1
|
Sandmann M, Rading M. Starch granules in algal cells play an inherent role to shape the popular SSC signal in flow cytometry. BMC Res Notes 2024; 17:327. [PMID: 39472947 PMCID: PMC11523789 DOI: 10.1186/s13104-024-06983-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 10/21/2024] [Indexed: 11/02/2024] Open
Abstract
OBJECTIVE Flow cytometry (FC) is probably the most important technique for single-cell analysis. It's precisely, rapid, and suitable for multidimensional single-cell analysis. The commonly used side scatter (SSC) intensity determined by FC is often interpreted as a measure of the internal cellular complexity of cells. In simple terms, the more structured a cell is, the higher the SSC intensity quantified by FC. Nevertheless, most of the studies that support this interpretation are based on data derived from animal or human cell lines and while it is assumed that the results can also be transferred to plant or algal cell lines, the details remain unclear. The objective of the recent work is to clarify the interpretation of the SSC signal from algal cells. RESULTS Algal lipid droplets and their starch play an inherent role to shape the popular SSC signal derived from FC. This was shown by a theoretical approach based on Lorenz-Mie theory. These results were supported by experiments with different model cultures of Chlamydomonas reinhardtii in which a high linear correlation was observed between the SSC signal and the 'physical' starch quantity.
Collapse
Affiliation(s)
- Michael Sandmann
- University of Applied Sciences Neubrandenburg, Brodaer Straße 2, D-17033, Neubrandenburg, Germany.
| | - Michael Rading
- Department of Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, 14424, Potsdam, Germany
| |
Collapse
|
2
|
Liu D, Lopez-Paz C, Li Y, Zhuang X, Umen J. Subscaling of a cytosolic RNA binding protein governs cell size homeostasis in the multiple fission alga Chlamydomonas. PLoS Genet 2024; 20:e1010503. [PMID: 38498520 PMCID: PMC10977881 DOI: 10.1371/journal.pgen.1010503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/28/2024] [Accepted: 02/27/2024] [Indexed: 03/20/2024] Open
Abstract
Coordination of growth and division in eukaryotic cells is essential for populations of proliferating cells to maintain size homeostasis, but the underlying mechanisms that govern cell size have only been investigated in a few taxa. The green alga Chlamydomonas reinhardtii (Chlamydomonas) proliferates using a multiple fission cell cycle that involves a long G1 phase followed by a rapid series of successive S and M phases (S/M) that produces 2n daughter cells. Two control points show cell-size dependence: the Commitment control point in mid-G1 phase requires the attainment of a minimum size to enable at least one mitotic division during S/M, and the S/M control point where mother cell size governs cell division number (n), ensuring that daughter distributions are uniform. tny1 mutants pass Commitment at a smaller size than wild type and undergo extra divisions during S/M phase to produce small daughters, indicating that TNY1 functions to inhibit size-dependent cell cycle progression. TNY1 encodes a cytosolic hnRNP A-related RNA binding protein and is produced once per cell cycle during S/M phase where it is apportioned to daughter cells, and then remains at constant absolute abundance as cells grow, a property known as subscaling. Altering the dosage of TNY1 in heterozygous diploids or through mis-expression increased Commitment cell size and daughter cell size, indicating that TNY1 is a limiting factor for both size control points. Epistasis placed TNY1 function upstream of the retinoblastoma tumor suppressor complex (RBC) and one of its regulators, Cyclin-Dependent Kinase G1 (CDKG1). Moreover, CDKG1 protein and mRNA were found to over-accumulate in tny1 cells suggesting that CDKG1 may be a direct target of repression by TNY1. Our data expand the potential roles of subscaling proteins outside the nucleus and imply a control mechanism that ties TNY1 accumulation to pre-division mother cell size.
Collapse
Affiliation(s)
- Dianyi Liu
- Donald Danforth Plant Science Center, St. Louis, Missouri, United States of America
- University of Missouri—St. Louis, Cell and Molecular Biology Program, St. Louis. Missouri, United States of America
| | - Cristina Lopez-Paz
- Donald Danforth Plant Science Center, St. Louis, Missouri, United States of America
| | - Yubing Li
- Donald Danforth Plant Science Center, St. Louis, Missouri, United States of America
| | - Xiaohong Zhuang
- Donald Danforth Plant Science Center, St. Louis, Missouri, United States of America
| | - James Umen
- Donald Danforth Plant Science Center, St. Louis, Missouri, United States of America
| |
Collapse
|
3
|
Liu D, Vargas-García CA, Singh A, Umen J. A cell-based model for size control in the multiple fission alga Chlamydomonas reinhardtii. Curr Biol 2023; 33:5215-5224.e5. [PMID: 37949064 PMCID: PMC10750806 DOI: 10.1016/j.cub.2023.10.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/03/2023] [Accepted: 10/16/2023] [Indexed: 11/12/2023]
Abstract
Understanding how population-size homeostasis emerges from stochastic individual cell behaviors remains a challenge in biology.1,2,3,4,5,6,7 The unicellular green alga Chlamydomonas reinhardtii (Chlamydomonas) proliferates using a multiple fission cell cycle, where a prolonged G1 phase is followed by n rounds of alternating division cycles (S/M) to produce 2n daughters. A "Commitment" sizer in mid-G1 phase ensures sufficient cell growth before completing the cell cycle. A mitotic sizer couples mother-cell size to division number (n) such that daughter size distributions are uniform regardless of mother size distributions. Although daughter size distributions were highly robust to altered growth conditions, ∼40% of daughter cells fell outside of the 2-fold range expected from a "perfect" multiple fission sizer.7,8 A simple intuitive power law model with stochastic noise failed to reproduce individual division behaviors of tracked single cells. Through additional iterative modeling, we identified an alternative modified threshold (MT) model, where cells need to cross a threshold greater than 2-fold their median starting size to become division-competent (i.e., Committed), after which their behaviors followed a power law model. The Commitment versus mitotic size threshold uncoupling in the MT model was likely a key pre-adaptation in the evolution of volvocine algal multicellularity. A similar experimental approach was used in size mutants mat3/rbr and dp1 that are, respectively, missing repressor or activator subunits of the retinoblastoma tumor suppressor complex (RBC). Both mutants showed altered relationships between Commitment and mitotic sizer, suggesting that RBC functions to decouple the two sizers.
