1
|
Li L, Fu X, Qi X, Xiao B, Liu C, Wu Q, Zhu J, Xie C. Harnessing haploid-inducer mediated genome editing for accelerated maize variety development. PLANT BIOTECHNOLOGY JOURNAL 2025; 23:1604-1614. [PMID: 39936495 PMCID: PMC12018813 DOI: 10.1111/pbi.14608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 12/20/2024] [Accepted: 01/21/2025] [Indexed: 02/13/2025]
Abstract
The integration of haploid induction and genome editing, termed HI-Edit/IMGE, is a promising tool for generating targeted mutations for crop breeding. However, the technical components and stacking suitable for the maize seed industry have yet to be fully characterised and tested. Here, we developed and assessed three HI-Edit/IMGE maize lines: EditWx, EditSh, and EditWx&Sh, using the haploid inducer CHOI3 and lines engineered using the CRISPR-Cas9 system targeting the Waxy1 (Wx1) and Shrunken2 (Sh2) genes. We meticulously characterised the HI-Edit/IMGE systems, focusing on copy numbers and the mutant alleles mtl and dmp, which facilitate haploid induction. Using B73 and six other parental lines of major commercial varieties as recipients, HI-Edit/IMGE demonstrated maternal haploid induction efficiencies ranging from 8.55% to 20.89% and targeted mutation rates between 0.38% and 1.46%. Comprehensive assessment verified the haploid identification, target gene editing accuracy, genome background integrity, and related agronomic traits. Notably, EditWx&Sh successfully combined distinct CRISPR-Cas9 systems to induce multiple desired mutations, highlighting the potential of HI-Edit/IMGE in accelerating the integration of edited traits into commercial maize varieties. Our findings underscore the importance of meticulous Cas9 copy number characterisation and highlight potential challenges related to somatic chimerism. We also validated the performance of single-cross haploids derived using the HI-Edit/IMGE process. Our results confirm the industrial applicability of generating targeted mutations through pollination and provide critical insights for further optimising this technology.
Collapse
Affiliation(s)
- Lina Li
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
- National Nanfan Research Institute (Sanya)Chinese Academy of Agricultural SciencesSanyaHainanChina
| | - Xiao Fu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Xiantao Qi
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Bing Xiao
- State Key Laboratory of Efficient Utilization of Arid and Semi‐Arid Arable Land in Northern China, Institute of Agricultural Resources and Regional PlanningChinese Academy of Agricultural SciencesBeijingChina
| | - Changling Liu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
- National Nanfan Research Institute (Sanya)Chinese Academy of Agricultural SciencesSanyaHainanChina
| | - Qingyu Wu
- State Key Laboratory of Efficient Utilization of Arid and Semi‐Arid Arable Land in Northern China, Institute of Agricultural Resources and Regional PlanningChinese Academy of Agricultural SciencesBeijingChina
| | - Jinjie Zhu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Chuanxiao Xie
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
- National Nanfan Research Institute (Sanya)Chinese Academy of Agricultural SciencesSanyaHainanChina
| |
Collapse
|
2
|
Oh Y, Nagalakshmi U, Dahlbeck D, Koehler N, Cho M, Dinesh‐Kumar SP, Staskawicz BJ. Heritable virus-induced germline editing in tomato. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 122:e70115. [PMID: 40163287 PMCID: PMC11956848 DOI: 10.1111/tpj.70115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/07/2025] [Accepted: 03/10/2025] [Indexed: 04/02/2025]
Abstract
Here, we report the successful implementation of heritable virus-induced genome editing (VIGE) in tomato (Solanum lycopersicum). We generated three transgenic tomato lines expressing Streptococcus pyogenes Cas9 (SpCas9) under the control of Cauliflower mosaic virus 35S (35S), S. lycopersicum ribosomal protein S5A (SlRPS5A), or S. lycopersicum YAO promoters (SlYAO). These three lines were tested for somatic and heritable editing using the tobacco rattle virus (TRV)-based system carrying guide RNAs (gRNAs) fused with mobile RNA sequences. TRV with gRNA targeted to Phytoene desaturase (SlPDS) and Downy mildew resistance 6 (SlDMR6) genes fused to mobile RNA sequences showed significant somatic editing efficiency in all three tomato lines expressing SpCas9. However, the progenies from the SlYAO promoter-driven SpCas9 tomato infected with TRV with gRNA targeted to SlDMR6 fused to the mobile RNA sequence resulted in monoallelic mutations with a frequency of 3%. Optimization of environmental conditions, such as reduced light intensity, significantly increased heritable editing frequencies, from 0% to 86% at the SlPDS and from 3% to 100% at the SlDMR6, including biallelic mutations. These findings underscore the use of appropriate promoters to express Cas nucleases and optimized environmental conditions to enhance heritable genome editing efficiency in tomato using VIGE. Furthermore, our method enables the generation of mutants without additional tissue culture or transformation once a SpCas9-expressing tomato line is established.
