Key Laboratory of Forest Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, 311400, Zhejiang, China
- Experimental Center for Subtropical Forestry, Chinese Academy of Forestry, Fenyi, 336600, Jiangxi, China
| | - Zhikang Hu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, 311400, Zhejiang, China
- Key Laboratory of Forest Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, 311400, Zhejiang, China
| | - Ziyan Nie
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, 311400, Zhejiang, China
- Key Laboratory of Forest Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, 311400, Zhejiang, China
- School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230000, China
| | - Jiyuan Li
- Key Laboratory of Forest Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, 311400, Zhejiang, China
| | - Xiaohua Yao
- Key Laboratory of Forest Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, 311400, Zhejiang, China.
| | - Hengfu Yin
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, 311400, Zhejiang, China.
- Key Laboratory of Forest Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, 311400, Zhejiang, China.
| |
Collapse
|
21
|
Zhao B, Liu Q, Wang B, Yuan F. Roles of Phytohormones and Their Signaling Pathways in Leaf Development and Stress Responses. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:3566-3584. [PMID: 33739096 DOI: 10.1021/acs.jafc.0c07908] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Phytohormones participate in various processes over the course of a plant's lifecycle. In addition to the five classical phytohormones (auxins, cytokinins, gibberellins, abscisic acid, and ethylene), phytohormones such as brassinosteroids, jasmonic acid, salicylic acid, strigolactones, and peptides also play important roles in plant growth and stress responses. Given the highly interconnected nature of phytohormones during plant development and stress responses, it is challenging to study the biological function of a single phytohormone in isolation. In the current Review, we describe the combined functions and signaling cascades (especially the shared points and pathways) of various phytohormones in leaf development, in particular, during leaf primordium initiation and the establishment of leaf polarity and leaf morphology as well as leaf development under various stress conditions. We propose a model incorporating the roles of multiple phytohormones in leaf development and stress responses to illustrate the underlying combinatorial signaling pathways. This model provides a reference for breeding stress-resistant crops.
Collapse
Affiliation(s)
- Boqing Zhao
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, Shandong 250014, P. R. China
| | - Qingyun Liu
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, Shandong 250014, P. R. China
| | - Baoshan Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, Shandong 250014, P. R. China
| | - Fang Yuan
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, Shandong 250014, P. R. China
| |
Collapse
|
22
|
Arias T, Niederhuth CE, McSteen P, Pires JC. The Molecular Basis of Kale Domestication: Transcriptional Profiling of Developing Leaves Provides New Insights Into the Evolution of a Brassica oleracea Vegetative Morphotype. FRONTIERS IN PLANT SCIENCE 2021; 12:637115. [PMID: 33747016 PMCID: PMC7973465 DOI: 10.3389/fpls.2021.637115] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 01/18/2021] [Indexed: 06/12/2023]
Abstract
Morphotypes of Brassica oleracea are the result of a dynamic interaction between genes that regulate the transition between vegetative and reproductive stages and those that regulate leaf morphology and plant architecture. In kales, ornate leaves, extended vegetative phase, and nutritional quality are some of the characters potentially selected by humans during domestication. We used a combination of developmental studies and transcriptomics to understand the vegetative domestication syndrome of kale. To identify candidate genes that are responsible for the evolution of domestic kale, we searched for transcriptome-wide differences among three vegetative B. oleracea morphotypes. RNA-seq experiments were used to understand the global pattern of expressed genes during a mixture of stages at one time in kale, cabbage, and the rapid cycling kale line TO1000. We identified gene expression patterns that differ among morphotypes and estimate the contribution of morphotype-specific gene expression that sets kale apart (3958 differentially expressed genes). Differentially expressed genes that regulate the vegetative to reproductive transition were abundant in all morphotypes. Genes involved in leaf morphology, plant architecture, defense, and nutrition were differentially expressed in kale. This allowed us to identify a set of candidate genes we suggest may be important in the kale domestication syndrome. Understanding candidate genes responsible for kale domestication is of importance to ultimately improve Cole crop production.
Collapse
|
23
|
Israeli A, Ben-Herzel O, Burko Y, Shwartz I, Ben-Gera H, Harpaz-Saad S, Bar M, Efroni I, Ori N. Coordination of differentiation rate and local patterning in compound-leaf development. THE NEW PHYTOLOGIST 2021; 229:3558-3572. [PMID: 33259078 DOI: 10.1111/nph.17124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 11/24/2020] [Indexed: 06/12/2023]
Abstract
The variability in leaf form in nature is immense. Leaf patterning occurs by differential growth, taking place during a limited window of morphogenetic activity at the leaf marginal meristem. While many regulators have been implicated in the designation of the morphogenetic window and in leaf patterning, how these effectors interact to generate a particular form is still not well understood. We investigated the interaction among different effectors of tomato (Solanum lycopersicum) compound-leaf development, using genetic and molecular analyses. Mutations in the tomato auxin response factor SlARF5/SlMP, which normally promotes leaflet formation, suppressed the increased leaf complexity of mutants with extended morphogenetic window. Impaired activity of the NAC/CUC transcription factor GOBLET (GOB), which specifies leaflet boundaries, also reduced leaf complexity in these backgrounds. Analysis of genetic interactions showed that the patterning factors SlMP, GOB and the MYB transcription factor LYRATE (LYR) coordinately regulate leaf patterning by modulating in parallel different aspects of leaflet formation and shaping. This work places an array of developmental regulators in a morphogenetic context. It reveals how organ-level differentiation rate and local growth are coordinated to sculpture an organ. These concepts are applicable to the coordination of pattering and differentiation in other species and developmental processes.
Collapse
Affiliation(s)
- Alon Israeli
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Hebrew University, PO Box 12, Rehovot, 76100, Israel
| | - Ori Ben-Herzel
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Hebrew University, PO Box 12, Rehovot, 76100, Israel
| | - Yogev Burko
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Hebrew University, PO Box 12, Rehovot, 76100, Israel
- Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
- Plant Biology Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Ido Shwartz
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Hebrew University, PO Box 12, Rehovot, 76100, Israel
| | - Hadas Ben-Gera
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Hebrew University, PO Box 12, Rehovot, 76100, Israel
- Unit of Aromatic and Medicinal Plants, Newe Ya'ar Research Center, Agricultural Research Organization, PO Box 102, Ramat Yishay, 30095, Israel
| | - Smadar Harpaz-Saad
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Hebrew University, PO Box 12, Rehovot, 76100, Israel
| | - Maya Bar
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Hebrew University, PO Box 12, Rehovot, 76100, Israel
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, The Volcani Center, 68 HaMaccabim Road, Rishon LeZion, 7505101, Israel
| | - Idan Efroni
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Hebrew University, PO Box 12, Rehovot, 76100, Israel
| | - Naomi Ori
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Hebrew University, PO Box 12, Rehovot, 76100, Israel
| |
Collapse
|
24
|
Yu C, Yan C, Liu Y, Liu Y, Jia Y, Lavelle D, An G, Zhang W, Zhang L, Han R, Larkin RM, Chen J, Michelmore RW, Kuang H. Upregulation of a KN1 homolog by transposon insertion promotes leafy head development in lettuce. Proc Natl Acad Sci U S A 2020; 117:33668-33678. [PMID: 33288708 PMCID: PMC7776633 DOI: 10.1073/pnas.2019698117] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Leafy head is a unique type of plant architecture found in some vegetable crops, with leaves bending inward to form a compact head. The genetic and molecular mechanisms underlying leafy head in vegetables remain poorly understood. We genetically fine-mapped and cloned a major quantitative trait locus controlling heading in lettuce. The candidate gene (LsKN1) is a homolog of knotted 1 (KN1) from Zea mays Complementation and CRISPR/Cas9 knockout experiments confirmed the role of LsKN1 in heading. In heading lettuce, there is a CACTA-like transposon inserted into the first exon of LsKN1 (LsKN1▽). The transposon sequences act as a promoter rather than an enhancer and drive high expression of LsKN1▽. The enhanced expression of LsKN1▽ is necessary but not sufficient for heading in lettuce. Data from ChIP-sequencing, electrophoretic mobility shift assays, and dual luciferase assays indicate that the LsKN1▽ protein binds the promoter of LsAS1 and down-regulates its expression to alter leaf dorsoventrality. This study provides insight into plant leaf development and will be useful for studies on heading in other vegetable crops.