Collapse
Affiliation(s)
- Dianyi Liu
- Donald Danforth Plant Science Center, 975 N Warson Rd, St. Louis, MO 63132, USA; Department of Biology, University of Missouri - St. Louis, 1 University Blvd, St. Louis, MO 63121, USA
| | | | - Abhyudai Singh
- Department of Electrical and Computer Engineering, Department of Biomedical Engineering, Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE 19716, USA.
| | - James Umen
- Donald Danforth Plant Science Center, 975 N Warson Rd, St. Louis, MO 63132, USA.
| |
Collapse
|
4
|
Xu W, Lin Y, Wang Y, Li Y, Zhu H, Zhou H. Phenotypic Analysis and Molecular Characterization of Enlarged Cell Size Mutant in Nannochloropsis oceanica. Int J Mol Sci 2023; 24:13595. [PMID: 37686401 PMCID: PMC10487731 DOI: 10.3390/ijms241713595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
The cell cycle is the fundamental cellular process of eukaryotes. Although cell-cycle-related genes have been identified in microalgae, their cell cycle progression differs from species to species. Cell enlargement in microalgae is an essential biological trait. At the same time, there are various causes of cell enlargement, such as environmental factors, especially gene mutations. In this study, we first determined the phenotypic and biochemical characteristics of a previously obtained enlarged-cell-size mutant of Nannochloropsis oceanica, which was designated ECS. Whole-genome sequencing analysis of the insertion sites of ECS indicated that the insertion fragment is integrated inside the 5'-UTR of U/P-type cyclin CYCU;1 and significantly decreases the gene expression of this cyclin. In addition, the transcriptome showed that CYCU;1 is a highly expressed cyclin. Furthermore, cell cycle analysis and RT-qPCR of cell-cycle-related genes showed that ECS maintains a high proportion of 4C cells and a low proportion of 1C cells, and the expression level of CYCU;1 in wild-type (WT) cells is significantly increased at the end of the light phase and the beginning of the dark phase. This means that CYCU;1 is involved in cell division in the dark phase. Our results explain the reason for the larger ECS size. Mutation of CYCU;1 leads to the failure of ECS to fully complete cell division in the dark phase, resulting in an enlargement of the cell size and a decrease in cell density, which is helpful to understand the function of CYCU;1 in the Nannochloropsis cell cycle.
Collapse
Affiliation(s)
- Weinan Xu
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361000, China; (W.X.); (Y.L.); (Y.W.); (Y.L.)
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361000, China;
| | - Yihua Lin
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361000, China; (W.X.); (Y.L.); (Y.W.); (Y.L.)
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361000, China;
| | - Yu Wang
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361000, China; (W.X.); (Y.L.); (Y.W.); (Y.L.)
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361000, China;
| | - Yanyan Li
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361000, China; (W.X.); (Y.L.); (Y.W.); (Y.L.)
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361000, China;
| | - Hongmei Zhu
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361000, China;
| | - Hantao Zhou
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361000, China; (W.X.); (Y.L.); (Y.W.); (Y.L.)