Collapse
Affiliation(s)
- Youngbin Oh
- Innovative Genomics InstituteUniversity of CaliforniaBerkeleyCalifornia94720USA
| | - Ugrappa Nagalakshmi
- Department of Plant Biology and The Genome Center, The College of Biological SciencesUniversity of CaliforniaDavisCaliforniaUSA
| | - Douglas Dahlbeck
- Innovative Genomics InstituteUniversity of CaliforniaBerkeleyCalifornia94720USA
| | - Naio Koehler
- Innovative Genomics InstituteUniversity of CaliforniaBerkeleyCalifornia94720USA
| | - Myeong‐Je Cho
- Innovative Genomics InstituteUniversity of CaliforniaBerkeleyCalifornia94720USA
| | - Savithramma P. Dinesh‐Kumar
- Department of Plant Biology and The Genome Center, The College of Biological SciencesUniversity of CaliforniaDavisCaliforniaUSA
| | - Brian J. Staskawicz
- Innovative Genomics InstituteUniversity of CaliforniaBerkeleyCalifornia94720USA
- Department of Plant and Microbial BiologyUniversity of CaliforniaBerkeleyCalifornia94720USA
| |
Collapse
|
3
|
Kang B, Venkatesh J, Lee JH, Kim JM, Kwon JK, Kang BC. CRISPR/Cas9-mediated editing of eukaryotic elongation factor 1B gamma (eEF1Bγ) reduces Tobacco etch virus accumulation in Nicotiana benthamiana. PLANT CELL REPORTS 2025; 44:62. [PMID: 39985663 PMCID: PMC11846736 DOI: 10.1007/s00299-025-03440-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 01/27/2025] [Indexed: 02/24/2025]
Abstract
KEY MESSAGE Tobacco etch virus accumulation declined in Nicotiana benthamiana eEF1Bγ gene-edited lines, suggesting that eEF1Bγ may be a host factor for this virus. Viruses use host factors to replicate and move from cell to cell. Therefore, the editing of genes encoding viral host factors that are not essential for plant survival enables the rapid development of plants with durable virus resistance. Eukaryotic initiation factors, such as eIF4E and eIF4G, function as host factors for viral infection, and loss-of-function mutations of these factors lead to virus resistance. Broadening the spectrum of host factor targets would help expand resources for engineering virus resistance. In this study, we tested whether editing the eukaryotic translation elongation factor gene eEF1Bγ would produce virus-resistant plants. Accordingly, we targeted the four eEF1Bγ genes in Nicotiana benthamiana for editing using virus-induced gene editing (VIGE) with Tobacco rattle virus (TRV). Although we attempted to obtain plants edited for all four eEF1Bγ homologs, we failed to identify such plants. Instead, we obtained plants with three of the four homologs knocked out, harboring 1-bp insertion/deletions resulting in premature stop codons. These eEF1Bγ-edited plants did not exhibit resistance to Potato virus X (PVX), Tobacco mosaic virus (TMV), or Tomato bushy stunt virus (TBSV) but showed reduced accumulation of Tobacco etch virus (TEV) compared to wild-type plants. These findings demonstrate the feasibility of conferring resistance in plants through gene editing of eEF1Bγ, underscoring the importance of exploring diverse host factor targets for comprehensive virus resistance.
Collapse
Affiliation(s)
- Bomi Kang
- Interdisciplinary Program in Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jelli Venkatesh
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life Sciences, Plant Genomics Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Joung-Ho Lee
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life Sciences, Plant Genomics Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jung-Min Kim
- Interdisciplinary Program in Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | | | - Byoung-Cheorl Kang
- Interdisciplinary Program in Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life Sciences, Plant Genomics Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
- FarmyirehSe Co., Ltd., Seoul, 08826, Republic of Korea.