Collapse
Affiliation(s)
- Changchun Yu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Horticultural Crop Biology and Genetic improvement (Central Region), Ministry of Agriculture (MOA), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, 430070 Wuhan, People's Republic of China
| | - Chenghuan Yan
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Horticultural Crop Biology and Genetic improvement (Central Region), Ministry of Agriculture (MOA), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, 430070 Wuhan, People's Republic of China
| | - Yuling Liu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Horticultural Crop Biology and Genetic improvement (Central Region), Ministry of Agriculture (MOA), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, 430070 Wuhan, People's Republic of China
| | - Yali Liu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Horticultural Crop Biology and Genetic improvement (Central Region), Ministry of Agriculture (MOA), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, 430070 Wuhan, People's Republic of China
| | - Yue Jia
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Horticultural Crop Biology and Genetic improvement (Central Region), Ministry of Agriculture (MOA), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, 430070 Wuhan, People's Republic of China
| | - Dean Lavelle
- Genome Center and Department of Plant Sciences, University of California, Davis, CA 95616
| | - Guanghui An
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Horticultural Crop Biology and Genetic improvement (Central Region), Ministry of Agriculture (MOA), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, 430070 Wuhan, People's Republic of China
| | - Weiyi Zhang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Horticultural Crop Biology and Genetic improvement (Central Region), Ministry of Agriculture (MOA), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, 430070 Wuhan, People's Republic of China
| | - Lei Zhang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Horticultural Crop Biology and Genetic improvement (Central Region), Ministry of Agriculture (MOA), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, 430070 Wuhan, People's Republic of China
| | - Rongkui Han
- Genome Center and Department of Plant Sciences, University of California, Davis, CA 95616
| | - Robert M Larkin
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Horticultural Crop Biology and Genetic improvement (Central Region), Ministry of Agriculture (MOA), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, 430070 Wuhan, People's Republic of China
| | - Jiongjiong Chen
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Horticultural Crop Biology and Genetic improvement (Central Region), Ministry of Agriculture (MOA), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, 430070 Wuhan, People's Republic of China
| | - Richard W Michelmore
- Genome Center and Department of Plant Sciences, University of California, Davis, CA 95616
| | - Hanhui Kuang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Horticultural Crop Biology and Genetic improvement (Central Region), Ministry of Agriculture (MOA), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, 430070 Wuhan, People's Republic of China;
| |
Collapse
|
25
|
Zhao B, He L, Jiang C, Liu Y, He H, Bai Q, Zhou S, Zheng X, Wen J, Mysore KS, Tadege M, Liu Y, Liu R, Chen J. Lateral Leaflet Suppression 1 (LLS1), encoding the MtYUCCA1 protein, regulates lateral leaflet development in Medicago truncatula. THE NEW PHYTOLOGIST 2020; 227:613-628. [PMID: 32170762 DOI: 10.1111/nph.16539] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 02/28/2020] [Indexed: 06/10/2023]
Abstract
In species with compound leaves, the positions of leaflet primordium initiation are associated with local peaks of auxin accumulation. However, the role of auxin during the late developmental stages and outgrowth of compound leaves remains largely unknown. Using genome resequencing approaches, we identified insertion sites at four alleles of the LATERAL LEAFLET SUPPRESSION1 (LLS1) gene, encoding the auxin biosynthetic enzyme YUCCA1 in Medicago truncatula. Linkage analysis and complementation tests showed that the lls1 mutant phenotypes were caused by the Tnt1 insertions that disrupted the LLS1 gene. The transcripts of LLS1 can be detected in primordia at early stages of leaf initiation and later in the basal regions of leaflets, and finally in vein tissues at late leaf developmental stages. Vein numbers and auxin content are reduced in the lls1-1 mutant. Analysis of the lls1 sgl1 and lls1 palm1 double mutants revealed that SGL1 is epistatic to LLS1, and LLS1 works with PALM1 in an independent pathway to regulate the growth of lateral leaflets. Our work demonstrates that the YUCCA1/YUCCA4 subgroup plays very important roles in the outgrowth of lateral leaflets during compound leaf development of M. truncatula, in addition to leaf venation.
Collapse
Affiliation(s)
- Baolin Zhao
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, 88 Xuefu Road, Kunming, Yunnan, 650223, China
| | - Liangliang He
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, 88 Xuefu Road, Kunming, Yunnan, 650223, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chuan Jiang
- College of Life Science, Hebei Normal University, 20 East 2nd Ring South, Shijiazhuang, 050024, China
| | - Ye Liu
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, 88 Xuefu Road, Kunming, Yunnan, 650223, China
- School of life Sciences, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Hua He
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, 88 Xuefu Road, Kunming, Yunnan, 650223, China
| | - Quanzi Bai
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, 88 Xuefu Road, Kunming, Yunnan, 650223, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shaoli Zhou
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, 88 Xuefu Road, Kunming, Yunnan, 650223, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoling Zheng
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, 88 Xuefu Road, Kunming, Yunnan, 650223, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiangqi Wen
- Noble Research Institute, 2510 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | | | - Million Tadege
- Department of Plant and Soil Sciences, Institute for Agricultural Biosciences, Oklahoma State University, 3210 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | - Yu Liu
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, 88 Xuefu Road, Kunming, Yunnan, 650223, China
| | - Renyi Liu
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jianghua Chen
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, 88 Xuefu Road, Kunming, Yunnan, 650223, China
| |
Collapse
|
26
|
Liao H, Fu X, Zhao H, Cheng J, Zhang R, Yao X, Duan X, Shan H, Kong H. The morphology, molecular development and ecological function of pseudonectaries on Nigella damascena (Ranunculaceae) petals. Nat Commun 2020; 11:1777. [PMID: 32286317 PMCID: PMC7156421 DOI: 10.1038/s41467-020-15658-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 03/20/2020] [Indexed: 01/21/2023] Open
Abstract
Pseudonectaries, or false nectaries, the glistening structures that resemble nectaries or nectar droplets but do not secrete nectar, show considerable diversity and play important roles in plant-animal interactions. The morphological nature, optical features, molecular underpinnings and ecological functions of pseudonectaries, however, remain largely unclear. Here, we show that pseudonectaries of Nigella damascena (Ranunculaceae) are tiny, regional protrusions covered by tightly arranged, non-secretory polygonal epidermal cells with flat, smooth and reflective surface, and are clearly visible even under ultraviolet light and bee vision. We also show that genes associated with cell division, chloroplast development and wax formation are preferably expressed in pseudonectaries. Specifically, NidaYABBY5, an abaxial gene with ectopic expression in pseudonectaries, is indispensable for pseudonectary development: knockdown of it led to complete losses of pseudonectaries. Notably, when flowers without pseudonectaries were arrayed beside those with pseudonectaries, clear differences were observed in the visiting frequency, probing time and visiting behavior of pollinators (i.e., honey bees), suggesting that pseudonectaries serve as both visual attractants and nectar guides. Interspecies interactions, including those between plants and pollinators, can involve deception. The authors characterize the molecular development of Nigella damascena pseudonectaries, and their adaptive function in attracting specific pollinators to concealed nectaries with visual cues.
Collapse
Affiliation(s)
- Hong Liao
- State Key Laboratory of Systematic and Evolutionary Botany, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, 100093, Beijing, China
| | - Xuehao Fu
- State Key Laboratory of Systematic and Evolutionary Botany, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, 100093, Beijing, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Huiqi Zhao
- State Key Laboratory of Systematic and Evolutionary Botany, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, 100093, Beijing, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Jie Cheng
- State Key Laboratory of Systematic and Evolutionary Botany, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, 100093, Beijing, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Rui Zhang
- State Key Laboratory of Systematic and Evolutionary Botany, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, 100093, Beijing, China
| | - Xu Yao
- State Key Laboratory of Systematic and Evolutionary Botany, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, 100093, Beijing, China
| | - Xiaoshan Duan
- State Key Laboratory of Systematic and Evolutionary Botany, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, 100093, Beijing, China
| | - Hongyan Shan
- State Key Laboratory of Systematic and Evolutionary Botany, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, 100093, Beijing, China
| | - Hongzhi Kong
- State Key Laboratory of Systematic and Evolutionary Botany, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, 100093, Beijing, China. .,University of Chinese Academy of Sciences, 100049, Beijing, China.
| |
Collapse
|
27
|
Overexpression of a Novel LcKNOX Transcription Factor from Liriodendron chinense Induces Lobed Leaves in Arabidopsis thaliana. FORESTS 2019. [DOI: 10.3390/f11010033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Liriodendron chinense is a common ornamental tree that has attractive leaves, which is a valuable trait for use in landscape architecture. In this work, we aimed to identify the potential genes that control and regulate the development of L. chinense leaf lobes. Based on the transcriptome data for the leaf developmental stages we previously generated, two candidate genes were identified in this study. KNOTTED-LIKE HOMEOBOX(KNOX), encoding homeobox family proteins, play a large role in leaf lobe and leaf complexity regulation. Here, two full length KNOX genes from L. chinense were amplified and named LcKNOX1 and LcKNOX6 according to their sequence similarities with the respective Arabidopsis thaliana KNOX family genes. Overexpression vectors were constructed and subsequently transformed into wild type (WT) A. thaliana. Additionally, LcKNOX6 was expressed in tobacco leaves to examine its subcellular localization, and the 35S::LcKNOX6 transgenic A. thaliana leaf cells were imaged with the use of SEM. The expression of several genes that participate in KNOX gene regulation were validated by quantitative real-time PCR. The results show that LcKNOX1 produces almost the same phenotype as that found in WT A. thaliana. Notably, the LcKNOX6-1 lines presented deep leaf lobes that were similar to L. chinense leaf lobes. Two 35S::LcKNOX6 lines induced an abnormal growth phenotype whose seeds were abortive. In short, these results indicate that the LcKNOX6 gene might affect leaf development in A. thaliana and provide insights into the regulation of L. chinense leaf shaping.
