1
|
Blervacq AS, Galinousky D, Simon C, Moreau M, Duputié A, Baldacci-Cresp F, Lion C, Biot C, Hawkins S, Neutelings G. Tracking ectopic lignification in flax stems following scarification. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 223:109806. [PMID: 40179634 DOI: 10.1016/j.plaphy.2025.109806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 01/30/2025] [Accepted: 03/18/2025] [Indexed: 04/05/2025]
Abstract
When flax (Linum usitatissimum L.) stems are scarified, major changes occur in the organization of cell walls within the tissues that border the wound. We sought to characterize the plant's response using a variety of approaches, with a particular focus on lignin deposition within the peripheral fiber cell walls of the stem. Raman spectroscopy and imaging first showed that changes occurred in the polysaccharide matrix of the parenchyma and fiber cell walls. These changes were accompanied by rapid deposition of lignin which initially diffuses centripetally and then, once the vascular cambium was reached, propagates in a periclinal manner until 150 μm from the edges of the wounded zone. Lignin biosynthesis appears to be the result of a de novo activity, as demonstrated by the concomitant accumulation of transcripts corresponding to lignin biosynthesis genes. In addition, using bioorthogonal chemistry approaches, we showed that wounding had enhanced the capacity of fiber cell walls to incorporate modified lignin precursors, in parallel with an increase in transcripts corresponding to peroxidases in the cortical tissues. This incorporation potential was identical for the 3 different types of reporters tested. Our findings demonstrated that mechanical stress can trigger lignification, in a polarized manner within the bast fibers, providing insights into the plasticity of cell wall composition and the potential for modulating fiber properties in flax.
Collapse
Affiliation(s)
- Anne-Sophie Blervacq
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France.
| | - Dmitry Galinousky
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France
| | - Clémence Simon
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France
| | - Myriam Moreau
- Univ. Lille, CNRS, UMR 8516 - LASIRE - Laboratoire de Spectroscopie pour les Interactions, la Réactivité et l'Environnement, F-59000, Lille, France
| | - Anne Duputié
- Univ. Lille, CNRS, UMR 8198 - EEP - Evolution Ecologie et Paléontologie, F-59000, Lille, France
| | - Fabien Baldacci-Cresp
- Manager Analytical Sciences, Exothera, Allée Centrale - Zoning de Jumet 52, B-6040, Jumet, Belgium
| | - Cedric Lion
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France
| | - Christophe Biot
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France
| | - Simon Hawkins
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France
| | - Godfrey Neutelings
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France
| |
Collapse
|
2
|
Liao KY, Wang RQ, Li H, Liu JH, Chen SL, Wei SY, Zhao JJ, Yang P, Deng X, Wang YK, Shen YY, Yang HB, Huang X, Xu ZF, Chen XH, He F. Insect Resistance in Quercus robur: A Comparative Metabolomic and Transcriptomic Analysis of Normal and Curly Leaf Varieties. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:9112-9127. [PMID: 40183425 DOI: 10.1021/acs.jafc.5c00709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Quercus robur is a tree species that produces acorns with rich nutritional value. Its leaf rolling is crucial for adapting to stress, but this trait's impact on plant-insect interactions remains unknown. We compared the resistance phenotypes, metabolomic profiles, and transcriptomic data of the curly leaf (Qr-T) and normal-leaf (Qr-S) varieties of Q. robur. Findings revealed that Qr-T exhibited higher leaf area consumption under herbivory. Metabolomic analysis found lower levels of key defensive compounds like Questiomycin A, Caffeine, and Indoleacrylic acid in Qr-T. Transcriptomics revealed up-regulation of DEGs related to development (e.g., MYO17, LEC2) and down-regulation of defense-related DEGs (like IOS1, Y3471) in Qr-T. GO and KEGG analyses indicated that defense responses and the isoflavonoid biosynthesis pathway were suppressed in Qr-T. Coexpression network analysis identified coordinated down-regulation of defense-related genes, such as CYP81Q32 and CYP94A5, and their coexpressed transcription factors (such as WRKY6, WRKY53) in Qr-T. The above findings suggest that leaf curling of Q. robur may weaken its insect resistance, which provides clues for improving plant resistance in agroforestry.
Collapse
Affiliation(s)
- Ke-Yu Liao
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Rui-Quan Wang
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Hao Li
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Jia-Hui Liu
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Si-Lai Chen
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Shu-Ying Wei
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Jiu-Jiu Zhao
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Peng Yang
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Xin Deng
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuan-Kang Wang
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuan-Yuan Shen
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Han-Bo Yang
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiong Huang
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhen-Feng Xu
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiao-Hong Chen
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Fang He
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
3
|
Valente IDL, Wancura JHC, Zabot GL, Mazutti MA. Endophytic and Rhizospheric Microorganisms: An Alternative for Sustainable, Organic, and Regenerative Bioinput Formulations for Modern Agriculture. Microorganisms 2025; 13:813. [PMID: 40284649 PMCID: PMC12029156 DOI: 10.3390/microorganisms13040813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 03/25/2025] [Accepted: 03/28/2025] [Indexed: 04/29/2025] Open
Abstract
Large amounts of chemical fertilizers are still used to suppress pathogens and boost agricultural productivity and food generation. However, their use can cause harmful environmental imbalance. Furthermore, plants typically absorb limited amounts of the nutrients provided by chemical fertilizers. Recent studies are recommending the use of microbiota present in the soil in different formulations, considering that several microorganisms are found in nature in association with plants in a symbiotic, antagonistic, or synergistic way. This ecological alternative is positive because no undesirable significant alterations occur in the environment while stimulating plant nutrition development and protection against damage caused by control pathogens. Therefore, this review presents a comprehensive discussion regarding endophytic and rhizospheric microorganisms and their interaction with plants, including signaling and bio-control processes concerning the plant's defense against pathogenic spread. A discussion is provided about the importance of these bioinputs as a microbial resource that promotes plant development and their sustainable protection methods aiming to increase resilience in the agricultural system. In modern agriculture, the manipulation of bioinputs through Rhizobium contributes to reducing the effects of greenhouse gases by managing nitrogen runoff and decreasing nitrous oxide. Additionally, mycorrhizal fungi extend their root systems, providing plants with greater access to water and nutrients.
Collapse
Affiliation(s)
- Isabela de L. Valente
- Department of Chemical Engineering, Federal University of Santa Maria (UFSM), 1000 Roraima Av., Camobi, Santa Maria 97105-340, RS, Brazil; (I.d.L.V.); (M.A.M.)
| | - João H. C. Wancura
- Laboratory of Biomass and Biofuels (L2B), Federal University of Santa Maria (UFSM), 1000 Roraima Av., Camobi, Santa Maria 97105-340, RS, Brazil;
| | - Giovani L. Zabot
- Laboratory of Agroindustrial Process Engineering (LAPE), Federal University of Santa Maria (UFSM), 3013 Taufik Germano Rd, Universitário II, Cachoeira do Sul 96503-205, RS, Brazil
| | - Marcio A. Mazutti
- Department of Chemical Engineering, Federal University of Santa Maria (UFSM), 1000 Roraima Av., Camobi, Santa Maria 97105-340, RS, Brazil; (I.d.L.V.); (M.A.M.)
| |
Collapse
|
4
|
Wang W, Chi M, Liu S, Zhang Y, Song J, Xia G, Liu S. TaGPAT6 enhances salt tolerance in wheat by synthesizing cutin and suberin monomers to form a diffusion barrier. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025; 67:208-225. [PMID: 39601645 DOI: 10.1111/jipb.13808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 11/05/2024] [Indexed: 11/29/2024]
Abstract
One mechanism plants use to tolerate high salinity is the deposition of cutin and suberin to form apoplastic barriers that limit the influx of ions. However, the mechanism underlying barrier formation under salt stress is unclear. Here, we characterized the glycerol-3-phosphate acyltransferase (GPAT) family gene TaGPAT6, encoding a protein involved in cutin and suberin biosynthesis for apoplastic barrier formation in wheat (Triticum aestivum). TaGPAT6 has both acyltransferase and phosphatase activities, which are responsible for the synthesis of sn-2-monoacylglycerol (sn-2 MAG), the precursor of cutin and suberin. Overexpressing TaGPAT6 promoted the deposition of cutin and suberin in the seed coat and the outside layers of root tip cells and enhanced salt tolerance by reducing sodium ion accumulation within cells. By contrast, TaGPAT6 knockout mutants showed increased sensitivity to salt stress due to reduced cutin and suberin deposition and enhanced sodium ion accumulation. Yeast-one-hybrid and electrophoretic mobility shift assays identified TaABI5 as the upstream regulator of TaGPAT6. TaABI5 knockout mutants showed suppressed expression of TaGPAT6 and decreased barrier formation in the seed coat. These results indicate that TaGPAT6 is involved in cutin and suberin biosynthesis and the resulting formation of an apoplastic barrier that enhances salt tolerance in wheat.
Collapse
Affiliation(s)
- Wenlong Wang
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education; Shandong Key Laboratory of Precision Molecular Crop Design and Breeding; School of Life Science, Shandong University, Qingdao, 266237, China
| | - Menghan Chi
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education; Shandong Key Laboratory of Precision Molecular Crop Design and Breeding; School of Life Science, Shandong University, Qingdao, 266237, China
| | - Shupeng Liu
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education; Shandong Key Laboratory of Precision Molecular Crop Design and Breeding; School of Life Science, Shandong University, Qingdao, 266237, China
| | - Ying Zhang
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education; Shandong Key Laboratory of Precision Molecular Crop Design and Breeding; School of Life Science, Shandong University, Qingdao, 266237, China
| | - Jiawang Song
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education; Shandong Key Laboratory of Precision Molecular Crop Design and Breeding; School of Life Science, Shandong University, Qingdao, 266237, China
| | - Guangmin Xia
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education; Shandong Key Laboratory of Precision Molecular Crop Design and Breeding; School of Life Science, Shandong University, Qingdao, 266237, China
| | - Shuwei Liu
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education; Shandong Key Laboratory of Precision Molecular Crop Design and Breeding; School of Life Science, Shandong University, Qingdao, 266237, China
- National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying, 257345, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| |
Collapse
|
5
|
Solliman MED. Isolation and Characterization of GPAT3 Gene from Jojoba Plant and its Inferior Early Diagnosis of Sex. Pak J Biol Sci 2025; 28:48-59. [PMID: 39820567 DOI: 10.3923/pjbs.2025.48.59] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
<b>Background and Objective:</b> In jojoba plants, the sex is usually difficult to identify, especially before flowering and during the very early stages of development. This stage is expected to facilitate breeding programs and adopt an invention and approach to isolate the GPAT gene identified between males and females: The study aimed at early diagnosis of sex in jojoba by sequence characterized by GPAT gene of sex-determining by simplex PCR. To prove the existence of the GPAT gene in male jojoba plants which may be the sex determination and identification in all plant systems. <b>Materials and Methods:</b> Initially, different primers were selected for the sex determination of jojoba samples using PCR-based amplification. The primers that can produce distinct DNA bands in males, not in females were selected for further experiments. The amplification of a male-specific GPAT marker situated in the sex determination region was amplified using specific primers. The newly designed GPAT primers flank region. <b>Results:</b> For the first time, separation and identified of the GPAT gene sequence of jojoba was done. The novel method represents a breakthrough in the sex determination of jojoba to identify sex at early developmental stages. This work provides a potentially useful diagnostic for determining sex in jojoba species. In this report, a breakthrough in the methodology for determining the sex of jojoba has been made. The amplified regions of the GPAT gene closely matched with sequences of GPAT in papaya and humans. <b>Conclusion:</b> The authors make an interesting finding by targeting the sequences in the GPAT gene and the final conclusion that PCR as a simple, rapid and reliable technique can complement and confirm sex by using specific primers pair according to our invention.
Collapse
|
6
|
Wang TR, Ning X, Zheng SS, Li Y, Lu ZJ, Meng HH, Ge BJ, Kozlowski G, Yan MX, Song YG. Genomic insights into ecological adaptation of oaks revealed by phylogenomic analysis of multiple species. PLANT DIVERSITY 2025; 47:53-67. [PMID: 40041560 PMCID: PMC11873581 DOI: 10.1016/j.pld.2024.07.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 03/06/2025]
Abstract
Understanding the ecological adaptation of tree species can not only reveal the evolutionary potential but also benefit biodiversity conservation under global climate change. Quercus is a keystone genus in Northern Hemisphere forests, and its wide distribution in diverse ecosystems and long evolutionary history make it an ideal model for studying the genomic basis of ecological adaptations. Here we used a newly sequenced genome of Quercus gilva, an evergreen oak species from East Asia, with 18 published Fagales genomes to determine how Fagaceae genomes have evolved, identify genomic footprints of ecological adaptability in oaks in general, as well as between evergreen and deciduous oaks. We found that oak species exhibited a higher degree of genomic conservation and stability, as indicated by the absence of large-scale chromosomal structural variations or additional whole-genome duplication events. In addition, we identified expansion and tandem repetitions within gene families that contribute to plant physical and chemical defense (e.g., cuticle biosynthesis and oxidosqualene cyclase genes), which may represent the foundation for the ecological adaptation of oak species. Circadian rhythm and hormone-related genes may regulate the habits of evergreen and deciduous oaks. This study provides a comprehensive perspective on the ecological adaptations of tree species based on phylogenetic, genome evolutionary, and functional genomic analyses.
Collapse
Affiliation(s)
- Tian-Rui Wang
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
| | - Xin Ning
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
| | - Si-Si Zheng
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
| | - Yu Li
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
- College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Zi-Jia Lu
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
- College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Hong-Hu Meng
- Plant Phylogenetics and Conservation Group, Centre for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China
| | - Bin-Jie Ge
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
| | - Gregor Kozlowski
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
- Department of Biology and Botanic Garden, University of Fribourg, Fribourg, Switzerland
- Natural History Museum Fribourg, Fribourg, Switzerland
| | - Meng-Xiao Yan
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
| | - Yi-Gang Song
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
- College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| |
Collapse
|
7
|
Ma J, Du M, Xiong H, Duan R. Genome-Wide Identification of the GPAT Family in Medicago sativa L. and Expression Profiling Under Abiotic Stress. PLANTS (BASEL, SWITZERLAND) 2024; 13:3392. [PMID: 39683185 DOI: 10.3390/plants13233392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/30/2024] [Accepted: 12/01/2024] [Indexed: 12/18/2024]
Abstract
Glycerol-3-phosphate acyltransferase (GPAT), as a rate-limiting enzyme engaged in lipid synthesis pathways, exerts an important role in plant growth and development as well as environmental adaptation throughout diverse growth stages. Alfalfa (Medicago sativa L.) is one of the most significant leguminous forages globally; however, its growth process is frequently exposed to environmental stress, giving rise to issues such as impeded growth and decreased yield. At present, the comprehension of the GPAT genes in alfalfa and their reactions to abiotic stresses is conspicuously deficient. This study identified 15 GPATs from the genome of "Zhongmu No. 1" alfalfa, which were phylogenetically categorized into three major groups (Groups I ~ III). Furthermore, Group III is further subdivided into three distinct subgroups. MsGPATs belonging to the same subfamily exhibited similar protein conserved motifs and gene structural characteristics, in which groups with simple conserved motifs had more complex gene structures. A multitude of regulatory cis-elements pertinent to hormones and responses to environmental stress were detected in their promoter regions. In addition, a spatial-temporal expression analysis showed that MsGPATs have significant tissue specificity. Furthermore, the transcriptomic analysis of ABA treatment and the qRT-PCR results under drought, salt, and cold stress demonstrated that the majority of MsGPATs respond to abiotic stress with pronounced timely characteristics. It was also ascertained that these GPAT genes might assume a crucial role in salt and drought stress. This research can further constitute a fundamental basis for the exploration of the alfalfa GPAT family, the screening of key GPATs, and the investigation of their functionalities.
