1
|
Qin H, Sun M, Guo W, He Y, Yao Y, Resco de Dios V. Time-dependent regulation of respiration is widespread across plant evolution. PLANT, CELL & ENVIRONMENT 2024; 47:408-415. [PMID: 37927244 DOI: 10.1111/pce.14760] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 10/20/2023] [Indexed: 11/07/2023]
Abstract
Establishing the temperature dependence of respiration is critical for accurate predictions of the global carbon cycle under climate change. Diurnal temperature fluctuations, or changes in substrate availability, lead to variations in leaf respiration. Additionally, recent studies hint that the thermal sensitivity of respiration could be time-dependent. However, the role for endogenous processes, independent from substrate availability, as drivers of temporal changes in the sensitivity of respiration to temperature across phylogenies has not yet been addressed. Here, we examined the diurnal variation in the response of respiration to temperatures (R-T relationship) for different lycophyte, fern, gymnosperm and angiosperm species. We tested whether time-dependent changes in the R-T relationship would impact leaf level respiration modelling. We hypothesized that interactions between endogenous processes, like the circadian clock, and leaf respiration would be independent from changes in substrate availability. Overall, we observed a time-dependent sensitivity in the R-T relationship across phylogenies, independent of temperature, that affected modelling parameters. These results are compatible with circadian gating of respiration, but further studies should analyse the possible involvement of the clock. Our results indicate time-dependent regulation of respiration might be widespread across phylogenies, and that endogenous regulation of respiration is likely affecting leaf-level respiration fluxes.
Collapse
Affiliation(s)
- Haiyan Qin
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Mengqi Sun
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Weizhou Guo
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Yingpeng He
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Yinan Yao
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Víctor Resco de Dios
- Department of Forest and Agricultural Science and Engineering, University of Lleida, Lérida, Spain
- JRU CTFC-AGROTECNIO-CERCA Centre, Lérida, Spain
| |
Collapse
|
2
|
Hammock HA, Kopsell DA, Sams CE. Application timing and duration of LED and HPS supplements differentially influence yield, nutrient bioaccumulation, and light use efficiency of greenhouse basil across seasons. FRONTIERS IN PLANT SCIENCE 2023; 14:1174823. [PMID: 38023892 PMCID: PMC10644351 DOI: 10.3389/fpls.2023.1174823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 10/09/2023] [Indexed: 12/01/2023]
Abstract
Three primary factors that impact plant growth and development are light quantity, quality, and duration. Commercial growers can manipulate these parameters using light-emitting diodes (LEDs) to optimize biomass yield and plant quality. There is significant potential to synergize supplemental lighting (SL) parameters with seasonal variation of ambient sunlight to optimize crop light use efficiency (LUE), which could increase biomass while reducing SL electricity costs. To determine the best lighting characteristics and durations for different crops, particularly for enhancing the yield and nutritional quality of high-value specialty crops produced in greenhouses during the winter, a thorough efficacy comparison of progressive incremental daily light integrals (DLIs) using LED and high-pressure sodium (HPS) sources is required. The purpose of this study was to compare the effects of differential application timing and DLIs of supplemental blue (B)/red (R) narrowband wavelengths from LED lighting systems and HPS lamps on greenhouse hydroponic basil (Ocimum basilicum var. 'Genovese') production. We assessed edible biomass, nutrient bioaccumulation, and LUE. Nine light treatments included: one non-supplemented natural light (NL) control, two end-of-day (EOD) HPS treatments applied for 6 h and 12 h, five EOD 20B/80R LED treatments applied for 3 h, 6 h, 9 h, 12 h, 18 h, and one continuous LED treatment (24 h). Each SL treatment provided 100 µmol·m-2·s-1. The DLI of the NL control averaged 9.9 mol·m-2·d-1 during the growth period (ranging from 4 to 20 mol·m-2·d-1). SL treatments and growing seasons significantly impacted biomass and nutrient bioaccumulation; some SL treatments had lower yields than the non-supplemented NL control. January growing season produced the lowest fresh mass (FM) and dry mass (DM) values compared to November, which had the highest. Mineral analyses revealed that both growing seasons and lighting types impacted macro and micronutrient accumulation. Additionally, the efficiency of each treatment in converting electrical energy into biomass varied greatly. EOD supplements using LED and HPS lighting systems both have merits for efficiently optimizing yield and nutrient accumulation in basil; however, biomass and nutrient tissue concentrations highly depend on seasonal variation in ambient sunlight in conjunction with a supplement's spectral quality, DLI, and application schedule.
Collapse
Affiliation(s)
| | | | - Carl E. Sams
- Department of Plant Sciences, The University of Tennessee, Knoxville, TN, United States
| |
Collapse
|
3
|
Lo Piccolo E, Lauria G, Guidi L, Remorini D, Massai R, Landi M. Shedding light on the effects of LED streetlamps on trees in urban areas: Friends or foes? THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 865:161200. [PMID: 36581265 DOI: 10.1016/j.scitotenv.2022.161200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/22/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
Streetlamp illumination disturbs the natural physiological processes and circadian rhythms of living organisms, including photosynthesizing "citizens". The light-emitting diode (LED) technology has replaced high-pressure sodium lamps. Therefore, the effects of LED streetlamps on urban trees need to be elucidated as these new lamps have a different light spectrum (with a peak in the blue and red regions of the spectrum, i.e., highly efficient wavebands for photosynthesis) compared to older technologies. To address the above-mentioned issue, two widely utilised tree species in the urban environment, including Platanus × acerifolia (P) and Tilia platyphyllos (T), were grown with or without the effect of LED streetlamps using two realistic illumination intensities (300 and 700 μmol m-2 s-1). Gas exchanges and biochemical features (starch, soluble sugar, and chlorophyll content) of illuminated vs non-illuminated trees were compared during the whole vegetative season. Our results showed that both tree species were strongly influenced by LED streetlamps at physiological and biochemical levels. Specifically, the mature leaves of P and T streetlamp-illuminated trees had a lower CO2 assimilation rate at dawn and had higher chlorophyll content, with lower starch content than controls. Our results showed that the differences between the effects of the two selected light intensities on the physiochemical attributes of P and T trees were not statistically significant, suggesting the absence of a dose-dependent effect. The most significant difference between T and P trees concerning the LED-triggered species-specific effect was that the delay in winter dormancy occurred only in P individuals. This study provided insights into the extent of LED streetlamp disturbance on trees. Our findings might raise awareness of the necessity to provide less impacting solutions to improve the wellness of trees in the urban environment.
Collapse
Affiliation(s)
- E Lo Piccolo
- Department of Agriculture, Food, Environment and Forestry, University of Florence, Florence, Italy
| | - G Lauria
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto, 80-56124 Pisa, Italy
| | - L Guidi
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto, 80-56124 Pisa, Italy; CIRSEC, Centre for Climate Change Impact, University of Pisa, Italy
| | - D Remorini
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto, 80-56124 Pisa, Italy; CIRSEC, Centre for Climate Change Impact, University of Pisa, Italy
| | - R Massai
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto, 80-56124 Pisa, Italy; CIRSEC, Centre for Climate Change Impact, University of Pisa, Italy
| | - M Landi
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto, 80-56124 Pisa, Italy; CIRSEC, Centre for Climate Change Impact, University of Pisa, Italy.
| |
Collapse
|
4
|
Plants Utilize Suberin Biopolymers as a Vector for Transmitting Visible Light through Their Roots. Polymers (Basel) 2022; 14:polym14245387. [PMID: 36559753 PMCID: PMC9782166 DOI: 10.3390/polym14245387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/02/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022] Open
Abstract
Plants conduct light from their aboveground tissues belowground to their root system. This phenomenon may influence root growth and perhaps serve to stimulate natural biological functions of the microorganisms associating with them. Here we show that light transmission in maize roots largely occurs within the endodermis, a region rich in suberin polyester biopolymers. Using cork as a natural resource rich in suberin polymers, we extracted, depolymerized, and examined light transmission in the visible and infrared regions. Suberin co-monomers dissolved in toluene showed no evidence of enhanced light transmission over that of the pure solvent in the visible light region and reduced light transmission in the infrared region. However, when these co-monomers were catalytically repolymerized using Bi(OTf)3, light transmission through suspended polymers significantly increased 1.3-fold in the visible light region over that in pure toluene, but was reduced in the infrared region.
Collapse
|
5
|
Nidhi, Kumar P, Pathania D, Thakur S, Sharma M. Environment-mediated mutagenetic interference on genetic stabilization and circadian rhythm in plants. Cell Mol Life Sci 2022; 79:358. [PMID: 35687153 PMCID: PMC11072124 DOI: 10.1007/s00018-022-04368-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/21/2022] [Accepted: 05/07/2022] [Indexed: 12/29/2022]
Abstract
Many mortal organisms on this planet have developed the potential to merge all internal as well as external environmental cues to regulate various processes running inside organisms and in turn make them adaptive to the environment through the circadian clock. This moving rotator controls processes like activation of hormonal, metabolic, or defense pathways, initiation of flowering at an accurate period, and developmental processes in plants to ensure their stability in the environment. All these processes that are under the control of this rotating wheel can be changed either by external environmental factors or by an unpredictable phenomenon called mutation that can be generated by either physical mutagens, chemical mutagens, or by internal genetic interruption during metabolic processes, which alters normal functionality of organisms like innate immune responses, entrainment of the clock, biomass reduction, chlorophyll formation, and hormonal signaling, despite its fewer positive roles in plants like changing plant type, loss of vernalization treatment to make them survivable in different latitudes, and defense responses during stress. In addition, with mutation, overexpression of gene components sometimes supresses mutation effect and promote normal circadian genes abundance in the cell, while sometimes it affects circadian functionality by generating arrhythmicity and shows that not only mutation but overexpression also effects normal functional activities of plant. Therefore, this review mainly summarizes the role of each circadian clock genes in regulating rhythmicity, and shows that how circadian outputs are controlled by mutations as well as overexpression phenomenon.
Collapse
Affiliation(s)
- Nidhi
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, 173212, India
| | - Pradeep Kumar
- Central University of Himachal Pradesh, Dharmshala, India
| | - Diksha Pathania
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, 173212, India
| | - Sourbh Thakur
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, Gliwice, Poland
| | - Mamta Sharma
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, 173212, India.
| |
Collapse
|
6
|
Regulatory Role of Circadian Clocks on ABA Production and Signaling, Stomatal Responses, and Water-Use Efficiency under Water-Deficit Conditions. Cells 2022; 11:cells11071154. [PMID: 35406719 PMCID: PMC8997731 DOI: 10.3390/cells11071154] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/15/2022] [Accepted: 03/25/2022] [Indexed: 02/04/2023] Open
Abstract
Plants deploy molecular, physiological, and anatomical adaptations to cope with long-term water-deficit exposure, and some of these processes are controlled by circadian clocks. Circadian clocks are endogenous timekeepers that autonomously modulate biological systems over the course of the day–night cycle. Plants’ responses to water deficiency vary with the time of the day. Opening and closing of stomata, which control water loss from plants, have diurnal responses based on the humidity level in the rhizosphere and the air surrounding the leaves. Abscisic acid (ABA), the main phytohormone modulating the stomatal response to water availability, is regulated by circadian clocks. The molecular mechanism of the plant’s circadian clock for regulating stress responses is composed not only of transcriptional but also posttranscriptional regulatory networks. Despite the importance of regulatory impact of circadian clock systems on ABA production and signaling, which is reflected in stomatal responses and as a consequence influences the drought tolerance response of the plants, the interrelationship between circadian clock, ABA homeostasis, and signaling and water-deficit responses has to date not been clearly described. In this review, we hypothesized that the circadian clock through ABA directs plants to modulate their responses and feedback mechanisms to ensure survival and to enhance their fitness under drought conditions. Different regulatory pathways and challenges in circadian-based rhythms and the possible adaptive advantage through them are also discussed.