Collapse
|
28
|
Zhao K, Zhang X, Cheng Z, Yao W, Li R, Jiang T, Zhou B. Comprehensive analysis of the three-amino-acid-loop-extension gene family and its tissue-differential expression in response to salt stress in poplar. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 136:1-12. [PMID: 30639784 DOI: 10.1016/j.plaphy.2019.01.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 12/31/2018] [Accepted: 01/02/2019] [Indexed: 05/11/2023]
Abstract
The three-amino-acid-loop-extension (TALE) transcription factor gene family is widely present in plants and plays an important role in its growth and development. However, studies on the gene family are limited in poplar. In this study, we investigated 35 TALE gene family members in terms of their evolutionary relationship, classification, physicochemical properties, gene structures, and protein motifs. We divided the genes into four classes, based on their protein sequences similarity. The members from each class share similar gene structures and motif compositions. Evidence from transcript profiling indicated that the majority of the TALE genes exhibited distinct expression patterns over leaf, stem, and root tissues. Out of the 35 genes, 17 genes are highly expressed in stems, suggesting that the TALE gene family may play an important role in secondary growth and wood formation. Furthermore, out of the 35 genes, 11 genes are responsive to salt stress, and the spatio-temporal expression patterns of these 11 genes under salt stress were analysed using RT-qPCR. Yeast two-hybridization analysis indicated that poplar TALE proteins from different classes can form heterodimers. These results lay the foundation for future studies on biological functions of poplar TALE genes.
Collapse
Affiliation(s)
- Kai Zhao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 51 Hexing Road, Harbin, 150040, China
| | - Xuemei Zhang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 51 Hexing Road, Harbin, 150040, China
| | - Zihan Cheng
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 51 Hexing Road, Harbin, 150040, China
| | - Wenjing Yao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 51 Hexing Road, Harbin, 150040, China; Bamboo Research Institute, Nanjing Forestry University, 159 Longpan Road, Nanjing, 210037, China
| | - Renhua Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 51 Hexing Road, Harbin, 150040, China
| | - Tingbo Jiang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 51 Hexing Road, Harbin, 150040, China
| | - Boru Zhou
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 51 Hexing Road, Harbin, 150040, China.
| |
Collapse
|
29
|
Woźniak NJ, Sicard A. Evolvability of flower geometry: Convergence in pollinator-driven morphological evolution of flowers. Semin Cell Dev Biol 2018; 79:3-15. [DOI: 10.1016/j.semcdb.2017.09.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 09/18/2017] [Accepted: 09/19/2017] [Indexed: 01/01/2023]
|
30
|
Lin X, Gu D, Zhao H, Peng Y, Zhang G, Yuan T, Li M, Wang Z, Wang X, Cui S. LFR is functionally associated with AS2 to mediate leaf development in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 95:598-612. [PMID: 29775508 DOI: 10.1111/tpj.13973] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 05/07/2018] [Accepted: 05/09/2018] [Indexed: 06/08/2023]
Abstract
Leaves are essential organs for plants. We previously identified a functional gene possibly encoding a component of the SWI/SNF complex named Leaf and Flower Related (LFR) in Arabidopsis thaliana. Loss-of-function mutants of LFR displayed obvious defects in leaf morphogenesis, indicating its vital role in leaf development. Here an allelic null mutant of ASYMMETRIC LEAVES2 (AS2), as2-6, was isolated as an enhancer of lfr-1 in petiole length, vasculature pattern and leaf margin development. The lfr as2 double-mutants showed enhanced ectopic expression of BREVIPEDICELLUS (BP) compared with each of the single-mutants, which is consistent with their synergistic genetic enhancement in multiple BP-dependent development processes. Moreover, LFR and several putative subunits of the SWI/SNF complex interacted physically with AS2. LFR associated with BP chromatin in an AS1-AS2-dependent manner to promote the nucleosome occupancy for appropriate BP repression in leaves. Taken together, our findings reveal that LFR and the SWI/SNF complex play roles in leaf development at least partly by repressing BP transcription as interacting factors of AS2, which expounds our understanding of BP repression at the chromatin structure level in leaf development.
Collapse
Affiliation(s)
- Xiaowei Lin
- Hebei Key Laboratory of Molecular and Cellular Biology, Hebei Normal University, Hebei, 050024, China
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Normal University, Hebei, 050024, China
- Hebei Collaboration Innovation Center for Cell Signaling, Hebei Normal University, Hebei, 050024, China
- College of Life Science, Hebei Normal University, Hebei, 050024, China
| | - Dandan Gu
- Hebei Key Laboratory of Molecular and Cellular Biology, Hebei Normal University, Hebei, 050024, China
- College of Life Science, Hebei Normal University, Hebei, 050024, China
| | - Hongtao Zhao
- Hebei Key Laboratory of Molecular and Cellular Biology, Hebei Normal University, Hebei, 050024, China
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Normal University, Hebei, 050024, China
- Hebei Collaboration Innovation Center for Cell Signaling, Hebei Normal University, Hebei, 050024, China
- College of Life Science, Hebei Normal University, Hebei, 050024, China
| | - Yue Peng
- College of Life Science, Hebei Normal University, Hebei, 050024, China
| | - Guofang Zhang
- Hebei Key Laboratory of Molecular and Cellular Biology, Hebei Normal University, Hebei, 050024, China
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Normal University, Hebei, 050024, China
- Hebei Collaboration Innovation Center for Cell Signaling, Hebei Normal University, Hebei, 050024, China
- College of Life Science, Hebei Normal University, Hebei, 050024, China
| | - Tingting Yuan
- Hebei Key Laboratory of Molecular and Cellular Biology, Hebei Normal University, Hebei, 050024, China
- College of Life Science, Hebei Normal University, Hebei, 050024, China
| | - Mengge Li
- College of Life Science, Hebei Normal University, Hebei, 050024, China
| | - Zhijuan Wang
- Hebei Key Laboratory of Molecular and Cellular Biology, Hebei Normal University, Hebei, 050024, China
- College of Life Science, Hebei Normal University, Hebei, 050024, China
| | - Xiutang Wang
- Hebei Key Laboratory of Molecular and Cellular Biology, Hebei Normal University, Hebei, 050024, China
- College of Life Science, Hebei Normal University, Hebei, 050024, China
| | - Sujuan Cui
- Hebei Key Laboratory of Molecular and Cellular Biology, Hebei Normal University, Hebei, 050024, China
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Normal University, Hebei, 050024, China
- Hebei Collaboration Innovation Center for Cell Signaling, Hebei Normal University, Hebei, 050024, China
- College of Life Science, Hebei Normal University, Hebei, 050024, China
| |
Collapse
|
31
|
Zumajo-Cardona C, Pabón-Mora N, Ambrose BA. Duplication and Diversification of REPLUMLESS - A Case Study in the Papaveraceae. FRONTIERS IN PLANT SCIENCE 2018; 9:1833. [PMID: 30619406 PMCID: PMC6299025 DOI: 10.3389/fpls.2018.01833] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 11/26/2018] [Indexed: 05/17/2023]
Abstract
There is a vast amount of fruit morphological diversity in terms of their texture, the number of carpels, if those carpels are fused or not and how fruits open to disperse the seeds. Arabidopsis thaliana, a model eudicot, has a dry bicarpellate silique, when the fruit matures, the two valves fall apart through the dehiscence zone leaving the seeds attached to the remaining medial tissue, called the replum. Proper replum development in A. thaliana is mediated by REPLUMLESS (RPL), a TALE Homeodomain protein. RPL represses the valve margin genetic program and the downstream dehiscence zone formation in the medial tissue of the siliques and RPL orthologs have conserved roles across the Brassicaceae eudicots. A RPL homolog, qSH1, has been studied in rice, a monocot, and plays a role in fruit shedding making it difficult to predict functional evolution of this gene lineage across angiosperms. Although RPL orthologs have been identified across all angiosperms, expression and functional analyses are scarce. In order to fill the phylogenetic gap between the Brassicaceae and monocots we have characterized the expression patterns of RPL homologs in two poppies with different fruit types, Bocconia frutescens with operculate valvate dehiscence and a persistent medial tissue, similar to a replum, and Papaver somniferum, a poppy with persistent medial tissue in between the multicarpellate gynoecia. We found that RPL homologs in Papaveraceae have broad expression patterns during plant development; in the shoot apical meristem, during flowering transition and in many floral organs, especially the carpels. These patterns are similar to those of RPL in A. thaliana. However, our results suggest that RPL does not have conserved roles in the maintenance of medial persistent tissues of fruits but may be involved with establishing the putative dehiscence zone in dry poppy fruits.