| |
Collapse
|
4
|
Kang GH, Ko Y, Lee JM. Enhancing virus-mediated genome editing for cultivated tomato through low temperature. PLANT CELL REPORTS 2025; 44:22. [PMID: 39762363 DOI: 10.1007/s00299-024-03392-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 11/27/2024] [Indexed: 01/28/2025]
Abstract
KEY MESSAGE Viral vector-mediated gene editing is enhanced for cultivated tomato under low temperature conditions, enabling higher mutation rates, heritable, and virus-free gene editing for efficient breeding. The CRISPR/Cas system, a versatile gene-editing tool, has revolutionized plant breeding by enabling precise genetic modifications. The development of robust and efficient genome-editing tools for crops is crucial for their application in plant breeding. In this study, we highly improved virus-induced genome-editing (VIGE) system for cultivated tomato. Vectors of tobacco rattle virus (TRV) and potato virus X (PVX) were used to deliver sgRNA targeting phytoene desaturase (SlPDS), along with mobile RNA sequences of tFT or tRNAIleu, into Cas9-overexpressing cultivated tomato (S. lycopersicum cv. Moneymaker). Our results demonstrate that low temperature significantly enhanced viral vector-mediated gene editing efficiency in both cotyledons and systemic upper leaves. However, no mutant progeny was obtained from TRV- and PVX301-infected MM-Cas9 plants. To address this challenge, we employed tissue culture techniques and found that low-temperature incubations at the initiation stage of tissue culture lead to enhanced editing efficiency in both vectors, resulting in a higher mutation rate (> 70%) of SlPDS in regenerated plants. Heritable gene-edited and virus-free progenies were successfully identified. This study presents a straightforward approach to enhance VIGE efficiency and the expeditious production of gene-edited lines in tomato breeding.
Collapse
Affiliation(s)
- Ga Hui Kang
- Department of Horticultural Science, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Yujung Ko
- Department of Horticultural Science, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Je Min Lee
- Department of Horticultural Science, Kyungpook National University, Daegu, 41566, Republic of Korea.
| |
Collapse
|
5
|
Lou H, Xiang H, Zeng W, Jiang J, Zhang J, Xu L, Zhao C, Gao Q, Li Z. Protocol for transformation-free genome editing in plants using RNA virus vectors for CRISPR-Cas delivery. STAR Protoc 2024; 5:103437. [PMID: 39504248 PMCID: PMC11577223 DOI: 10.1016/j.xpro.2024.103437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/17/2024] [Accepted: 10/14/2024] [Indexed: 11/08/2024] Open
Abstract
Plant virus vectors have emerged as promising tools for CRISPR-Cas reagent delivery. Here, we present a protocol for DNA-free plant genome editing using an engineered RNA virus vector for the transient delivery of CRISPR-Cas components. We describe steps for viral vector construction, viral vector recovery through agroinoculation of Nicotiana benthamiana, mechanical inoculation of target plant hosts, analysis of somatic mutagenesis frequency, and regeneration of mutant plants. The method achieves high editing efficiency and eliminates the need for stable plant transformation. For complete details on the use and execution of this protocol, please refer to Liu et al.1.
Collapse
Affiliation(s)
- Huanhuan Lou
- Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Haiying Xiang
- Yunnan Academy of Tobacco Science, Kunming, Yunnan 650106, China
| | - Wanli Zeng
- Yunnan Academy of Tobacco Science, Kunming, Yunnan 650106, China
| | - Jiarui Jiang
- Yunnan Academy of Tobacco Science, Kunming, Yunnan 650106, China
| | - Jianduo Zhang
- Yunnan Academy of Tobacco Science, Kunming, Yunnan 650106, China
| | - Li Xu
- Yunnan Academy of Tobacco Science, Kunming, Yunnan 650106, China
| | - Chenglu Zhao
- Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Qian Gao
- Yunnan Academy of Tobacco Science, Kunming, Yunnan 650106, China.
| | - Zhenghe Li
- Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
6
|
Li B, Sun C, Li J, Gao C. Targeted genome-modification tools and their advanced applications in crop breeding. Nat Rev Genet 2024; 25:603-622. [PMID: 38658741 DOI: 10.1038/s41576-024-00720-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2024] [Indexed: 04/26/2024]
Abstract
Crop improvement by genome editing involves the targeted alteration of genes to improve plant traits, such as stress tolerance, disease resistance or nutritional content. Techniques for the targeted modification of genomes have evolved from generating random mutations to precise base substitutions, followed by insertions, substitutions and deletions of small DNA fragments, and are finally starting to achieve precision manipulation of large DNA segments. Recent developments in base editing, prime editing and other CRISPR-associated systems have laid a solid technological foundation to enable plant basic research and precise molecular breeding. In this Review, we systematically outline the technological principles underlying precise and targeted genome-modification methods. We also review methods for the delivery of genome-editing reagents in plants and outline emerging crop-breeding strategies based on targeted genome modification. Finally, we consider potential future developments in precise genome-editing technologies, delivery methods and crop-breeding approaches, as well as regulatory policies for genome-editing products.