Collapse
Affiliation(s)
- Jianzhi Ma
- College of Eco-Environmental Engineering, Qinghai University, Xining 810016, China
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining 810016, China
| | - Mingyang Du
- College of Eco-Environmental Engineering, Qinghai University, Xining 810016, China
| | - Huiyan Xiong
- College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China
| | - Ruijun Duan
- College of Eco-Environmental Engineering, Qinghai University, Xining 810016, China
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining 810016, China
| |
Collapse
|
8
|
Gee CW, Andersen-Ranberg J, Boynton E, Rosen RZ, Jorgens D, Grob P, Holman HYN, Niyogi KK. Implicating the red body of Nannochloropsis in forming the recalcitrant cell wall polymer algaenan. Nat Commun 2024; 15:5456. [PMID: 38937455 PMCID: PMC11211512 DOI: 10.1038/s41467-024-49277-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 05/31/2024] [Indexed: 06/29/2024] Open
Abstract
Stramenopile algae contribute significantly to global primary productivity, and one class, Eustigmatophyceae, is increasingly studied for applications in high-value lipid production. Yet much about their basic biology remains unknown, including the nature of an enigmatic, pigmented globule found in vegetative cells. Here, we present an in-depth examination of this "red body," focusing on Nannochloropsis oceanica. During the cell cycle, the red body forms adjacent to the plastid, but unexpectedly it is secreted and released with the autosporangial wall following cell division. Shed red bodies contain antioxidant ketocarotenoids, and overexpression of a beta-carotene ketolase results in enlarged red bodies. Infrared spectroscopy indicates long-chain, aliphatic lipids in shed red bodies and cell walls, and UHPLC-HRMS detects a C32 alkyl diol, a potential precursor of algaenan, a recalcitrant cell wall polymer. We propose that the red body transports algaenan precursors from plastid to apoplast to be incorporated into daughter cell walls.
Collapse
Affiliation(s)
- Christopher W Gee
- Howard Hughes Medical Institute, University of California, Berkeley, CA, 94720, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
| | - Johan Andersen-Ranberg
- University of Copenhagen, Department of Plant and Environmental Sciences, Frederiksberg, DK-1871, Denmark
| | - Ethan Boynton
- Howard Hughes Medical Institute, University of California, Berkeley, CA, 94720, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
| | - Rachel Z Rosen
- Department of Chemistry, University of California, Berkeley, CA, 94702, USA
| | - Danielle Jorgens
- Electron Microscope Laboratory, University of California, Berkeley, CA, 94720, USA
| | - Patricia Grob
- Howard Hughes Medical Institute, University of California, Berkeley, CA, 94720, USA
- California Institute of Quantitative Biosciences, University of California, Berkeley, CA, 94720, USA
| | - Hoi-Ying N Holman
- Electron Microscope Laboratory, University of California, Berkeley, CA, 94720, USA
| | - Krishna K Niyogi
- Howard Hughes Medical Institute, University of California, Berkeley, CA, 94720, USA.
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA.
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| |
Collapse
|
9
|
Huang H, Wang Y, Yang P, Zhao H, Jenks MA, Lü S, Yang X. The Arabidopsis cytochrome P450 enzyme CYP96A4 is involved in the wound-induced biosynthesis of cuticular wax and cutin monomers. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:1619-1634. [PMID: 38456566 DOI: 10.1111/tpj.16701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 02/07/2024] [Accepted: 02/20/2024] [Indexed: 03/09/2024]
Abstract
The plant cuticle is composed of cuticular wax and cutin polymers and plays an essential role in plant tolerance to diverse abiotic and biotic stresses. Several stresses, including water deficit and salinity, regulate the synthesis of cuticular wax and cutin monomers. However, the effect of wounding on wax and cutin monomer production and the associated molecular mechanisms remain unclear. In this study, we determined that the accumulation of wax and cutin monomers in Arabidopsis leaves is positively regulated by wounding primarily through the jasmonic acid (JA) signaling pathway. Moreover, we observed that a wound- and JA-responsive gene (CYP96A4) encoding an ER-localized cytochrome P450 enzyme was highly expressed in leaves. Further analyses indicated that wound-induced wax and cutin monomer production was severely inhibited in the cyp96a4 mutant. Furthermore, CYP96A4 interacted with CER1 and CER3, the core enzymes in the alkane-forming pathway associated with wax biosynthesis, and modulated CER3 activity to influence aldehyde production in wax synthesis. In addition, transcripts of MYC2 and JAZ1, key genes in JA signaling pathway, were significantly reduced in cyp96a4 mutant. Collectively, these findings demonstrate that CYP96A4 functions as a cofactor of the alkane synthesis complex or participates in JA signaling pathway that contributes to cuticular wax biosynthesis and cutin monomer formation in response to wounding.
Collapse
Affiliation(s)
- Haodong Huang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Yang Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Pingfang Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Huayan Zhao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Matthew A Jenks
- School of Plant Sciences, College of Agriculture and Life Sciences, The University of Arizona, Tucson, Arizona, 85721, USA
| | - Shiyou Lü
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Xianpeng Yang
- College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| |
Collapse
|
10
|
Gully K, Berhin A, De Bellis D, Herrfurth C, Feussner I, Nawrath C. The GPAT4/ 6/ 8 clade functions in Arabidopsis root suberization nonredundantly with the GPAT5/7 clade required for suberin lamellae. Proc Natl Acad Sci U S A 2024; 121:e2314570121. [PMID: 38739804 PMCID: PMC11127019 DOI: 10.1073/pnas.2314570121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 03/28/2024] [Indexed: 05/16/2024] Open
Abstract
Lipid polymers such as cutin and suberin strengthen the diffusion barrier properties of the cell wall in specific cell types and are essential for water relations, mineral nutrition, and stress protection in plants. Land plant-specific glycerol-3-phosphate acyltransferases (GPATs) of different clades are central players in cutin and suberin monomer biosynthesis. Here, we show that the GPAT4/6/8 clade in Arabidopsis thaliana, which is known to mediate cutin formation, is also required for developmentally regulated root suberization, in addition to the established roles of GPAT5/7 in suberization. The GPAT5/7 clade is mainly required for abscisic acid-regulated suberization. In addition, the GPAT5/7 clade is crucial for the formation of the typical lamellated suberin ultrastructure observed by transmission electron microscopy, as distinct amorphous globular polyester structures were deposited in the apoplast of the gpat5 gpat7 double mutant, in contrast to the thinner but still lamellated suberin deposition in the gpat4 gpat6 gpat8 triple mutant. Site-directed mutagenesis revealed that the intrinsic phosphatase activity of GPAT4, GPAT6, and GPAT8, which leads to monoacylglycerol biosynthesis, contributes to suberin formation. GPAT5/7 lack an active phosphatase domain and the amorphous globular polyester structure observed in the gpat5 gpat7 double mutant was partially reverted by treatment with a phosphatase inhibitor or the expression of phosphatase-dead variants of GPAT4/6/8. Thus, GPATs that lack an active phosphatase domain synthetize lysophosphatidic acids that might play a role in the formation of the lamellated structure of suberin. GPATs with active and nonactive phosphatase domains appear to have nonredundant functions and must cooperate to achieve the efficient biosynthesis of correctly structured suberin.
Collapse
Affiliation(s)
- Kay Gully
- Department of Plant Molecular Biology, University of Lausanne, LausanneCH-1015, Switzerland
| | - Alice Berhin
- Department of Plant Molecular Biology, University of Lausanne, LausanneCH-1015, Switzerland
| | - Damien De Bellis
- Department of Plant Molecular Biology, University of Lausanne, LausanneCH-1015, Switzerland
- Electron Microscopy Facility, University of Lausanne, LausanneCH-1015, Switzerland
| | - Cornelia Herrfurth
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute of Plant Sciences, University of Goettingen, GoettingenD-37077, Germany
- Service Unit for Metabolomics and Lipidomics, Goettingen Center for Molecular Biosciences, University of Goettingen, GoettingenD-37077, Germany
| | - Ivo Feussner
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute of Plant Sciences, University of Goettingen, GoettingenD-37077, Germany
- Service Unit for Metabolomics and Lipidomics, Goettingen Center for Molecular Biosciences, University of Goettingen, GoettingenD-37077, Germany
- Department of Plant Biochemistry, Goettingen Center for Molecular Biosciences, University of Goettingen, GoettingenD-37077, Germany
| | - Christiane Nawrath
- Department of Plant Molecular Biology, University of Lausanne, LausanneCH-1015, Switzerland
| |
Collapse
|
11
|
Cao S, Zhao X, Li Z, Yu R, Li Y, Zhou X, Yan W, Chen D, He C. Comprehensive integration of single-cell transcriptomic data illuminates the regulatory network architecture of plant cell fate specification. PLANT DIVERSITY 2024; 46:372-385. [PMID: 38798726 PMCID: PMC11119547 DOI: 10.1016/j.pld.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 03/29/2024] [Indexed: 05/29/2024]
Abstract
Plant morphogenesis relies on precise gene expression programs at the proper time and position which is orchestrated by transcription factors (TFs) in intricate regulatory networks in a cell-type specific manner. Here we introduced a comprehensive single-cell transcriptomic atlas of Arabidopsis seedlings. This atlas is the result of meticulous integration of 63 previously published scRNA-seq datasets, addressing batch effects and conserving biological variance. This integration spans a broad spectrum of tissues, including both below- and above-ground parts. Utilizing a rigorous approach for cell type annotation, we identified 47 distinct cell types or states, largely expanding our current view of plant cell compositions. We systematically constructed cell-type specific gene regulatory networks and uncovered key regulators that act in a coordinated manner to control cell-type specific gene expression. Taken together, our study not only offers extensive plant cell atlas exploration that serves as a valuable resource, but also provides molecular insights into gene-regulatory programs that varies from different cell types.
Collapse
Affiliation(s)
- Shanni Cao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Xue Zhao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Zhuojin Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Ranran Yu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Yuqi Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Xinkai Zhou
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Wenhao Yan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Dijun Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Chao He
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
12
|
Yang JY, Wang HB, Zhang DC. Response of the root anatomical structure of Carex moorcroftii to habitat drought in the Western Sichuan Plateau of China. PLANTA 2024; 259:131. [PMID: 38652171 PMCID: PMC11039561 DOI: 10.1007/s00425-024-04412-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 04/12/2024] [Indexed: 04/25/2024]
Abstract
MAIN CONCLUSION The anatomical structures of Carex moorcroftii roots showing stronger plasticity during drought had a lower coefficient of variation in cell size in the same habitats, while those showing weaker plasticity had a higher coefficient of variation. The complementary relationship between these factors comprises the adaptation mechanism of the C. moorcroftii root to drought. To explore the effects of habitat drought on root anatomy of hygrophytic plants, this study focused on roots of C. moorcroftii. Five sample plots were set up along a soil moisture gradient in the Western Sichuan Plateau to collect experimental materials. Paraffin sectioning was used to obtain root anatomy, and one-way ANOVA, correlation analysis, linear regression analysis, and RDA ranking were applied to analyze the relationship between root anatomy and soil water content. The results showed that the root transverse section area, thickness of epidermal cells, exodermis and Casparian strips, and area of aerenchyma were significantly and positively correlated with soil moisture content (P < 0.01). The diameter of the vascular cylinder and the number and total area of vessels were significantly and negatively correlated with the soil moisture content (P < 0.01). The plasticity of the anatomical structures was strong for the diameter and area of the vascular cylinder and thickness of the Casparian strip and epidermis, while it was weak for vessel diameter and area. In addition, there was an asymmetrical relationship between the functional adaptation of root anatomical structure in different soil moisture and the variation degree of root anatomical structure in the same soil moisture. Therefore, the roots of C. moorcroftii can shorten the water transport distance from the epidermis to the vascular cylinder, increase the area of the vascular cylinder and the number of vessels, and establish a complementary relationship between the functional adaptation of root anatomical structure in different habitats and the variation degree of root anatomical structure in the same habitat to adapt to habitat drought. This study provides a scientific basis for understanding the response of plateau wetland plants to habitat changes and their ecological adaptation strategies. More scientific experimental methods should be adopted to further study the mutual coordination mechanisms of different anatomical structures during root adaptation to habitat drought for hygrophytic plants.
Collapse
Affiliation(s)
- Jia-Ying Yang
- Key Laboratory of National Forestry and Grassland Administration On Biodiversity Conservation in Southwest China, Southwest Forestry University, Bailongsi 300#, Kunming, Yunnan, 650224, China
| | - Hong-Bin Wang
- Key Laboratory of National Forestry and Grassland Administration On Biodiversity Conservation in Southwest China, Southwest Forestry University, Bailongsi 300#, Kunming, Yunnan, 650224, China
| | - Da-Cai Zhang
- Key Laboratory of National Forestry and Grassland Administration On Biodiversity Conservation in Southwest China, Southwest Forestry University, Bailongsi 300#, Kunming, Yunnan, 650224, China.
| |
Collapse
|
13
|
Zhang X, Gao H, Liu Y, Zhao H, Lü S. Function identification of Arabidopsis GPAT4 and GPAT8 in the biosynthesis of suberin and cuticular wax. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 339:111933. [PMID: 38036221 DOI: 10.1016/j.plantsci.2023.111933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/21/2023] [Accepted: 11/25/2023] [Indexed: 12/02/2023]
Abstract
Surface lipids in plants include cutin, cuticular wax and suberin. sn-Glycerol-3-phosphate acyltransferases (GPATs) facilitate the acylation of sn-glycerol-3-phosphate (G3P) utilizing a fatty acyl group from acyl-coenzyme A (acyl-CoA) or acyl-acyl carrier protein (acyl-ACP) as substrates for the biosynthesis of plant extracellular lipids such as suberin and cutin. Here we found that Arabidopsis GPAT4 and GPAT8 are specifically expressed in endodermis cells of roots where suberin was accumulated. GPAT4 mutation significantly decreased the amounts of the C16 and C18 ω-oxidized suberin monomers, whereas the mutation of GPAT8 had little effect on the suberin production, and the functions of both were not redundant. Root suberin phenotype analysis of gpat4-1 and gpat6-1 single or double mutant revealed that GPAT4 and GPAT6 play redundant functions. Interestingly, the gpat4-1 gpat8-1 double mutant displayed a glossy stem phenotype since fewer wax crystals were accumulated. This phenotype was not shown in either parent. Further study showed that the amounts of most wax components were significantly decreased. Taken together, our findings revealed that GPAT4 has an additive effect with GPAT6 in the root suberin biosynthesis, and plays a redundant role in wax production with GPAT8.