Collapse
Affiliation(s)
- Cecilia Zumajo-Cardona
- New York Botanical Garden, Bronx, NY, United States
- The Graduate Center, City University of New York, New York, NY, United States
| | | | - Barbara A. Ambrose
- New York Botanical Garden, Bronx, NY, United States
- *Correspondence: Barbara A. Ambrose,
| |
Collapse
|
32
|
Magnani E, Jiménez-Gómez JM, Soubigou-Taconnat L, Lepiniec L, Fiume E. Profiling the onset of somatic embryogenesis in Arabidopsis. BMC Genomics 2017; 18:998. [PMID: 29284399 PMCID: PMC5747089 DOI: 10.1186/s12864-017-4391-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 12/15/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Totipotency is the ability of a cell to regenerate a whole organism. Plant somatic embryogenesis (SE) is a remarkable example of totipotency because somatic cells reverse differentiation, respond to an appropriate stimulus and initiate embryo development. Although SE is an ideal system to investigate de-differentiation and differentiation, we still lack a deep molecular understanding of the phenomenon due to experimental restraints. RESULTS We applied the INTACT method to specifically isolate the nuclei of those cells undergoing SE among the majority of non-embryogenic cells that make up a callus. We compared the transcriptome of embryogenic cells to the one of proliferating callus cells. Our analyses revealed that embryogenic cells are transcriptionally rather than metabolically active. Embryogenic cells shut off biochemical pathways involved in carbohydrate and lipid metabolism and activate the transcriptional machinery. Furthermore, we show how early in SE, ground tissue and leaf primordia specification are switched on before the specification of a shoot apical meristem. CONCLUSIONS This is the first attempt to specifically profile embryogenic cells among the different cell types that constitute plant in vitro tissue cultures. Our comparative analyses provide insights in the gene networks regulating SE and open new research avenues in the field of plant regeneration.
Collapse
Affiliation(s)
- E Magnani
- Insitut Jean-Pierre Bourgin (IJPB), INRA, AgroParisTech, CNRS, Université Paris-Saclay, INRA, Route de St-Cyr (RD10), 78026, Versailles Cedex, France
| | - J M Jiménez-Gómez
- Insitut Jean-Pierre Bourgin (IJPB), INRA, AgroParisTech, CNRS, Université Paris-Saclay, INRA, Route de St-Cyr (RD10), 78026, Versailles Cedex, France
| | - L Soubigou-Taconnat
- POPS, Plateforme TranscriptOmique, Institute of Plant Sciences, Université Paris-Saclay, rue de Noetzlin, Plateau du Moulon, 91190, Gif-sur-Yvette, France
| | - L Lepiniec
- Insitut Jean-Pierre Bourgin (IJPB), INRA, AgroParisTech, CNRS, Université Paris-Saclay, INRA, Route de St-Cyr (RD10), 78026, Versailles Cedex, France
| | - E Fiume
- Insitut Jean-Pierre Bourgin (IJPB), INRA, AgroParisTech, CNRS, Université Paris-Saclay, INRA, Route de St-Cyr (RD10), 78026, Versailles Cedex, France.
| |
Collapse
|
33
|
Zhao J, Chen L, Zhao T, Gai J. Chicken Toes-Like Leaf and Petalody Flower (CTP) is a novel regulator that controls leaf and flower development in soybean. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:5565-5581. [PMID: 29077868 DOI: 10.1093/jxb/erx358] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
A soybean mutant displaying chicken toes-like leaves and petalody flowers was identified as being caused by a single recessive gene, termed ctp. Using heterozygous-inbred recombinants, this gene was fine-mapped to a 37-kb region harbouring three predicted genes on chromosome 5. The gene Glyma05g022400.1 was detected to have a 33-bp deletion in its first exon that was responsible for ctp. Validation for this gene was provided by the fact that the 33-bp deletion-derived marker I2 completely co-segregated with the phenotypes of 96 F10-derived residual heterozygous lines and 2200 fine-mapping individuals, and by the fact that the orthologue NbCTP in Nicotiana benthamiana also influenced leaf and flower development under virus-induced gene silencing. In terms of characterization, the CTPs shared highly conserved domains specifically in higher plants, GmCTP was alternatively spliced, and it was expressed in multiple organs, especially in lateral meristems. GmCTP was localized to the nucleus and other regions and performed transcriptional activity. In ctp, the expression levels and splicing patterns were dramatically disrupted, and many key regulators in leaf and/or floral developmental pathways were interrupted. Thus, CTP is a novel and critical pleiotropic regulator of leaf and flower development that participates in multiple regulation pathways, and may play key roles in lateral organ differentiation as a putative novel transcription regulator.
Collapse
Affiliation(s)
- Jing Zhao
- Soybean Research Institute, Nanjing Agricultural University, Nanjing 210095, China
- National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Biology and Genetic Improvement of Soybean, Nanjing Agricultural University, Nanjing 210095, China
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Lei Chen
- Soybean Research Institute, Nanjing Agricultural University, Nanjing 210095, China
- National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Biology and Genetic Improvement of Soybean, Nanjing Agricultural University, Nanjing 210095, China
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Tuanjie Zhao
- Soybean Research Institute, Nanjing Agricultural University, Nanjing 210095, China
- National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Biology and Genetic Improvement of Soybean, Nanjing Agricultural University, Nanjing 210095, China
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Junyi Gai
- Soybean Research Institute, Nanjing Agricultural University, Nanjing 210095, China
- National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Biology and Genetic Improvement of Soybean, Nanjing Agricultural University, Nanjing 210095, China
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
34
|
Ruiz-Estévez M, Bakkali M, Martín-Blázquez R, Garrido-Ramos MA. Identification and Characterization of TALE Homeobox Genes in the Endangered Fern Vandenboschia speciosa. Genes (Basel) 2017; 8:E275. [PMID: 29039766 PMCID: PMC5664125 DOI: 10.3390/genes8100275] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 10/09/2017] [Accepted: 10/09/2017] [Indexed: 12/18/2022] Open
Abstract
We report and discuss the results of a quantitative reverse transcription polymerase chain reaction (qRT-PCR) analysis of the expression patterns of seven three amino acid loop extension (TALE) homeobox genes (four KNOTTED-like homeobox (KNOX) and three BEL1-like homeobox (BELL) genes) identified after next generation sequencing (NGS) and assembly of the sporophyte and gametophyte transcriptomes of the endangered fern species Vandenboschia speciosa. Among the four KNOX genes, two belonged to the KNOX1 class and the other two belonged to the KNOX2 class. Analysis of the deduced amino acid sequences supported the typical domain structure of both types of TALE proteins, and the homology to TALE proteins of mosses, lycophytes, and seed plant species. The expression analyses demonstrate that these homeodomain proteins appear to have a key role in the establishment and development of the gametophyte and sporophyte phases of V. speciosa lifecycle, as well as in the control of the transition between both phases. Vandenboschia speciosa VsKNAT3 (a KNOX2 class protein) as well as VsBELL4 and VsBELL10 proteins have higher expression levels during the sporophyte program. On the contrary, one V. speciosa KNOX1 protein (VsKNAT6) and one KNOX2 protein (VsKNAT4) seem important during the development of the gametophyte phase. TALE homeobox genes might be among the key regulators in the gametophyte-to-sporophyte developmental transition in regular populations that show alternation of generations, since some of the genes analyzed here (VsKNAT3, VsKNAT6, VsBELL4, and VsBELL6) are upregulated in a non-alternating population in which only independent gametophytes are found (they grow by vegetative reproduction outside of the range of sporophyte distribution). Thus, these four genes might trigger the vegetative propagation of the gametophyte and the repression of the sexual development in populations composed of independent gametophytes. This study represents a comprehensive identification and characterization of TALE homeobox genes in V. speciosa, and gives novel insights about the role of these genes in fern development.