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361000, China;
| |
Collapse
|
5
|
Liu C, Guo H, Zhao X, Zou B, Sun T, Feng J, Zeng Z, Wen X, Chen J, Hu Z, Lou S, Li H. Overexpression of 18S rRNA methyltransferase CrBUD23 enhances biomass and lutein content in Chlamydomonas reinhardtii. Front Bioeng Biotechnol 2023; 11:1102098. [PMID: 36815903 PMCID: PMC9935685 DOI: 10.3389/fbioe.2023.1102098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/10/2023] [Indexed: 02/05/2023] Open
Abstract
Post-transcriptional modification of nucleic acids including transfer RNA (tRNA), ribosomal RNA (rRNA) and messenger RNA (mRNA) is vital for fine-tunning of mRNA translation. Methylation is one of the most widespread post-transcriptional modifications in both eukaryotes and prokaryotes. HsWBSCR22 and ScBUD23 encodes a 18S rRNA methyltransferase that positively regulates cell growth by mediating ribosome maturation in human and yeast, respectively. However, presence and function of 18S rRNA methyltransferase in green algae are still elusive. Here, through bioinformatic analysis, we identified CrBUD23 as the human WBSCR22 homolog in genome of the green algae model organism Chlamydonomas reinhardtii. CrBUD23 was a conserved putative 18S rRNA methyltransferase widely exited in algae, plants, insects and mammalians. Transcription of CrBUD23 was upregulated by high light and down-regulated by low light, indicating its role in photosynthesis and energy metabolism. To characterize its biological function, coding sequence of CrBUD23 fused with a green fluorescence protein (GFP) tag was derived by 35S promoter and stably integrated into Chlamydomonas genome by glass bead-mediated transformation. Compared to C. reinhardtii wild type CC-5325, transgenic strains overexpressing CrBUD23 resulted in accelerated cell growth, thereby leading to elevated biomass, dry weight and protein content. Moreover, overexpression of CrBUD23 increased content of photosynthetic pigments but not elicit the activation of antioxidative enzymes, suggesting CrBUD23 favors growth and proliferation in the trade-off with stress responses. Bioinformatic analysis revealed the G1177 was the putative methylation site in 18S rRNA of C. reinhardtii CC-849. G1177 was conserved in other Chlamydonomas isolates, indicating the conserved methyltransferase activity of BUD23 proteins. In addition, CrTrm122, the homolog of BUD23 interactor Trm112, was found involved in responses to high light as same as CrBUD23. Taken together, our study revealed that cell growth, protein content and lutein accumulation of Chlamydomonas were positively regulated by the 18S rRNA methyltransferase CrBUD23, which could serve as a promising candidate for microalgae genetic engineering.
Collapse
Affiliation(s)
- Chenglong Liu
- Guangdong Engineering Research Center for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China,College of Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - Haoze Guo
- Guangdong Engineering Research Center for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Xinmei Zhao
- Guangdong Engineering Research Center for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Bingxi Zou
- Guangdong Engineering Research Center for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Ting Sun
- Guangdong Engineering Research Center for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Jinwei Feng
- Guangdong Engineering Research Center for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Zhiyong Zeng
- Guangdong Engineering Research Center for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Xueer Wen
- Guangdong Engineering Research Center for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Jun Chen
- Guangdong Engineering Research Center for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Zhangli Hu
- Guangdong Engineering Research Center for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Sulin Lou
- Guangdong Engineering Research Center for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China,*Correspondence: Hui Li, ; Sulin Lou,
| | - Hui Li
- Guangdong Engineering Research Center for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China,*Correspondence: Hui Li, ; Sulin Lou,
| |
Collapse
|
6
|
Vítová M, Čížková M, Náhlík V, Řezanka T. Changes in glycosyl inositol phosphoceramides during the cell cycle of the red alga Galdieria sulphuraria. PHYTOCHEMISTRY 2022; 194:113025. [PMID: 34839129 DOI: 10.1016/j.phytochem.2021.113025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/15/2021] [Accepted: 11/18/2021] [Indexed: 06/13/2023]
Abstract
Sphingolipids are significant component of plant-cell plasma membranes, as well as algal membranes, and mediate various biological processes. One of these processes is the change in lipid content during the cell cycle. This change is key to understanding cell viability and proliferation. There are relatively few papers describing highly glycosylated glycosyl inositol phosphorylceramide (GIPC) due to problems associated with the extractability of GIPCs and their analysis, especially in algae. After alkaline hydrolysis of total lipids from the red alga Galdieria sulphuraria, GIPCs were measured by high-resolution tandem mass spectrometry and fragmentation of precursor ions in an Orbitrap mass spectrometer in order to elucidate the structures of molecular species. Fragmentation experiments such as tandem mass spectrometry in the negative ion mode were performed to determine both the ceramide group and polar head structures. Measurement of mass spectra in the negative regime was possible because the phosphate group stabilizes negative molecular ions [M-H]-. ANALYSIS: of GIPCs at various stages of the cell cycle provided information on their abundance. It was found that, depending on the phases of the cell cycle, in particular during division, the uptake of all three components of GIPC, i.e., long-chain amino alcohols, fatty acids, and polar heads, changes. Structural modifications of the polar headgroup significantly increased the number of molecular species. Analysis demonstrated a convex characteristic for molecular species with only one saccharide (hexose or hexuronic acid) as the polar head. For two carbohydrates, the course of Hex-HexA was linear, while for HexA-HexA it was concave. The same was true for GIPC with three and four monosaccharides.