Collapse
|
7
|
Ren Y, Gao Y, Zhang Q. Morning and evening alarm of the circadian clock for flower opening times in Hemerocallis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 311:110992. [PMID: 34482906 DOI: 10.1016/j.plantsci.2021.110992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 07/06/2021] [Accepted: 07/11/2021] [Indexed: 06/13/2023]
Abstract
Previous studies demonstrated that flower opening time (FOT) is a stable trait and precisely controlled by a circadian clock responsive to the environment. It plays a vital role in improving fertility. Hemerocallis spp. has different FOTs divided into two types: nocturnal and diurnal. To explore the regulatory mechanisms of their FOTs, we carried out a transcriptome sequencing experiment at different developmental stages of an F1 population with different FOTs. 55,883 unigenes were obtained, and 9234 differential genes were identified. Co-expression was analyzed by K-means clustering and weighted gene co-expression network analysis. Results showed that after entering reproductive growth, two FOT types of Hemerocallis had increased expression of genes related to photosynthetic metabolism and sensitivity to environmental response such as light and hormone signal transmission. Circadian rhythm-related activities were enriched in hub genes during the flowering stage. Genes showing differential expression between the two Hemerocallis groups were related to environmental response and photosynthesis pathways. Putative circadian clock genes displayed differences in expression across the flower opening stage in both groups of Hemerocallis. Twenty-three key circadian clock genes were identified, which related to sensitivity to light signal input and gating. These genes might closely relate to FOTs in Hemerocallis.
Collapse
Affiliation(s)
- Yi Ren
- Landscape Architecture School, Beijing Forestry University, No.35, Tsinghua East Road, Haidian District, Beijing, China.
| | - Yike Gao
- Landscape Architecture School, Beijing Forestry University, No.35, Tsinghua East Road, Haidian District, Beijing, China.
| | - Qixiang Zhang
- Landscape Architecture School, Beijing Forestry University, No.35, Tsinghua East Road, Haidian District, Beijing, China.
| |
Collapse
|
8
|
Plant Defence Mechanisms Are Modulated by the Circadian System. BIOLOGY 2020; 9:biology9120454. [PMID: 33317013 PMCID: PMC7763185 DOI: 10.3390/biology9120454] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 11/30/2020] [Accepted: 12/05/2020] [Indexed: 11/29/2022]
Abstract
Simple Summary The circadian clock is an endogenous time keeping mechanism found in living organisms and their respective pathogens. Numerous studies demonstrate that rhythms generated by this internal biological oscillator regulate and modulate most of the physiological, developmental, and biochemical processes of plants. Importantly, plant defence responses have also been shown to be modulated by the host circadian clock and vice versa. In this review we discuss the current understanding of the interactions between plant immunity and the circadian system. We also describe the possibility of pathogens directly or indirectly influencing plants’ circadian rhythms and suggest that these interactions could help us devise better disease management strategies for plants. Our review raises further research questions and we conclude that experimentation should be completed to unravel the complex mechanisms underlying interactions between plant defence and the circadian system. Abstract Plant health is an important aspect of food security, with pathogens, pests, and herbivores all contributing to yield losses in crops. Plants’ defence against pathogens is complex and utilises several metabolic processes, including the circadian system, to coordinate their response. In this review, we examine how plants’ circadian rhythms contribute to defence mechanisms, particularly in response to bacterial pathogen attack. Circadian rhythms contribute to many aspects of the plant–pathogen interaction, although significant gaps in our understanding remain to be explored. We conclude that if these relationships are explored further, better disease management strategies could be revealed.
Collapse
|
9
|
Hong WJ, Jiang X, Ahn HR, Choi J, Kim SR, Jung KH. Systematic Analysis of Cold Stress Response and Diurnal Rhythm Using Transcriptome Data in Rice Reveals the Molecular Networks Related to Various Biological Processes. Int J Mol Sci 2020; 21:E6872. [PMID: 32961678 PMCID: PMC7554834 DOI: 10.3390/ijms21186872] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/14/2020] [Accepted: 09/17/2020] [Indexed: 11/16/2022] Open
Abstract
Rice (Oryza sativa L.), a staple crop plant that is a major source of calories for approximately 50% of the human population, exhibits various physiological responses against temperature stress. These responses are known mechanisms of flexible adaptation through crosstalk with the intrinsic circadian clock. However, the molecular regulatory network underlining this crosstalk remains poorly understood. Therefore, we performed systematic transcriptome data analyses to identify the genes involved in both cold stress responses and diurnal rhythmic patterns. Here, we first identified cold-regulated genes and then identified diurnal rhythmic genes from those (119 cold-upregulated and 346 cold-downregulated genes). We defined cold-responsive diurnal rhythmic genes as CD genes. We further analyzed the functional features of these CD genes through Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses and performed a literature search to identify functionally characterized CD genes. Subsequently, we found that light-harvesting complex proteins involved in photosynthesis strongly associate with the crosstalk. Furthermore, we constructed a protein-protein interaction network encompassing four hub genes and analyzed the roles of the Stay-Green (SGR) gene in regulating crosstalk with sgr mutants. We predict that these findings will provide new insights in understanding the environmental stress response of crop plants against climate change.
Collapse
Affiliation(s)
- Woo-Jong Hong
- Graduate School of Biotechnology & Crop Biotech Institute, Kyung Hee University, Yongin 17104, Korea; (W.-J.H.); (X.J.); (H.R.A.)
| | - Xu Jiang
- Graduate School of Biotechnology & Crop Biotech Institute, Kyung Hee University, Yongin 17104, Korea; (W.-J.H.); (X.J.); (H.R.A.)
| | - Hye Ryun Ahn
- Graduate School of Biotechnology & Crop Biotech Institute, Kyung Hee University, Yongin 17104, Korea; (W.-J.H.); (X.J.); (H.R.A.)
| | - Juyoung Choi
- Department of Life Science, Sogang University, Seoul 04107, Korea;
| | - Seong-Ryong Kim
- Department of Life Science, Sogang University, Seoul 04107, Korea;
| | - Ki-Hong Jung
- Graduate School of Biotechnology & Crop Biotech Institute, Kyung Hee University, Yongin 17104, Korea; (W.-J.H.); (X.J.); (H.R.A.)
| |
Collapse
|
10
|
Lee SJ, Morse D, Hijri M. Holobiont chronobiology: mycorrhiza may be a key to linking aboveground and underground rhythms. MYCORRHIZA 2019; 29:403-412. [PMID: 31190278 DOI: 10.1007/s00572-019-00903-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 06/05/2019] [Indexed: 06/09/2023]
Abstract
Circadian clocks are nearly ubiquitous timing mechanisms that can orchestrate rhythmic behavior and gene expression in a wide range of organisms. Clock mechanisms are becoming well understood in fungal, animal, and plant model systems, yet many of these organisms are surrounded by a complex and diverse microbiota which should be taken into account when examining their biology. Of particular interest are the symbiotic relationships between organisms that have coevolved over time, forming a unit called a holobiont. Several studies have now shown linkages between the circadian rhythms of symbiotic partners. Interrelated regulation of holobiont circadian rhythms seems thus important to coordinate shifts in activity over the day for all the partners. Therefore, we suggest that the classical view of "chronobiological individuals" should include "a holobiont" rather than an organism. Unfortunately, mechanisms that may regulate interspecies temporal acclimation and the evolution of the circadian clock in holobionts are far from being understood. For the plant holobiont, our understanding is particularly limited. In this case, the holobiont encompasses two different ecosystems, one above and the other below the ground, with the two potentially receiving timing information from different synchronizing signals (Zeitgebers). The arbuscular mycorrhizal (AM) symbiosis, formed by plant roots and fungi, is one of the oldest and most widespread associations between organisms. By mediating the nutritional flux between the plant and the many microbes in the soil, AM symbiosis constitutes the backbone of the plant holobiont. Even though the importance of the AM symbiosis has been well recognized in agricultural and environmental sciences, its circadian chronobiology remains almost completely unknown. We have begun to study the circadian clock of arbuscular mycorrhizal fungi, and we compile and here discuss the available information on the subject. We propose that analyzing the interrelated temporal organization of the AM symbiosis and determining its underlying mechanisms will advance our understanding of the role and coordination of circadian clocks in holobionts in general.
Collapse
Affiliation(s)
- Soon-Jae Lee
- Institut de Recherche en Biologie Végétale (IRBV), Université de Montréal, 4101 Rue Sherbrooke Est, Montréal, Québec, H1X 2B2, Canada
- Department of Ecology and Evolution, University of Lausanne, 1015, Lausanne, Switzerland
| | - David Morse
- Institut de Recherche en Biologie Végétale (IRBV), Université de Montréal, 4101 Rue Sherbrooke Est, Montréal, Québec, H1X 2B2, Canada
| | - Mohamed Hijri
- Institut de Recherche en Biologie Végétale (IRBV), Université de Montréal, 4101 Rue Sherbrooke Est, Montréal, Québec, H1X 2B2, Canada.
| |
Collapse
|
11
|
Westneat DF, Potts LJ, Sasser KL, Shaffer JD. Causes and Consequences of Phenotypic Plasticity in Complex Environments. Trends Ecol Evol 2019; 34:555-568. [PMID: 30871734 DOI: 10.1016/j.tree.2019.02.010] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 02/11/2019] [Accepted: 02/18/2019] [Indexed: 10/27/2022]
Abstract
Phenotypic plasticity is a ubiquitous and necessary adaptation of organisms to variable environments, but most environments have multiple dimensions that vary. Many studies have documented plasticity of a trait with respect to variation in multiple environmental factors. Such multidimensional phenotypic plasticity (MDPP) exists at all levels of organismal organization, from the whole organism to within cells. This complexity in plasticity cannot be explained solely by scaling up ideas from models of unidimensional plasticity. MDPP generates new questions about the mechanism and function of plasticity and its role in speciation and population persistence. Here we review empirical and theoretical approaches to plasticity in response to multidimensional environments and we outline new opportunities along with some difficulties facing future research.