Collapse
Affiliation(s)
- Mercedes Ruiz-Estévez
- Departamento de Genética, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain.
| | - Mohammed Bakkali
- Departamento de Genética, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain.
| | - Rubén Martín-Blázquez
- Departamento de Genética, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain.
| | - Manuel A Garrido-Ramos
- Departamento de Genética, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain.
| |
Collapse
|
35
|
Wei C, Chen X, Wang Z, Liu Q, Li H, Zhang Y, Ma J, Yang J, Zhang X. Genetic mapping of the LOBED LEAF 1 (ClLL1) gene to a 127.6-kb region in watermelon (Citrullus lanatus L.). PLoS One 2017; 12:e0180741. [PMID: 28704497 PMCID: PMC5509165 DOI: 10.1371/journal.pone.0180741] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 06/20/2017] [Indexed: 11/18/2022] Open
Abstract
The lobed leaf character is a unique morphologic trait in crops, featuring many potential advantages for agricultural productivity. Although the majority of watermelon varieties feature lobed leaves, the genetic factors responsible for lobed leaf formation remain elusive. The F2:3 leaf shape segregating population offers the opportunity to study the underlying mechanism of lobed leaf formation in watermelon. Genetic analysis revealed that a single dominant allele (designated ClLL1) controlled the lobed leaf trait. A large-sized F3:4 population derived from F2:3 individuals was used to map ClLL1. A total of 5,966 reliable SNPs and indels were identified genome-wide via a combination of BSA and RNA-seq. Using the validated SNP and indel markers, the location of ClLL1 was narrowed down to a 127.6-kb region between markers W08314 and W07061, containing 23 putative ORFs. Expression analysis via qRT-PCR revealed differential expression patterns (fold-changes above 2-fold or below 0.5-fold) of three ORFs (ORF3, ORF11, and ORF18) between lobed and non-lobed leaf plants. Based on gene annotation and expression analysis, ORF18 (encoding an uncharacterized protein) and ORF22 (encoding a homeobox-leucine zipper-like protein) were considered as most likely candidate genes. Furthermore, sequence analysis revealed no polymorphisms in cDNA sequences of ORF18; however, two notable deletions were identified in ORF22. This study is the first report to map a leaf shape gene in watermelon and will facilitate cloning and functional characterization of ClLL1 in future studies.
Collapse
Affiliation(s)
- Chunhua Wei
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Xiner Chen
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Zhongyuan Wang
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Qiyan Liu
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Hao Li
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Yong Zhang
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Jianxiang Ma
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Jianqiang Yang
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Xian Zhang
- College of Horticulture, Northwest A&F University, Yangling, China
| |
Collapse
|
36
|
Gao J, Yang X, Zhao W, Lang T, Samuelsson T. Evolution, diversification, and expression of KNOX proteins in plants. FRONTIERS IN PLANT SCIENCE 2015; 6:882. [PMID: 26557129 PMCID: PMC4617109 DOI: 10.3389/fpls.2015.00882] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 10/05/2015] [Indexed: 05/17/2023]
Abstract
The KNOX (KNOTTED1-like homeobox) transcription factors play a pivotal role in leaf and meristem development. The majority of these proteins are characterized by the KNOX1, KNOX2, ELK, and homeobox domains whereas the proteins of the KNATM family contain only the KNOX domains. We carried out an extensive inventory of these proteins and here report on a total of 394 KNOX proteins from 48 species. The land plant proteins fall into two classes (I and II) as previously shown where the class I family seems to be most closely related to the green algae homologs. The KNATM proteins are restricted to Eudicots and some species have multiple paralogs of this protein. Certain plants are characterized by a significant increase in the number of KNOX paralogs; one example is Glycine max. Through the analysis of public gene expression data we show that the class II proteins of this plant have a relatively broad expression specificity as compared to class I proteins, consistent with previous studies of other plants. In G. max, class I protein are mainly distributed in axis tissues and KNATM paralogs are overall poorly expressed; highest expression is in the early plumular axis. Overall, analysis of gene expression in G. max demonstrates clearly that the expansion in gene number is associated with functional diversification.
Collapse
Affiliation(s)
- Jie Gao
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of SciencesMenglun, China
| | - Xue Yang
- Department of Life Sciences, Jilin Agricultural UniversityJilin, China
| | - Wei Zhao
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of SciencesBeijing, China
| | - Tiange Lang
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of SciencesMenglun, China
| | - Tore Samuelsson
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy at University of GothenburgGothenburg, Sweden
| |
Collapse
|
37
|
Functional Analysis and RNA Sequencing Indicate the Regulatory Role of Argonaute1 in Tomato Compound Leaf Development. PLoS One 2015; 10:e0140756. [PMID: 26479258 PMCID: PMC4610667 DOI: 10.1371/journal.pone.0140756] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 09/30/2015] [Indexed: 02/04/2023] Open
Abstract
Regardless of whether a leaf is simple or compound, the mechanism underlying its development will give rise to a full comprehension of plant morphogenesis. The role of Argonaute1 (AGO1) in the development of simple leaves has been established, but its role in the development of compound leaves remains to be characterized. In this paper, a virus-induced gene silencing (VIGS) strategy was used to dramatically down-regulate the expression of AGO1 ortholog in tomatoes, a model plant for research into compound leaves. AGO1-silenced tomato compound leaves exhibited morphological defects of leaf adaxial-abaxial and trichome development. Analysis of global gene expression profiles indicated that the silencing of AGO1 in tomato compound leaf caused significant changes in the expression of several critical genes, including Auxin Response Factor 4 (ARF4) and Non-expressor of PR5 (NPR5), which were involved in adaxial-abaxial formation and IAA15 that was found to contribute to growth of trichomes as well as Gibberellic Acid Insensitive (GAI) which participated in hormone regulation. Collectively, these results shed light on the complicated mechanism by which AGO1 regulates compound leaf development.
Collapse
|
38
|
Tsuda K, Hake S. Diverse functions of KNOX transcription factors in the diploid body plan of plants. CURRENT OPINION IN PLANT BIOLOGY 2015; 27:91-6. [PMID: 26190742 DOI: 10.1016/j.pbi.2015.06.015] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 06/18/2015] [Accepted: 06/20/2015] [Indexed: 05/18/2023]
Abstract
KNOX genes were initially found as shoot meristem regulators in angiosperms. Recent studies in diverse plant lineages however, have revealed the divergence of KNOX gene function during the evolution of diploid body plans. Using genomic approaches, class I KNOX transcription factors have been shown to regulate multiple hormone pathways including auxin and brassinosteroid as well as many transcription factors that play important roles in plant development. Class I KNOX proteins appear to be activators, whereas class II proteins act as repressors in transcriptional regulation of their target genes.
Collapse
Affiliation(s)
- Katsutoshi Tsuda
- Plant Gene Expression Center, U.S. Department of Agriculture-Agricultural Research Service, Plant and Microbial Biology Department, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Sarah Hake
- Plant Gene Expression Center, U.S. Department of Agriculture-Agricultural Research Service, Plant and Microbial Biology Department, University of California at Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
39
|
Wang D, Chen X, Zhang Z, Liu D, Song G, Kong X, Geng S, Yang J, Wang B, Wu L, Li A, Mao L. A MADS-box gene NtSVP regulates pedicel elongation by directly suppressing a KNAT1-like KNOX gene NtBPL in tobacco (Nicotiana tabacum L.). JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:6233-44. [PMID: 26175352 PMCID: PMC4588881 DOI: 10.1093/jxb/erv332] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Optimal inflorescence architecture is important for plant reproductive success by affecting the ultimate number of flowers that set fruits and for plant competitiveness when interacting with biotic or abiotic conditions. The pedicel is one of the key contributors to inflorescence architecture diversity. To date, knowledge about the molecular mechanisms of pedicel development is derived from Arabidopsis. Not much is known regarding other plants. Here, an SVP family MADS-box gene, NtSVP, in tobacco (Nicotiana tabacum) that is required for pedicel elongation was identified. It is shown that knockdown of NtSVP by RNA interference (RNAi) caused elongated pedicels, while overexpression resulted in compact inflorescences with much shortened pedicels. Moreover, an Arabidopsis BREVIPEDECELLUS/KNAT1 homologue NtBP-Like (NtBPL) was significantly up-regulated in NtSVP-RNAi plants. Disruption of NtBPL decreased pedicel lengths and shortened cortex cells. Consistent with the presence of a CArG-box at the NtBPL promoter, the direct binding of NtSVP to the NtBPL promoter was demonstrated by yeast one-hybrid assay, electrophoretic mobility shift assay, and dual-luciferase assay, in which NtSVP may act as a repressor of NtBPL. Microarray analysis showed that down-regulation of NtBPL resulted in differential expression of genes associated with a number of hormone biogenesis and signalling genes such as those for auxin and gibberellin. These findings together suggest the function of a MADS-box transcription factor in plant pedicel development, probably via negative regulation of a BP-like class I KNOX gene. The present work thus postulates the conservation and divergence of the molecular regulatory pathways underlying the development of plant inflorescence architecture.