Collapse
Affiliation(s)
- Xuanhao Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Huani Gao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Yi Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Huayan Zhao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China.
| | - Shiyou Lü
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China; Hubei Hongshan Laboratory, Wuhan 430070, China.
| |
Collapse
|
14
|
Cantó-Pastor A, Kajala K, Shaar-Moshe L, Manzano C, Timilsena P, De Bellis D, Gray S, Holbein J, Yang H, Mohammad S, Nirmal N, Suresh K, Ursache R, Mason GA, Gouran M, West DA, Borowsky AT, Shackel KA, Sinha N, Bailey-Serres J, Geldner N, Li S, Franke RB, Brady SM. A suberized exodermis is required for tomato drought tolerance. NATURE PLANTS 2024; 10:118-130. [PMID: 38168610 PMCID: PMC10808073 DOI: 10.1038/s41477-023-01567-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 10/23/2023] [Indexed: 01/05/2024]
Abstract
Plant roots integrate environmental signals with development using exquisite spatiotemporal control. This is apparent in the deposition of suberin, an apoplastic diffusion barrier, which regulates flow of water, solutes and gases, and is environmentally plastic. Suberin is considered a hallmark of endodermal differentiation but is absent in the tomato endodermis. Instead, suberin is present in the exodermis, a cell type that is absent in the model organism Arabidopsis thaliana. Here we demonstrate that the suberin regulatory network has the same parts driving suberin production in the tomato exodermis and the Arabidopsis endodermis. Despite this co-option of network components, the network has undergone rewiring to drive distinct spatial expression and with distinct contributions of specific genes. Functional genetic analyses of the tomato MYB92 transcription factor and ASFT enzyme demonstrate the importance of exodermal suberin for a plant water-deficit response and that the exodermal barrier serves an equivalent function to that of the endodermis and can act in its place.
Collapse
Affiliation(s)
- Alex Cantó-Pastor
- Department of Plant Biology and Genome Center, University of California, Davis, Davis, CA, USA
| | - Kaisa Kajala
- Department of Plant Biology and Genome Center, University of California, Davis, Davis, CA, USA
- Plant-Environment Signaling, Institute of Environmental Biology, Utrecht University, Utrecht, the Netherlands
| | - Lidor Shaar-Moshe
- Department of Plant Biology and Genome Center, University of California, Davis, Davis, CA, USA
- Department of Evolutionary and Environmental Biology, Faculty of Natural Sciences, Institute of Evolution, University of Haifa, Haifa, Israel
| | - Concepción Manzano
- Department of Plant Biology and Genome Center, University of California, Davis, Davis, CA, USA
| | - Prakash Timilsena
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Damien De Bellis
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
- Electron Microscopy Facility, University of Lausanne, Lausanne, Switzerland
| | - Sharon Gray
- Department of Plant Biology and Genome Center, University of California, Davis, Davis, CA, USA
| | - Julia Holbein
- Institute of Cellular and Molecular Botany, Rheinische Friedrich-Wilhelms-University of Bonn, Bonn, Germany
| | - He Yang
- Department of Plant Biology and Genome Center, University of California, Davis, Davis, CA, USA
| | - Sana Mohammad
- Department of Plant Biology and Genome Center, University of California, Davis, Davis, CA, USA
| | - Niba Nirmal
- Department of Plant Biology and Genome Center, University of California, Davis, Davis, CA, USA
| | - Kiran Suresh
- Institute of Cellular and Molecular Botany, Rheinische Friedrich-Wilhelms-University of Bonn, Bonn, Germany
| | - Robertas Ursache
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
| | - G Alex Mason
- Department of Plant Biology and Genome Center, University of California, Davis, Davis, CA, USA
| | - Mona Gouran
- Department of Plant Biology and Genome Center, University of California, Davis, Davis, CA, USA
| | - Donnelly A West
- Department of Plant Biology, University of California, Davis, Davis, CA, USA
| | - Alexander T Borowsky
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, USA
| | - Kenneth A Shackel
- Department of Plant Sciences, University of California, Davis, Davis, CA, USA
| | - Neelima Sinha
- Department of Plant Biology, University of California, Davis, Davis, CA, USA
| | - Julia Bailey-Serres
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, USA
| | - Niko Geldner
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
| | - Song Li
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Rochus Benni Franke
- Institute of Cellular and Molecular Botany, Rheinische Friedrich-Wilhelms-University of Bonn, Bonn, Germany
| | - Siobhan M Brady
- Department of Plant Biology and Genome Center, University of California, Davis, Davis, CA, USA.
| |
Collapse
|
15
|
Uemura Y, Kimura S, Ohta T, Suzuki T, Mase K, Kato H, Sakaoka S, Uefune M, Komine Y, Hotta K, Shimizu M, Morikami A, Tsukagoshi H. A very long chain fatty acid responsive transcription factor, MYB93, regulates lateral root development in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 115:1408-1427. [PMID: 37247130 DOI: 10.1111/tpj.16330] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 05/12/2023] [Accepted: 05/23/2023] [Indexed: 05/30/2023]
Abstract
Lateral roots (LRs) are critical to root system architecture development in plants. Although the molecular mechanisms by which auxin regulates LR development have been extensively studied, several additional regulatory systems are hypothesized to be involved. Recently, the regulatory role of very long chain fatty acids (VLCFAs) has been shown in LR development. Our analysis showed that LTPG1 and LTPG2, transporters of VLCFAs, are specifically expressed in the developing LR primordium (LRP), while the number of LRs is reduced in the ltpg1/ltpg2 double mutant. Moreover, late LRP development was hindered when the VLCFA levels were reduced by the VLCFA synthesis enzyme mutant, kcs1-5. However, the details of the regulatory mechanisms of LR development controlled by VLCFAs remain unknown. In this study, we propose a novel method to analyze the LRP development stages with high temporal resolution using a deep neural network and identify a VLCFA-responsive transcription factor, MYB93, via transcriptome analysis of kcs1-5. MYB93 showed a carbon chain length-specific expression response following treatment of VLCFAs. Furthermore, myb93 transcriptome analysis suggested that MYB93 regulated the expression of cell wall organization genes. In addition, we also found that LTPG1 and LTPG2 are involved in LR development through the formation of root cap cuticle, which is different from transcriptional regulation by VLCFAs. Our results suggest that VLCFA is a regulator of LRP development through transcription factor-mediated regulation of gene expression and the transportation of VLCFAs is also involved in LR development through root cap cuticle formation.
Collapse
Affiliation(s)
- Yuta Uemura
- Faculty of Agriculture, Meijo University, 1-501 Shiogamaguchi, Tempaku-ku, Nagoya, Aichi, 468-8502, Japan
| | - Saori Kimura
- Faculty of Agriculture, Meijo University, 1-501 Shiogamaguchi, Tempaku-ku, Nagoya, Aichi, 468-8502, Japan
| | - Tomomichi Ohta
- Faculty of Agriculture, Meijo University, 1-501 Shiogamaguchi, Tempaku-ku, Nagoya, Aichi, 468-8502, Japan
| | - Takamasa Suzuki
- Department of Biological Chemistry, College of Bioscience and Biotechnology, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi, 478-8501, Japan
| | - Kosuke Mase
- Faculty of Agriculture, Meijo University, 1-501 Shiogamaguchi, Tempaku-ku, Nagoya, Aichi, 468-8502, Japan
| | - Hiroyuki Kato
- Faculty of Agriculture, Meijo University, 1-501 Shiogamaguchi, Tempaku-ku, Nagoya, Aichi, 468-8502, Japan
| | - Satomi Sakaoka
- Faculty of Agriculture, Meijo University, 1-501 Shiogamaguchi, Tempaku-ku, Nagoya, Aichi, 468-8502, Japan
| | - Masayoshi Uefune
- Faculty of Agriculture, Meijo University, 1-501 Shiogamaguchi, Tempaku-ku, Nagoya, Aichi, 468-8502, Japan
| | - Yuki Komine
- Faculty of Agriculture, Meijo University, 1-501 Shiogamaguchi, Tempaku-ku, Nagoya, Aichi, 468-8502, Japan
| | - Kazuhiro Hotta
- Department of Electrical and Electronic Engineering, Faculty of Science and Technology, Meijo University, 1-501 Shiogamaguchi, Tempaku-ku, Nagoya, Aichi, 468-8502, Japan
| | - Motoyuki Shimizu
- Faculty of Agriculture, Meijo University, 1-501 Shiogamaguchi, Tempaku-ku, Nagoya, Aichi, 468-8502, Japan
| | - Atsushi Morikami
- Faculty of Agriculture, Meijo University, 1-501 Shiogamaguchi, Tempaku-ku, Nagoya, Aichi, 468-8502, Japan
| | - Hironaka Tsukagoshi
- Faculty of Agriculture, Meijo University, 1-501 Shiogamaguchi, Tempaku-ku, Nagoya, Aichi, 468-8502, Japan
| |
Collapse
|
16
|
Liu L, Geng P, Jin X, Wei X, Xue J, Wei X, Zhang L, Liu M, Zhang L, Zong W, Mao L. Wounding induces suberin deposition, relevant gene expressions and changes of endogenous phytohormones in Chinese yam ( Dioscorea opposita) tubers. FUNCTIONAL PLANT BIOLOGY : FPB 2023; 50:691-700. [PMID: 37437564 DOI: 10.1071/fp22280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 06/19/2023] [Indexed: 07/14/2023]
Abstract
Wounds on Chinese yam (Dioscorea opposita ) tubers can ocurr during harvest and handling, and rapid suberisation of the wound is required to prevent pathogenic infection and desiccation. However, little is known about the causal relationship among suberin deposition, relevant gene expressions and endogenous phytohormones levels in response to wounding. In this study, the effect of wounding on phytohormones levels and the expression profiles of specific genes involved in wound-induced suberisation were determined. Wounding rapidly increased the expression levels of genes, including PAL , C4H , 4CL , POD , KCSs , FARs , CYP86A1 , CYP86B1 , GPATs , ABCGs and GELPs , which likely involved in the biosynthesis, transport and polymerisation of suberin monomers, ultimately leading to suberin deposition. Wounding induced phenolics biosynthesis and being polymerised into suberin poly(phenolics) (SPP) in advance of suberin poly(aliphatics) (SPA) accumulation. Specifically, rapid expression of genes (e.g. PAL , C4H , 4CL , POD ) associated with the biosynthesis and polymerisation of phenolics, in consistent with SPP accumulation 3days after wounding, followed by the massive accumulation of SPA and relevant gene expressions (e.g. KCSs , FARs , CYP86A1 /B1 , GPATs , ABCGs , GELPs ). Additionally, wound-induced abscisic acid (ABA) and jasmonic acid (JA) consistently correlated with suberin deposition and relevant gene expressions indicating that they might play a central role in regulating wound suberisation in yam tubers.
Collapse
Affiliation(s)
- Linyao Liu
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, Henan 450002, China
| | - Ping Geng
- College of Energy and Power Engineering, Zhengzhou University of Light Industry, Zhengzhou, Henan 450002, China
| | - Xueyuan Jin
- College of Clinical Medicine, Hainan Vocational University of Science and Technology, Haikou, Hainan 571126, China
| | - Xiaopeng Wei
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, Henan 450002, China
| | - Jing Xue
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, Henan 450002, China
| | - Xiaobo Wei
- School of Food and Wine, Ningxia University, Ningxia Key Laboratory for Food Microbial-Applications Technology and Safety Control, Yinchuan, 750021, China
| | - Lihua Zhang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, Henan 450002, China
| | - Mengpei Liu
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, Henan 450002, China
| | - Liang Zhang
- Wencheng Institution of Modern Agriculture and Healthcare Industry, Wenzhou 325300, China
| | - Wei Zong
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, Henan 450002, China
| | - Linchun Mao
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory of Agro-Food Processing, Zhejiang R&D Center of Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
17
|
Kashyap A, Jiménez-Jiménez Á, Figueras M, Serra O, Valls M, Coll NS. The Tomato Feruloyl Transferase FHT Promoter Is an Accurate Identifier of Early Development and Stress-Induced Suberization. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091890. [PMID: 37176949 PMCID: PMC10181283 DOI: 10.3390/plants12091890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/01/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023]
Abstract
As a wall polymer, suberin has a multifaceted role in plant development and stress responses. It is deposited between the plasma membrane and the primary cell wall in specialized tissues such as root exodermis, endodermis, phellem, and seed coats. It is formed de novo in response to stresses such as wounding, salt injury, drought, and pathogen attack and is a complex polyester mainly consisting of fatty acids, glycerol, and minor amounts of ferulic acid that are associated to a lignin-like polymer predominantly composed of ferulates. Metabolomic and transcriptomic studies have revealed that cell wall lignification precedes suberin deposition. The ferulic acid esterified to ω-hydroxy fatty acids, synthetized by the feruloyl transferase FHT (or ASFT), presumably plays a role in coupling both polymers, although the precise mechanism is not understood. Here, we use the promoter of tomato suberin feruloyl transferase (FHT/ASFT) fused to GUS (β-glucuronidase) to demonstrate that ferulate deposition agrees with the site of promoter FHT activation by using a combination of histochemical staining and UV microscopy. Hence, FHT promoter activation and alkali UV microscopy can be used to identify the precise localization of early suberizing cells rich in ferulic acid and can additionally be used as an efficient marker of early suberization events during plant development and stress responses. This line can be used in the future as a tool to identify emerging suberization sites via ferulate deposition in tomato plants, which may contribute to germplasm screening in varietal improvement programs.
Collapse
Affiliation(s)
- Anurag Kashyap
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, 08193 Bellaterra, Spain
| | - Álvaro Jiménez-Jiménez
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, 08193 Bellaterra, Spain
| | - Mercè Figueras
- Laboratori del Suro, Biology Department, University of Girona, Campus Montilivi, 17003 Girona, Spain
| | - Olga Serra
- Laboratori del Suro, Biology Department, University of Girona, Campus Montilivi, 17003 Girona, Spain
| | - Marc Valls
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, 08193 Bellaterra, Spain
- Department of Genetics, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Nuria S Coll
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, 08193 Bellaterra, Spain
- Consejo Superior de Investigaciones Científicas (CSIC), 08001 Barcelona, Spain
| |
Collapse
|
18
|
Marinov O, Nomberg G, Sarkar S, Arya GC, Karavani E, Zelinger E, Manasherova E, Cohen H. Microscopic and metabolic investigations disclose the factors that lead to skin cracking in chili-type pepper fruit varieties. HORTICULTURE RESEARCH 2023; 10:uhad036. [PMID: 37799628 PMCID: PMC10548408 DOI: 10.1093/hr/uhad036] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 02/20/2023] [Indexed: 10/07/2023]
Abstract
The hydrophobic cuticle encasing the fruit skin surface plays critical roles during fruit development and post-harvest. Skin failure often results in the fruit surface cracking and forming a wound-periderm tissue made of suberin and lignin. The factors that make the fruit skin susceptible to cracking have yet to be fully understood. Herein, we investigated two varieties of chili peppers (Capsicum annuum L.), Numex Garnet, whose fruit has intact skin, and Vezena Slatka, whose fruit has cracked skin. Microscopical observations, gas chromatography-mass spectrometry, biochemical and gene expression assays revealed that Vezena Slatka fruit form a thicker cuticle with greater levels of cutin monomers and hydroxycinnamic acids, and highly express key cutin-related genes. The skin of these fruit also had a lower epidermal cell density due to cells with very large perimeters, and highly express genes involved in epidermal cell differentiation. We demonstrate that skin cracking in the Vezena Slatka fruit is accompanied by a spatial accumulation of lignin-like polyphenolic compounds, without the formation of a typical wound-periderm tissues made of suberized cells. Lastly, we establish that skin cracking in chili-type pepper significantly affects fruit quality during post-harvest storage in a temperature-dependent manner. In conclusion, our data highlight cuticle thickness and epidermal cell density as two critical factors determining fruit skin susceptibility to cracking in chili-type pepper fruit.