Collapse
Affiliation(s)
- David F Westneat
- Department of Biology, 101 T.H. Morgan Building, University of Kentucky, Lexington, KY 40506-0225, USA.
| | - Leslie J Potts
- Department of Entomology, S-225 Agricultural Science Center North, University of Kentucky, Lexington, KY 40546-0091, USA
| | - Katherine L Sasser
- Department of Biology, 101 T.H. Morgan Building, University of Kentucky, Lexington, KY 40506-0225, USA
| | - James D Shaffer
- Department of Biology, 101 T.H. Morgan Building, University of Kentucky, Lexington, KY 40506-0225, USA
| |
Collapse
|
12
|
Singh M, Mas P. A Functional Connection between the Circadian Clock and Hormonal Timing in Arabidopsis. Genes (Basel) 2018; 9:E567. [PMID: 30477118 PMCID: PMC6315462 DOI: 10.3390/genes9120567] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/20/2018] [Accepted: 11/20/2018] [Indexed: 02/04/2023] Open
Abstract
The rotation of the Earth entails changes in environmental conditions that pervasively influence an organism's physiology and metabolism. An internal cellular mechanism known as the circadian clock acts as an internal timekeeper that is able to perceive the changes in environmental cues to generate 24-h rhythms in synchronization with daily and seasonal fluctuations. In plants, the circadian clock function is particularly important and regulates nearly every aspect of plant growth and development as well as proper responses to stresses. The circadian clock does not function in isolation but rather interconnects with an intricate network of different pathways, including those of phytohormones. Here, we describe the interplay of the circadian clock with a subset of hormones in Arabidopsis. The molecular components directly connecting the circadian and hormone pathways are described, highlighting the biological significance of such connections in the control of growth, development, fitness, and survival. We focus on the overlapping as well as contrasting circadian and hormonal functions that together provide a glimpse on how the Arabidopsis circadian system regulates hormone function in response to endogenous and exogenous cues. Examples of feedback regulation from hormone signaling to the clock are also discussed.
Collapse
Affiliation(s)
- Manjul Singh
- Center for Research in Agricultural Genomics (CRAG), Consortium CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, 08193 Barcelona, Spain.
| | - Paloma Mas
- Center for Research in Agricultural Genomics (CRAG), Consortium CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, 08193 Barcelona, Spain.
- Consejo Superior de Investigaciones Científicas, 08028 Barcelona, Spain.
| |
Collapse
|
13
|
Yang LW, Wen XH, Fu JX, Dai SL. ClCRY2 facilitates floral transition in Chrysanthemum lavandulifolium by affecting the transcription of circadian clock-related genes under short-day photoperiods. HORTICULTURE RESEARCH 2018; 5:58. [PMID: 30393540 PMCID: PMC6210193 DOI: 10.1038/s41438-018-0063-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 05/26/2018] [Accepted: 06/04/2018] [Indexed: 05/23/2023]
Abstract
Plants sense photoperiod signals to confirm the optimal flowering time. Previous studies have shown that Cryptochrome2 (CRY2) functions to promote floral transition in the long-day plant (LDP) Arabidopsis; however, the function and molecular mechanism by which CRY2 regulates floral transition in short-day plants (SDPs) is still unclear. In this study, we identified a CRY2 homologous gene, ClCRY2, from Chrysanthemum lavandulifolium, a typical SDP. The morphological changes in the C. lavandulifolium shoot apex and ClFTs expression analysis under SD conditions showed that adult C. lavandulifolium completed the developmental transition from vegetative growth to reproductive growth after eight SDs. Meanwhile, ClCRY2 mRNA exhibited an increasing trend from 0 to 8 d of SD treatment. ClCRY2 overexpression in wild-type (WT) Arabidopsis and C. lavandulifolium resulted in early flowering. The transcript levels of the CONSTANS-like (COL) genes ClCOL1, ClCOL4, and ClCOL5, and FLOWERING LOCUS T (FT) homologous gene ClFT1 were upregulated in ClCRY2 overexpression (ClCRY2-OE) C. lavandulifolium under SD conditions. The transcript levels of some circadian clock-related genes, including PSEUDO-REPONSE REGULATOR 5 (PRR5), ZEITLUPE (ZTL), FLAVIN-BINDING KELCH REPEAT F-BOX 1 (FKF1), and GIGANTEA (GI-1 and GI-2), were upregulated in ClCRY2-OE C. lavandulifolium, while the expression levels of other circadian clock-related genes, such as EARLY FLOWERING 3 (ELF3), ELF4, LATE ELONGATED HYPOCOTYL (LHY), PRR73, and REVEILLE8 (RVE8), were downregulated in ClCRY2-OE C. lavandulifolium under SD conditions. Taken together, the results suggest that ClCRY2 promotes floral transition by fine-tuning the expression of circadian clock-related gene, ClCOLs and ClFT1 in C. lavandulifolium under SD conditions.
Collapse
Affiliation(s)
- Li-wen Yang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment and College of Landscape Architecture, Beijing Forestry University, Beijing, 100083 P. R. China
| | - Xiao-hui Wen
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment and College of Landscape Architecture, Beijing Forestry University, Beijing, 100083 P. R. China
| | - Jian-xin Fu
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment and College of Landscape Architecture, Beijing Forestry University, Beijing, 100083 P. R. China
| | - Si-lan Dai
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment and College of Landscape Architecture, Beijing Forestry University, Beijing, 100083 P. R. China
| |
Collapse
|
14
|
Night Light-Adaptation Strategies for Photosynthetic Apparatus in Yellow-Poplar (Liriodendron tulipifera L.) Exposed to Artificial Night Lighting. FORESTS 2018. [DOI: 10.3390/f9020074] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
15
|
Bhadra U, Thakkar N, Das P, Pal Bhadra M. Evolution of circadian rhythms: from bacteria to human. Sleep Med 2017; 35:49-61. [DOI: 10.1016/j.sleep.2017.04.008] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 04/07/2017] [Accepted: 04/18/2017] [Indexed: 12/20/2022]
|
16
|
Mestek Boukhibar L, Barkoulas M. The developmental genetics of biological robustness. ANNALS OF BOTANY 2016; 117:699-707. [PMID: 26292993 PMCID: PMC4845795 DOI: 10.1093/aob/mcv128] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 05/07/2015] [Accepted: 06/29/2015] [Indexed: 05/10/2023]
Abstract
BACKGROUND Living organisms are continuously confronted with perturbations, such as environmental changes that include fluctuations in temperature and nutrient availability, or genetic changes such as mutations. While some developmental systems are affected by such challenges and display variation in phenotypic traits, others continue consistently to produce invariable phenotypes despite perturbation. This ability of a living system to maintain an invariable phenotype in the face of perturbations is termed developmental robustness. Biological robustness is a phenomenon observed across phyla, and studying its mechanisms is central to deciphering the genotype-phenotype relationship. Recent work in yeast, animals and plants has shown that robustness is genetically controlled and has started to reveal the underlying mechinisms behind it. SCOPE AND CONCLUSIONS Studying biological robustness involves focusing on an important property of developmental traits, which is the phenotypic distribution within a population. This is often neglected because the vast majority of developmental biology studies instead focus on population aggregates, such as trait averages. By drawing on findings in animals and yeast, this Viewpoint considers how studies on plant developmental robustness may benefit from strict definitions of what is the developmental system of choice and what is the relevant perturbation, and also from clear distinctions between gene effects on the trait mean and the trait variance. Recent advances in quantitative developmental biology and high-throughput phenotyping now allow the design of targeted genetic screens to identify genes that amplify or restrict developmental trait variance and to study how variation propagates across different phenotypic levels in biological systems. The molecular characterization of more quantitative trait loci affecting trait variance will provide further insights into the evolution of genes modulating developmental robustness. The study of robustness mechanisms in closely related species will address whether mechanisms of robustness are evolutionarily conserved.
Collapse
Affiliation(s)
- Lamia Mestek Boukhibar
- Imperial College London, Department of Life Sciences, Sir Alexander Fleming Building, South Kensington Campus, London SW7 2AZ, UK
| | - Michalis Barkoulas
- Imperial College London, Department of Life Sciences, Sir Alexander Fleming Building, South Kensington Campus, London SW7 2AZ, UK
| |
Collapse
|
17
|
Foo M, Somers DE, Kim PJ. Kernel Architecture of the Genetic Circuitry of the Arabidopsis Circadian System. PLoS Comput Biol 2016; 12:e1004748. [PMID: 26828650 PMCID: PMC4734688 DOI: 10.1371/journal.pcbi.1004748] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 01/11/2016] [Indexed: 02/03/2023] Open
Abstract
A wide range of organisms features molecular machines, circadian clocks, which generate endogenous oscillations with ~24 h periodicity and thereby synchronize biological processes to diurnal environmental fluctuations. Recently, it has become clear that plants harbor more complex gene regulatory circuits within the core circadian clocks than other organisms, inspiring a fundamental question: are all these regulatory interactions between clock genes equally crucial for the establishment and maintenance of circadian rhythms? Our mechanistic simulation for Arabidopsis thaliana demonstrates that at least half of the total regulatory interactions must be present to express the circadian molecular profiles observed in wild-type plants. A set of those essential interactions is called herein a kernel of the circadian system. The kernel structure unbiasedly reveals four interlocked negative feedback loops contributing to circadian rhythms, and three feedback loops among them drive the autonomous oscillation itself. Strikingly, the kernel structure, as well as the whole clock circuitry, is overwhelmingly composed of inhibitory, rather than activating, interactions between genes. We found that this tendency underlies plant circadian molecular profiles which often exhibit sharply-shaped, cuspidate waveforms. Through the generation of these cuspidate profiles, inhibitory interactions may facilitate the global coordination of temporally-distant clock events that are markedly peaked at very specific times of day. Our systematic approach resulting in experimentally-testable predictions provides insights into a design principle of biological clockwork, with implications for synthetic biology.