Collapse
Affiliation(s)
- Di Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), MOA Key Laboratory of Crop Germplasm and Biotechnology, Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Xiaobo Chen
- National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), MOA Key Laboratory of Crop Germplasm and Biotechnology, Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Zenglin Zhang
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Danmei Liu
- School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Gaoyuan Song
- National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), MOA Key Laboratory of Crop Germplasm and Biotechnology, Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Xingchen Kong
- National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), MOA Key Laboratory of Crop Germplasm and Biotechnology, Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Shuaifeng Geng
- National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), MOA Key Laboratory of Crop Germplasm and Biotechnology, Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Jiayue Yang
- National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), MOA Key Laboratory of Crop Germplasm and Biotechnology, Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Bingnan Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), MOA Key Laboratory of Crop Germplasm and Biotechnology, Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Liang Wu
- National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), MOA Key Laboratory of Crop Germplasm and Biotechnology, Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Aili Li
- National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), MOA Key Laboratory of Crop Germplasm and Biotechnology, Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Long Mao
- National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), MOA Key Laboratory of Crop Germplasm and Biotechnology, Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| |
Collapse
|
40
|
Fiesselmann BS, Luichtl M, Yang X, Matthes M, Peis O, Torres-Ruiz RA. Ectopic shoot meristem generation in monocotyledonous rpk1 mutants is linked to SAM loss and altered seedling morphology. BMC PLANT BIOLOGY 2015; 15:171. [PMID: 26150008 PMCID: PMC4492102 DOI: 10.1186/s12870-015-0556-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 06/16/2015] [Indexed: 06/01/2023]
Abstract
BACKGROUND In dicot Arabidopsis thaliana embryos two cotyledons develop largely autonomously from the shoot apical meristem (SAM). Recessive mutations in the Arabidopsis receptor-like kinase RPK1 lead to monocotyledonous seedlings, with low (10 %) penetrance due to complex functional redundancy. In strong rpk1 alleles, about 10 % of these (i. e. 1 % of all homozygotes) did not develop a SAM. We wondered whether RPK1 might also control SAM gene expression and SAM generation in addition to its known stochastic impact on cell division and PINFORMED1 (PIN1) polarity in the epidermis. RESULTS SAM-less seedlings developed a simple morphology with a straight and continuous hypocotyl-cotyledon structure lacking a recognizable epicotyl. According to rpk1's auxin-related PIN1 defect, the seedlings displayed defects in the vascular tissue. Surprisingly, SAM-less seedlings variably expressed essential SAM specific genes along the hypocotyl-cotyledon structure up into the cotyledon lamina. Few were even capable of developing an ectopic shoot meristem (eSM) on top of the cotyledon. CONCLUSIONS The results highlight the developmental autonomy of the SAM vs. cotyledons and suggest that the primary rpk1 defect does not lie in the seedling's ability to express SAM genes or to develop a shoot meristem. Rather, rpk1's known defects in cell division and auxin homeostasis, by disturbed PIN1 polarity, impact on SAM and organ generation. In early embryo stages this failure generates a simplified monocotyledonous morphology. Once generated, this likely entails a loss of positional information that in turn affects the spatiotemporal development of the SAM. SAM-bearing and SAM-less monocotyledonous phenotypes show morphological similarities either to real monocots or to dicot species, which only develop one cotyledon. The specific cotyledon defect in rpk1 mutants thus sheds light upon the developmental implications of the transition from two cotyledons to one.
Collapse
Affiliation(s)
- Birgit S Fiesselmann
- Lehrstuhl für Genetik, Technische Universität München, Wissenschaftszentrum Weihenstephan, Emil-Ramann-Str. 8, D-85354, Freising, Germany.
| | - Miriam Luichtl
- Lehrstuhl für Genetik, Technische Universität München, Wissenschaftszentrum Weihenstephan, Emil-Ramann-Str. 8, D-85354, Freising, Germany.
| | - Xiaomeng Yang
- Lehrstuhl für Genetik, Technische Universität München, Wissenschaftszentrum Weihenstephan, Emil-Ramann-Str. 8, D-85354, Freising, Germany.
| | - Michaela Matthes
- Lehrstuhl für Genetik, Technische Universität München, Wissenschaftszentrum Weihenstephan, Emil-Ramann-Str. 8, D-85354, Freising, Germany.
- Lehrstuhl für Pflanzenzüchtung, Technische Universität München, Wissenschaftszentrum Weihenstephan, Liesel-Beckmann-Str. 2, D-85354, Freising, Germany.
| | - Ottilie Peis
- Lehrstuhl für Genetik, Technische Universität München, Wissenschaftszentrum Weihenstephan, Emil-Ramann-Str. 8, D-85354, Freising, Germany.
| | - Ramon A Torres-Ruiz
- Lehrstuhl für Genetik, Technische Universität München, Wissenschaftszentrum Weihenstephan, Emil-Ramann-Str. 8, D-85354, Freising, Germany.
| |
Collapse
|
41
|
Yin J, Chang X, Kasuga T, Bui M, Reid MS, Jiang CZ. A basic helix-loop-helix transcription factor, PhFBH4, regulates flower senescence by modulating ethylene biosynthesis pathway in petunia. HORTICULTURE RESEARCH 2015; 2:15059. [PMID: 26715989 PMCID: PMC4680862 DOI: 10.1038/hortres.2015.59] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 11/07/2015] [Accepted: 11/07/2015] [Indexed: 05/03/2023]
Abstract
The basic helix-loop-helix (bHLH) transcription factors (TFs) play important roles in regulating multiple biological processes in plants. However, there are few reports about the function of bHLHs in flower senescence. In this study, a bHLH TF, PhFBH4, was found to be dramatically upregulated during flower senescence. Transcription of PhFBH4 is induced by plant hormones and abiotic stress treatments. Silencing of PhFBH4 using virus-induced gene silencing or an antisense approach extended flower longevity, while transgenic petunia flowers with an overexpression construct showed a reduction in flower lifespan. Abundance of transcripts of senescence-related genes (SAG12, SAG29) was significantly changed in petunia PhFBH4 transgenic flowers. Furthermore, silencing or overexpression of PhFBH4 reduced or increased, respectively, transcript abundances of important ethylene biosynthesis-related genes, ACS1 and ACO1, thereby influencing ethylene production. An electrophoretic mobility shift assay showed that the PhFBH4 protein physically interacted with the G-box cis-element in the promoter of ACS1, suggesting that ACS1 was a direct target of the PhFBH4 protein. In addition, ectopic expression of this gene altered plant development including plant height, internode length, and size of leaves and flowers, accompanied by alteration of transcript abundance of the gibberellin biosynthesis-related gene GA2OX3. Our results indicate that PhFBH4 plays an important role in regulating plant growth and development through modulating the ethylene biosynthesis pathway.
Collapse
Affiliation(s)
- Jing Yin
- Department of Ornamental Horticulture, China Agricultural University, Beijing 100193, China
- Department of Plant Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Xiaoxiao Chang
- Department of Plant Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
- Department of Horticulture, Northwest A&F University, Yangling, Shanxi, China
| | - Takao Kasuga
- Crops Pathology and Genetic Research Unit, United States Department of Agriculture, Agricultural Research Service, One Shields Avenue, Davis, CA 95616, USA
| | - Mai Bui
- Crops Pathology and Genetic Research Unit, United States Department of Agriculture, Agricultural Research Service, One Shields Avenue, Davis, CA 95616, USA
| | - Michael S Reid
- Department of Plant Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Cai-Zhong Jiang
- Crops Pathology and Genetic Research Unit, United States Department of Agriculture, Agricultural Research Service, One Shields Avenue, Davis, CA 95616, USA
- ()
| |
Collapse
|
42
|
Liu D, Sun W, Yuan Y, Zhang N, Hayward A, Liu Y, Wang Y. Phylogenetic analyses provide the first insights into the evolution of OVATE family proteins in land plants. ANNALS OF BOTANY 2014; 113:1219-33. [PMID: 24812252 PMCID: PMC4030818 DOI: 10.1093/aob/mcu061] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 03/07/2014] [Indexed: 05/22/2023]
Abstract
BACKGROUND AND AIMS The OVATE gene encodes a nuclear-localized regulatory protein belonging to a distinct family of plant-specific proteins known as the OVATE family proteins (OFPs). OVATE was first identified as a key regulator of fruit shape in tomato, with nonsense mutants displaying pear-shaped fruits. However, the role of OFPs in plant development has been poorly characterized. METHODS Public databases were searched and a total of 265 putative OVATE protein sequences were identified from 13 sequenced plant genomes that represent the major evolutionary lineages of land plants. A phylogenetic analysis was conducted based on the alignment of the conserved OVATE domain from these 13 selected plant genomes. The expression patterns of tomato SlOFP genes were analysed via quantitative real-time PCR. The pattern of OVATE gene duplication resulting in the expansion of the gene family was determined in arabidopsis, rice and tomato. KEY RESULTS Genes for OFPs were found to be present in all the sampled land plant genomes, including the early-diverged lineages, mosses and lycophytes. Phylogenetic analysis based on the amino acid sequences of the conserved OVATE domain defined 11 sub-groups of OFPs in angiosperms. Different evolutionary mechanisms are proposed for OVATE family evolution, namely conserved evolution and divergent expansion. Characterization of the AtOFP family in arabidopsis, the OsOFP family in rice and the SlOFP family in tomato provided further details regarding the evolutionary framework and revealed a major contribution of tandem and segmental duplications towards expansion of the OVATE gene family. CONCLUSIONS This first genome-wide survey on OFPs provides new insights into the evolution of the OVATE protein family and establishes a solid base for future functional genomics studies on this important but poorly characterized regulatory protein family in plants.