Collapse
Affiliation(s)
- Boshu Li
- New Cornerstone Science Laboratory, Center for Genome Editing, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Chao Sun
- New Cornerstone Science Laboratory, Center for Genome Editing, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jiayang Li
- Hainan Yazhou Bay Seed Laboratory, Sanya, China
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Caixia Gao
- New Cornerstone Science Laboratory, Center for Genome Editing, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
7
|
Bélanger JG, Copley TR, Hoyos-Villegas V, Charron JB, O'Donoughue L. A comprehensive review of in planta stable transformation strategies. PLANT METHODS 2024; 20:79. [PMID: 38822403 PMCID: PMC11140912 DOI: 10.1186/s13007-024-01200-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/01/2024] [Indexed: 06/03/2024]
Abstract
Plant transformation remains a major bottleneck to the improvement of plant science, both on fundamental and practical levels. The recalcitrant nature of most commercial and minor crops to genetic transformation slows scientific progress for a large range of crops that are essential for food security on a global scale. Over the years, novel stable transformation strategies loosely grouped under the term "in planta" have been proposed and validated in a large number of model (e.g. Arabidopsis and rice), major (e.g. wheat and soybean) and minor (e.g. chickpea and lablab bean) species. The in planta approach is revolutionary as it is considered genotype-independent, technically simple (i.e. devoid of or with minimal tissue culture steps), affordable, and easy to implement in a broad range of experimental settings. In this article, we reviewed and categorized over 300 research articles, patents, theses, and videos demonstrating the applicability of different in planta transformation strategies in 105 different genera across 139 plant species. To support this review process, we propose a classification system for the in planta techniques based on five categories and a new nomenclature for more than 30 different in planta techniques. In complement to this, we clarified some grey areas regarding the in planta conceptual framework and provided insights regarding the past, current, and future scientific impacts of these techniques. To support the diffusion of this concept across the community, this review article will serve as an introductory point for an online compendium about in planta transformation strategies that will be available to all scientists. By expanding our knowledge about in planta transformation, we can find innovative approaches to unlock the full potential of plants, support the growth of scientific knowledge, and stimulate an equitable development of plant research in all countries and institutions.
Collapse
Affiliation(s)
- Jérôme Gélinas Bélanger
- Centre de recherche sur les grains (CÉROM) Inc., 740 Chemin Trudeau, St-Mathieu-de-Beloeil, Québec, J3G 0E2, Canada.
- Department of Plant Science, McGill University, 21111 Lakeshore Road, St-Mathieu-de-Beloeil, Montréal, Québec, H9X 3V9, Canada.
| | - Tanya Rose Copley
- Centre de recherche sur les grains (CÉROM) Inc., 740 Chemin Trudeau, St-Mathieu-de-Beloeil, Québec, J3G 0E2, Canada
| | - Valerio Hoyos-Villegas
- Department of Plant Science, McGill University, 21111 Lakeshore Road, St-Mathieu-de-Beloeil, Montréal, Québec, H9X 3V9, Canada
| | - Jean-Benoit Charron
- Department of Plant Science, McGill University, 21111 Lakeshore Road, St-Mathieu-de-Beloeil, Montréal, Québec, H9X 3V9, Canada
| | - Louise O'Donoughue
- Centre de recherche sur les grains (CÉROM) Inc., 740 Chemin Trudeau, St-Mathieu-de-Beloeil, Québec, J3G 0E2, Canada.
| |
Collapse
|
8
|
Wu J, Zhang Y, Li F, Zhang X, Ye J, Wei T, Li Z, Tao X, Cui F, Wang X, Zhang L, Yan F, Li S, Liu Y, Li D, Zhou X, Li Y. Plant virology in the 21st century in China: Recent advances and future directions. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:579-622. [PMID: 37924266 DOI: 10.1111/jipb.13580] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/02/2023] [Indexed: 11/06/2023]
Abstract
Plant viruses are a group of intracellular pathogens that persistently threaten global food security. Significant advances in plant virology have been achieved by Chinese scientists over the last 20 years, including basic research and technologies for preventing and controlling plant viral diseases. Here, we review these milestones and advances, including the identification of new crop-infecting viruses, dissection of pathogenic mechanisms of multiple viruses, examination of multilayered interactions among viruses, their host plants, and virus-transmitting arthropod vectors, and in-depth interrogation of plant-encoded resistance and susceptibility determinants. Notably, various plant virus-based vectors have also been successfully developed for gene function studies and target gene expression in plants. We also recommend future plant virology studies in China.