Collapse
Affiliation(s)
- Mathias Foo
- Asia Pacific Center for Theoretical Physics, Pohang, Gyeongbuk, Republic of Korea
- School of Engineering, University of Warwick, Coventry, United Kingdom
| | - David E. Somers
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, United States of America
| | - Pan-Jun Kim
- Asia Pacific Center for Theoretical Physics, Pohang, Gyeongbuk, Republic of Korea
- Department of Physics, Pohang University of Science and Technology, Pohang, Gyeongbuk, Republic of Korea
| |
Collapse
|
18
|
Sadok W. The circadian life of nocturnal water use: when late-night decisions help improve your day. PLANT, CELL & ENVIRONMENT 2016; 39:1-2. [PMID: 26293164 DOI: 10.1111/pce.12625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 08/11/2015] [Indexed: 06/04/2023]
Affiliation(s)
- Walid Sadok
- Department of Agronomy and Plant Genetics, University of Minnesota, 411 Borlaug Hall, 1991 Upper Buford Circle, St. Paul, MN, 55108, USA
| |
Collapse
|
19
|
Li L, Hu L, Han LP, Ji H, Zhu Y, Wang X, Ge J, Xu M, Shen D, Dong H. Expression of turtle riboflavin-binding protein represses mitochondrial electron transport gene expression and promotes flowering in Arabidopsis. BMC PLANT BIOLOGY 2014; 14:381. [PMID: 25547226 PMCID: PMC4310184 DOI: 10.1186/s12870-014-0381-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 12/11/2014] [Indexed: 05/12/2023]
Abstract
BACKGROUND Recently we showed that de novo expression of a turtle riboflavin-binding protein (RfBP) in transgenic Arabidopsis increased H2O2 concentrations inside leaf cells, enhanced the expression of floral regulatory gene FD and floral meristem identity gene AP1 at the shoot apex, and induced early flowering. Here we report that RfBP-induced H2O2 presumably results from electron leakage at the mitochondrial electron transport chain (METC) and this source of H2O2 contributes to the early flowering phenotype. RESULTS While enhanced expression of FD and AP1 at the shoot apex was correlated with early flowering, the foliar expression of 13 of 19 METC genes was repressed in RfBP-expressing (RfBP+) plants. Inside RfBP+ leaf cells, cytosolic H2O2 concentrations were increased possibly through electron leakage because similar responses were also induced by a known inducer of electron leakage from METC. Early flowering no longer occurred when the repression on METC genes was eliminated by RfBP gene silencing, which restored RfBP+ to wild type in levels of FD and AP1 expression, H2O2, and flavins. Flowering was delayed by the external riboflavin application, which brought gene expression and flavins back to the steady-state levels but only caused 55% reduction of H2O2 concentrations in RfBP+ plants. RfBP-repressed METC gene expression remedied the cytosolic H2O2 diminution by genetic disruption of transcription factor NFXLl and compensated for compromises in FD and AP1 expression and flowering time. By contrast, RfBP resembled a peroxisomal catalase mutation, which augments the cytosolic H2O2, to enhance FD and AP1 expression and induce early flowering. CONCLUSIONS RfBP-repressed METC gene expression potentially causes electron leakage as one of cellular sources for the generation of H2O2 with the promoting effect on flowering. The repressive effect on METC gene expression is not the only way by which RfBP induces H2O2 and currently unappreciated factors may also function under RfBP+ background.
Collapse
Affiliation(s)
- Liang Li
- Department of Plant Pathology, Nanjing Agricultural University and State Ministry of Education Key Laboratory of Integrated Management of Crop Pathogens and Insect Pests, Nanjing, 210095 China
| | - Li Hu
- Department of Plant Pathology, Nanjing Agricultural University and State Ministry of Education Key Laboratory of Integrated Management of Crop Pathogens and Insect Pests, Nanjing, 210095 China
| | - Li-Ping Han
- Department of Plant Pathology, Nanjing Agricultural University and State Ministry of Education Key Laboratory of Integrated Management of Crop Pathogens and Insect Pests, Nanjing, 210095 China
| | - Hongtao Ji
- Department of Plant Pathology, Nanjing Agricultural University and State Ministry of Education Key Laboratory of Integrated Management of Crop Pathogens and Insect Pests, Nanjing, 210095 China
| | - Yueyue Zhu
- Department of Plant Pathology, Nanjing Agricultural University and State Ministry of Education Key Laboratory of Integrated Management of Crop Pathogens and Insect Pests, Nanjing, 210095 China
| | - Xiaobing Wang
- Department of Plant Pathology, Nanjing Agricultural University and State Ministry of Education Key Laboratory of Integrated Management of Crop Pathogens and Insect Pests, Nanjing, 210095 China
| | - Jun Ge
- Department of Plant Pathology, Nanjing Agricultural University and State Ministry of Education Key Laboratory of Integrated Management of Crop Pathogens and Insect Pests, Nanjing, 210095 China
| | - Manyu Xu
- Department of Plant Pathology, Nanjing Agricultural University and State Ministry of Education Key Laboratory of Integrated Management of Crop Pathogens and Insect Pests, Nanjing, 210095 China
| | - Dan Shen
- Department of Plant Pathology, Nanjing Agricultural University and State Ministry of Education Key Laboratory of Integrated Management of Crop Pathogens and Insect Pests, Nanjing, 210095 China
| | - Hansong Dong
- Department of Plant Pathology, Nanjing Agricultural University and State Ministry of Education Key Laboratory of Integrated Management of Crop Pathogens and Insect Pests, Nanjing, 210095 China
| |
Collapse
|
20
|
Campos N, Torné JM, Bleda MJ, Manich A, Urreta I, Montalbán IA, Castañón S, Moncalean P, Santos M. Proteomic and transcriptomic analysis of rice tranglutaminase and chloroplast-related proteins. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 229:142-153. [PMID: 25443841 DOI: 10.1016/j.plantsci.2014.09.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 09/08/2014] [Accepted: 09/09/2014] [Indexed: 05/09/2023]
Abstract
The recently cloned rice transglutaminase gene (tgo) is the second plant transglutaminase identified to date (Campos et al. Plant Sci. 205-206 (2013) 97-110). Similarly to its counterpart in maize (tgz), this rice TGase was localized in the chloroplast, although in this case not exclusively. To further characterise plastidial tgo functionality, proteomic and transcriptomic studies were carried out to identify possible TGO-related proteins. Some LHCII antenna proteins were identified as TGO related using an in vitro proteomic approach, as well as ATPase and some PSII core proteins by mass spectrometry. To study the relationship between TGO and other plastidial proteins, a transcriptomic in vivo Dynamic Array (Fluidigm™) was used to analyse the mRNA expression of 30 plastidial genes with respect to that of tgo, in rice plants subjected to different periods of continuous illumination. The results indicated a gene-dependent tendency in the expression pattern that was related to tgo expression and to the illumination cycle. For certain genes, including tgo, significant differences between treatments, principally at the initiation and/or at the end of the illumination period, connected with the day/night cycling of gene expression, were observed. The tgo expression was especially related to plastidial proteins involved in photoprotection and the thylakoid electrochemical gradient.
Collapse
Affiliation(s)
- N Campos
- Molecular Genetics Department, Centre for Research in Agricultural Genomics: CRAG (Consorci CSIC-IRTA-UAB-UB), Campus UAB, Bellaterra, 08193 Barcelona, Spain.
| | - J M Torné
- Molecular Genetics Department, Centre for Research in Agricultural Genomics: CRAG (Consorci CSIC-IRTA-UAB-UB), Campus UAB, Bellaterra, 08193 Barcelona, Spain.
| | - M J Bleda
- Institute of Advanced Chemistry of Catalonia IQAC, CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain.
| | - A Manich
- Department of Chemical and Surfactants Technology, Institute of Advanced Chemistry of Catalonia IQAC, CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain.
| | - I Urreta
- Biotechnology Department, Neiker-Tecnalia, Arkaute, Vitoria, Campus Agroalimentario de Arkaute, Aptdo.46, E-01080 Vitoria-Gasteiz, Araba, Spain.
| | - I A Montalbán
- Biotechnology Department, Neiker-Tecnalia, Arkaute, Campus Agroalimentario de Arkaute Apto 46, E-01080, Vitoria-Gasteiz, Araba, Spain.
| | - S Castañón
- Biotechnology Department, Neiker-Tecnalia, Arkaute, Campus Agroalimentario de Arkaute, Aptdo.46, E-01080 Vitoria-Gasteiz, Araba, Spain.
| | - P Moncalean
- Biotechnology Department, Neiker-Tecnalia, Arkaute, Campus Agroalimentario de Arkaute, Apto 46, E-01080 Vitoria-Gasteiz, Araba, Spain.
| | - M Santos
- Molecular Genetics Department, Centre for Research in Agricultural Genomics: CRAG (Consorci CSIC-IRTA-UAB-UB), Campus UAB, Bellaterra, 08193 Barcelona, Spain.
| |
Collapse
|
21
|
van Doorn WG, Kamdee C. Flower opening and closure: an update. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:5749-57. [PMID: 25135521 DOI: 10.1093/jxb/eru327] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
This review is an update of a 2003 review (Journal of Experimental Botany 54,1801-1812) by the same corresponding author. Many examples of flower opening have been recorded using time-lapse photography, showing its velocity and the required elongation growth. Ethylene regulates flower opening, together with at least gibberellins and auxin. Ethylene and gibberellic acid often promote and inhibit, respectively, the expression of DELLA genes and the stability of DELLA proteins. DELLA results in growth inhibition. Both hormones also inhibited and promoted, respectively, the expression of aquaporin genes required for cell elongation. Arabidopsis miRNA319a mutants exhibited narrow and short petals, whereby miRNA319a indirectly regulates auxin effects. Flower opening in roses was controlled by a NAC transcription factor, acting through miRNA164. The regulatory role of light and temperature, in interaction with the circadian clock, has been further elucidated. The end of the life span in many flowers is determined by floral closure. In some species pollination resulted in earlier closure of turgid flowers, compared with unpollinated flowers. It is hypothesized that this pollination-induced effect is only found in flowers in which closure is regulated by ethylene.
Collapse
Affiliation(s)
- Wouter G van Doorn
- Mann Laboratory, Department of Plant Sciences, University of California, Davis, CA 95616, USA
| | - Chanattika Kamdee
- Department of Horticulture, Kasetsart University, Kamphaeng Saen campus, Nakhon Pathom 73140, Thailand
| |
Collapse
|
22
|
Ji H, Zhu Y, Tian S, Xu M, Tian Y, Li L, Wang H, Hu L, Ji Y, Ge J, Wen W, Dong H. Downregulation of leaf flavin content induces early flowering and photoperiod gene expression in Arabidopsis. BMC PLANT BIOLOGY 2014; 14:237. [PMID: 25201173 PMCID: PMC4172855 DOI: 10.1186/s12870-014-0237-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 08/20/2014] [Indexed: 05/26/2023]
Abstract
BACKGROUND Riboflavin is the precursor of flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD), essential cofactors for many metabolic enzymes that catalyze a variety of biochemical reactions. Previously we showed that free flavin (riboflavin, FMN, and FAD) concentrations were decreased in leaves of transgenic Arabidopsis plants expressing a turtle riboflavin-binding protein (RfBP). Here, we report that flavin downregulation by RfBP induces the early flowering phenotype and enhances expression of floral promoting photoperiod genes. RESULTS Early flowering was a serendipitous phenomenon and was prudently characterized as a constant phenotype of RfBP-expressing transgenic Arabidopsis plants in both long days and short days. The phenotype was eliminated when leaf free flavins were brought back to the steady-state levels either by the RfBP gene silencing and consequently nullified production of the RfBP protein, or by external riboflavin feeding treatment. RfBP-induced early flowering was correlated with enhanced expression of floral promoting photoperiod genes and the florigen gene FT in leaves but not related to genes assigned to vernalization, autonomous, and gibberellin pathways, which provide flowering regulation mechanisms alternative to the photoperiod. RfBP-induced early flowering was further correlated with increased expression of the FD gene encoding bZIP transcription factor FD essential for flowering time control and the floral meristem identity gene AP1 in the shoot apex. By contrast, the expression of FT and photoperiod genes in leaves and the expression of FD and AP1 in the shoot apex were no longer enhanced when the RfBP gene was silenced, RfBP protein production canceled, and flavin concentrations were elevated to the steady-state levels inside plant leaves. CONCLUSIONS Token together, our results provide circumstantial evidence that downregulation of leaf flavin content by RfBP induces early flowering and coincident enhancements of genes that promote flowering through the photoperiod pathway.