Collapse
Affiliation(s)
- Di Liu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Sun
- Institute of Chinese Materia Medica, Chinese Academy of Chinese Medical Science, Beijing 100700, China Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Yaowu Yuan
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Ning Zhang
- Department of Biology, the Huck Institute of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Alice Hayward
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Yongliang Liu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Wang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| |
Collapse
|
43
|
DeMason DA, Chetty V. Phenotypic characterization of the CRISPA (ARP gene) mutant of pea (Pisum sativum; Fabaceae): a reevaluation. AMERICAN JOURNAL OF BOTANY 2014; 101:408-27. [PMID: 24638162 DOI: 10.3732/ajb.1300415] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
PREMISE OF THE STUDY Leaf form and development are controlled genetically. The ARP genes encode MYB transcription factors that interact with Class 1 KNOX genes in a regulatory module that controls meristem-leaf determinations and is highly conserved in plants. ARP loss of function alleles and subsequent KNOX1 overexpression cause many unusual leaf phenotypes including loss or partial loss of the ability to produce a lamina and production of "knots" on leaf blades. CRISPA (CRI) is the ARP gene in pea, and a number of its mutant alleles are known. METHODS We made morphological and anatomical evaluations of cri-1 mutant plants while controlling for genetic background and for heteroblastic effects, and we used aldehyde fixation and resin preparations for anatomical analysis. Further, we compared gene expression in WT and cri-1 shoot tips and HOP1/PsKN1 and CRI expression in other leaf mutants. KEY RESULTS The cri-1 plants had more extensive abnormalities in the proximal than in the distal regions of the leaf, including ectopic stipules, narrow leaflets, and shortened petioles with excessive adaxial expansion. "Knots" were morphologically and anatomically variable but consisted of vascularized out-pocketing of the adaxial leaflet surface. HOP1/PsKN1 and UNI mRNA levels were higher in cri-1 shoot tips, and some auxin-regulated genes were lower. Low LE expression suggests that the GA level is high in cri-1 shoot tips. CONCLUSIONS The CRISPA gene of pea suppresses KNOX1 genes and UNI and functions to (1) maintain proximal-distal regions in their appropriate positions, (2) restrict excessive adaxial cell proliferation, and (3) promote laminar expansion.
Collapse
Affiliation(s)
- Darleen A DeMason
- Botany and Plant Sciences, University of California, Riverside, California, 92521 USA
| | | |
Collapse
|
44
|
Chang X, Donnelly L, Sun D, Rao J, Reid MS, Jiang CZ. A Petunia homeodomain-leucine zipper protein, PhHD-Zip, plays an important role in flower senescence. PLoS One 2014; 9:e88320. [PMID: 24551088 PMCID: PMC3925126 DOI: 10.1371/journal.pone.0088320] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 01/07/2014] [Indexed: 01/07/2023] Open
Abstract
Flower senescence is initiated by developmental and environmental signals, and regulated by gene transcription. A homeodomain-leucine zipper transcription factor, PhHD-Zip, is up-regulated during petunia flower senescence. Virus-induced gene silencing of PhHD-Zip extended flower life by 20% both in unpollinated and pollinated flowers. Silencing PhHD-Zip also dramatically reduced ethylene production and the abundance of transcripts of genes involved in ethylene (ACS, ACO), and ABA (NCED) biosynthesis. Abundance of transcripts of senescence-related genes (SAG12, SAG29) was also dramatically reduced in the silenced flowers. Over-expression of PhHD-Zip accelerated petunia flower senescence. Furthermore, PhHD-Zip transcript abundance in petunia flowers was increased by application of hormones (ethylene, ABA) and abiotic stresses (dehydration, NaCl and cold). Our results suggest that PhHD-Zip plays an important role in regulating petunia flower senescence.
Collapse
Affiliation(s)
- Xiaoxiao Chang
- Department of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
- Department of Plant Sciences, University of California Davis, Davis, California, United States of America
| | - Linda Donnelly
- Crops Pathology and Genetic Research Unit, United States Department of Agriculture, Agricultural Research Service, Davis, California, United States of America
| | - Daoyang Sun
- Department of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
- Department of Plant Sciences, University of California Davis, Davis, California, United States of America
| | - Jingping Rao
- Department of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
- * E-mail: (JR); (MSR); (CZJ)
| | - Michael S. Reid
- Department of Plant Sciences, University of California Davis, Davis, California, United States of America
- * E-mail: (JR); (MSR); (CZJ)
| | - Cai-Zhong Jiang
- Crops Pathology and Genetic Research Unit, United States Department of Agriculture, Agricultural Research Service, Davis, California, United States of America
- * E-mail: (JR); (MSR); (CZJ)
| |
Collapse
|
45
|
Pabón-Mora N, Wong GKS, Ambrose BA. Evolution of fruit development genes in flowering plants. FRONTIERS IN PLANT SCIENCE 2014; 5:300. [PMID: 25018763 PMCID: PMC4071287 DOI: 10.3389/fpls.2014.00300] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 06/07/2014] [Indexed: 05/18/2023]
Abstract
The genetic mechanisms regulating dry fruit development and opercular dehiscence have been identified in Arabidopsis thaliana. In the bicarpellate silique, valve elongation and differentiation is controlled by FRUITFULL (FUL) that antagonizes SHATTERPROOF1-2 (SHP1/SHP2) and INDEHISCENT (IND) at the dehiscence zone where they control normal lignification. SHP1/2 are also repressed by REPLUMLESS (RPL), responsible for replum formation. Similarly, FUL indirectly controls two other factors ALCATRAZ (ALC) and SPATULA (SPT) that function in the proper formation of the separation layer. FUL and SHP1/2 belong to the MADS-box family, IND and ALC belong to the bHLH family and RPL belongs to the homeodomain family, all of which are large transcription factor families. These families have undergone numerous duplications and losses in plants, likely accompanied by functional changes. Functional analyses of homologous genes suggest that this network is fairly conserved in Brassicaceae and less conserved in other core eudicots. Only the MADS box genes have been functionally characterized in basal eudicots and suggest partial conservation of the functions recorded for Brassicaceae. Here we do a comprehensive search of SHP, IND, ALC, SPT, and RPL homologs across core-eudicots, basal eudicots, monocots and basal angiosperms. Based on gene-tree analyses we hypothesize what parts of the network for fruit development in Brassicaceae, in particular regarding direct and indirect targets of FUL, might be conserved across angiosperms.
Collapse
Affiliation(s)
- Natalia Pabón-Mora
- Instituto de Biología, Universidad de AntioquiaMedellín, Colombia
- The New York Botanical GardenBronx, NY, USA
- *Correspondence: Natalia Pabón-Mora, Instituto de Biología, Universidad de Antioquia, Calle 70 No 52-21, AA 1226 Medellín, Colombia e-mail:
| | - Gane Ka-Shu Wong
- Department of Biological Sciences, University of AlbertaEdmonton, AB, Canada
- Department of Medicine, University of AlbertaEdmonton, AB, Canada
- BGI-Shenzhen, Beishan Industrial ZoneShenzhen, China
| | | |
Collapse
|
46
|
Qi B, Zheng H. Modulation of root-skewing responses by KNAT1 in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 76:380-92. [PMID: 23889705 DOI: 10.1111/tpj.12295] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 07/17/2013] [Accepted: 07/19/2013] [Indexed: 05/20/2023]
Abstract
The KNOTTED1 homeobox (KNOX) family transcription factors are essential for stem cell establishment and maintenance and regulate various aspects of development in all green plants. Expression patterns of the KNOX genes in the roots of plants have been reported, but their role in development remains unclear. Here we show how the KNAT1 gene is specifically involved in root skewing in Arabidopsis. The roots of two mutant alleles of KNAT1 (bp-1 and bp-5) exhibited exaggerated skewing to the right of gravity when grown on both vertical and tilted agar medium surfaces. This skewing phenotype was enhanced by treatments with low concentrations of propyzamide, and required auxin transport. The KNAT1 mutation substantially decreased basipetal auxin transport and increased auxin accumulation in the roots. Using a PIN2-GFP reporter and western blot analysis, we found that this alteration in auxin transport was accompanied by a decrease in PIN2 levels in the root tip. Decreased PIN2 expression in the mutant roots was not accompanied by reduced mRNA levels, suggesting that the KNAT1 mutations affected PIN2 expression at the posttranscriptional level. In vivo visualization of intracellular vacuolar targeting indicated that vacuolar degradation of PIN2-GFP was significantly promoted in the root tips of the bp allelic mutants. Together, these results demonstrate that KNAT1 negatively modulates root skewing, possibly by regulating auxin transport.