Collapse
Affiliation(s)
- Ofir Marinov
- Department of Vegetable and Field Crops, Institute of Plant Sciences, Agricultural Research Organization (ARO), Volcani Institute, Rishon LeZion 7505101, Israel
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Gal Nomberg
- Department of Vegetable and Field Crops, Institute of Plant Sciences, Agricultural Research Organization (ARO), Volcani Institute, Rishon LeZion 7505101, Israel
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Sutanni Sarkar
- Department of Vegetable and Field Crops, Institute of Plant Sciences, Agricultural Research Organization (ARO), Volcani Institute, Rishon LeZion 7505101, Israel
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Gulab Chand Arya
- Department of Vegetable and Field Crops, Institute of Plant Sciences, Agricultural Research Organization (ARO), Volcani Institute, Rishon LeZion 7505101, Israel
| | - Eldad Karavani
- Department of Vegetable and Field Crops, Institute of Plant Sciences, Agricultural Research Organization (ARO), Volcani Institute, Rishon LeZion 7505101, Israel
| | - Einat Zelinger
- Center for Scientific Imaging (CSI), The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Ekaterina Manasherova
- Department of Vegetable and Field Crops, Institute of Plant Sciences, Agricultural Research Organization (ARO), Volcani Institute, Rishon LeZion 7505101, Israel
| | - Hagai Cohen
- Department of Vegetable and Field Crops, Institute of Plant Sciences, Agricultural Research Organization (ARO), Volcani Institute, Rishon LeZion 7505101, Israel
| |
Collapse
|
19
|
Wang N, Wang X, Yan T, Xie H, Wang L, Ren F, Chen D, Zhang D, Zeng Q, Zhu S, Chen X. Label-free structural and functional volumetric imaging by dual-modality optical-Raman projection tomography. SCIENCE ADVANCES 2023; 9:eadf3504. [PMID: 36961894 PMCID: PMC10038343 DOI: 10.1126/sciadv.adf3504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Mesoscale volumetric imaging is of great importance for the study of bio-organisms. Among others, optical projection tomography provides unprecedented structural details of specimens, but it requires fluorescence label for chemical targeting. Raman spectroscopic imaging is able to identify chemical components in a label-free manner but lacks microstructure. Here, we present a dual-modality optical-Raman projection tomography (ORPT) technology, which enables label-free three-dimensional imaging of microstructures and components of millimeter-sized samples with a micron-level spatial resolution on the same device. We validate the feasibility of our ORPT system using images of polystyrene beads in a volume, followed by detecting biomolecules of zebrafish and Arabidopsis, demonstrating that fused three-dimensional images of the microstructure and molecular components of bio-samples could be achieved. Last, we observe the fat body of Drosophila melanogaster at different developmental stages. Our proposed technology enables bimodal label-free volumetric imaging of the structure and function of biomolecules in a large sample.
Collapse
Affiliation(s)
- Nan Wang
- Biomedical Photonics and Molecular Imaging Laboratory, School of Life Science and Technology, Xidian University, and Xi’an Key Laboratory of Intelligent Sensing and Regulation of Trans-Scale Life Information, Xi’an, Shaanxi 710126, China
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi’an, Shaanxi 710126, China
| | - Xinyu Wang
- Biomedical Photonics and Molecular Imaging Laboratory, School of Life Science and Technology, Xidian University, and Xi’an Key Laboratory of Intelligent Sensing and Regulation of Trans-Scale Life Information, Xi’an, Shaanxi 710126, China
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi’an, Shaanxi 710126, China
| | - Tianyu Yan
- Biomedical Photonics and Molecular Imaging Laboratory, School of Life Science and Technology, Xidian University, and Xi’an Key Laboratory of Intelligent Sensing and Regulation of Trans-Scale Life Information, Xi’an, Shaanxi 710126, China
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi’an, Shaanxi 710126, China
| | - Hui Xie
- Biomedical Photonics and Molecular Imaging Laboratory, School of Life Science and Technology, Xidian University, and Xi’an Key Laboratory of Intelligent Sensing and Regulation of Trans-Scale Life Information, Xi’an, Shaanxi 710126, China
| | - Lin Wang
- School of Computer Science and Engineering, Xi’an University of Technology, Xi’an, Shaanxi 710048, China
| | - Feng Ren
- Biomedical Photonics and Molecular Imaging Laboratory, School of Life Science and Technology, Xidian University, and Xi’an Key Laboratory of Intelligent Sensing and Regulation of Trans-Scale Life Information, Xi’an, Shaanxi 710126, China
| | - Dan Chen
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi’an, Shaanxi 710126, China
| | - Dongjie Zhang
- Biomedical Photonics and Molecular Imaging Laboratory, School of Life Science and Technology, Xidian University, and Xi’an Key Laboratory of Intelligent Sensing and Regulation of Trans-Scale Life Information, Xi’an, Shaanxi 710126, China
| | - Qi Zeng
- Biomedical Photonics and Molecular Imaging Laboratory, School of Life Science and Technology, Xidian University, and Xi’an Key Laboratory of Intelligent Sensing and Regulation of Trans-Scale Life Information, Xi’an, Shaanxi 710126, China
| | - Shouping Zhu
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi’an, Shaanxi 710126, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment, School of Life Science and Technology, Xidian University, Xi’an, Shaanxi 710126, China
| | - Xueli Chen
- Biomedical Photonics and Molecular Imaging Laboratory, School of Life Science and Technology, Xidian University, and Xi’an Key Laboratory of Intelligent Sensing and Regulation of Trans-Scale Life Information, Xi’an, Shaanxi 710126, China
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi’an, Shaanxi 710126, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment, School of Life Science and Technology, Xidian University, Xi’an, Shaanxi 710126, China
- Innovation Center for Advanced Medical Imaging and Intelligent Medicine, Guangzhou Institute of Technology, Xidian University, Guangzhou, Guangdong 51055, China
| |
Collapse
|
20
|
Liu X, Li Y, Liu Q, Du H, Ma G, Shen F, Hu Q. Mechanism of electron beam irradiation on the lipid metabolism of paddy during high temperature storage. J Cereal Sci 2023. [DOI: 10.1016/j.jcs.2023.103668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
21
|
Chen A, Liu T, Wang Z, Chen X. Plant root suberin: A layer of defence against biotic and abiotic stresses. FRONTIERS IN PLANT SCIENCE 2022; 13:1056008. [PMID: 36507443 PMCID: PMC9732430 DOI: 10.3389/fpls.2022.1056008] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/11/2022] [Indexed: 05/27/2023]
Abstract
Plant roots have important functions, such as acquiring nutrients and water from the surrounding soil and transporting them upwards to the shoots. Simultaneously, they must be able to exclude potentially harmful substances and prevent the entry of pathogens into the roots. The endodermis surrounds the vascular tissues and forms hydrophobic diffusion barriers including Casparian strips and suberin lamella. Suberin in cell walls can be induced by a range of environmental factors and contribute to against biotic and abiotic threats. Tremendous progress has been made in biosynthesis of suberin and its function, little is known about the effect of its plasticity and distribution on stress tolerance. In field conditions, biotic and abiotic stress can exist at the same time, and little is known about the change of suberization under that condition. This paper update the progress of research related to suberin biosynthesis and its function, and also discuss the change of suberization in plant roots and its role on biotic and abiotic stresses tolerance.
Collapse
Affiliation(s)
- Anle Chen
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, and College of Resources and Environment, Southwest University, Chongqing, China
| | - Tong Liu
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, and College of Resources and Environment, Southwest University, Chongqing, China
| | - Zhou Wang
- College of Plant Protection, Southwest University, Chongqing, China
| | - Xinping Chen
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, and College of Resources and Environment, Southwest University, Chongqing, China
| |
Collapse
|
22
|
He J, Li C, Hu N, Zhu Y, He Z, Sun Y, Wang Z, Wang Y. ECERIFERUM1-6A is required for the synthesis of cuticular wax alkanes and promotes drought tolerance in wheat. PLANT PHYSIOLOGY 2022; 190:1640-1657. [PMID: 36000923 PMCID: PMC9614490 DOI: 10.1093/plphys/kiac394] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 08/03/2022] [Indexed: 05/27/2023]
Abstract
Cuticular waxes cover the aerial surfaces of land plants and protect them from various environmental stresses. Alkanes are major wax components and contribute to plant drought tolerance, but the biosynthesis and regulation of alkanes remain largely unknown in wheat (Triticum aestivum L.). Here, we identified and functionally characterized a key alkane biosynthesis gene ECERIFERUM1-6A (TaCER1-6A) from wheat. The clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 (Cas9)-mediated knockout mutation in TaCER1-6A greatly reduced the contents of C27, C29, C31, and C33 alkanes in wheat leaves, while TaCER1-6A overexpression significantly increased the contents of these alkanes in wheat leaves, suggesting that TaCER1-6A is specifically involved in the biosynthesis of C27, C29, C31, and C33 alkanes on wheat leaf surfaces. TaCER1-6A knockout lines exhibited increased cuticle permeability and reduced drought tolerance, whereas TaCER1-6A overexpression lines displayed reduced cuticle permeability and enhanced drought tolerance. TaCER1-6A was highly expressed in flag leaf blades and seedling leaf blades and could respond to abiotic stresses and abscisic acid. TaCER1-6A was located in the endoplasmic reticulum, which is the subcellular compartment responsible for wax biosynthesis. A total of three haplotypes (HapI/II/III) of TaCER1-6A were identified in 43 wheat accessions, and HapI was the dominant haplotype (95%) in these wheat varieties. Additionally, we identified two R2R3-MYB transcription factors TaMYB96-2D and TaMYB96-5D that bound directly to the conserved motif CAACCA in promoters of the cuticular wax biosynthesis genes TaCER1-6A, TaCER1-1A, and fatty acyl-CoA reductase4. Collectively, these results suggest that TaCER1-6A is required for C27, C29, C31, and C33 alkanes biosynthesis and improves drought tolerance in wheat.
Collapse
Affiliation(s)
- Jiajia He
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chongzhao Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ning Hu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yuyao Zhu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhaofeng He
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yulin Sun
- Department of Botany, The University of British Columbia, Vancouver, British Columbia, V6T 1Z4 Canada
| | - Zhonghua Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yong Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
23
|
Liu LL, Deng YQ, Dong XX, Wang CF, Yuan F, Han GL, Wang BS. ALDH2C4 regulates cuticle thickness and reduces water loss to promote drought tolerance. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 323:111405. [PMID: 35914575 DOI: 10.1016/j.plantsci.2022.111405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/13/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
In Arabidopsis thaliana, ALDH2C4 encodes coniferaldehyde dehydrogenase, which oxidizes coniferaldehyde to ferulic acid. Drought stress is one of the important abiotic stresses affecting plant growth. However, the role of ferulic acid in drought resistance is unknown. To investigate the contribution of ferulic acid to cuticle composition and drought resistance, we used two Arabidopsis aldh2c4 mutant lines. Compared with wild-type (WT) leaves, ferulic acid contents were significantly lower (by more than 50 %) in mutants. The mutants also had lower amounts of cutin and wax, primarily due to reductions in C18:2 dioic acid and alkanes, respectively. Furthermore, the leaves of the mutant plants exhibited greater rates of water loss and released chlorophyll faster than WT leaves when immersed in 80 % ethanol, indicating a defective cuticle barrier. The growth of aldh2c4 mutants was severely inhibited, and their leaves showed a higher degree of wilting relative to the WT plants under drought conditions. In aldh2c4 complementation lines, the growth inhibition of the mutant plants under drought stress was alleviated. Taken together, our results demonstrate that ferulic acid plays an important role in the composition and structural properties of the cuticle and that a ferulic acid deficiency in the cutin leads to reduced drought tolerance.
Collapse
Affiliation(s)
- Li-Li Liu
- Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan 250014, Shandong, People's Republic of China
| | - Yun-Quan Deng
- Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan 250014, Shandong, People's Republic of China
| | - Xin-Xiu Dong
- Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan 250014, Shandong, People's Republic of China
| | - Cheng-Feng Wang
- Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan 250014, Shandong, People's Republic of China
| | - Fang Yuan
- Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan 250014, Shandong, People's Republic of China
| | - Guo-Liang Han
- Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan 250014, Shandong, People's Republic of China
| | - Bao-Shan Wang
- Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan 250014, Shandong, People's Republic of China.
| |
Collapse
|
24
|
BrWAX3, Encoding a β-ketoacyl-CoA Synthase, Plays an Essential Role in Cuticular Wax Biosynthesis in Chinese Cabbage. Int J Mol Sci 2022; 23:ijms231810938. [PMID: 36142850 PMCID: PMC9501823 DOI: 10.3390/ijms231810938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022] Open
Abstract
In this study, we identified a novel glossy mutant from Chinese cabbage, named SD369, and all wax monomers longer than 26 carbons were significantly decreased. Inheritance analysis revealed that the glossy trait of SD369 was controlled by a single recessive locus, BrWAX3. We fine-mapped the BrWAX3 locus to an interval of 161.82 kb on chromosome A09. According to the annotated genome of Brassica rapa, Bra024749 (BrCER60.A09), encoding a β-ketoacyl-CoA synthase, was identified as the candidate gene. Expression analysis showed that BrCER60.A09 was significantly downregulated in all aerial organs of glossy plants. Subcellular localization indicated that the BrCER60.A09 protein functions in the endoplasmic reticulum. A 5567-bp insertion was identified in exon 1 of BrCER60.A09 in SD369, which lead to a premature stop codon, thus causing a loss of function of the BrCER60.A09 enzyme. Moreover, comparative transcriptome analysis revealed that the ‘cutin, suberine, and wax biosynthesis’ pathway was significantly enriched, and genes involved in this pathway were almost upregulated in glossy plants. Further, two functional markers, BrWAX3-InDel and BrWAX3-KASP1, were developed and validated. Overall, these results provide a new information for the cuticular wax biosynthesis and provide applicable markers for marker-assisted selection (MAS)-based breeding of Brassica rapa.
Collapse
|
25
|
Butassi E, Novello MA, Lara MV. Prunus persica apoplastic proteome analysis reveals candidate proteins involved in the resistance and defense against Taphrina deformans. JOURNAL OF PLANT PHYSIOLOGY 2022; 276:153780. [PMID: 35930825 DOI: 10.1016/j.jplph.2022.153780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 07/10/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
Taphrina deformans is the fungus responsible for the peach leaf curl disease. To gain insight into the molecular mechanisms involved in plant resistance and response to the fungus, apoplastic differentially abundant proteins (DAPs) in a resistant (DR) and/or in a susceptible genotype (FL) were identified after 12 and 96 h post inoculation (hpi) and compared to those at 0 hpi. The Prunus persica apoplastic proteome was assessed by LC-MS/MS analysis. Altogether 332 proteins were identified, and their molecular and biological functions were classified. In both genotypes, major changes occurred at 96 hpi when the fungus had achieved the filamentous form. However, at 96 hpi, DR exhibited a greater number of increased proteins than FL. DAPs were enriched in biotic stress response, with most of the proteins belonging to the pathogenesis related (PR)-type. PRs exhibited the greatest fold changes of induction in DR. While PRs acting on pathogen cell wall (PR2, PR3 and PR4) were increased in both susceptible and resistant genotypes, others were exclusively induced in DR, such as some isoforms of PR5, defensin and PR17. Proteins exclusively induced in DR upon T.deformans inoculation such as four berberine bridge enzymes, two snakins and a GDS-lipase were identified. Moreover, upon inoculation cuticle was thickened to a greater extent in DR than in FL. This work reveals the active role of the apoplast against T. deformans and not only contributes to the elucidation of responses involved in resistance to leaf curl disease but also improves the knowledge on peach defenses against pathogens.