Collapse
Affiliation(s)
- Hongtao Ji
- Plant Growth and Defense Signaling Laboratory, State Ministry of Education Key Laboratory of Integrated Management of Crop Pathogens and Insect Pests, Nanjing Agricultural University, Nanjing, 210095 China
| | - Yueyue Zhu
- Plant Growth and Defense Signaling Laboratory, State Ministry of Education Key Laboratory of Integrated Management of Crop Pathogens and Insect Pests, Nanjing Agricultural University, Nanjing, 210095 China
| | - Shan Tian
- Plant Growth and Defense Signaling Laboratory, State Ministry of Education Key Laboratory of Integrated Management of Crop Pathogens and Insect Pests, Nanjing Agricultural University, Nanjing, 210095 China
| | - Manyu Xu
- Plant Growth and Defense Signaling Laboratory, State Ministry of Education Key Laboratory of Integrated Management of Crop Pathogens and Insect Pests, Nanjing Agricultural University, Nanjing, 210095 China
| | - Yimin Tian
- Plant Growth and Defense Signaling Laboratory, State Ministry of Education Key Laboratory of Integrated Management of Crop Pathogens and Insect Pests, Nanjing Agricultural University, Nanjing, 210095 China
| | - Liang Li
- Plant Growth and Defense Signaling Laboratory, State Ministry of Education Key Laboratory of Integrated Management of Crop Pathogens and Insect Pests, Nanjing Agricultural University, Nanjing, 210095 China
| | - Huan Wang
- Plant Growth and Defense Signaling Laboratory, State Ministry of Education Key Laboratory of Integrated Management of Crop Pathogens and Insect Pests, Nanjing Agricultural University, Nanjing, 210095 China
| | - Li Hu
- Plant Growth and Defense Signaling Laboratory, State Ministry of Education Key Laboratory of Integrated Management of Crop Pathogens and Insect Pests, Nanjing Agricultural University, Nanjing, 210095 China
| | - Yu Ji
- Plant Growth and Defense Signaling Laboratory, State Ministry of Education Key Laboratory of Integrated Management of Crop Pathogens and Insect Pests, Nanjing Agricultural University, Nanjing, 210095 China
| | - Jun Ge
- Plant Growth and Defense Signaling Laboratory, State Ministry of Education Key Laboratory of Integrated Management of Crop Pathogens and Insect Pests, Nanjing Agricultural University, Nanjing, 210095 China
| | - Weigang Wen
- Plant Growth and Defense Signaling Laboratory, State Ministry of Education Key Laboratory of Integrated Management of Crop Pathogens and Insect Pests, Nanjing Agricultural University, Nanjing, 210095 China
| | - Hansong Dong
- Plant Growth and Defense Signaling Laboratory, State Ministry of Education Key Laboratory of Integrated Management of Crop Pathogens and Insect Pests, Nanjing Agricultural University, Nanjing, 210095 China
| |
Collapse
|
23
|
Fu J, Yang L, Dai S. Conservation of Arabidopsis thaliana circadian clock genes in Chrysanthemum lavandulifolium. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2014; 80:337-347. [PMID: 24844451 DOI: 10.1016/j.plaphy.2014.04.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 04/05/2014] [Indexed: 06/03/2023]
Abstract
In Arabidopsis, circadian clock genes play important roles in photoperiod pathway by regulating the daytime expression of CONSTANS (CO), but related reports for chrysanthemum are notably limited. In this study, we isolated eleven circadian clock genes, which lie in the three interconnected negative and positive feedback loops in a wild diploid chrysanthemum, Chrysanthemum lavandulifolium. With the exception of ClELF3, ClPRR1 and ClPRR73, most of the circadian clock genes are expressed more highly in leaves than in other tested tissues. The diurnal rhythms of these circadian clock genes are similar to those of their homologs in Arabidopsis. ClELF3 and ClZTL are constitutively expressed at all time points in both assessed photoperiods. The expression succession from morning to night of the PSEUDO RESPONSE REGULATOR (PRR) gene family occurs in the order ClPRR73/ClPRR37, ClPRR5, and then ClPRR1. ClLHY is expressed during the dawn period, and ClGIs is expressed during the dusk period. The peak expression levels of ClFKF1 and ClGIs are synchronous in the inductive photoperiod. However, in the non-inductive night break (NB) condition or non-24 h photoperiod, the peak expression level of ClFKF1 is significantly changed, indicating that ClFKF1 itself or the synchronous expression of ClFKF1 and ClGIs might be essential to initiate the flowering of C. lavandulifolium. This study provides the first extensive evaluation of circadian clock genes, and it presents a useful foundation for dissecting the functions of circadian clock genes in C. lavandulifolium.
Collapse
Affiliation(s)
- Jianxin Fu
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture and College of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Liwen Yang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture and College of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Silan Dai
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture and College of Landscape Architecture, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
24
|
Franklin KA, Toledo-Ortiz G, Pyott DE, Halliday KJ. Interaction of light and temperature signalling. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:2859-71. [PMID: 24569036 DOI: 10.1093/jxb/eru059] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Light and temperature are arguably two of the most important signals regulating the growth and development of plants. In addition to their direct energetic effects on plant growth, light and temperature provide vital immediate and predictive cues for plants to ensure optimal development both spatially and temporally. While the majority of research to date has focused on the contribution of either light or temperature signals in isolation, it is becoming apparent that an understanding of how the two interact is essential to appreciate fully the complex and elegant ways in which plants utilize these environmental cues. This review will outline the diverse mechanisms by which light and temperature signals are integrated and will consider why such interconnected systems (as opposed to entirely separate light and temperature pathways) may be evolutionarily favourable.
Collapse
Affiliation(s)
- Keara A Franklin
- School of Biological Sciences, University of Bristol, Bristol BS8 1UG, UK
| | - Gabriela Toledo-Ortiz
- SynthSys, University of Edinburgh, C.H. Waddington Building, King's Buildings, Edinburgh EH9 3JD, UK
| | - Douglas E Pyott
- SynthSys, University of Edinburgh, C.H. Waddington Building, King's Buildings, Edinburgh EH9 3JD, UK
| | - Karen J Halliday
- SynthSys, University of Edinburgh, C.H. Waddington Building, King's Buildings, Edinburgh EH9 3JD, UK
| |
Collapse
|
25
|
Sharkhuu A, Narasimhan ML, Merzaban JS, Bressan RA, Weller S, Gehring C. A red and far-red light receptor mutation confers resistance to the herbicide glyphosate. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 78:916-26. [PMID: 24654847 PMCID: PMC4260087 DOI: 10.1111/tpj.12513] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2013] [Revised: 03/05/2014] [Accepted: 03/10/2014] [Indexed: 05/13/2023]
Abstract
Glyphosate is a widely applied broad-spectrum systemic herbicide that inhibits competitively the penultimate enzyme 5-enolpyruvylshikimate 3-phosphate synthase (EPSPS) from the shikimate pathway, thereby causing deleterious effects. A glyphosate-resistant Arabidopsis mutant (gre1) was isolated and genetic analyses indicated that a dysfunctional red (R) and far-red (FR) light receptor, phytochrome B (phyB), caused this phenotype. This finding is consistent with increased glyphosate sensitivity and glyphosate-induced shikimate accumulation in low R:FR light, and the induction of genes encoding enzymes of the shikimate pathway in high R:FR light. Expression of the shikimate pathway genes exhibited diurnal oscillation and this oscillation was altered in the phyB mutant. Furthermore, transcript analysis suggested that this diurnal oscillation was not only dependent on phyB but was also due to circadian regulatory mechanisms. Our data offer an explanation of the well documented observation that glyphosate treatment at various times throughout the day, with their specific composition of light quality and intensity, results in different efficiencies of the herbicide.
Collapse
Affiliation(s)
- Altanbadralt Sharkhuu
- Department of Biological and Environmental Science and Engineering, King Abdullah University of Science and TechnologyThuwal, 23955-6900, Jeddah, Saudi Arabia
- Department of Horticulture and Landscape Architecture, Purdue University47907, West Lafayette, Indiana, USA
| | - Meena L Narasimhan
- Department of Horticulture and Landscape Architecture, Purdue University47907, West Lafayette, Indiana, USA
| | - Jasmeen S Merzaban
- Department of Biological and Environmental Science and Engineering, King Abdullah University of Science and TechnologyThuwal, 23955-6900, Jeddah, Saudi Arabia
| | - Ray A Bressan
- Department of Biological and Environmental Science and Engineering, King Abdullah University of Science and TechnologyThuwal, 23955-6900, Jeddah, Saudi Arabia
- Department of Horticulture and Landscape Architecture, Purdue University47907, West Lafayette, Indiana, USA
| | - Steve Weller
- Department of Horticulture and Landscape Architecture, Purdue University47907, West Lafayette, Indiana, USA
| | - Chris Gehring
- Department of Biological and Environmental Science and Engineering, King Abdullah University of Science and TechnologyThuwal, 23955-6900, Jeddah, Saudi Arabia
| |
Collapse
|
26
|
Cui Z, Xu Q, Wang X. Regulation of the circadian clock through pre-mRNA splicing in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:1973-80. [PMID: 24604736 DOI: 10.1093/jxb/eru085] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Alternative splicing plays an important role in regulating gene functions and enhancing the diversity of the proteome in plants. Most of the genes are interrupted by introns in Arabidopsis. More than half of the intron-split genes involved in multiple biological processes including the circadian clock are alternatively spliced. In this review, we focus on the involvement of alternative splicing in the regulation of the circadian clock.
Collapse
Affiliation(s)
- Zhibo Cui
- Rice Research Institute; Key Laboratory of Northeast Rice Biology and Breeding, Ministry of Agriculture; Key Laboratory of Northern Japonica Super Rice Breeding, Ministry of Education; Shenyang Agricultural University, Shenyang 110866, China
| | | | | |
Collapse
|
27
|
Malapeira J, Benlloch R, Henriques R, Mas P. Plant Circadian Network. Mol Biol 2014. [DOI: 10.1007/978-1-4614-7570-5_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
28
|
Affiliation(s)
- Paloma Mas
- Center for Research in Agricultural Genomics (CRAG), Consortium CSIC-IRTA-UAB-UB, Parc de Recerca UAB, Campus UAB, Bellaterra (Cerdanyola del Vallés) 08193, Barcelona, Spain.
| |
Collapse
|
29
|
Abstract
The circadian clock is an endogenous timing system responsible for coordinating an organism's biological processes with its environment. Interlocked transcriptional feedback loops constitute the fundamental architecture of the circadian clock. In Arabidopsis, three feedback loops, the core loop, morning loop and evening loop, comprise a network that is the basis of the circadian clock. The components of these three loops are regulated in distinct ways, including transcriptional, post-transcriptional and posttranslational mechanisms. The discovery of the DNA-binding and repressive activities of TOC1 has overturned our initial concept of its function in the circadian clock. The alternative splicing of circadian clock-related genes plays an essential role in normal functioning of the clock and enables organisms to sense environmental changes. In this review, we describe the regulatory mechanisms of the circadian clock that have been identified in Arabidopsis.