Collapse
Affiliation(s)
- Jianguo Wu
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Vector-borne Virus Research Center, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yongliang Zhang
- State Key Laboratory of Plant Environmental Resilience and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Fangfang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xiaoming Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian Ye
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Taiyun Wei
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Vector-borne Virus Research Center, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhenghe Li
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Xiaorong Tao
- Department of Plant Pathology, The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China
| | - Feng Cui
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xianbing Wang
- State Key Laboratory of Plant Environmental Resilience and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Lili Zhang
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Fei Yan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Shifang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yule Liu
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Dawei Li
- State Key Laboratory of Plant Environmental Resilience and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xueping Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Yi Li
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Vector-borne Virus Research Center, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
| |
Collapse
|
9
|
Prado GS, Rocha DC, dos Santos LN, Contiliani DF, Nobile PM, Martinati-Schenk JC, Padilha L, Maluf MP, Lubini G, Pereira TC, Monteiro-Vitorello CB, Creste S, Boscariol-Camargo RL, Takita MA, Cristofani-Yaly M, de Souza AA. CRISPR technology towards genome editing of the perennial and semi-perennial crops citrus, coffee and sugarcane. FRONTIERS IN PLANT SCIENCE 2024; 14:1331258. [PMID: 38259920 PMCID: PMC10801916 DOI: 10.3389/fpls.2023.1331258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/14/2023] [Indexed: 01/24/2024]
Abstract
Gene editing technologies have opened up the possibility of manipulating the genome of any organism in a predicted way. CRISPR technology is the most used genome editing tool and, in agriculture, it has allowed the expansion of possibilities in plant biotechnology, such as gene knockout or knock-in, transcriptional regulation, epigenetic modification, base editing, RNA editing, prime editing, and nucleic acid probing or detection. This technology mostly depends on in vitro tissue culture and genetic transformation/transfection protocols, which sometimes become the major challenges for its application in different crops. Agrobacterium-mediated transformation, biolistics, plasmid or RNP (ribonucleoprotein) transfection of protoplasts are some of the commonly used CRISPR delivery methods, but they depend on the genotype and target gene for efficient editing. The choice of the CRISPR system (Cas9, Cas12), CRISPR mechanism (plasmid or RNP) and transfection technique (Agrobacterium spp., PEG solution, lipofection) directly impacts the transformation efficiency and/or editing rate. Besides, CRISPR/Cas technology has made countries rethink regulatory frameworks concerning genetically modified organisms and flexibilize regulatory obstacles for edited plants. Here we present an overview of the state-of-the-art of CRISPR technology applied to three important crops worldwide (citrus, coffee and sugarcane), considering the biological, methodological, and regulatory aspects of its application. In addition, we provide perspectives on recently developed CRISPR tools and promising applications for each of these crops, thus highlighting the usefulness of gene editing to develop novel cultivars.
Collapse
Affiliation(s)
- Guilherme Souza Prado
- Citrus Research Center “Sylvio Moreira” – Agronomic Institute (IAC), Cordeirópolis, Brazil
| | - Dhiôvanna Corrêia Rocha
- Citrus Research Center “Sylvio Moreira” – Agronomic Institute (IAC), Cordeirópolis, Brazil
- Institute of Biology, State University of Campinas (Unicamp), Campinas, Brazil
| | - Lucas Nascimento dos Santos
- Citrus Research Center “Sylvio Moreira” – Agronomic Institute (IAC), Cordeirópolis, Brazil
- Institute of Biology, State University of Campinas (Unicamp), Campinas, Brazil
| | - Danyel Fernandes Contiliani
- Sugarcane Research Center – Agronomic Institute (IAC), Ribeirão Preto, Brazil
- Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, Brazil
| | - Paula Macedo Nobile
- Sugarcane Research Center – Agronomic Institute (IAC), Ribeirão Preto, Brazil
| | | | - Lilian Padilha
- Coffee Center of the Agronomic Institute of Campinas (IAC), Campinas, Brazil
- Embrapa Coffee, Brazilian Agricultural Research Corporation, Brasília, Federal District, Brazil
| | - Mirian Perez Maluf
- Coffee Center of the Agronomic Institute of Campinas (IAC), Campinas, Brazil
- Embrapa Coffee, Brazilian Agricultural Research Corporation, Brasília, Federal District, Brazil
| | - Greice Lubini
- Sugarcane Research Center – Agronomic Institute (IAC), Ribeirão Preto, Brazil
- Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, Brazil
| | - Tiago Campos Pereira
- Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, Brazil
- Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, Brazil
| | | | - Silvana Creste
- Sugarcane Research Center – Agronomic Institute (IAC), Ribeirão Preto, Brazil
- Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, Brazil
| | | | - Marco Aurélio Takita
- Citrus Research Center “Sylvio Moreira” – Agronomic Institute (IAC), Cordeirópolis, Brazil
| | | | | |
Collapse
|
10
|
Wu X, Zhang Y, Jiang X, Ma T, Guo Y, Wu X, Guo Y, Cheng X. Considerations in engineering viral vectors for genome editing in plants. Virology 2024; 589:109922. [PMID: 37924727 DOI: 10.1016/j.virol.2023.109922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/24/2023] [Accepted: 10/27/2023] [Indexed: 11/06/2023]
Abstract
Plant viruses have been engineered to express proteins and induce gene silencing for decades. Recently, plant viruses have also been used to deliver components into plant cells for genome editing, a technique called virus-induced genome editing (VIGE). Although more than a dozen plant viruses have been engineered into VIGE vectors and VIGE has been successfully accomplished in some plant species, application of VIGE to crops that are difficult to tissue culture and/or have low regeneration efficiency is still tough. This paper discusses factors to consider for an ideal VIGE vector, including insertion capacity for foreign DNA, vertical transmission ability, expression level of the target gene, stability of foreign DNA insertion, and biosafety. We also proposed a step-by-step schedule for excavating the suitable viral vector for VIGE.
Collapse
Affiliation(s)
- Xiaoyun Wu
- College of Plant Protection, Northeast Agricultural University, Harbin, 150030, Heilongjiang, PR China; Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region of Chinese Education Ministry, Northeast Agricultural University, Harbin, 150030, PR China
| | - Ying Zhang
- College of Plant Protection, Northeast Agricultural University, Harbin, 150030, Heilongjiang, PR China
| | - Xue Jiang
- College of Plant Protection, Northeast Agricultural University, Harbin, 150030, Heilongjiang, PR China
| | - Tingshuai Ma
- College of Plant Protection, Northeast Agricultural University, Harbin, 150030, Heilongjiang, PR China
| | - Yating Guo
- College of Plant Protection, Northeast Agricultural University, Harbin, 150030, Heilongjiang, PR China
| | - Xiaoxia Wu
- College of Agriculture, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yushuang Guo
- Key Laboratory of Molecular Genetics, Guizhou Academy of Tobacco Science, Guiyang, 550081, Guizhou, PR China.
| | - Xiaofei Cheng
- College of Plant Protection, Northeast Agricultural University, Harbin, 150030, Heilongjiang, PR China; Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region of Chinese Education Ministry, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
11
|
Nishihara M, Muranaka T. Preface to the special issue "Current Status and Future Prospects for the Development of Crop Varieties and Breeding Materials Using Genome Editing Technology". PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2023; 40:181-184. [PMID: 38293252 PMCID: PMC10824492 DOI: 10.5511/plantbiotechnology.23.0000p] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Affiliation(s)
| | - Toshiya Muranaka
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
- Institution for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
12
|
Ding M, Piao CL, Zhang X, Zhu Y, Cui ML. Establishment of a high-efficiency transformation and genome editing method for an essential vegetable and medicine Solanum nigrum. PHYSIOLOGIA PLANTARUM 2023; 175:e14028. [PMID: 37882308 DOI: 10.1111/ppl.14028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 08/31/2023] [Indexed: 10/27/2023]
Abstract
Solanum nigrum, which belongs to the Solanaceae family, is an essential plant for food and medicine. It has many important secondary compounds, including glycoproteins, glycoalkaloids, polyphenolics, and anthocyanin-rich purple berries, as well as many ideal characteristics such as self-fertilization, a short life cycle and a small genome size that make it a potential model plant for the study of secondary metabolism and fruit development. In this study, we report a highly efficient and convenient tissue culture, transformation and genome editing method for S. nigrum using leaf segments after 8 weeks of tissue culture, with a required period from transformation initiation to harvest of about 3.5 months. Our results also show multi-shoot regeneration per leaf segment and a 100% shoot regeneration efficiency in a shoot regeneration medium. Moreover, over 82% of kanamycin-resistant plants exhibited strong green fluorescence marker protein expression, with genetic integration confirmed by PCR results and green fluorescence protein expression in their T1 progeny. Furthermore, we successfully applied this transformation method to achieve an average of 83% genome editing efficiency of SnMYB1, a gene involved in regulating the anthocyanin biosynthetic pathway of S. nigrum in response to missing nutrients. Taken together, the combination of highly efficient tissue culture, transformation and genome editing systems can provide a powerful platform for supporting fundamental research on the molecular mechanisms of secondary metabolism, fruit development, and production of important compounds by biotechnology.