Collapse
Affiliation(s)
- Estefanía Butassi
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)). Facultad de Ciencias Bioquímicas y Farmacéuticas (FCByF), Universidad Nacional de Rosario (UNR), Suipacha 531, 2000, Rosario, Argentina
| | - María Angelina Novello
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)). Facultad de Ciencias Bioquímicas y Farmacéuticas (FCByF), Universidad Nacional de Rosario (UNR), Suipacha 531, 2000, Rosario, Argentina
| | - María Valeria Lara
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)). Facultad de Ciencias Bioquímicas y Farmacéuticas (FCByF), Universidad Nacional de Rosario (UNR), Suipacha 531, 2000, Rosario, Argentina.
| |
Collapse
|
26
|
Fang S, Zhao P, Tan Z, Peng Y, Xu L, Jin Y, Wei F, Guo L, Yao X. Combining Physio-Biochemical Characterization and Transcriptome Analysis Reveal the Responses to Varying Degrees of Drought Stress in Brassica napus L. Int J Mol Sci 2022; 23:ijms23158555. [PMID: 35955689 PMCID: PMC9368929 DOI: 10.3390/ijms23158555] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/25/2022] [Accepted: 07/28/2022] [Indexed: 02/05/2023] Open
Abstract
Brassica napus L. has become one of the most important oil-bearing crops, and drought stress severely influences its yield and quality. By combining physio-biochemical characterization and transcriptome analysis, we studied the response of B. napus plants to different degrees of drought stress. Some physio-biochemical traits, such as fresh weight (FW), dry weight (DW), abscisic acid (ABA) content, net photosynthetic rate (Pn), stomatal conductance (gs), and transpiration rate (Tr), were measured, and the total content of the epidermal wax/cutin, as well as their compositions, was determined. The results suggest that both stomatal transpiration and cuticular transpiration are affected when B. napus plants are subjected to varying degrees of drought stress. A total of 795 up-regulated genes and 1050 down-regulated genes were identified under severe drought stress by transcriptome analysis. Gene ontology (GO) enrichment analysis of differentially expressed genes (DEGs) revealed that the up-regulated genes were mainly enriched in the stress response processes, such as response to water deprivation and abscisic acid, while the down-regulated genes were mainly enriched in the chloroplast-related parts affecting photosynthesis. Moreover, overexpression of BnaA01.CIPK6, an up-regulated DEG, was found to confer drought tolerance in B. napus. Our study lays a foundation for a better understanding of the molecular mechanisms underlying drought tolerance in B. napus.
Collapse
Affiliation(s)
- Shuai Fang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; (S.F.); (P.Z.); (Z.T.); (Y.P.); (L.X.); (Y.J.); (L.G.)
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Peimin Zhao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; (S.F.); (P.Z.); (Z.T.); (Y.P.); (L.X.); (Y.J.); (L.G.)
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Zengdong Tan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; (S.F.); (P.Z.); (Z.T.); (Y.P.); (L.X.); (Y.J.); (L.G.)
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Yan Peng
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; (S.F.); (P.Z.); (Z.T.); (Y.P.); (L.X.); (Y.J.); (L.G.)
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| | - Lintang Xu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; (S.F.); (P.Z.); (Z.T.); (Y.P.); (L.X.); (Y.J.); (L.G.)
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Yutong Jin
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; (S.F.); (P.Z.); (Z.T.); (Y.P.); (L.X.); (Y.J.); (L.G.)
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Fang Wei
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Oilseeds Processing of Ministry of Agriculture and Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan 430062, China;
| | - Liang Guo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; (S.F.); (P.Z.); (Z.T.); (Y.P.); (L.X.); (Y.J.); (L.G.)
- Hubei Hongshan Laboratory, Wuhan 430070, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China
| | - Xuan Yao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; (S.F.); (P.Z.); (Z.T.); (Y.P.); (L.X.); (Y.J.); (L.G.)
- Hubei Hongshan Laboratory, Wuhan 430070, China
- Correspondence:
| |
Collapse
|
27
|
Serra O, Geldner N. The making of suberin. THE NEW PHYTOLOGIST 2022; 235:848-866. [PMID: 35510799 PMCID: PMC9994434 DOI: 10.1111/nph.18202] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/15/2022] [Indexed: 05/27/2023]
Abstract
Outer protective barriers of animals use a variety of bio-polymers, based on either proteins (e.g. collagens), or modified sugars (e.g. chitin). Plants, however, have come up with a particular solution, based on the polymerisation of lipid-like precursors, giving rise to cutin and suberin. Suberin is a structural lipophilic polyester of fatty acids, glycerol and some aromatics found in cell walls of phellem, endodermis, exodermis, wound tissues, abscission zones, bundle sheath and other tissues. It deposits as a hydrophobic layer between the (ligno)cellulosic primary cell wall and plasma membrane. Suberin is highly protective against biotic and abiotic stresses, shows great developmental plasticity and its chemically recalcitrant nature might assist the sequestration of atmospheric carbon by plants. The aim of this review is to integrate the rapidly accelerating genetic and cell biological discoveries of recent years with the important chemical and structural contributions obtained from very diverse organisms and tissue layers. We critically discuss the order and localisation of the enzymatic machinery synthesising the presumed substrates for export and apoplastic polymerisation. We attempt to explain observed suberin linkages by diverse enzyme activities and discuss the spatiotemporal relationship of suberin with lignin and ferulates, necessary to produce a functional suberised cell wall.
Collapse
Affiliation(s)
- Olga Serra
- Laboratori del SuroDepartment of BiologyUniversity of GironaCampus MontiliviGirona17003Spain
| | - Niko Geldner
- Department of Plant Molecular BiologyUniversity of LausanneUNIL‐Sorge, Biophore BuildingLausanne1015Switzerland
| |
Collapse
|
28
|
Song J, Mavraganis I, Shen W, Yang H, Cram D, Xiang D, Patterson N, Zou J. Transcriptome dissection of candidate genes associated with lentil seed quality traits. PLANT BIOLOGY (STUTTGART, GERMANY) 2022; 24:815-826. [PMID: 35395134 DOI: 10.1111/plb.13426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/29/2022] [Indexed: 06/14/2023]
Abstract
Lentils provide a rich plant-based protein source and staple food in many parts of the world. Despite numerous nutritional benefits, lentil seeds also possess undesirable elements, such as anti-nutritional factors. Understanding the genetic networks of seed metabolism is of great importance for improving the seed nutritional profile. We applied RNA sequencing analysis to survey the transcriptome of developing lentil seeds and compared this with that of the pod shells and leaves. In total, we identified 2622 genes differentially expressed among the tissues examined. Genes preferentially expressed in seeds were enriched in the Gene Ontology (GO) terms associated with development, nitrogen and carbon (N/C) metabolism and lipid synthesis. We further categorized seed preferentially expressed genes based on their involvement in storage protein production, starch accumulation, lipid and suberin metabolism, phytate, saponin and phenylpropanoid biosynthesis. The availability of transcript profile datasets on lentil seed metabolism and a roadmap of candidate genes presented here will be of great value for breeding strategies towards further improvement of lentil seed quality traits.
Collapse
Affiliation(s)
- J Song
- Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, Saskatoon, Saskatchewan, Canada
| | - I Mavraganis
- Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, Saskatoon, Saskatchewan, Canada
| | - W Shen
- Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, Saskatoon, Saskatchewan, Canada
| | - H Yang
- Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, Saskatoon, Saskatchewan, Canada
| | - D Cram
- Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, Saskatoon, Saskatchewan, Canada
| | - D Xiang
- Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, Saskatoon, Saskatchewan, Canada
| | - N Patterson
- Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, Saskatoon, Saskatchewan, Canada
| | - J Zou
- Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
29
|
Wang Q, Liu Y, Wu X, Wang L, Li J, Wan M, Jia B, Ye Z, Liu L, Tang X, Tao S, Zhu L, Heng W. MYB1R1 and MYC2 Regulate ω-3 Fatty Acid Desaturase Involved in ABA-Mediated Suberization in the Russet Skin of a Mutant of 'Dangshansuli' ( Pyrus bretschneideri Rehd.). FRONTIERS IN PLANT SCIENCE 2022; 13:910938. [PMID: 35755695 PMCID: PMC9225576 DOI: 10.3389/fpls.2022.910938] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/09/2022] [Indexed: 05/26/2023]
Abstract
Russeting, a disorder of pear fruit skin, is mainly caused by suberin accumulation on the inner part of the outer epidermal cell layers. ABA was identified as a crucial phytohormone in suberification. Here, we demonstrated that the ABA content in russet pear skin was higher than in green skin. Then, ABA was applied to explore the changes in phenotype and suberin composition coupled with RNA-Seq and metabolomics to investigate the probably regulatory pathway of ABA-mediated suberification. The results showed that ABA treatment increased the expression of ω-3 fatty acid desaturase (FAD) and the content of α-linolenic acid. We identified 17 PbFADs in white pear, and the expression of PbFAD3a was induced by ABA. In addition, the role of PbFAD3a in promoting suberification has been demonstrated by overexpression in Arabidopsis and VIGS assays in the fruitlets. GUS staining indicated that the promoter of PbFAD3a was activated by ABA. Furthermore, MYC2 and MYB1R1 have been shown to bind to the PbFAD3a promoter directly and this was induced by ABA via yeast one-hybrid (Y1H) screening and qRT-PCR. In summary, our study found that ABA induces the expression of MYC2 and MYB1R1 and activates the PbFAD3a promoter, contributing to the formation of russet pear skin. Functional identification of key transcription factors will be the goal of future research. These findings reveal the molecular mechanism of ABA-mediated suberization in the russet skin and provide a good foundation for future studies on the formation of russet skin.
Collapse
Affiliation(s)
- Qi Wang
- College of Horticulture, Anhui Agricultural University, Hefei, China
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Yaping Liu
- College of Horticulture, Anhui Agricultural University, Hefei, China
| | - Xinyi Wu
- College of Horticulture, Anhui Agricultural University, Hefei, China
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Lindu Wang
- College of Horticulture, Anhui Agricultural University, Hefei, China
| | - Jinchao Li
- College of Horticulture, Anhui Agricultural University, Hefei, China
| | - Minchen Wan
- College of Horticulture, Anhui Agricultural University, Hefei, China
| | - Bin Jia
- College of Horticulture, Anhui Agricultural University, Hefei, China
| | - Zhenfeng Ye
- College of Horticulture, Anhui Agricultural University, Hefei, China
| | - Lun Liu
- College of Horticulture, Anhui Agricultural University, Hefei, China
| | - Xiaomei Tang
- College of Horticulture, Anhui Agricultural University, Hefei, China
| | - Shutian Tao
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Liwu Zhu
- College of Horticulture, Anhui Agricultural University, Hefei, China
| | - Wei Heng
- College of Horticulture, Anhui Agricultural University, Hefei, China
| |
Collapse
|
30
|
Hu H, Feng N, Shen X, Zhao L, Zheng D. Transcriptomic analysis of Vigna radiata in response to chilling stress and uniconazole application. BMC Genomics 2022; 23:205. [PMID: 35287570 PMCID: PMC8922894 DOI: 10.1186/s12864-022-08443-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 02/22/2022] [Indexed: 12/04/2022] Open
Abstract
Background Chilling injury of mung bean (Vigna radiata (L.)) during the blooming and podding stages is a major agricultural threat in Northeast China. Uniconazole (UNZ) can alleviate water deficit stress in soybean and waterlogging stress in mung bean. However, there has been no report on the effect of UNZ application on the growth and transcriptomic profile of mung bean under chilling stress. Results UNZ application before chilling stress at the R1 stage alleviated the decline in mung bean yield. UNZ delayed the decrease in leaf chlorophyll content under chilling stress at the R1 stage and accelerated the increase in leaf chlorophyll content during the recovery period. Eighteen separate RNA-Seq libraries were generated from RNA samples collected from leaves exposed to six different treatment schemes. The numbers of DEGs specific for UNZ treatment between D1 + S vs. D1 and D4 + S vs. D4 were 708 and 810, respectively. GO annotations showed that photosynthesis genes were obviously enriched among the genes affected by chilling stress and UNZ application. KEGG pathway enrichment analysis indicated that 4 pathways (cutin, suberin and wax biosynthesis; photosynthesis; porphyrin and chlorophyll metabolism; and ribosome) were downregulated, while plant–pathogen interaction was upregulated, by chilling stress. UNZ application effectively prevented the further downregulation of the gene expression of members of these 4 KEGG pathways under chilling stress. Conclusions UNZ application effectively delayed the decrease in photosynthetic pigment content under chilling stress and accelerated the increase in photosynthetic pigment content during the recovery period, thus effectively limiting the decline in mung bean yield. UNZ application effectively prevented the further downregulation of the gene expression of members of 4 KEGG pathways under chilling stress and increased mung bean tolerance to chilling stress. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08443-6.
Collapse
Affiliation(s)
- Hanqiao Hu
- Department of Biotechnology, College of Coastal Agricultural Sciences, Guangdong Ocean University, Guangdong, 524088, Zhanjiang, China.,Shenzhen Research Institute of Guangdong Ocean University, Shenzhen, 518108, China
| | - Naijie Feng
- Department of Biotechnology, College of Coastal Agricultural Sciences, Guangdong Ocean University, Guangdong, 524088, Zhanjiang, China.,Shenzhen Research Institute of Guangdong Ocean University, Shenzhen, 518108, China
| | - Xuefeng Shen
- Department of Biotechnology, College of Coastal Agricultural Sciences, Guangdong Ocean University, Guangdong, 524088, Zhanjiang, China.,Shenzhen Research Institute of Guangdong Ocean University, Shenzhen, 518108, China
| | - Liming Zhao
- Department of Biotechnology, College of Coastal Agricultural Sciences, Guangdong Ocean University, Guangdong, 524088, Zhanjiang, China.,Shenzhen Research Institute of Guangdong Ocean University, Shenzhen, 518108, China
| | - Dianfeng Zheng
- Department of Biotechnology, College of Coastal Agricultural Sciences, Guangdong Ocean University, Guangdong, 524088, Zhanjiang, China. .,Shenzhen Research Institute of Guangdong Ocean University, Shenzhen, 518108, China.
| |
Collapse
|
31
|
Liu YN, Liu CC, Zhu AQ, Niu KX, Guo R, Tian L, Wu YN, Sun B, Wang B. OsRAM2 Function in Lipid Biosynthesis Is Required for Arbuscular Mycorrhizal Symbiosis in Rice. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:187-199. [PMID: 34077267 DOI: 10.1094/mpmi-04-21-0097-r] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Arbuscular mycorrhiza (AM) is a mutualistic symbiosis formed between most land plants and Glomeromycotina fungi. During symbiosis, plants provide organic carbon to fungi in exchange for mineral nutrients. Previous legume studies showed that the required for arbuscular mycorrhization2 (RAM2) gene is necessary for transferring lipids from plants to AM fungi (AMF) and is also likely to play a "signaling" role at the root surface. To further explore RAM2 functions in other plant lineages, in this study, two rice (Oryza sativa) genes, OsRAM2 and OsRAM2L, were identified as orthologs of legume RAM2. Examining their expression patterns during symbiosis revealed that only OsRAM2 was strongly upregulated upon AMF inoculation. CRISPR/Cas9 mutagenesis was then performed to obtain three Osram2 mutant lines (-1, -2, and -3). After inoculation by AMF Rhizophagus irregularis or Funneliformis mosseae, all of the mutant lines showed extremely low colonization rates and the rarely observed arbuscules were all defective, thus supporting a conserved "nutritional" role of RAM2 between monocot and dicot lineages. As for the signaling role, although the hyphopodia numbers formed by both AMF on Osram2 mutants were indeed reduced, their morphology showed no abnormality, with fungal hyphae invading roots successfully. Promoter activities further indicated that OsRAM2 was not expressed in epidermal cells below hyphopodia or outer cortical cells enclosing fungal hyphae but instead expressed exclusively in cortical cells containing arbuscules. Therefore, this suggested an indirect role of RAM2 rather than a direct involvement in determining the symbiosis signals at the root surface.[Formula: see text] The author(s) have dedicated the work to the public domain under the Creative Commons CC0 "No Rights Reserved" license by waiving all of his or her rights to the work worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law, 2022.