Collapse
Affiliation(s)
- Xiaoxue Wang
- College of Agronomy; Rice Research Institute; Shenyang Agricultural University; Shenyang, P.R. China
| | - Ligeng Ma
- College of Biological Sciences; Capital Normal University; Beijing, P.R. China
- Corresponding author: Ligeng Ma;
| |
Collapse
|
30
|
Lempe J, Lachowiec J, Sullivan AM, Queitsch C. Molecular mechanisms of robustness in plants. CURRENT OPINION IN PLANT BIOLOGY 2013; 16:62-9. [PMID: 23279801 PMCID: PMC3577948 DOI: 10.1016/j.pbi.2012.12.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 11/29/2012] [Accepted: 12/05/2012] [Indexed: 05/18/2023]
Abstract
Robustness, the ability of organisms to buffer phenotypes against perturbations, has drawn renewed interest among developmental biologists and geneticists. A growing body of research supports an important role of robustness in the genotype to phenotype translation, with far-reaching implications for evolutionary processes and disease susceptibility. Similar to animals and fungi, plant robustness is a function of genetic network architecture. Most perturbations are buffered; however, perturbation of network hubs destabilizes many traits. Here, we review recent advances in identifying molecular robustness mechanisms in plants that have been enabled by a combination of classical genetics and population genetics with genome-scale data.
Collapse
Affiliation(s)
- Janne Lempe
- Department of Genome Sciences, University of Washington, 3720 15th Ave NE, Seattle, WA 98195, USA
| | | | | | | |
Collapse
|
31
|
Plant Circadian Network: An Integrative View. Mol Biol 2013. [DOI: 10.1007/978-1-4939-0263-7_6-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
32
|
The diurnal variation in urine acidification differs between normal individuals and uric acid stone formers. Kidney Int 2012; 81:1123-30. [PMID: 22297671 PMCID: PMC3352978 DOI: 10.1038/ki.2011.480] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Many biologic functions follow circadian rhythms driven by internal and external cues that synchronize and coordinate organ physiology to diurnal changes in the environment and behavior. Urinary acid-base parameters follow diurnal patterns and it is thought these changes are due to periodic surges in gastric acid secretion. Abnormal urine pH is a risk factor for specific types of nephrolithiasis and uric acid stones are typical of excessively low urine pH. Here we placed 9 healthy volunteers and 10 uric acid stone formers on fixed metabolic diets to study the diurnal pattern of urinary acidification. All showed clear diurnal trends in urinary acidification but none of the patterns were affected by inhibitors of the gastric proton pump. Uric acid stone formers had similar patterns of change through the day but their urine pH was always lower compared to healthy volunteers. Uric acid stone formers excreted more acid (normalized to acid ingestion) with the excess excreted primarily as titratable acid rather than ammonium. Urine base excretion was also lower in uric acid stone formers (normalized to base ingestion) along with lower plasma bicarbonate concentrations during part of the day. Thus, increased net acid presentation to the kidney and the preferential use of buffers, other than ammonium, result in much higher concentrations of un-dissociated uric acid throughout the day and consequently an increased risk of uric acid stones.
Collapse
|
33
|
Clotault J, Thuillet AC, Buiron M, De Mita S, Couderc M, Haussmann BIG, Mariac C, Vigouroux Y. Evolutionary history of pearl millet (Pennisetum glaucum [L.] R. Br.) and selection on flowering genes since its domestication. Mol Biol Evol 2011; 29:1199-212. [PMID: 22114357 DOI: 10.1093/molbev/msr287] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The plant domestication process is associated with considerable modifications of plant phenotype. The identification of the genetic basis of this adaptation is of great interest for evolutionary biology. One of the methods used to identify such genes is the detection of signatures of selection. However, domestication is generally associated with major demographic effects. It is therefore crucial to disentangle the effects of demography and selection on diversity. In this study, we investigated selection in a flowering time pathway during domestication of pearl millet. We first used a random set of 20 genes to model pearl millet domestication using approximate Bayesian computation. This analysis showed that a model with exponential growth and wild-cultivated gene flow was well supported by our data set. Under this model, the domestication date of pearl millet is estimated at around 4,800 years ago. We assessed selection in 15 pearl millet DNA sequences homologous to flowering time genes and showed that these genes underwent selection more frequently than expected. We highlighted significant signatures of selection in six pearl millet flowering time genes associated with domestication or improvement of pearl millet. Moreover, higher deviations from neutrality were found for circadian clock-associated genes. Our study provides new insights into the domestication process of pearl millet and shows that a category of genes of the flowering pathway were preferentially selected during pearl millet domestication.
Collapse
Affiliation(s)
- Jérémy Clotault
- Institut de Recherche pour le Développement, Unité Mixte de Recherche Diversité Adaptation et Développement des Plantes, Montpellier, France
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Hudson D, Guevara D, Yaish MW, Hannam C, Long N, Clarke JD, Bi YM, Rothstein SJ. GNC and CGA1 modulate chlorophyll biosynthesis and glutamate synthase (GLU1/Fd-GOGAT) expression in Arabidopsis. PLoS One 2011; 6:e26765. [PMID: 22102866 PMCID: PMC3213100 DOI: 10.1371/journal.pone.0026765] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Accepted: 10/04/2011] [Indexed: 11/19/2022] Open
Abstract
Chloroplast development is an important determinant of plant productivity and is controlled by environmental factors including amounts of light and nitrogen as well as internal phytohormones including cytokinins and gibberellins (GA). The paralog GATA transcription factors GNC and CGA1/GNL up-regulated by light, nitrogen and cytokinin while also being repressed by GA signaling. Modifying the expression of these genes has previously been shown to influence chlorophyll content in Arabidopsis while also altering aspects of germination, elongation growth and flowering time. In this work, we also use transgenic lines to demonstrate that GNC and CGA1 exhibit a partially redundant control over chlorophyll biosynthesis. We provide novel evidence that GNC and CGA1 influence both chloroplast number and leaf starch in proportion to their transcript level. GNC and CGA1 were found to modify the expression of chloroplast localized GLUTAMATE SYNTHASE (GLU1/Fd-GOGAT), which is the primary factor controlling nitrogen assimilation in green tissue. Altering GNC and CGA1 expression was also found to modulate the expression of important chlorophyll biosynthesis genes (GUN4, HEMA1, PORB, and PORC). As previously demonstrated, the CGA1 transgenic plants demonstrated significantly altered timing to a number of developmental events including germination, leaf production, flowering time and senescence. In contrast, the GNC transgenic lines we analyzed maintain relatively normal growth phenotypes outside of differences in chloroplast development. Despite some evidence for partial divergence, results indicate that regulation of both GNC and CGA1 by light, nitrogen, cytokinin, and GA acts to modulate nitrogen assimilation, chloroplast development and starch production. Understanding the mechanisms controlling these processes is important for agricultural biotechnology.
Collapse
Affiliation(s)
- Darryl Hudson
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - David Guevara
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Mahmoud W. Yaish
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Carol Hannam
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Nykoll Long
- Syngenta Biotechnology Inc., Research Triangle Park, North Carolina, United States of America
| | - Joseph D. Clarke
- Syngenta Biotechnology Inc., Research Triangle Park, North Carolina, United States of America
| | - Yong-Mei Bi
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Steven J. Rothstein
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
- * E-mail:
| |
Collapse
|
35
|
Edwards CE, Ewers BE, Williams DG, Xie Q, Lou P, Xu X, McClung CR, Weinig C. The genetic architecture of ecophysiological and circadian traits in Brassica rapa. Genetics 2011; 189:375-90. [PMID: 21750258 PMCID: PMC3176123 DOI: 10.1534/genetics.110.125112] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Accepted: 06/27/2011] [Indexed: 11/18/2022] Open
Abstract
Developmental mechanisms that enable perception of and response to the environment may enhance fitness. Ecophysiological traits typically vary depending on local conditions and contribute to resource acquisition and allocation, yet correlations may limit adaptive trait expression. Notably, photosynthesis and stomatal conductance vary diurnally, and the circadian clock, which is an internal estimate of time that anticipates diurnal light/dark cycles, may synchronize physiological behaviors with environmental conditions. Using recombinant inbred lines of Brassica rapa, we examined the quantitative-genetic architecture of ecophysiological and phenological traits and tested their association with the circadian clock. We also investigated how trait expression differed across treatments that simulated seasonal settings encountered by crops and naturalized populations. Many ecophysiological traits were correlated, and some correlations were consistent with expected biophysical constraints; for example, stomata jointly regulate photosynthesis and transpiration by affecting carbon dioxide and water vapor diffusion across leaf surfaces, and these traits were correlated. Interestingly, some genotypes had unusual combinations of ecophysiological traits, such as high photosynthesis in combination with low stomatal conductance or leaf nitrogen, and selection on these genotypes could provide a mechanism for crop improvement. At the genotypic and QTL level, circadian period was correlated with leaf nitrogen, instantaneous measures of photosynthesis, and stomatal conductance as well as with a long-term proxy (carbon isotope discrimination) for gas exchange, suggesting that gas exchange is partly regulated by the clock and thus synchronized with daily light cycles. The association between circadian rhythms and ecophysiological traits is relevant to crop improvement and adaptive evolution.
Collapse
|
36
|
Velez-Ramirez AI, van Ieperen W, Vreugdenhil D, Millenaar FF. Plants under continuous light. TRENDS IN PLANT SCIENCE 2011; 16:310-8. [PMID: 21396878 DOI: 10.1016/j.tplants.2011.02.003] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Revised: 01/31/2011] [Accepted: 02/05/2011] [Indexed: 05/05/2023]
Abstract
Continuous light is an essential tool for understanding the plant circadian clock. Additionally, continuous light might increase greenhouse food production. However, using continuous light in research and practice has its challenges. For instance, most of the circadian clock-oriented experiments were performed under continuous light; consequently, interactions between the circadian clock and the light signaling pathway were overlooked. Furthermore, in some plant species continuous light induces severe injury, which is only poorly understood so far. In this review paper, we aim to combine the current knowledge with a modern conceptual framework. Modern genomic tools and rediscovered continuous light-tolerant tomato species (Solanum spp.) could boost the understanding of the physiology of plants under continuous light.