Collapse
Affiliation(s)
- Bin Qi
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | | |
Collapse
|
47
|
Vasco A, Moran RC, Ambrose BA. The evolution, morphology, and development of fern leaves. FRONTIERS IN PLANT SCIENCE 2013; 4:345. [PMID: 24027574 PMCID: PMC3761161 DOI: 10.3389/fpls.2013.00345] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 08/15/2013] [Indexed: 05/18/2023]
Abstract
Leaves are lateral determinate structures formed in a predictable sequence (phyllotaxy) on the flanks of an indeterminate shoot apical meristem. The origin and evolution of leaves in vascular plants has been widely debated. Being the main conspicuous organ of nearly all vascular plants and often easy to recognize as such, it seems surprising that leaves have had multiple origins. For decades, morphologists, anatomists, paleobotanists, and systematists have contributed data to this debate. More recently, molecular genetic studies have provided insight into leaf evolution and development mainly within angiosperms and, to a lesser extent, lycophytes. There has been recent interest in extending leaf evolutionary developmental studies to other species and lineages, particularly in lycophytes and ferns. Therefore, a review of fern leaf morphology, evolution and development is timely. Here we discuss the theories of leaf evolution in ferns, morphology, and diversity of fern leaves, and experimental results of fern leaf development. We summarize what is known about the molecular genetics of fern leaf development and what future studies might tell us about the evolution of fern leaf development.
Collapse
Affiliation(s)
| | | | - Barbara A. Ambrose
- *Correspondence: Barbara A. Ambrose, The New York Botanical Garden, 2900 Southern Blvd., Bronx, NY 10458-5126, USA e-mail:
| |
Collapse
|
48
|
Rogers HJ. From models to ornamentals: how is flower senescence regulated? PLANT MOLECULAR BIOLOGY 2013; 82:563-74. [PMID: 22983713 DOI: 10.1007/s11103-012-9968-0] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 09/05/2012] [Indexed: 05/20/2023]
Abstract
Floral senescence involves an ordered set of events coordinated at the plant, flower, organ and cellular level. This review assesses our current understanding of the input signals, signal transduction and cellular processes that regulate petal senescence and cell death. In many species a visible sign of petal senescence is wilting. This is accompanied by remobilization of nutrients from the flower to the developing ovary or to other parts of the plant. In other species, petals abscise while still turgid. Coordinating signals for floral senescence also vary across species. In some species ethylene acts as a central regulator, in others floral senescence is ethylene insensitive and other growth regulators are implicated. Due to the variability in this coordination and sequence of events across species, identifying suitable models to study petal senescence has been challenging, and the best candidates are reviewed. Transcriptomic studies provide an overview of the MAP kinases and transcription factors that are activated during petal senescence in several species including Arabidopsis. Our understanding of downstream regulators such as autophagy genes and proteases is also improving. This gives us insights into possible signalling cascades that regulate initiation of senescence and coordination of cell death processes. It also identifies the gaps in our knowledge such as the role of microRNAs. Finally future prospects for using all this information from model to non-model species to extend vase life in ornamental species is reviewed.
Collapse
Affiliation(s)
- Hilary J Rogers
- School of Biosciences, Cardiff University, Main Building Park Place, Cardiff, CF10 3TL, UK.
| |
Collapse
|
49
|
Burko Y, Shleizer-Burko S, Yanai O, Shwartz I, Zelnik ID, Jacob-Hirsch J, Kela I, Eshed-Williams L, Ori N. A role for APETALA1/fruitfull transcription factors in tomato leaf development. THE PLANT CELL 2013; 25:2070-83. [PMID: 23771895 PMCID: PMC3723613 DOI: 10.1105/tpc.113.113035] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Flexible maturation rates underlie part of the diversity of leaf shape, and tomato (Solanum lycopersicum) leaves are compound due to prolonged organogenic activity of the leaf margin. The CINCINNATA-teosinte branched1, cycloidea, PCF (CIN-TCP) transcription factor lanceolate (LA) restricts this organogenic activity and promotes maturation. Here, we show that tomato APETALA1/fruitfull (AP1/FUL) MADS box genes are involved in tomato leaf development and are repressed by LA. AP1/FUL expression is correlated negatively with LA activity and positively with the organogenic activity of the leaf margin. LA binds to the promoters of the AP1/FUL genes MBP20 and TM4. Overexpression of MBP20 suppressed the simple-leaf phenotype resulting from upregulation of LA activity or from downregulation of class I knotted like homeobox (KNOXI) activity. Overexpression of a dominant-negative form of MBP20 led to leaf simplification and partly suppressed the increased leaf complexity of plants with reduced LA activity or increased KNOXI activity. Tomato plants overexpressing miR319, a negative regulator of several CIN-TCP genes including LA, flower with fewer leaves via an SFT-dependent pathway, suggesting that miR319-sensitive CIN-TCPs delay flowering in tomato. These results identify a role for AP1/FUL genes in vegetative development and show that leaf and plant maturation are regulated via partially independent mechanisms.
Collapse
Affiliation(s)
- Yogev Burko
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture and The Otto Warburg Minerva Center for Agricultural Biotechnology, Hebrew University, Rehovot 76100, Israel
| | - Sharona Shleizer-Burko
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture and The Otto Warburg Minerva Center for Agricultural Biotechnology, Hebrew University, Rehovot 76100, Israel
| | - Osnat Yanai
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture and The Otto Warburg Minerva Center for Agricultural Biotechnology, Hebrew University, Rehovot 76100, Israel
| | - Ido Shwartz
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture and The Otto Warburg Minerva Center for Agricultural Biotechnology, Hebrew University, Rehovot 76100, Israel
| | - Iris Daphne Zelnik
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture and The Otto Warburg Minerva Center for Agricultural Biotechnology, Hebrew University, Rehovot 76100, Israel
| | - Jasmine Jacob-Hirsch
- Cancer Research Center, Chaim Sheba Medical Center, Tel Hashomer 52621, Ramat Gan, Israel
| | - Itai Kela
- Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Leor Eshed-Williams
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture and The Otto Warburg Minerva Center for Agricultural Biotechnology, Hebrew University, Rehovot 76100, Israel
| | - Naomi Ori
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture and The Otto Warburg Minerva Center for Agricultural Biotechnology, Hebrew University, Rehovot 76100, Israel
- Address correspondence to
| |
Collapse
|
50
|
Elhiti M, Wally OSD, Belmonte MF, Chan A, Cao Y, Xiang D, Datla R, Stasolla C. Gene expression analysis in microdissected shoot meristems of Brassica napus microspore-derived embryos with altered SHOOTMERISTEMLESS levels. PLANTA 2013; 237:1065-1082. [PMID: 23242073 DOI: 10.1007/s00425-012-1814-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Accepted: 11/12/2012] [Indexed: 05/28/2023]
Abstract
Altered expression of Brassica napus (Bn) SHOOTMERISTEMLESS (STM) affects the morphology and behaviour of microspore-derived embryos (MDEs). While down-regulation of BnSTM repressed the formation of the shoot meristem (SAM) and reduced the number of Brassica MDEs able to regenerate viable plants at germination, over-expression of BnSTM enhanced the structure of the SAM and improved regeneration frequency. Within dissected SAMs, the induction of BnSTM up-regulated the expression of many transcription factors (TFs) some of which directly involved in the formation of the meristem, i.e. CUP-SHAPED COTYLEDON1 and WUSCHEL, and regulatory components of the antioxidant response, hormone signalling, and cell wall synthesis and modification. Opposite expression patterns for some of these genes were observed in the SAMs of MDEs down-regulating BnSTM. Altered expression of BnSTM affected transcription of cell wall and lignin biosynthetic genes. The expression of PHENYLALANINE AMMONIA LYASE2, CINNAMATE 4-4HYDROXYLASE, and CINNAMYL ALCOHOL DEHYDROGENASE were repressed in SAMs over-expressing BnSTM. Since lignin formation is a feature of irreversible cell differentiation, these results suggest that one way in which BnSTM promotes indeterminate cell fate may be by preventing the expression of components of biochemical pathways involved in the accumulation of lignin in the meristematic cells. Overall, these studies provide evidence for a novel function of BnSTM in enhancing the quality of in vitro produced meristems, and propose that this gene can be used as a potential target to improve regeneration of cultured embryos.
Collapse
Affiliation(s)
- Mohamed Elhiti
- Department of Botany, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | | | | | | | | | | | | | | |
Collapse
|