Collapse
Affiliation(s)
- Ying-Na Liu
- School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Cheng-Chen Liu
- School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - An-Qi Zhu
- School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Ke-Xin Niu
- School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Rui Guo
- School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Li Tian
- School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Ya-Nan Wu
- School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Bo Sun
- School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Bin Wang
- School of Life Sciences, Nanjing University, Nanjing 210023, China
| |
Collapse
|
32
|
Woolfson KN, Esfandiari M, Bernards MA. Suberin Biosynthesis, Assembly, and Regulation. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11040555. [PMID: 35214889 PMCID: PMC8875741 DOI: 10.3390/plants11040555] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/13/2022] [Accepted: 02/16/2022] [Indexed: 05/03/2023]
Abstract
Suberin is a specialized cell wall modifying polymer comprising both phenolic-derived and fatty acid-derived monomers, which is deposited in below-ground dermal tissues (epidermis, endodermis, periderm) and above-ground periderm (i.e., bark). Suberized cells are largely impermeable to water and provide a critical protective layer preventing water loss and pathogen infection. The deposition of suberin is part of the skin maturation process of important tuber crops such as potato and can affect storage longevity. Historically, the term "suberin" has been used to describe a polyester of largely aliphatic monomers (fatty acids, ω-hydroxy fatty acids, α,ω-dioic acids, 1-alkanols), hydroxycinnamic acids, and glycerol. However, exhaustive alkaline hydrolysis, which removes esterified aliphatics and phenolics from suberized tissue, reveals a core poly(phenolic) macromolecule, the depolymerization of which yields phenolics not found in the aliphatic polyester. Time course analysis of suberin deposition, at both the transcriptional and metabolite levels, supports a temporal regulation of suberin deposition, with phenolics being polymerized into a poly(phenolic) domain in advance of the bulk of the poly(aliphatics) that characterize suberized cells. In the present review, we summarize the literature describing suberin monomer biosynthesis and speculate on aspects of suberin assembly. In addition, we highlight recent advances in our understanding of how suberization may be regulated, including at the phytohormone, transcription factor, and protein scaffold levels.
Collapse
|
33
|
Nomberg G, Marinov O, Arya GC, Manasherova E, Cohen H. The Key Enzymes in the Suberin Biosynthetic Pathway in Plants: An Update. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11030392. [PMID: 35161373 PMCID: PMC8839845 DOI: 10.3390/plants11030392] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 05/14/2023]
Abstract
Suberin is a natural biopolymer found in a variety of specialized tissues, including seed coat integuments, root endodermis, tree bark, potato tuber skin and the russeted and reticulated skin of fruits. The suberin polymer consists of polyaliphatic and polyphenolic domains. The former is made of very long chain fatty acids, primary alcohols and a glycerol backbone, while the latter consists of p-hydroxycinnamic acid derivatives, which originate from the core phenylpropanoid pathway. In the current review, we survey the current knowledge on genes/enzymes associated with the suberin biosynthetic pathway in plants, reflecting the outcomes of considerable research efforts in the last two decades. We discuss the function of these genes/enzymes with respect to suberin aromatic and aliphatic monomer biosynthesis, suberin monomer transport, and suberin pathway regulation. We also delineate the consequences of the altered expression/accumulation of these genes/enzymes in transgenic plants.
Collapse
Affiliation(s)
- Gal Nomberg
- Volcani Center, Department of Vegetable and Field Crops, Institute of Plant Sciences, Agricultural Research Organization (ARO), Rishon Lezion 7505101, Israel; (G.N.); (O.M.); (G.C.A.); (E.M.)
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Ofir Marinov
- Volcani Center, Department of Vegetable and Field Crops, Institute of Plant Sciences, Agricultural Research Organization (ARO), Rishon Lezion 7505101, Israel; (G.N.); (O.M.); (G.C.A.); (E.M.)
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Gulab Chand Arya
- Volcani Center, Department of Vegetable and Field Crops, Institute of Plant Sciences, Agricultural Research Organization (ARO), Rishon Lezion 7505101, Israel; (G.N.); (O.M.); (G.C.A.); (E.M.)
| | - Ekaterina Manasherova
- Volcani Center, Department of Vegetable and Field Crops, Institute of Plant Sciences, Agricultural Research Organization (ARO), Rishon Lezion 7505101, Israel; (G.N.); (O.M.); (G.C.A.); (E.M.)
| | - Hagai Cohen
- Volcani Center, Department of Vegetable and Field Crops, Institute of Plant Sciences, Agricultural Research Organization (ARO), Rishon Lezion 7505101, Israel; (G.N.); (O.M.); (G.C.A.); (E.M.)
- Correspondence:
| |
Collapse
|
34
|
Lu HC, Lam SH, Zhang D, Hsiao YY, Li BJ, Niu SC, Li CY, Lan S, Tsai WC, Liu ZJ. R2R3-MYB genes coordinate conical cell development and cuticular wax biosynthesis in Phalaenopsis aphrodite. PLANT PHYSIOLOGY 2022; 188:318-331. [PMID: 34618124 PMCID: PMC8774817 DOI: 10.1093/plphys/kiab422] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 08/03/2021] [Indexed: 06/02/2023]
Abstract
Petals of the monocot Phalaenopsis aphrodite (Orchidaceae) possess conical epidermal cells on their adaxial surfaces, and a large amount of cuticular wax is deposited on them to serve as a primary barrier against biotic and abiotic stresses. It has been widely reported that subgroup 9A members of the R2R3-MYB gene family, MIXTA and MIXTA-like in eudicots, act to regulate the differentiation of conical epidermal cells. However, the molecular pathways underlying conical epidermal cell development and cuticular wax biosynthesis in monocot petals remain unclear. Here, we characterized two subgroup 9A R2R3-MYB genes, PaMYB9A1 and PaMYB9A2 (PaMYB9A1/2), from P. aphrodite through the transient overexpression of their coding sequences and corresponding chimeric repressors in developing petals. We showed that PaMYB9A1/2 function to coordinate conical epidermal cell development and cuticular wax biosynthesis. In addition, we identified putative targets of PaMYB9A1/2 through comparative transcriptome analyses, revealing that PaMYB9A1/2 acts to regulate the expression of cell wall-associated and wax biosynthetic genes. Furthermore, a chemical composition analysis of cuticular wax showed that even-chain n-alkanes and odd-chain primary alcohols are the main chemical constituents of cuticular wax deposited on petals, which is inconsistent with the well-known biosynthetic pathways of cuticular wax, implying a distinct biosynthetic pathway occurring in P. aphrodite flowers. These results reveal that the function of subgroup 9A R2R3-MYB family genes in regulating the differentiation of epidermal cells is largely conserved in monocots and dicots. Furthermore, both PaMYB9A1/2 have evolved additional functions controlling the biosynthesis of cuticular wax.
Collapse
Affiliation(s)
- Hsiang-Chia Lu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Institute of Tropical Plant Sciences and Microbiology, National Cheng Kung University, Tainan 701, Taiwan
| | - Sio-Hong Lam
- School of Pharmacy, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Diyang Zhang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yu-Yun Hsiao
- Orchid Research and Development Center, National Cheng Kung University, Tainan 701, Taiwan
| | - Bai-Jun Li
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Shan-Ce Niu
- College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| | - Chia-Ying Li
- Department of Applied Chemistry, National Pingtung University, Pingtung City, Pingtung 900003, Taiwan
| | - Siren Lan
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wen-Chieh Tsai
- Institute of Tropical Plant Sciences and Microbiology, National Cheng Kung University, Tainan 701, Taiwan
- Orchid Research and Development Center, National Cheng Kung University, Tainan 701, Taiwan
| | - Zhong-Jian Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Institute of Vegetable and Flowers, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou 325005, China
| |
Collapse
|
35
|
Zhang D, Zhao L, Wang W, Wang Q, Liu J, Wang Y, Liu H, Shang B, Duan X, Sun H. Lipidomics reveals the changes in non-starch and starch lipids of rice (Oryza sativa L.) during storage. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2021.104205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
36
|
Pollard M, Shachar-Hill Y. Kinetic complexities of triacylglycerol accumulation in developing embryos from Camelina sativa provide evidence for multiple biosynthetic systems. J Biol Chem 2022; 298:101396. [PMID: 34774796 PMCID: PMC8715117 DOI: 10.1016/j.jbc.2021.101396] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/28/2021] [Accepted: 11/05/2021] [Indexed: 11/19/2022] Open
Abstract
Quantitative flux maps describing glycerolipid synthesis can be important tools for rational engineering of lipid content and composition in oilseeds. Lipid accumulation in cultured embryos of Camelina sativa is known to mimic that of seeds in terms of rate of lipid synthesis and composition. To assess the kinetic complexity of the glycerolipid flux network, cultured embryos were incubated with [14C/13C]glycerol, and initial and steady state rates of [14C/13Cglyceryl] lipid accumulation were measured. At steady state, the linear accumulations of labeled lipid classes matched those expected from mass compositions. The system showed an apparently simple kinetic precursor-product relationship between the intermediate pool, dominated by diacylglycerol (DAG) and phosphatidylcholine (PC), and the triacylglycerol (TAG) product. We also conducted isotopomer analyses on hydrogenated lipid class species. [13C3glyceryl] labeling of DAG and PC, together with estimates of endogenous [12C3glyceryl] dilution, showed that each biosynthetically active lipid pool is ∼30% of the total by moles. This validates the concept that lipid sub-pools can describe lipid biosynthetic networks. By tracking the kinetics of [13C3glyceryl] and [13C2acyl] labeling, we observed two distinct TAG synthesis components. The major TAG synthesis flux (∼75%) was associated with >95% of the DAG/PC intermediate pool, with little glycerol being metabolized to fatty acids, and with little dilution from endogenous glycerol; a smaller flux exhibited converse characteristics. This kinetic heterogeneity was further explored using postlabeling embryo dissection and differential lipid extractions. The minor flux was tentatively localized to surface cells across the whole embryo. Such heterogeneity must be recognized in order to construct accurate gene expression patterns and metabolic networks describing lipid biosynthesis in developing embryos.
Collapse
Affiliation(s)
- Mike Pollard
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, USA
| | - Yair Shachar-Hill
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, USA.
| |
Collapse
|
37
|
Arya GC, Dong Y, Heinig U, Shahaf N, Kazachkova Y, Aviv-Sharon E, Nomberg G, Marinov O, Manasherova E, Aharoni A, Cohen H. The metabolic and proteomic repertoires of periderm tissue in skin of the reticulated Sikkim cucumber fruit. HORTICULTURE RESEARCH 2022; 9:uhac092. [PMID: 35669701 PMCID: PMC9160728 DOI: 10.1093/hr/uhac092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/05/2022] [Indexed: 05/14/2023]
Abstract
Suberized and/or lignified (i.e. lignosuberized) periderm tissue appears often on surface of fleshy fruit skin by mechanical damage caused following environmental cues or developmental programs. The mechanisms underlying lignosuberization remain largely unknown to date. Here, we combined an assortment of microscopical techniques with an integrative multi-omics approach comprising proteomics, metabolomics and lipidomics to identify novel molecular components involved in fruit skin lignosuberization. We chose to investigate the corky Sikkim cucumber (Cucumis sativus var. sikkimensis) fruit. During development, the skin of this unique species undergoes massive cracking and is coated with a thick corky layer, making it an excellent model system for revealing fundamental cellular machineries involved in fruit skin lignosuberization. The large-scale data generated provides a significant source for the field of skin periderm tissue formation in fleshy fruit and suberin metabolism.
Collapse
Affiliation(s)
- Gulab Chand Arya
- Department of Vegetable and Field Crops, Institute of Plant Sciences, Agricultural Research Organization (ARO), Volcani Center, Rishon Lezion 7505101, Israel
| | - Yonghui Dong
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Uwe Heinig
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Nir Shahaf
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Yana Kazachkova
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Elinor Aviv-Sharon
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Gal Nomberg
- Department of Vegetable and Field Crops, Institute of Plant Sciences, Agricultural Research Organization (ARO), Volcani Center, Rishon Lezion 7505101, Israel
- Department of Plant Pathology and Microbiology, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Ofir Marinov
- Department of Vegetable and Field Crops, Institute of Plant Sciences, Agricultural Research Organization (ARO), Volcani Center, Rishon Lezion 7505101, Israel
- Department of Plant Pathology and Microbiology, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Ekaterina Manasherova
- Department of Vegetable and Field Crops, Institute of Plant Sciences, Agricultural Research Organization (ARO), Volcani Center, Rishon Lezion 7505101, Israel
| | - Asaph Aharoni
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Hagai Cohen
- Department of Vegetable and Field Crops, Institute of Plant Sciences, Agricultural Research Organization (ARO), Volcani Center, Rishon Lezion 7505101, Israel
- Corresponding author. E-mail:
| |
Collapse
|
38
|
Han F, Huang J, Xie Q, Liu Y, Fang Z, Yang L, Zhuang M, Zhang Y, Lv H, Wang Y, Ji J, Li Z. Genetic mapping and candidate gene identification of BoGL5, a gene essential for cuticular wax biosynthesis in broccoli. BMC Genomics 2021; 22:811. [PMID: 34758753 PMCID: PMC8582161 DOI: 10.1186/s12864-021-08143-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 11/01/2021] [Indexed: 12/02/2022] Open
Abstract
Background The aerial organs of most terrestrial plants are covered by cuticular waxes, which impart plants a glaucous appearance and play important roles in protecting against various biotic and abiotic stresses. Despite many glossy green (wax-defective) mutants being well characterized in model plants, little is known about the genetic basis of glossy green mutant in broccoli. Results B156 is a spontaneous broccoli mutant showing a glossy green phenotype. Detection by scanning electron microscopy (SEM) and chromatography-mass spectrometry (GC-MS) revealed that B156 is a cuticular wax-defective mutant, lacking waxes mostly longer than C28. Inheritance analysis revealed that this trait was controlled by a single recessive gene, BoGL5. Whole-genome InDel markers were developed, and a segregating F2 population was constructed to map BoGL5. Ultimately, BoGL5 was mapped to a 94.1 kb interval on C01. The BoCER2 gene, which is homologous to the Arabidopsis CER2 gene, was identified as a candidate of BoGL5 from the target interval. Sequence analyses revealed that Bocer2 in B156 harbored a G-to-T SNP mutation at the 485th nucleotide of the CDS, resulting in a W-to-L transition at the 162nd amino acid, a conserved site adjacent to an HXXXD motif of the deduced protein sequence. Expression analysis revealed that BoCER2 was significantly down-regulated in the leaves, stems, and siliques of B156 mutant than that of B3. Last, ectopic expression of BoCER2 in A. thaliana could, whereas Bocer2 could not, rescue the phenotype of cer2 mutant. Conclusions Overall, this study mapped the locus determining glossy phenotype of B156 and proved BoCER2 is functional gene involved in cuticular wax biosynthesis which would promotes the utilization of BoCER2 to enhance plant resistance to biotic and abiotic stresses, and breeding of B. oleracea cultivars with glossy traits. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08143-7.