Collapse
Affiliation(s)
- Aaron I Velez-Ramirez
- Horticultural Supply Chains Group, Wageningen University, P.O. Box 630, 6700 AP Wageningen, The Netherlands.
| | | | | | | |
Collapse
|
37
|
Valverde F. CONSTANS and the evolutionary origin of photoperiodic timing of flowering. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:2453-63. [PMID: 21239381 DOI: 10.1093/jxb/erq449] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
A network of promoting and inhibiting pathways that respond to environmental and internal signals controls the flowering transition. The outcome of this regulatory network establishes, for any particular plant, the correct time of the year to flower. The photoperiod pathway channels inputs from light, day length, and the circadian clock to promote the floral transition. CONSTANS (CO) is a central regulator of this pathway, triggering the production of the mobile florigen hormone FT (FLOWERING LOCUS T) that induces flower differentiation. Because plant reproductive fitness is directly related to its capacity to flower at a precise time, the photoperiod pathway is present in all known plant species. Recent findings have stretched the evolutionary span of this photophase signal to unicellular algae, which show unexpected conserved characteristics with modern plant photoperiodic responses. In this review, a comparative description of the photoperiodic systems in algae and plants will be presented and a general role for the CO family of transcriptional activators proposed.
Collapse
Affiliation(s)
- Federico Valverde
- Molecular Plant Development and Metabolism Group, Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas y Universidad de Sevilla, 49 Americo Vespucio Avenue, 41092-Sevilla, Spain.
| |
Collapse
|
38
|
Li G, Siddiqui H, Teng Y, Lin R, Wan XY, Li J, Lau OS, Ouyang X, Dai M, Wan J, Devlin PF, Deng XW, Wang H. Coordinated transcriptional regulation underlying the circadian clock in Arabidopsis. Nat Cell Biol 2011; 13:616-22. [PMID: 21499259 DOI: 10.1038/ncb2219] [Citation(s) in RCA: 176] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Accepted: 01/28/2011] [Indexed: 12/23/2022]
Abstract
The circadian clock controls many metabolic, developmental and physiological processes in a time-of-day-specific manner in both plants and animals. The photoreceptors involved in the perception of light and entrainment of the circadian clock have been well characterized in plants. However, how light signals are transduced from the photoreceptors to the central circadian oscillator, and how the rhythmic expression pattern of a clock gene is generated and maintained by diurnal light signals remain unclear. Here, we show that in Arabidopsis thaliana, FHY3, FAR1 and HY5, three positive regulators of the phytochrome A signalling pathway, directly bind to the promoter of ELF4, a proposed component of the central oscillator, and activate its expression during the day, whereas the circadian-controlled CCA1 and LHY proteins directly suppress ELF4 expression periodically at dawn through physical interactions with these transcription-promoting factors. Our findings provide evidence that a set of light- and circadian-regulated transcription factors act directly and coordinately at the ELF4 promoter to regulate its cyclic expression, and establish a potential molecular link connecting the environmental light-dark cycle to the central oscillator.
Collapse
Affiliation(s)
- Gang Li
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Zheng J, Xing D, Wu X, Shen Y, Kroll DM, Ji G, Li QQ. Ratio-based analysis of differential mRNA processing and expression of a polyadenylation factor mutant pcfs4 using arabidopsis tiling microarray. PLoS One 2011; 6:e14719. [PMID: 21364912 PMCID: PMC3045369 DOI: 10.1371/journal.pone.0014719] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Accepted: 01/31/2011] [Indexed: 11/19/2022] Open
Abstract
Background Alternative polyadenylation as a mechanism in gene expression regulation has been widely recognized in recent years. Arabidopsis polyadenylation factor PCFS4 was shown to function in leaf development and in flowering time control. The function of PCFS4 in controlling flowering time was correlated with the alternative polyadenylation of FCA, a flowering time regulator. However, genetic evidence suggested additional targets of PCFS4 that may mediate its function in both flowering time and leaf development. Methodology/Principal Findings To identify further targets, we investigated the whole transcriptome of a PCFS4 mutant using Affymetrix Arabidopsis genomic tiling 1.0R array and developed a data analysis pipeline, termed RADPRE (Ratio-based Analysis of Differential mRNA Processing and Expression). In RADPRE, ratios of normalized probe intensities between wild type Columbia and a pcfs4 mutant were first generated. By doing so, one of the major problems of tiling array data—variations caused by differential probe affinity—was significantly alleviated. With the probe ratios as inputs, a hierarchy of statistical tests was carried out to identify differentially processed genes (DPG) and differentially expressed genes (DEG). The false discovery rate (FDR) of this analysis was estimated by using the balanced random combinations of Col/pcfs4 and pcfs4/Col ratios as inputs. Gene Ontology (GO) analysis of the DPGs and DEGs revealed potential new roles of PCFS4 in stress responses besides flowering time regulation. Conclusion/Significance We identified 68 DPGs and 114 DEGs with FDR at 1% and 2%, respectively. Most of the 68 DPGs were subjected to alternative polyadenylation, splicing or transcription initiation. Quantitative PCR analysis of a set of DPGs confirmed that most of these genes were truly differentially processed in pcfs4 mutant plants. The enriched GO term “regulation of flower development” among PCFS4 targets further indicated the efficacy of the RADPRE pipeline. This simple but effective program is available upon request.
Collapse
Affiliation(s)
- Jianti Zheng
- Department of Automation, Xiamen University, Xiamen, Fujian, China
- Department of Botany, Miami University, Oxford, Ohio, United States of America
| | - Denghui Xing
- Department of Botany, Miami University, Oxford, Ohio, United States of America
| | - Xiaohui Wu
- Department of Automation, Xiamen University, Xiamen, Fujian, China
- Department of Botany, Miami University, Oxford, Ohio, United States of America
| | - Yingjia Shen
- Department of Botany, Miami University, Oxford, Ohio, United States of America
| | - Diana M. Kroll
- Department of Botany, Miami University, Oxford, Ohio, United States of America
| | - Guoli Ji
- Department of Automation, Xiamen University, Xiamen, Fujian, China
- * E-mail: (QQL); (GJ)
| | - Qingshun Quinn Li
- Department of Automation, Xiamen University, Xiamen, Fujian, China
- Department of Botany, Miami University, Oxford, Ohio, United States of America
- * E-mail: (QQL); (GJ)
| |
Collapse
|
40
|
Abstract
Perennial plants monitor seasonal changes through changes in environmental conditions such as the quantity and quality of light and genes in the photoperiodic pathway are known to be involved in controlling these processes. Here, we examine 25 of genes from the photoperiod pathway in Populus tremula (Salicaceae) for signatures of adaptive evolution. Overall, levels of synonymous polymorphism in the 25 genes are lower than at control loci selected randomly from the genome. This appears primarily to be caused by lower levels of synonymous polymorphism in genes associated with the circadian clock. Natural selection appears to play an important role in shaping protein evolution at several of the genes in the photoperiod pathways, which is highlighted by the fact that approximately 40% of the genes from the photoperiod pathway have estimates of selection on nonsynonymous polymorphisms that are significantly different from zero. A surprising observation we make is that circadian clock-associated genes appear to be over-represented among the genes showing elevated rates of protein evolution; seven genes are evolving under positive selection and all but one of these genes are involved in the circadian clock of Populus.
Collapse
Affiliation(s)
- David Hall
- Umeå Plant Science Centre, Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden
| | | | | |
Collapse
|
41
|
Abstract
An internal time-keeping mechanism has been observed in almost every organism studied from archaea to humans. This circadian clock provides a competitive advantage in fitness and survival ( 18, 30, 95, 129, 137 ). Researchers have uncovered the molecular composition of this internal clock by combining enzymology, molecular biology, genetics, and modeling approaches. However, understanding the mechanistic link between the clock and output responses has been elusive. In three model organisms, Arabidopsis thaliana, Drosophila melanogaster, and Mus musculus, whole-genome expression arrays have enabled researchers to investigate how maintaining a time-keeping mechanism connects to an adaptive advantage. Here, we review the impacts transcriptomics have had on our understanding of the clock and how this molecular clock connects with system-level circadian responses. We explore the discoveries made possible by high-throughput RNA assays, the network approaches used to investigate these large transcript datasets, and potential future directions.
Collapse
Affiliation(s)
- Colleen J Doherty
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093, USA.
| | | |
Collapse
|
42
|
Jouannet V, Crespi M. Long Nonprotein-Coding RNAs in Plants. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2011; 51:179-200. [PMID: 21287139 DOI: 10.1007/978-3-642-16502-3_9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In recent years, nonprotein-coding RNAs (or npcRNAs) have emerged as a major part of the eukaryotic transcriptome. Many new regulatory npcRNAs or riboregulators riboregulators have been discovered and characterized due to the advent of new genomic approaches. This growing number suggests that npcRNAs could play a more important role than previously believed and significantly contribute to the generation of evolutionary complexity in multicellular organisms. Regulatory npcRNAs range from small RNAs (si/miRNAs) to very large transcripts (or long npcRNAs) and play diverse functions in development and/or environmental stress responses. Small RNAs include an expanding number of 20-40 nt RNAs that function in the regulation of gene expression by affecting mRNA decay and translational inhibition or lead to DNA methylation and gene silencing. They generally involve double-stranded RNA or stem loops and imply transcriptional or posttranscriptional gene silencing (PTGS). RNA silencing besides small interfering RNA and microRNA, gene silencing in plants is also mediated by tasiRNAs (trans-acting siRNAs) and nat-siRNAs (natural antisense mediated siRNAs). In contrast to small RNAs, much less is known about the large and diverse population of long npcRNAs, and only a few have been implicated in diverse functions such as abiotic stress responses, nodulation and flower development, and sex chromosome-specific expression. Moreover, many long npcRNAs act as antisense transcripts or are substrates of the small RNA pathways, thus interfering with a variety of RNA-related metabolisms. An emerging hypothesis is that long npcRNAs, as shown for small si/miRNAs, integrate into ribonucleoprotein particles (RNPs) to modulate their function, localization, or stability to act on target mRNAs. As plants show a remarkable developmental plasticity to adapt their growth to changing environmental conditions, understanding how npcRNAs work may reveal novel mechanisms involved in growth control and differentiation and help to design new tools for biotechnological applications.
Collapse
Affiliation(s)
- Virginie Jouannet
- Centre National de la Recherche Scientifique, Institut des Sciences du Végétal, 91198, Gif-sur-Yvette Cedex, France
| | | |
Collapse
|
43
|
Xu XM, Møller SG. The value of Arabidopsis research in understanding human disease states. Curr Opin Biotechnol 2010; 22:300-7. [PMID: 21144728 DOI: 10.1016/j.copbio.2010.11.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 11/11/2010] [Accepted: 11/11/2010] [Indexed: 12/19/2022]
Abstract
Although Arabidopsis thaliana is traditionally viewed as the key model organism for plant biology it is becoming increasingly clear that Arabidopsis represents an invaluable tool in our efforts to understand molecular mechanisms that underpin human disease states. A comparison of the annotated Arabidopsis thaliana and human genome sequences reveals that a high percentage of genes implicated in human diseases are also present in Arabidopsis. Although Arabidopsis and humans diverged 1.6 billion years ago recent studies have demonstrated remarkable conservation of protein function and cellular processes between these seemingly distant species. In particular, cellular processes associated with neurodegenerative disorders, such as Alzheimer's and Parkinson's disease, and the neurological disorder Friedreich Ataxia have been dissected using Arabidopsis.