Collapse
Affiliation(s)
- Mengdou Ding
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Chun-Lan Piao
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, China
| | - Xinyu Zhang
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, China
| | - Ying Zhu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Min-Long Cui
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
13
|
Tamilselvan-Nattar-Amutha S, Hiekel S, Hartmann F, Lorenz J, Dabhi RV, Dreissig S, Hensel G, Kumlehn J, Heckmann S. Barley stripe mosaic virus-mediated somatic and heritable gene editing in barley ( Hordeum vulgare L.). FRONTIERS IN PLANT SCIENCE 2023; 14:1201446. [PMID: 37404527 PMCID: PMC10315673 DOI: 10.3389/fpls.2023.1201446] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/02/2023] [Indexed: 07/06/2023]
Abstract
Genome editing strategies in barley (Hordeum vulgare L.) typically rely on Agrobacterium-mediated genetic transformation for the delivery of required genetic reagents involving tissue culture techniques. These approaches are genotype-dependent, time-consuming, and labor-intensive, which hampers rapid genome editing in barley. More recently, plant RNA viruses have been engineered to transiently express short guide RNAs facilitating CRISPR/Cas9-based targeted genome editing in plants that constitutively express Cas9. Here, we explored virus-induced genome editing (VIGE) based on barley stripe mosaic virus (BSMV) in Cas9-transgenic barley. Somatic and heritable editing in the ALBOSTRIANS gene (CMF7) resulting in albino/variegated chloroplast-defective barley mutants is shown. In addition, somatic editing in meiosis-related candidate genes in barley encoding ASY1 (an axis-localized HORMA domain protein), MUS81 (a DNA structure-selective endonuclease), and ZYP1 (a transverse filament protein of the synaptonemal complex) was achieved. Hence, the presented VIGE approach using BSMV enables rapid somatic and also heritable targeted gene editing in barley.
Collapse
|
14
|
Uranga M, Aragonés V, Daròs JA, Pasin F. Heritable CRISPR-Cas9 editing of plant genomes using RNA virus vectors. STAR Protoc 2023; 4:102091. [PMID: 36853698 PMCID: PMC9943877 DOI: 10.1016/j.xpro.2023.102091] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/05/2022] [Accepted: 01/17/2023] [Indexed: 02/11/2023] Open
Abstract
Viral vectors hold enormous potential for genome editing in plants as transient delivery vehicles of CRISPR-Cas components. Here, we describe a protocol to assemble plant viral vectors for single-guide RNA (sgRNA) delivery. The obtained viral constructs are based on compact T-DNA binary vectors of the pLX series and are delivered into Cas9-expressing plants through agroinoculation. This approach allows rapidly assessing sgRNA design for plant genome targeting, as well as the recovery of progeny with heritable mutations at targeted loci. For complete details on the use and execution of this protocol, please refer to Uranga et al. (2021)1 and Aragonés et al. (2022).2.
Collapse
Affiliation(s)
- Mireia Uranga
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas - Universitat Politècnica de València, Avenida de los Naranjos s/n, 46022 Valencia, Spain.
| | - Verónica Aragonés
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas - Universitat Politècnica de València, Avenida de los Naranjos s/n, 46022 Valencia, Spain.
| | - José-Antonio Daròs
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas - Universitat Politècnica de València, Avenida de los Naranjos s/n, 46022 Valencia, Spain.
| | - Fabio Pasin
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas - Universitat Politècnica de València, Avenida de los Naranjos s/n, 46022 Valencia, Spain.