Collapse
Affiliation(s)
- Milada Vítová
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Laboratory of Cell Cycles of Algae, Novohradská 237, 379 81 Třeboň, Czech Republic
| | - Mária Čížková
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Laboratory of Cell Cycles of Algae, Novohradská 237, 379 81 Třeboň, Czech Republic
| | - Vít Náhlík
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Laboratory of Cell Cycles of Algae, Novohradská 237, 379 81 Třeboň, Czech Republic; Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05 České Budějovice, Czech Republic
| | - Tomáš Řezanka
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic.
| |
Collapse
|
7
|
Ng LM, Komaki S, Takahashi H, Yamano T, Fukuzawa H, Hashimoto T. Hyperosmotic stress-induced microtubule disassembly in Chlamydomonas reinhardtii. BMC PLANT BIOLOGY 2022; 22:46. [PMID: 35065609 PMCID: PMC8783414 DOI: 10.1186/s12870-022-03439-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 01/10/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Land plants respond to drought and salinity by employing multitude of sophisticated mechanisms with physiological and developmental consequences. Abscisic acid-mediated signaling pathways have evolved as land plant ancestors explored their habitats toward terrestrial dry area, and now play major roles in hyperosmotic stress responses in flowering plants. Green algae living in fresh water habitat do not possess abscisic acid signaling pathways but need to cope with increasing salt concentrations or high osmolarity when challenged with adverse aquatic environment. Hyperosmotic stress responses in green algae are largely unexplored. RESULTS In this study, we characterized hyperosmotic stress-induced cytoskeletal responses in Chlamydomonas reinhardtii, a fresh water green algae. The Chlamydomonas PROPYZAMIDE-HYPERSENSITEVE 1 (PHS1) tubulin kinase quickly and transiently phosphorylated a large proportion of cellular α-tubulin at Thr349 in G1 phase and during mitosis, which resulted in transient disassembly of microtubules, when challenged with > 0.2 M sorbitol or > 0.1 M NaCl. By using phs1 loss-of-function algal mutant cells, we demonstrated that transient microtubule destabilization by sorbitol did not affect cell growth in G1 phase but delayed mitotic cell cycle progression. Genome sequence analyses indicate that PHS1 genes evolved in ancestors of the Chlorophyta. Interestingly, PHS1 genes are present in all sequenced genomes of freshwater Chlorophyta green algae (including Chlamydomonas) but are absent in some marine algae of this phylum. CONCLUSION PHS1-mediated tubulin phosphorylation was found to be partly responsible for the efficient stress-responsive mitotic delay in Chlamydomonas cells. Ancient hyperosmotic stress-triggered cytoskeletal remodeling responses thus emerged when the PHS1 tubulin kinase gene evolved in freshwater green algae.
Collapse
Affiliation(s)
- Lee Mei Ng
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
| | - Shinichiro Komaki
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
| | - Hideyuki Takahashi
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
| | - Takashi Yamano
- Graduate School of Biostudies, Kyoto University, Kyoto, Kyoto, 606-8502, Japan
| | - Hideya Fukuzawa
- Graduate School of Biostudies, Kyoto University, Kyoto, Kyoto, 606-8502, Japan
| | - Takashi Hashimoto
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan.
| |
Collapse
|
8
|
The Papain-like Cysteine Protease HpXBCP3 from Haematococcus pluvialis Involved in the Regulation of Growth, Salt Stress Tolerance and Chlorophyll Synthesis in Microalgae. Int J Mol Sci 2021; 22:ijms222111539. [PMID: 34768970 PMCID: PMC8583958 DOI: 10.3390/ijms222111539] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/21/2021] [Accepted: 10/25/2021] [Indexed: 12/16/2022] Open
Abstract
The papain-like cysteine proteases (PLCPs), the most important group of cysteine proteases, have been reported to participate in the regulation of growth, senescence, and abiotic stresses in plants. However, the functions of PLCPs and their roles in stress response in microalgae was rarely reported. The responses to different abiotic stresses in Haematococcus pluvialis were often observed, including growth regulation and astaxanthin accumulation. In this study, the cDNA of HpXBCP3 containing 1515 bp open reading frame (ORF) was firstly cloned from H. pluvialis by RT-PCR. The analysis of protein domains and molecular evolution showed that HpXBCP3 was closely related to AtXBCP3 from Arabidopsis. The expression pattern analysis revealed that it significantly responds to NaCl stress in H. pluvialis. Subsequently, transformants expressing HpXBCP3 in Chlamydomonas reinhardtii were obtained and subjected to transcriptomic analysis. Results showed that HpXBCP3 might affect the cell cycle regulation and DNA replication in transgenic Chlamydomonas, resulting in abnormal growth of transformants. Moreover, the expression of HpXBCP3 might increase the sensitivity to NaCl stress by regulating ubiquitin and the expression of WD40 proteins in microalgae. Furthermore, the expression of HpXBCP3 might improve chlorophyll content by up-regulating the expression of NADH-dependent glutamate synthases in C. reinhardtii. This study indicated for the first time that HpXBCP3 was involved in the regulation of cell growth, salt stress response, and chlorophyll synthesis in microalgae. Results in this study might enrich the understanding of PLCPs in microalgae and provide a novel perspective for studying the mechanism of environmental stress responses in H. pluvialis.