Collapse
Affiliation(s)
- Fengqing Han
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, #12 Zhong Guan Cun Nandajie Street, Beijing, 100081, China
| | - Jingjing Huang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, #12 Zhong Guan Cun Nandajie Street, Beijing, 100081, China
| | - Qi Xie
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, #12 Zhong Guan Cun Nandajie Street, Beijing, 100081, China
| | - Yumei Liu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, #12 Zhong Guan Cun Nandajie Street, Beijing, 100081, China
| | - Zhiyuan Fang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, #12 Zhong Guan Cun Nandajie Street, Beijing, 100081, China
| | - Limei Yang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, #12 Zhong Guan Cun Nandajie Street, Beijing, 100081, China
| | - Mu Zhuang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, #12 Zhong Guan Cun Nandajie Street, Beijing, 100081, China
| | - Yangyong Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, #12 Zhong Guan Cun Nandajie Street, Beijing, 100081, China
| | - Honghao Lv
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, #12 Zhong Guan Cun Nandajie Street, Beijing, 100081, China
| | - Yong Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, #12 Zhong Guan Cun Nandajie Street, Beijing, 100081, China
| | - Jialei Ji
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, #12 Zhong Guan Cun Nandajie Street, Beijing, 100081, China
| | - Zhansheng Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, #12 Zhong Guan Cun Nandajie Street, Beijing, 100081, China.
| |
Collapse
|
39
|
Hsu YF, Yan J, Song Y, Zheng M. Sarracenia purpurea glycerol-3-phosphate acyltransferase 5 confers plant tolerance to high humidity in Arabidopsis thaliana. PHYSIOLOGIA PLANTARUM 2021; 173:1221-1229. [PMID: 34346074 DOI: 10.1111/ppl.13516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 06/28/2021] [Accepted: 07/29/2021] [Indexed: 06/13/2023]
Abstract
Suberin, as a lipid polyester barrier, limits the movement of gas, water, and solutes, and plays important roles in plant protection and growth. In this study, a CDS encoding glycerol-3-phosphate acyltransferase 5 (GPAT5) was cloned from Sarracenia purpurea to investigate the gene function. SpGPAT5 shares 72% identity and 80% similarity to AtGPAT5 that is required for suberin synthesis. Fluorol Yellow 088 staining showed that the S. purpurea pitcher (specific leaf) tube contained more suberin in the adaxial surface compared to the lid, and SpGPAT5 transcripts were detected in the pitcher. Previous reported Atgpat5-1 phenotypes were complemented with SpGPAT5 showing that the Atgpat5-1 seed coat had increased permeability of tetrazolium red and the mutant was sensitive to salt. We also found that SpGPAT5 was able to revert the hyperhydric phenotype of Atgpat5-1 under high humidity. Thus, this study suggests that SpGPAT5 can functionally replace AtGPAT5 and contributes to plant tolerance to high humidity, which maybe assist in understanding the role of suberin-associated waxes in S. purpurea pitchers for water retention.
Collapse
Affiliation(s)
- Yi-Feng Hsu
- School of Life Sciences, Southwest University, Chongqing, China
| | - Jiawen Yan
- School of Life Sciences, Southwest University, Chongqing, China
| | - Yu Song
- School of Life Sciences, Southwest University, Chongqing, China
| | - Min Zheng
- School of Life Sciences, Southwest University, Chongqing, China
| |
Collapse
|
40
|
Liu S, Tong M, Zhao L, Li X, Kunst L. The ARRE RING-Type E3 Ubiquitin Ligase Negatively Regulates Cuticular Wax Biosynthesis in Arabidopsis thaliana by Controlling ECERIFERUM1 and ECERIFERUM3 Protein Levels. FRONTIERS IN PLANT SCIENCE 2021; 12:752309. [PMID: 34764971 PMCID: PMC8576476 DOI: 10.3389/fpls.2021.752309] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/28/2021] [Indexed: 06/01/2023]
Abstract
The outer epidermal cell walls of plant shoots are covered with a cuticle, a continuous lipid structure that provides protection from desiccation, UV light, pathogens, and insects. The cuticle is mostly composed of cutin and cuticular wax. Cuticular wax synthesis is synchronized with surface area expansion during plant development and is associated with plant responses to biotic and abiotic stresses. Cuticular wax deposition is tightly regulated by well-established transcriptional and post-transcriptional regulatory mechanisms, as well as post-translationally via the ubiquitin-26S proteasome system (UPS). The UPS is highly conserved in eukaryotes and involves the covalent attachment of polyubiquitin chains to the target protein by an E3 ligase, followed by the degradation of the modified protein by the 26S proteasome. A large number of E3 ligases are encoded in the Arabidopsis genome, but only a few have been implicated in the regulation of cuticular wax deposition. In this study, we have conducted an E3 ligase reverse genetic screen and identified a novel RING-type E3 ubiquitin ligase, AtARRE, which negatively regulates wax biosynthesis in Arabidopsis. Arabidopsis plants overexpressing AtARRE exhibit glossy stems and siliques, reduced fertility and fusion between aerial organs. Wax load and wax compositional analyses of AtARRE overexpressors showed that the alkane-forming branch of the wax biosynthetic pathway is affected. Co-expression of AtARRE and candidate target proteins involved in alkane formation in both Nicotiana benthamiana and stable Arabidopsis transgenic lines demonstrated that AtARRE controls the levels of wax biosynthetic enzymes ECERIFERUM1 (CER1) and ECERIFERUM3 (CER3). CER1 has also been confirmed to be a ubiquitination substrate of the AtARRE E3 ligase by an in vivo ubiquitination assay using a reconstituted Escherichia coli system. The AtARRE gene is expressed throughout the plant, with the highest expression detected in fully expanded rosette leaves and oldest stem internodes. AtARRE gene expression can also be induced by exposure to pathogens. These findings reveal that wax biosynthesis in mature plant tissues and in response to pathogen infection is controlled post-translationally.
Collapse
Affiliation(s)
- Shuang Liu
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | - Meixuezi Tong
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Lifang Zhao
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | - Xin Li
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Ljerka Kunst
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
41
|
Shukla V, Han JP, Cléard F, Lefebvre-Legendre L, Gully K, Flis P, Berhin A, Andersen TG, Salt DE, Nawrath C, Barberon M. Suberin plasticity to developmental and exogenous cues is regulated by a set of MYB transcription factors. Proc Natl Acad Sci U S A 2021. [PMID: 34551972 DOI: 10.1101/2021.01.27.428267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023] Open
Abstract
Suberin is a hydrophobic biopolymer that can be deposited at the periphery of cells, forming protective barriers against biotic and abiotic stress. In roots, suberin forms lamellae at the periphery of endodermal cells where it plays crucial roles in the control of water and mineral transport. Suberin formation is highly regulated by developmental and environmental cues. However, the mechanisms controlling its spatiotemporal regulation are poorly understood. Here, we show that endodermal suberin is regulated independently by developmental and exogenous signals to fine-tune suberin deposition in roots. We found a set of four MYB transcription factors (MYB41, MYB53, MYB92, and MYB93), each of which is individually regulated by these two signals and is sufficient to promote endodermal suberin. Mutation of these four transcription factors simultaneously through genome editing leads to a dramatic reduction in suberin formation in response to both developmental and environmental signals. Most suberin mutants analyzed at physiological levels are also affected in another endodermal barrier made of lignin (Casparian strips) through a compensatory mechanism. Through the functional analysis of these four MYBs, we generated plants allowing unbiased investigation of endodermal suberin function, without accounting for confounding effects due to Casparian strip defects, and were able to unravel specific roles of suberin in nutrient homeostasis.
Collapse
Affiliation(s)
- Vinay Shukla
- Department of Botany and Plant Biology, University of Geneva, 1211 Geneva, Switzerland
| | - Jian-Pu Han
- Department of Botany and Plant Biology, University of Geneva, 1211 Geneva, Switzerland
| | - Fabienne Cléard
- Department of Botany and Plant Biology, University of Geneva, 1211 Geneva, Switzerland
| | | | - Kay Gully
- Department of Molecular Plant Biology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Paulina Flis
- Future Food Beacon of Excellence and School of Biosciences, University of Nottingham, NG7 2RD Nottingham, United Kingdom
| | - Alice Berhin
- Department of Molecular Plant Biology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Tonni G Andersen
- Department of Molecular Plant Biology, University of Lausanne, 1015 Lausanne, Switzerland
| | - David E Salt
- Future Food Beacon of Excellence and School of Biosciences, University of Nottingham, NG7 2RD Nottingham, United Kingdom
| | - Christiane Nawrath
- Department of Molecular Plant Biology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Marie Barberon
- Department of Botany and Plant Biology, University of Geneva, 1211 Geneva, Switzerland;
| |
Collapse
|
42
|
Macnee N, Hilario E, Tahir J, Currie A, Warren B, Rebstock R, Hallett IC, Chagné D, Schaffer RJ, Bulley SM. Peridermal fruit skin formation in Actinidia sp. (kiwifruit) is associated with genetic loci controlling russeting and cuticle formation. BMC PLANT BIOLOGY 2021; 21:334. [PMID: 34261431 PMCID: PMC8278711 DOI: 10.1186/s12870-021-03025-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 05/10/2021] [Indexed: 05/10/2023]
Abstract
BACKGROUND The skin (exocarp) of fleshy fruit is hugely diverse across species. Most fruit types have a live epidermal skin covered by a layer of cuticle made up of cutin while a few create an outermost layer of dead cells (peridermal layer). RESULTS In this study we undertook crosses between epidermal and peridermal skinned kiwifruit, and showed that epidermal skin is a semi-dominant trait. Furthermore, backcrossing these epidermal skinned hybrids to a peridermal skinned fruit created a diverse range of phenotypes ranging from epidermal skinned fruit, through fruit with varying degrees of patches of periderm (russeting), to fruit with a complete periderm. Quantitative trait locus (QTL) analysis of this population suggested that periderm formation was associated with four loci. These QTLs were aligned either to ones associated with russet formation on chromosome 19 and 24, or cuticle integrity and coverage located on chromosomes 3, 11 and 24. CONCLUSION From the segregation of skin type and QTL analysis, it appears that skin development in kiwifruit is controlled by two competing factors, cuticle strength and propensity to russet. A strong cuticle will inhibit russeting while a strong propensity to russet can create a continuous dead skinned periderm.
Collapse
Affiliation(s)
- Nikolai Macnee
- The New Zealand Institute for Plant and Food Research Ltd. (PFR), Private Bag 92169, Auckland, 1142, New Zealand
- School of Biological Science, The University of Auckland, Auckland, 1146, New Zealand
| | - Elena Hilario
- The New Zealand Institute for Plant and Food Research Ltd. (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | - Jibran Tahir
- PFR, Private Bag 11600, Palmerston North, 4442, New Zealand
| | | | - Ben Warren
- The New Zealand Institute for Plant and Food Research Ltd. (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | - Ria Rebstock
- The New Zealand Institute for Plant and Food Research Ltd. (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | - Ian C Hallett
- The New Zealand Institute for Plant and Food Research Ltd. (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | - David Chagné
- PFR, Private Bag 11600, Palmerston North, 4442, New Zealand
| | - Robert J Schaffer
- School of Biological Science, The University of Auckland, Auckland, 1146, New Zealand
- PFR, 55 Old Mill Road, RD3, Motueka, 7198, New Zealand
| | - Sean M Bulley
- PFR, 412 No 1 Road RD 2, Te Puke, 3182, New Zealand.
| |
Collapse
|
43
|
Zhang J, Zhang YF, Zhang PF, Bian YH, Liu ZY, Zhang C, Liu X, Wang CL. An integrated metabolic and transcriptomic analysis reveals the mechanism through which fruit bagging alleviates exocarp semi-russeting in pear fruit. TREE PHYSIOLOGY 2021; 41:1306-1318. [PMID: 33367887 DOI: 10.1093/treephys/tpaa172] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 12/15/2020] [Indexed: 06/12/2023]
Abstract
Fruit semi-russeting is an undesirable quality trait that occurs in fruit production. It is reported that preharvest fruit bagging could effectively alleviate fruit exocarp semi-russeting, but the physiological and molecular mechanisms remain unclear. In the present study, we performed an in-depth investigation into pear fruit semi-russeting from morphologic, metabolic and transcriptomic perspectives by comparing control (semi-russeted) and bagged (non-russeted) 'Cuiguan' pear fruits. The results showed that significant changes in cutin and suberin resulted in pear fruit semi-russeting. Compared with the skin of bagged fruits, the skin of the control fruits presented reduced cutin contents accompanied by an accumulation of suberin, which resulted in fruit semi-russeting; α, ω-dicarboxylic acids accounted for the largest proportion of typical suberin monomers. Moreover, combined transcriptomic and metabolic analysis revealed a series of genes involved in cutin and suberin biosynthesis, transport and polymerization differentially expressed between the two groups. Furthermore, the expression levels of genes involved in the stress response and in hormone biosynthesis and signaling were significantly altered in fruits with contrasting phenotypes. Finally, a number of transcription factors, including those of the MYB, NAC, bHLH and bZIP families, were differentially expressed. Taken together, the results suggest that the multilayered mechanism through which bagging alleviates pear fruit semi-russeting is complex, and the large number of candidate genes identified provides a good foundation for future functional studies.
Collapse
Affiliation(s)
- Jing Zhang
- School of Horticulture and Plant Protection, International Research Laboratory of Agriculture and Agri-Product Safety, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, 48 Wenhui East Road, Yangzhou 225009, People's Republic of China
| | - Yi-Fan Zhang
- School of Horticulture and Plant Protection, International Research Laboratory of Agriculture and Agri-Product Safety, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, 48 Wenhui East Road, Yangzhou 225009, People's Republic of China
| | - Peng-Fei Zhang
- School of Horticulture and Plant Protection, International Research Laboratory of Agriculture and Agri-Product Safety, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, 48 Wenhui East Road, Yangzhou 225009, People's Republic of China
| | - Yue-Hong Bian
- School of Horticulture and Plant Protection, International Research Laboratory of Agriculture and Agri-Product Safety, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, 48 Wenhui East Road, Yangzhou 225009, People's Republic of China
| | - Zi-Yu Liu
- School of Horticulture and Plant Protection, International Research Laboratory of Agriculture and Agri-Product Safety, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, 48 Wenhui East Road, Yangzhou 225009, People's Republic of China
| | - Chen Zhang
- School of Horticulture and Plant Protection, International Research Laboratory of Agriculture and Agri-Product Safety, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, 48 Wenhui East Road, Yangzhou 225009, People's Republic of China
| | - Xiao Liu
- School of Horticulture and Plant Protection, International Research Laboratory of Agriculture and Agri-Product Safety, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, 48 Wenhui East Road, Yangzhou 225009, People's Republic of China
| | - Chun-Lei Wang
- School of Horticulture and Plant Protection, International Research Laboratory of Agriculture and Agri-Product Safety, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, 48 Wenhui East Road, Yangzhou 225009, People's Republic of China
| |
Collapse
|
44
|
Machado SR, Rodrigues TM. Apoplasmic barrier in the extrafloral nectary of Citharexylum myrianthum (Verbenaceae). PLANTA 2021; 254:19. [PMID: 34215938 DOI: 10.1007/s00425-021-03663-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/14/2021] [Indexed: 06/13/2023]
Abstract
The cytological changes underlying the formation of an apoplasmic barrier in the multi-layered extrafloral nectaries of Citharexylum myrianthum are compatible with the synthesis, transport and deposition of suberin. In terms of ontogenesis and function, the intermediate layers of these nectaries are homologous with the stalks of nectar-secreting trichomes. Anticlinal cell wall impregnations are common in trichomatic nectaries and their functions as endodermis-like barriers have been discussed because of possible direct effects on the nectary physiology, mainly in the nectar secretion and resorption. However, the cytological events linked to nectary wall impregnations remain little explored. This study documents the ontogenesis and the fine structure of the EFN cells, and cytological events linked to the wall impregnations of multi-layered extrafloral nectaries (EFNs) in Citharexylum myrianthum Cham. (Verbenaceae). EFNs are patelliform, and differentiated into (a) a multicellular foot, which is compound in structure and vascularised with phloem strands, (b) a bi-layered intermediate region with thickened cell walls and (c) a single-layered secretory region with palisade-like cells. EFNs are protodermal in origin, starting with a single protodermal cell and ending with the complex, multi-layered structure. The cell wall impregnations first appear in the very young EFN and increase towards maturity. Lipid patches (assumed to be suberin) are deposited on the inner faces of the primary walls, first along the anticlinal walls and then extend to the periclinal walls. On both walls, plasmodesmata remain apparently intact during the maturation of the EFNs. In the peripheral cytoplasm there are abundant polymorphic plastids, well-developed Golgi bodies often close to rough endoplasmic reticulum profiles, mitochondria and polyribosomes. Cytological events linked to the wall impregnations are consistent with suberin synthesis, transport and deposition. Our findings offer new insights into the structure-properties of specialised nectary cell walls and so should contribute to our knowledge of the physiological and protective roles of this structure in nectar glands.