Collapse
Affiliation(s)
- Xiang Ming Xu
- Centre for Organelle Research, Faculty of Science and Technology, University of Stavanger, Norway
| | | |
Collapse
|
44
|
Soriano MI, Roibás B, García AB, Espinosa-Urgel M. Evidence of circadian rhythms in non-photosynthetic bacteria? J Circadian Rhythms 2010; 8:8. [PMID: 20846401 PMCID: PMC2949598 DOI: 10.1186/1740-3391-8-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Accepted: 09/16/2010] [Indexed: 01/29/2023] Open
Abstract
Examples of circadian rhythms have been described in eukaryotic organisms and in photosynthetic bacteria, but direct proof of their existence in other prokaryotes is limited and has been largely ignored. The aim of this article is to review existing evidence and to present preliminary results that suggest that the heterotrophic bacterium Pseudomonas putida shows regular variations in its growth pattern synchronized with light/darkness cycles. We put forward the hypothesis that circadian regulation of certain processes can take place in non-photosynthetic prokaryotes and may represent an adaptative advantage in specific environments.
Collapse
Affiliation(s)
- María I Soriano
- Department of Environmental Protection, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain.
| | | | | | | |
Collapse
|
45
|
Müller B, Grossniklaus U. Model organisms--A historical perspective. J Proteomics 2010; 73:2054-63. [PMID: 20727995 DOI: 10.1016/j.jprot.2010.08.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Revised: 08/03/2010] [Accepted: 08/11/2010] [Indexed: 12/17/2022]
Abstract
Much of our knowledge on heredity, development, physiology and the underlying cellular and molecular processes is derived from the studies of model, or reference, organisms. Despite the great variety of life, a common base of shared principles could be extracted by studying a few life forms, selected based on their amenability to experimental studies. Very briefly, the origins of a few model organisms are described, including E. coli, yeast, C. elegans, Drosophila, Xenopus, zebrafish, mouse, maize and Arabidopsis. These model organisms were chosen because of their importance and wide use, which made them systems of choice for genome-wide studies. Many of their genomes were between the first to be fully sequenced, opening unprecedented opportunities for large-scale transcriptomics and proteomics studies.
Collapse
Affiliation(s)
- Bruno Müller
- Institute of Plant Biology, University of Zürich, Zürich, Switzerland.
| | | |
Collapse
|
46
|
Palágyi A, Terecskei K, Ádám É, Kevei É, Kircher S, Mérai Z, Schäfer E, Nagy F, Kozma-Bognár L. Functional analysis of amino-terminal domains of the photoreceptor phytochrome B. PLANT PHYSIOLOGY 2010; 153:1834-45. [PMID: 20530216 PMCID: PMC2923874 DOI: 10.1104/pp.110.153031] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Accepted: 06/06/2010] [Indexed: 05/18/2023]
Abstract
At the core of the circadian network in Arabidopsis (Arabidopsis thaliana), clock genes/proteins form multiple transcriptional/translational negative feedback loops and generate a basic approximately 24-h oscillation, which provides daily regulation for a wide range of processes. This temporal organization enhances the fitness of plants only if it corresponds to the natural day/night cycles. Light, absorbed by photoreceptors, is the most effective signal in synchronizing the oscillator to environmental cycles. Phytochrome B (PHYB) is the major red/far-red light-absorbing phytochrome receptor in light-grown plants. Besides modulating the pace and phase of the circadian clock, PHYB controls photomorphogenesis and delays flowering. It has been demonstrated that the nuclear-localized amino-terminal domain of PHYB is capable of controlling photomorphogenesis and, partly, flowering. Here, we show (1) that PHYB derivatives containing 651 or 450 amino acid residues of the amino-terminal domains are functional in mediating red light signaling to the clock, (2) that circadian entrainment is a nuclear function of PHYB, and (3) that a 410-amino acid amino-terminal fragment does not possess any functions of PHYB due to impaired chromophore binding. However, we provide evidence that the carboxyl-terminal domain is required to mediate entrainment in white light, suggesting a role for this domain in integrating red and blue light signaling to the clock. Moreover, careful analysis of the circadian phenotype of phyB-9 indicates that PHYB provides light signaling for different regulatory loops of the circadian oscillator in a different manner, which results in an apparent decoupling of the loops in the absence of PHYB under specific light conditions.
Collapse
|
47
|
Hermans C, Vuylsteke M, Coppens F, Cristescu SM, Harren FJM, Inzé D, Verbruggen N. Systems analysis of the responses to long-term magnesium deficiency and restoration in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2010; 187:132-144. [PMID: 20412444 DOI: 10.1111/j.1469-8137.2010.03257.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
*Unravelling mechanisms that control plant growth as a function of nutrient availability presents a major challenge in plant biology. This study reports the first transcriptome response to long-term (1 wk) magnesium (Mg) depletion and restoration in Arabidopsis thaliana. *Before the outbreak of visual symptoms, genes responding to Mg starvation and restoration were monitored in the roots and young mature leaves and compared with the Mg fully supplied as control. *After 1 wk Mg starvation in roots and leaves, 114 and 2991 genes were identified to be differentially regulated, respectively, which confirmed the later observation that the shoot development was more affected than the root in Arabidopsis. After 24 h of Mg resupply, restoration was effective for the expression of half of the genes altered. We emphasized differences in the expression amplitude of genes associated with the circadian clock predominantly in leaves, a higher expression of genes in the ethylene biosynthetic pathway, in the reactive oxygen species detoxification and in the photoprotection of the photosynthetic apparatus. Some of these observations at the molecular level were verified by metabolite analysis. *The results obtained here will help us to better understand how changes in Mg availability are translated into adaptive responses in the plant.
Collapse
Affiliation(s)
- Christian Hermans
- Laboratory of Plant Physiology and Molecular Genetics, Université Libre de Bruxelles, Bd du Triomphe, B-1050 Brussels, Belgium
| | - Marnik Vuylsteke
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052 Ghent, Belgium
- Department of Plant Biotechnology and Genetics, Ghent University, Technologiepark 927, B-9052 Ghent, Belgium
| | - Frederik Coppens
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052 Ghent, Belgium
- Department of Plant Biotechnology and Genetics, Ghent University, Technologiepark 927, B-9052 Ghent, Belgium
| | - Simona M Cristescu
- Department of Molecular and Laser Physics, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands
| | - Frans J M Harren
- Department of Molecular and Laser Physics, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands
| | - Dirk Inzé
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052 Ghent, Belgium
- Department of Plant Biotechnology and Genetics, Ghent University, Technologiepark 927, B-9052 Ghent, Belgium
| | - Nathalie Verbruggen
- Laboratory of Plant Physiology and Molecular Genetics, Université Libre de Bruxelles, Bd du Triomphe, B-1050 Brussels, Belgium
| |
Collapse
|
48
|
Lindlöf A. Interplay between low-temperature pathways and light reduction. PLANT SIGNALING & BEHAVIOR 2010; 5:820-5. [PMID: 20484978 PMCID: PMC3115030 DOI: 10.4161/psb.5.7.11701] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Accepted: 03/04/2010] [Indexed: 05/29/2023]
Abstract
Low temperature is one of the major factors that adversely affect crop yields by causing restraints on plant growth and productivity. However, most temperate plants have the ability to acclimate to cooler temperatures. Cold acclimation is a process which increases the freezing tolerance of an organism after exposure to low, non-freezing temperatures. The main trigger is a decrease in temperature levels, but light reduction has also been shown to have an important impact on acquired tolerance. Since the lowest temperatures are commonly reached during the night hours in winter time and is an annually recurring event, a favorable trait for plants is the possibility of sensing an imminent cold period. Consequently, extensive crosstalk between light- and temperature signaling pathways has been demonstrated and in this review interesting interaction points that have been previously reported in the literature are highlighted.
Collapse
Affiliation(s)
- Angelica Lindlöf
- Systems Biology Research Centre, School of Life Sciences, University of Skövde, Skövde, Sweden.
| |
Collapse
|
49
|
de Montaigu A, Tóth R, Coupland G. Plant development goes like clockwork. Trends Genet 2010; 26:296-306. [PMID: 20483501 DOI: 10.1016/j.tig.2010.04.003] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Revised: 04/17/2010] [Accepted: 04/19/2010] [Indexed: 10/19/2022]
Abstract
The plant circadian clock promotes daily rhythms in the activity of many processes. These rhythms are synchronized to the diurnal day/night cycle by environmental cues such as light and temperature. Output pathways link the clock to particular biological processes, ensuring that they peak in activity at the appropriate times of day or night. Recently, significant progress was made in defining the mechanisms by which output pathways are activated at specific times. Here these issues are emphasized by describing how the clock regulates growth and development throughout the life cycle of Arabidopsis thaliana, including seed germination, seedling growth, stress responses and the transition to flowering. This wide impact of the clock on growth and development appears to provide an advantage by enhancing growth and seed production in different environments.
Collapse
Affiliation(s)
- Amaury de Montaigu
- Max Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany
| | | | | |
Collapse
|
50
|
Andrés-Colás N, Perea-García A, Puig S, Peñarrubia L. Deregulated copper transport affects Arabidopsis development especially in the absence of environmental cycles. PLANT PHYSIOLOGY 2010; 153:170-84. [PMID: 20335405 PMCID: PMC2862424 DOI: 10.1104/pp.110.153676] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Accepted: 03/16/2010] [Indexed: 05/20/2023]
Abstract
Copper is an essential cofactor for key processes in plants, but it exerts harmful effects when in excess. Previous work has shown that the Arabidopsis (Arabidopsis thaliana) COPT1 high-affinity copper transport protein participates in copper uptake through plant root tips. Here, we show that COPT1 protein localizes to the plasma membrane of Arabidopsis cells and the phenotypic effects of transgenic plants overexpressing either COPT1 or COPT3, the latter being another high-affinity copper transport protein family member. Both transgenic lines exhibit increased endogenous copper levels and are sensitive to the copper in the growth medium. Additional phenotypes include decreased hypocotyl growth in red light and differentially affected flowering times depending on the photoperiod. Furthermore, in the absence of environmental cycles, such as light and temperature, the survival of plants overexpressing COPT1 or COPT3 is compromised. Consistent with altered circadian rhythms, the expression of the nuclear circadian clock genes CIRCADIAN CLOCK-ASSOCIATED1 (CCA1) and LATE ELONGATED HYPOCOTYL (LHY) is substantially reduced in either COPT1- or COPT3-overexpressing plants. Copper affects the amplitude and the phase, but not the period, of the CCA1 and LHY oscillations in wild-type plants. Copper also drives a reduction in the expression of circadian clock output genes. These results reveal that the spatiotemporal control of copper transport is a key aspect of metal homeostasis that is required for Arabidopsis fitness, especially in the absence of environmental cues.
Collapse
|