Collapse
|
9
|
Jong LW, Fujiwara T, Hirooka S, Miyagishima SY. Cell size for commitment to cell division and number of successive cell divisions in cyanidialean red algae. PROTOPLASMA 2021; 258:1103-1118. [PMID: 33675395 DOI: 10.1007/s00709-021-01628-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/17/2021] [Indexed: 06/12/2023]
Abstract
Several eukaryotic cell lineages proliferate by multiple fission cell cycles, during which cells grow to manyfold of their original size, then undergo several rounds of cell division without intervening growth. A previous study on volvocine green algae, including both unicellular and multicellular (colonial) species, showed a correlation between the minimum number of successive cell divisions without intervening cellular growth, and the threshold cell size for commitment to the first round of successive cell divisions: two times the average newly born daughter cell volume for unicellular Chlamydomonas reinhardtii, four times for four-celled Tetrabaena socialis, in which each cell in the colony produces a daughter colony by two successive cell divisions, and eight times for the eight-celled Gonium pectorale, in which each cell produces a daughter colony by three successive cell divisions. To assess whether this phenomenon is also applicable to other lineages, we have characterized cyanidialean red algae, namely, Cyanidioschyzon merolae, which proliferates by binary fission, as well as Cyanidium caldarium and Galdieria sulphuraria, which form up to four and 32 daughter cells (autospores), respectively, in a mother cell before hatching out. The result shows that there is also a correlation between the number of successive cell divisions and the threshold cell size for cell division or the first round of the successive cell divisions. In both C. merolae and C. caldarium, the cell size checkpoint for cell division(s) exists in the G1-phase, as previously shown in volvocine green algae. When C. merolae cells were arrested in the G1-phase and abnormally enlarged by conditional depletion of CDKA, the cells underwent two or more successive cell divisions without intervening cellular growth after recovery of CDKA, similarly to C. caldarium and G. sulphuraria. These results suggest that the threshold size for cell division is a major factor in determining the number of successive cell divisions and that evolutionary changes in the mechanism of cell size monitoring resulted in a variation of multiple fission cell cycle in eukaryotic algae.
Collapse
Affiliation(s)
- Lin Wei Jong
- Department of Gene Function and Phenomics, National Institute of Genetics, Shizuoka, Japan
- Department of Genetics, Graduate University for Advanced Studies (SOKENDAI), Shizuoka, Japan
| | - Takayuki Fujiwara
- Department of Gene Function and Phenomics, National Institute of Genetics, Shizuoka, Japan
- Department of Genetics, Graduate University for Advanced Studies (SOKENDAI), Shizuoka, Japan
| | - Shunsuke Hirooka
- Department of Gene Function and Phenomics, National Institute of Genetics, Shizuoka, Japan
| | - Shin-Ya Miyagishima
- Department of Gene Function and Phenomics, National Institute of Genetics, Shizuoka, Japan.
- Department of Genetics, Graduate University for Advanced Studies (SOKENDAI), Shizuoka, Japan.
| |
Collapse
|
10
|
Vítová M, Lanta V, Čížková M, Jakubec M, Rise F, Halskau Ø, Bišová K, Furse S. The biosynthesis of phospholipids is linked to the cell cycle in a model eukaryote. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:158965. [PMID: 33992808 PMCID: PMC8202326 DOI: 10.1016/j.bbalip.2021.158965] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/28/2021] [Accepted: 04/30/2021] [Indexed: 12/15/2022]
Abstract
The structural challenges faced by eukaryotic cells through the cell cycle are key for understanding cell viability and proliferation. We tested the hypothesis that the biosynthesis of structural lipids is linked to the cell cycle. If true, this would suggest that the cell's structure is important for progress through and perhaps even control of the cell cycle. Lipidomics (31P NMR and MS), proteomics (Western immunoblotting) and transcriptomics (RT-qPCR) techniques were used to profile the lipid fraction and characterise aspects of its metabolism at seven stages of the cell cycle of the model eukaryote, Desmodesmus quadricauda. We found considerable, transient increases in the abundance of phosphatidylethanolamine during the G1 phase (+35%, ethanolamine phosphate cytidylyltransferase increased 2·5×) and phosphatidylglycerol (+100%, phosphatidylglycerol synthase increased 22×) over the G1/pre-replication phase boundary. The relative abundance of phosphatidylcholine fell by ~35% during the G1. N-Methyl transferases for the conversion of phosphatidylethanolamine into phosphatidylcholine were not found in the de novo transcriptome profile, though a choline phosphate transferase was found, suggesting that the Kennedy pathway is the principal route for the synthesis of PC. The fatty acid profiles of the four most abundant lipids suggested that these lipids were not generally converted between one another. This study shows for the first time that there are considerable changes in the biosynthesis of the three most abundant phospholipid classes in the normal cell cycle of D. quadricauda, by margins large enough to elicit changes to the physical properties of membranes.
Collapse
Affiliation(s)
- Milada Vítová
- Laboratory of Cell Cycles of Algae (Laboratoř buněčných cyklů řas), Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Novohradská 237, 379 01 Třeboň, Czech Republic
| | - Vojtěch Lanta
- Laboratory of Cell Cycles of Algae (Laboratoř buněčných cyklů řas), Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Novohradská 237, 379 01 Třeboň, Czech Republic; Department of Functional Ecology, Institute of Botany of the Czech Academy of Sciences, Dukelská 135, 379 81 Třeboň, Czech Republic
| | - Mária Čížková
- Laboratory of Cell Cycles of Algae (Laboratoř buněčných cyklů řas), Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Novohradská 237, 379 01 Třeboň, Czech Republic
| | - Martin Jakubec
- Department of Molecular Biology, University of Bergen, Thormøhlens gate 55, NO-5008 Bergen, Norway
| | - Frode Rise
- Department of Chemistry, Universitetet i Oslo, P. O. Box 1033, Blindern, NO-0315 Oslo, Norway
| | - Øyvind Halskau
- Department of Molecular Biology, University of Bergen, Thormøhlens gate 55, NO-5008 Bergen, Norway
| | - Kateřina Bišová
- Laboratory of Cell Cycles of Algae (Laboratoř buněčných cyklů řas), Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Novohradská 237, 379 01 Třeboň, Czech Republic
| | - Samuel Furse
- Department of Molecular Biology, University of Bergen, Thormøhlens gate 55, NO-5008 Bergen, Norway; Core Metabolomics and Lipidomics Laboratory, Wellcome Trust-MRL Institute of Metabolic Science, University of Cambridge, Level 4, Pathology Building, Addenbrooke's Hospital, Cambridge CB2 0QQ, United Kingdom; Biological chemistry group, Jodrell laboratory, Royal Botanic Gardens Kew, United Kingdom.