Collapse
Affiliation(s)
- Silvia Rodrigues Machado
- Centre of Electron Microscopy (CME), Institute of Biosciences of Botucatu (IBB), São Paulo State University (UNESP), Botucatu, São Paulo, Brazil.
| | - Tatiane Maria Rodrigues
- Department of Biostatistics, Plant Biology, Parasitology and Zoology, Institute of Biosciences of Botucatu (IBB), São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| |
Collapse
|
45
|
Schink C, Spielvogel S, Imhof W. Synthesis of 13 C-labelled ω-hydroxy carboxylic acids of the general formula HO 2 13 C-(CH 2 ) n -CH 2 OH or HO 2 C-(CH 2 ) n - 13 CH 2 OH (n = 12, 16, 20, 28). J Labelled Comp Radiopharm 2021; 64:385-402. [PMID: 34157793 DOI: 10.1002/jlcr.3931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/15/2021] [Accepted: 06/15/2021] [Indexed: 11/09/2022]
Abstract
13 C-labelled ω-hydroxy-carboxylic acids HO2 13 C-(CH2 )n -CH2 OH or HO2 C-(CH2 )n -13 CH2 OH (n = 12, 16, 20, 28) with 13 C labels selectively introduced either at the carboxy group or at the primary alcohol function at the end of the hydrocarbon chain have been synthesized. Different synthetic strategies had to be applied depending on the position of the label, the chain length of the respective synthetic target and due to economic considerations. 13 C labels in general were introduced by nucleophilic substitution of a suitable leaving group with labelled potassium cyanide and subsequent hydrolysis of the nitriles to produce the corresponding labelled carboxy functions, which may also be reduced to give the labelled primary alcohol group. All new compounds are characterized by GC/MS, IR and NMR methods as well as by elemental analysis.
Collapse
Affiliation(s)
- Carina Schink
- Institute of Integrated Natural Sciences, University Koblenz - Landau, Koblenz, Germany
| | - Sandra Spielvogel
- Institute of Plant Nutrition and Soil Science, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Wolfgang Imhof
- Institute of Integrated Natural Sciences, University Koblenz - Landau, Koblenz, Germany
| |
Collapse
|
46
|
Wang Y, Xu J, He Z, Hu N, Luo W, Liu X, Shi X, Liu T, Jiang Q, An P, Liu L, Sun Y, Jetter R, Li C, Wang Z. BdFAR4, a root-specific fatty acyl-coenzyme A reductase, is involved in fatty alcohol synthesis of root suberin polyester in Brachypodium distachyon. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:1468-1483. [PMID: 33768632 DOI: 10.1111/tpj.15249] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 03/06/2021] [Accepted: 03/22/2021] [Indexed: 06/12/2023]
Abstract
Suberin is a complex hydrophobic polymer of aliphatic and phenolic compounds which controls the movement of gases, water, and solutes and protects plants from environmental stresses and pathogenic infection. The synthesis and regulatory pathways of suberin remain unknown in Brachypodium distachyon. Here we describe the identification of a B. distachyon gene, BdFAR4, encoding a fatty acyl-coenzyme A reductase (FAR) by a reverse genetic approach, and investigate the molecular relevance of BdFAR4 in the root suberin synthesis of B. distachyon. BdFAR4 is specifically expressed throughout root development. Heterologous expression of BdFAR4 in yeast (Saccharomyces cerevisiae) afforded the production of C20:0 and C22:0 fatty alcohols. The loss-of-function knockout of BdFAR4 by CRISPR/Cas9-mediated gene editing significantly reduced the content of C20:0 and C22:0 fatty alcohols associated with root suberin. In contrast, overexpression of BdFAR4 in B. distachyon and tomato (Solanum lycopersicum) resulted in the accumulation of root suberin-associated C20:0 and C22:0 fatty alcohols, suggesting that BdFAR4 preferentially accepts C20:0 and C22:0 fatty acyl-CoAs as substrates. The BdFAR4 protein was localized to the endoplasmic reticulum in Arabidopsis thaliana protoplasts and Nicotiana benthamiana leaf epidermal cells. BdFAR4 transcript levels can be increased by abiotic stresses and abscisic acid treatment. Furthermore, yeast one-hybrid, dual-luciferase activity, and electrophoretic mobility shift assays indicated that the R2R3-MYB transcription factor BdMYB41 directly binds to the promoter of BdFAR4. Taken together, these results imply that BdFAR4 is essential for the production of root suberin-associated fatty alcohols, especially under stress conditions, and that its activity is transcriptionally regulated by the BdMYB41 transcription factor.
Collapse
Affiliation(s)
- Yong Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jiajing Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Zhaofeng He
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Ning Hu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Wenqiao Luo
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xiaoyu Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xue Shi
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Tianxiang Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Qinqin Jiang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Peipei An
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Le Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yulin Sun
- Department of Botany, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, V6T 1Z1, Canada
| | - Reinhard Jetter
- Department of Botany, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, V6T 1Z1, Canada
| | - Chunlian Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Zhonghua Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
47
|
Transcriptional Changes of Cell Wall Organization Genes and Soluble Carbohydrate Alteration during Leaf Blade Development of Rice Seedlings. PLANTS 2021; 10:plants10050823. [PMID: 33919078 PMCID: PMC8143110 DOI: 10.3390/plants10050823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/10/2021] [Accepted: 04/13/2021] [Indexed: 11/16/2022]
Abstract
Plant cell walls have two constituent parts with different components and developmental stages. Much of the mystery concerning the mechanisms of synthesis, decomposition, modification, and so forth, has been resolved using omics and microscopic techniques. However, it still remains to be determined how cell wall development progresses over time after leaf emergence. Our focus in the present study was to expand our knowledge of the molecular mechanisms associated with cell wall synthesis in rice leaf blade during three distinct stages (sink, sink-to-source transition, and source). The RNA-seq, quantitative reverse transcription PCR (qRT-PCR) and carbohydrate concentrations were evaluated using developing fifth leaf blades harvested at different time points. The results revealed that some of the essential genes for the primary cell wall (PCW) were highly upregulated in the sink-to-source transition compared to the sink stage, whereas those essential to the secondary cell wall (SCW) displayed relatively higher levels (p < 0.05) during the source stage. The concentrations of soluble carbohydrates differed via type rather than stage; we observed higher monosaccharides during the sink stage and higher di- and oligo-saccharides during the sink-to-source transition and source stages. In conclusion, our findings suggest that the transcriptional regulation of plant cell wall biosynthesis genes are both synchronistic with and independent of, and directly and indirectly governed by, the abundance of soluble carbohydrates in the developing leaf blade, and, finally, raffinose is likely to play a transport role comparable to sucrose.
Collapse
|
48
|
Razeq FM, Kosma DK, França D, Rowland O, Molina I. Extracellular lipids of Camelina sativa: Characterization of cutin and suberin reveals typical polyester monomers and unusual dicarboxylic fatty acids. PHYTOCHEMISTRY 2021; 184:112665. [PMID: 33524853 DOI: 10.1016/j.phytochem.2021.112665] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 01/04/2021] [Accepted: 01/06/2021] [Indexed: 06/12/2023]
Abstract
Camelina sativa is relatively drought tolerant and requires less fertilizer than other oilseed crops. Various lipid- and phenolic-based extracellular barriers of plants help to protect them against biotic and abiotic stresses. These barriers, which consist of solvent-insoluble polymeric frameworks and solvent-extractable waxes, include the cuticle of aerial plant surfaces and suberized cell walls found, for example, in periderms and seed coats. Cutin, the polymeric matrix of the cuticle, and the aliphatic domain of suberin are fatty acid- and glycerol-based polyesters. These polyesters were investigated by base-catalyzed transesterification of C. sativa aerial and underground delipidated tissues followed by gas chromatographic analysis of the released monomer mixtures. Seed coat and root suberin had similar compositions, with 18-hydroxyoctadecenoic and 1,18-octadecenedioic fatty acids being the dominant species. Root suberin presented a typical lamellar ultrastructure, but seed coats showed almost imperceptible, faint dark bands. Leaf and stem lipid polyesters were composed of fatty acids (FA), 1,ω-dicarboxylic fatty acids (DCA), ω-hydroxy fatty acids (HFA) and hydroxycinnamic acids (HCA). Dihydroxypalmitic acid (DHP) and caffeic acid were the major constituents of leaf cutin, whereas stem cutin presented similar molar proportions in several monomers across the four classes. Unlike the leaf cuticle, the C. sativa stem cuticle presented lamellar structure by transmission electron microscopy. Flower cutin was dominated by DHP, did not contain aromatics, and presented substantial amounts (>30%) of hydroxylated 1,ω-dicarboxylic acids. We found striking differences between the lipid polyester monomer compositions of aerial tissues of C. sativa and that of its close relatives Arabidopsis thaliana and Brassica napus.
Collapse
Affiliation(s)
- Fakhria M Razeq
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, Ontario, Canada
| | - Dylan K Kosma
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, 89557, USA
| | - Débora França
- Department of Biology, Algoma University, Sault Ste. Marie, Ontario, Canada
| | - Owen Rowland
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, Ontario, Canada.
| | - Isabel Molina
- Department of Biology, Algoma University, Sault Ste. Marie, Ontario, Canada.
| |
Collapse
|
49
|
Falginella L, Andre CM, Legay S, Lin-Wang K, Dare AP, Deng C, Rebstock R, Plunkett BJ, Guo L, Cipriani G, Espley RV. Differential regulation of triterpene biosynthesis induced by an early failure in cuticle formation in apple. HORTICULTURE RESEARCH 2021; 8:75. [PMID: 33790248 PMCID: PMC8012369 DOI: 10.1038/s41438-021-00511-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 02/08/2021] [Accepted: 02/24/2021] [Indexed: 05/06/2023]
Abstract
Waxy apple cuticles predominantly accumulate ursane-type triterpenes, but the profile shifts with the induction of skin russeting towards lupane-type triterpenes. We previously characterised several key enzymes in the ursane-type and lupane-type triterpene pathways, but this switch in triterpene metabolism associated with loss of cuticle integrity is not fully understood. To analyse the relationship between triterpene biosynthesis and russeting, we used microscopy, RNA-sequencing and metabolite profiling during apple fruit development. We compared the skin of three genetically-close clones of 'Golden Delicious' (with waxy, partially russeted and fully russeted skin). We identified a unique molecular profile for the russet clone, including low transcript abundance of multiple cuticle-specific metabolic pathways in the early stages of fruit development. Using correlation analyses between gene transcription and metabolite concentration we found MYB transcription factors strongly associated with lupane-type triterpene biosynthesis. We showed how their transcription changed with the onset of cuticle cracking followed by russeting and that one factor, MYB66, was able to bind the promoter of the oxidosqualene cyclase OSC5, to drive the production of lupeol derivatives. These results provide insights into the breakdown of cuticle integrity leading to russet and how this drives MYB-regulated changes to triterpene biosynthesis.
Collapse
Affiliation(s)
- Luigi Falginella
- Dipartimento di Scienze Agroalimentari, Ambientali e Animali, University of Udine, Udine, Italy
- Research Center, Vivai Cooperativi Rauscedo, Rauscedo, Italy
| | - Christelle M Andre
- The New Zealand Institute for Plant and Food Research, Auckland, New Zealand
- The Luxembourg Institute of Science and Technology, Esch-sur-Alzette, Luxembourg
| | - Sylvain Legay
- The Luxembourg Institute of Science and Technology, Esch-sur-Alzette, Luxembourg
| | - Kui Lin-Wang
- The New Zealand Institute for Plant and Food Research, Auckland, New Zealand
| | - Andrew P Dare
- The New Zealand Institute for Plant and Food Research, Auckland, New Zealand
| | - Cecilia Deng
- The New Zealand Institute for Plant and Food Research, Auckland, New Zealand
| | - Ria Rebstock
- The New Zealand Institute for Plant and Food Research, Auckland, New Zealand
| | - Blue J Plunkett
- The New Zealand Institute for Plant and Food Research, Auckland, New Zealand
| | - Lindy Guo
- The New Zealand Institute for Plant and Food Research, Auckland, New Zealand
| | - Guido Cipriani
- Dipartimento di Scienze Agroalimentari, Ambientali e Animali, University of Udine, Udine, Italy
| | - Richard V Espley
- The New Zealand Institute for Plant and Food Research, Auckland, New Zealand.
| |
Collapse
|
50
|
Zhang D, Duan X, Shang B, Hong Y, Sun H. Analysis of lipidomics profile of rice and changes during storage by UPLC-Q-extractive orbitrap mass spectrometry. Food Res Int 2021; 142:110214. [PMID: 33773692 DOI: 10.1016/j.foodres.2021.110214] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 01/17/2021] [Accepted: 02/02/2021] [Indexed: 11/18/2022]
Abstract
Rice is one of major staple food worldwide; however, lipid profile of rice and changes during storage remain unclear. Herein, an UPLC-Q-Exactive Orbitrap/MS method was applied for comprehensive lipidomics analysis of rice during storage. A total of 21 subclasses of 277 lipids including fatty acid (36 species), (O-acyl)-1-hydroxy fatty acid (6 species), diglyceride (16 species), triglyceride (89 species), lysophosphatidylcholine (4 species), phosphatidylcholine (14 species), phosphatidylethanolamine (28 species), phosphatidylglycerol (6 species), phosphatidylinositol (11species), cardiolipin (4 species), ceramide (8 species), hexosylceramide (20 species), dihexosylceramide (2 species), trihexosylceramide (1 species), sitosterol ester (1species), acyl hexosyl campesterol ester (5 species), acyl hexosyl sitosterol ester (6 species), digalactosyldiacylglycerol (6 species), monogalactosyldiacylglycerol (9 species), monogalactosylmonoacylglycerol (2 species), and sulfoquinovosyldiacylglycerol (3 species), were first identified in rice during storage. In addition, ceramide, fatty acid, (O-acyl)-1-hydroxy fatty acid, phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol, lysophosphatidylcholine, and diglyceride were quantified. Furthermore, statistical analysis of all lipids was performed based on MetaboAnalyst software. The results showed that 22 lipids were significantly different between fresh and stored (360 and 540 days storage) rice demonstrating that lipid composition changed during storage. These different lipids involved 11 metabolic pathways, of which linoleic acid metabolism, glycerophospholipid metabolism, and cutin, suberine and wax biosynthesis were the most relevant. Our study provides useful information for lipidomics profile of rice during storage.
Collapse
Affiliation(s)
- Dong Zhang
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, PR China.
| | - Xiaoliang Duan
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, PR China
| | - Bo Shang
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, PR China
| | - Yu Hong
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, PR China
| | - Hui Sun
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, PR China.
| |
Collapse
|