| |
Collapse
|
11
|
Lin YL, Chung CL, Chen MH, Chen CH, Fang SC. SUMO Protease SMT7 Modulates Ribosomal Protein L30 and Regulates Cell-Size Checkpoint Function. THE PLANT CELL 2020; 32:1285-1307. [PMID: 32060174 PMCID: PMC7145494 DOI: 10.1105/tpc.19.00301] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 01/02/2020] [Accepted: 02/11/2020] [Indexed: 05/10/2023]
Abstract
Proliferating cells actively coordinate growth and cell division to ensure cell-size homeostasis; however, the underlying mechanism through which size is controlled is poorly understood. Defect in a SUMO protease protein, suppressor of mat3 7 (SMT7), has been shown to reduce cell division number and increase cell size of the small-size mutant mating type locus 3-4 (mat3-4), which contains a defective retinoblastoma tumor suppressor-related protein of Chlamydomonas (Chlamydomonas reinhardtii). Here we describe development of an in vitro SUMOylation system using Chlamydomonas components and use it to provide evidence that SMT7 is a bona fide SUMO protease. We further demonstrate that the SUMO protease activity is required for supernumerous mitotic divisions of the mat3-4 cells. In addition, we identified RIBOSOMAL PROTEIN L30 (RPL30) as a prime SMT7 target and demonstrated that its SUMOylation is an important modulator of cell division in mat3-4 cells. Loss of SMT7 caused elevated SUMOylated RPL30 levels. Importantly, overexpression of the translational fusion version of RPL30-SUMO4, which mimics elevation of the SUMOylated RPL30 protein in mat3-4, caused a decrease in mitotic division and recapitulated the size-increasing phenotype of the smt7-1 mat3-4 cells. In summary, our study reveals a novel mechanism through which a SUMO protease regulates cell division in the mat3-4 mutant of Chlamydomonas and provides yet another important example of the role that protein SUMOylation can play in regulating key cellular processes, including cell division.
Collapse
Affiliation(s)
- Yen-Ling Lin
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan 741, Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
- Ph.D. Program in Microbial Genomics, National Chung Hsing University and Academia Sinica, Taichung 402, Taiwan
| | - Chin-Lin Chung
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan 741, Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Ming-Hui Chen
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan 741, Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Chun-Han Chen
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan 741, Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Su-Chiung Fang
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan 741, Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|
12
|
Liu F, Yazdani M, Ahner BA, Wu M. An array microhabitat device with dual gradients revealed synergistic roles of nitrogen and phosphorous in the growth of microalgae. LAB ON A CHIP 2020; 20:798-805. [PMID: 31971190 DOI: 10.1039/c9lc01153f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Harmful algal blooms (HABs) are an emerging environmental problem contaminating water resources and disrupting the balance of the ecosystems. HABs are caused by the sudden growth of photosynthetic algal cells in both fresh and marine water, and have been expanding in extent and appearing more frequently due to the climate change and population growth. Despite the urgency of the problem, the exact environmental conditions that trigger HABs are unknown. This is in part due to the lack of high throughput tools for screening environmental parameters in promoting the growth of photosynthetic microorganisms. In this article, we developed an array microhabitat device with well defined dual nutrient gradients suitable for quantitative studies of multiple environmental parameters in microalgal cell growth. This device enabled an ability to provide 64 different nutrient conditions [nitrogen (N), phosphorous (P), and N : P ratio] at the same time, and the gradient generation took less than 90 min, advancing the current pond and test tube assays in terms of time and cost. Using a photosynthetic algal cell line, Chlamydomonas reinhardtii, preconditioned in co-limited media, we revealed that N and P synergistically promoted cell growth. Interestingly, no discernible response was observed when single P or N gradient was imposed. Our work demonstrated the enabling capability of the microfluidic platform for screening effects of multiple environmental factors in photosynthetic cell growth, and highlighted the importance of the synergistic roles of environmental factors in algal cell growth.
Collapse
Affiliation(s)
- Fangchen Liu
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA.
| | - Mohammad Yazdani
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA.
| | - Beth A Ahner
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA.
| | - Mingming Wu
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
13
|
Torres-Romero I, Kong F, Légeret B, Beisson F, Peltier G, Li-Beisson Y. Chlamydomonas cell cycle mutant crcdc5 over-accumulates starch and oil. Biochimie 2019; 169:54-61. [PMID: 31563539 DOI: 10.1016/j.biochi.2019.09.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 09/23/2019] [Indexed: 10/25/2022]
Abstract
The use of algal biomass for biofuel production requires improvements in both biomass productivity and its energy density. Green microalgae store starch and oil as two major forms of carbon reserves. Current strategies to increase the amount of carbon reserves often compromise algal growth. To better understand the cellular mechanisms connecting cell division to carbon storage, we examined starch and oil accumulation in two Chlamydomonas mutants deficient in a gene encoding a homolog of the Arabidopsis Cell Division Cycle 5 (CDC5), a MYB DNA binding protein known to be involved in cell cycle in higher plants. The two crcdc5 mutants (crcdc5-1 and crcdc5-2) were found to accumulate significantly higher amount of starch and oil than their corresponding parental lines. Flow cytometry analysis on synchronized cultures cultivated in a diurnal light/dark cycle revealed an abnormal division of the two mutants, characterized by a prolonged S/M phase, therefore demonstrating its implication in cell cycle in Chlamydomonas. Taken together, these results suggest that the energy saved by a slowdown in cell division is used for the synthesis of reserve compounds. This work highlights the importance in understanding the interplay between cell cycle and starch/oil homeostasis, which should have a critical impact on improving lipid/starch productivity.
Collapse
Affiliation(s)
- Ismael Torres-Romero
- Aix Marseille Univ, CEA, CNRS, Institut de Biosciences et Biotechnologies Aix-Marseille, CEA Cadarache, 13108, Saint Paul-Lez-Durance, France
| | - Fantao Kong
- Aix Marseille Univ, CEA, CNRS, Institut de Biosciences et Biotechnologies Aix-Marseille, CEA Cadarache, 13108, Saint Paul-Lez-Durance, France
| | - Bertrand Légeret
- Aix Marseille Univ, CEA, CNRS, Institut de Biosciences et Biotechnologies Aix-Marseille, CEA Cadarache, 13108, Saint Paul-Lez-Durance, France
| | - Fred Beisson
- Aix Marseille Univ, CEA, CNRS, Institut de Biosciences et Biotechnologies Aix-Marseille, CEA Cadarache, 13108, Saint Paul-Lez-Durance, France
| | - Gilles Peltier
- Aix Marseille Univ, CEA, CNRS, Institut de Biosciences et Biotechnologies Aix-Marseille, CEA Cadarache, 13108, Saint Paul-Lez-Durance, France
| | - Yonghua Li-Beisson
- Aix Marseille Univ, CEA, CNRS, Institut de Biosciences et Biotechnologies Aix-Marseille, CEA Cadarache, 13108, Saint Paul-Lez-Durance, France.
| |
Collapse
|
14
|
Ahmad Z, Magyar Z, Bögre L, Papdi C. Cell cycle control by the target of rapamycin signalling pathway in plants. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:2275-2284. [PMID: 30918972 DOI: 10.1093/jxb/erz140] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 03/15/2019] [Indexed: 06/09/2023]
Abstract
Cells need to ensure a sufficient nutrient and energy supply before committing to proliferate. In response to positive mitogenic signals, such as light, sugar availability, and hormones, the target of rapamycin (TOR) signalling pathway promotes cell growth that connects to the entry and passage through the cell division cycle via multiple signalling mechanisms. Here, we summarize current understanding of cell cycle regulation by the RBR-E2F regulatory hub and the DREAM-like complexes, and highlight possible functional relationships between these regulators and TOR signalling. A genetic screen recently uncovered a downstream signalling component to TOR that regulates cell proliferation, YAK1, a member of the dual specificity tyrosine phosphorylation-regulated kinase (DYRK) family. YAK1 activates the plant-specific SIAMESE-RELATED (SMR) cyclin-dependent kinase inhibitors and therefore could be important to regulate both the CDKA-RBR-E2F pathway to control the G1/S transition and the mitotic CDKB1;1 to control the G2/M transition. TOR, as a master regulator of both protein synthesis-driven cell growth and cell proliferation is also central for cell size homeostasis. We conclude the review by briefly highlighting the potential applications of combining TOR and cell cycle knowledge in the context of ensuring future food security.
Collapse
Affiliation(s)
- Zaki Ahmad
- School of Biological Sciences, Bourne Laboratory. Royal Holloway, University of London, Egham, Surrey, UK
| | - Zoltán Magyar
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences Szeged, Hungary
| | - László Bögre
- School of Biological Sciences, Bourne Laboratory. Royal Holloway, University of London, Egham, Surrey, UK
| | - Csaba Papdi
- School of Biological Sciences, Bourne Laboratory. Royal Holloway, University of London, Egham, Surrey, UK
| |
Collapse
|
15
|
Bio-mining of Lanthanides from Red Mud by Green Microalgae. Molecules 2019; 24:molecules24071356. [PMID: 30959876 PMCID: PMC6480188 DOI: 10.3390/molecules24071356] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/03/2019] [Accepted: 04/04/2019] [Indexed: 12/16/2022] Open
Abstract
Red mud is a by-product of alumina production containing lanthanides. Growth of green microalgae on red mud and the intracellular accumulation of lanthanides was tested. The best growing species was Desmodesmus quadricauda (2.71 cell number doublings/day), which accumulated lanthanides to the highest level (27.3 mg/kg/day), if compared with Chlamydomonas reinhardtii and Parachlorella kessleri (2.50, 2.37 cell number doublings and 24.5, 12.5 mg/kg per day, respectively). With increasing concentrations of red mud, the growth rate decreased (2.71, 2.62, 2.43 cell number doublings/day) due to increased shadowing of cells by undissolved red mud particles. The accumulated lanthanide content, however, increased in the most efficient alga Desmodesmus quadricauda within 2 days from zero in red-mud free culture to 12.4, 39.0, 54.5 mg/kg of dry mass at red mud concentrations of 0.03, 0.05 and 0.1%, respectively. Red mud alleviated the metal starvation caused by cultivation in incomplete nutrient medium without added microelements. Moreover, the proportion of lanthanides in algae grown in red mud were about 250, 138, 117% higher than in culture grown in complete nutrient medium at red mud concentrations of 0.03, 0.05, 0.1%. Thus, green algae are prospective vehicles for bio-mining or bio-leaching of lanthanides from red mud.
Collapse
|
16
|
Roth MS, Gallaher SD, Westcott DJ, Iwai M, Louie KB, Mueller M, Walter A, Foflonker F, Bowen BP, Ataii NN, Song J, Chen JH, Blaby-Haas CE, Larabell C, Auer M, Northen TR, Merchant SS, Niyogi KK. Regulation of Oxygenic Photosynthesis during Trophic Transitions in the Green Alga Chromochloris zofingiensis. THE PLANT CELL 2019; 31:579-601. [PMID: 30787178 PMCID: PMC6482638 DOI: 10.1105/tpc.18.00742] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 12/18/2018] [Accepted: 02/15/2019] [Indexed: 05/04/2023]
Abstract
Light and nutrients are critical regulators of photosynthesis and metabolism in plants and algae. Many algae have the metabolic flexibility to grow photoautotrophically, heterotrophically, or mixotrophically. Here, we describe reversible Glc-dependent repression/activation of oxygenic photosynthesis in the unicellular green alga Chromochloris zofingiensis. We observed rapid and reversible changes in photosynthesis, in the photosynthetic apparatus, in thylakoid ultrastructure, and in energy stores including lipids and starch. Following Glc addition in the light, C. zofingiensis shuts off photosynthesis within days and accumulates large amounts of commercially relevant bioproducts, including triacylglycerols and the high-value nutraceutical ketocarotenoid astaxanthin, while increasing culture biomass. RNA sequencing reveals reversible changes in the transcriptome that form the basis of this metabolic regulation. Functional enrichment analyses show that Glc represses photosynthetic pathways while ketocarotenoid biosynthesis and heterotrophic carbon metabolism are upregulated. Because sugars play fundamental regulatory roles in gene expression, physiology, metabolism, and growth in both plants and animals, we have developed a simple algal model system to investigate conserved eukaryotic sugar responses as well as mechanisms of thylakoid breakdown and biogenesis in chloroplasts. Understanding regulation of photosynthesis and metabolism in algae could enable bioengineering to reroute metabolism toward beneficial bioproducts for energy, food, pharmaceuticals, and human health.
Collapse
Affiliation(s)
- Melissa S Roth
- Howard Hughes Medical Institute, Department of Plant and Microbial Biology, University of California, Berkeley, California 94720-3102
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Sean D Gallaher
- Department of Chemistry and Biochemistry and Institute for Genomics and Proteomics, University of California, Los Angeles, California 90095-1569
| | - Daniel J Westcott
- Howard Hughes Medical Institute, Department of Plant and Microbial Biology, University of California, Berkeley, California 94720-3102
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Masakazu Iwai
- Howard Hughes Medical Institute, Department of Plant and Microbial Biology, University of California, Berkeley, California 94720-3102
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Katherine B Louie
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
- U.S. Department of Energy Joint Genome Institute, Walnut Creek, California 94598
| | - Maria Mueller
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Andreas Walter
- Department of Anatomy, University of California, San Francisco, California 94143
- National Center for X-ray Tomography, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Fatima Foflonker
- Biology Department, Brookhaven National Laboratory, Upton, New York 11973
| | - Benjamin P Bowen
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
- U.S. Department of Energy Joint Genome Institute, Walnut Creek, California 94598
| | - Nassim N Ataii
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Junha Song
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Jian-Hua Chen
- Department of Anatomy, University of California, San Francisco, California 94143
- National Center for X-ray Tomography, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | | | - Carolyn Larabell
- Department of Anatomy, University of California, San Francisco, California 94143
- National Center for X-ray Tomography, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Manfred Auer
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Trent R Northen
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
- U.S. Department of Energy Joint Genome Institute, Walnut Creek, California 94598
| | - Sabeeha S Merchant
- Department of Chemistry and Biochemistry and Institute for Genomics and Proteomics, University of California, Los Angeles, California 90095-1569
| | - Krishna K Niyogi
- Howard Hughes Medical Institute, Department of Plant and Microbial Biology, University of California, Berkeley, California 94720-3102
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| |
Collapse
|