| |
Collapse
|
15
|
Liu Q, Zhao C, Sun K, Deng Y, Li Z. Engineered biocontainable RNA virus vectors for non-transgenic genome editing across crop species and genotypes. MOLECULAR PLANT 2023; 16:616-631. [PMID: 36751129 DOI: 10.1016/j.molp.2023.02.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 01/13/2023] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
CRISPR/Cas genome-editing tools provide unprecedented opportunities for basic plant biology research and crop breeding. However, the lack of robust delivery methods has limited the widespread adoption of these revolutionary technologies in plant science. Here, we report an efficient, non-transgenic CRISPR/Cas delivery platform based on the engineered tomato spotted wilt virus (TSWV), an RNA virus with a host range of over 1000 plant species. We eliminated viral elements essential for insect transmission to liberate genome space for accommodating large genetic cargoes without sacrificing the ability to infect plant hosts. The resulting non-insect-transmissible viral vectors enabled effective and stable in planta delivery of Cas12a and Cas9 nucleases as well as adenine and cytosine base editors. In systemically infected plant tissues, the deconstructed TSWV-derived vectors induced efficient somatic gene mutations and base conversions in multiple crop species with little genotype dependency. Plants with heritable, bi-allelic mutations could be readily regenerated by culturing the virus-infected tissues in vitro without antibiotic selection. Moreover, we showed that antiviral treatment with ribavirin during tissue culture cleared the viral vectors in 100% of regenerated plants and further augmented the recovery of heritable mutations. Because many plants are recalcitrant to stable transformation, the viral delivery system developed in this work provides a promising tool to overcome gene delivery bottlenecks for genome editing in various crop species and elite varieties.
Collapse
Affiliation(s)
- Qian Liu
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Chenglu Zhao
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Kai Sun
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Yinlu Deng
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Zhenghe Li
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China; Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China; Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China.
| |
Collapse
|
16
|
Jin Y, Wang B, Bao M, Li Y, Xiao S, Wang Y, Zhang J, Zhao L, Zhang H, Hsu YH, Li M, Gu L. Development of an efficient expression system with large cargo capacity for interrogation of gene function in bamboo based on bamboo mosaic virus. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023. [PMID: 36794821 DOI: 10.1111/jipb.13468] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Bamboo is one of the fastest growing plants among monocotyledonous species and is grown extensively in subtropical regions. Although bamboo has high economic value and produces much biomass quickly, gene functional research is hindered by the low efficiency of genetic transformation in this species. We therefore explored the potential of a bamboo mosaic virus (BaMV)-mediated expression system to investigate genotype-phenotype associations. We determined that the sites between the triple gene block proteins (TGBps) and the coat protein (CP) of BaMV are the most efficient insertion sites for the expression of exogenous genes in both monopodial and sympodial bamboo species. Moreover, we validated this system by individually overexpressing the two endogenous genes ACE1 and DEC1, which resulted in the promotion and suppression of internode elongation, respectively. In particular, this system was able to drive the expression of three 2A-linked betalain biosynthesis genes (more than 4 kb in length) to produce betalain, indicating that it has high cargo capacity and may provide the prerequisite basis for the development of a DNA-free bamboo genome editing platform in the future. Since BaMV can infect multiple bamboo species, we anticipate that the system described in this study will greatly contribute to gene function research and further promote the molecular breeding of bamboo.
Collapse
Affiliation(s)
- Yandong Jin
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Baijie Wang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Mingchuan Bao
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yujie Li
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shengwu Xiao
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yuhua Wang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jun Zhang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Liangzhen Zhao
- Basic Forestry and Proteomics Research Center, School of Future Technology, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Hangxiao Zhang
- Basic Forestry and Proteomics Research Center, School of Future Technology, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yau-Heiu Hsu
- Graduate Institute of Biotechnology, Chung Hsing University, Taichung, 40227, China
| | - Mingjie Li
- College of crop science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Lianfeng Gu
- Basic Forestry and Proteomics Research Center, School of Future Technology, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
17
|
Mahmood MA, Naqvi RZ, Rahman SU, Amin I, Mansoor S. Plant Virus-Derived Vectors for Plant Genome Engineering. Viruses 2023; 15:v15020531. [PMID: 36851743 PMCID: PMC9958682 DOI: 10.3390/v15020531] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/25/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
Advances in genome engineering (GE) tools based on sequence-specific programmable nucleases have revolutionized precise genome editing in plants. However, only the traditional approaches are used to deliver these GE reagents, which mostly rely on Agrobacterium-mediated transformation or particle bombardment. These techniques have been successfully used for the past decades for the genetic engineering of plants with some limitations relating to lengthy time-taking protocols and transgenes integration-related regulatory concerns. Nevertheless, in the era of climate change, we require certain faster protocols for developing climate-smart resilient crops through GE to deal with global food security. Therefore, some alternative approaches are needed to robustly deliver the GE reagents. In this case, the plant viral vectors could be an excellent option for the delivery of GE reagents because they are efficient, effective, and precise. Additionally, these are autonomously replicating and considered as natural specialists for transient delivery. In the present review, we have discussed the potential use of these plant viral vectors for the efficient delivery of GE reagents. We have further described the different plant viral vectors, such as DNA and RNA viruses, which have been used as efficient gene targeting systems in model plants, and in other important crops including potato, tomato, wheat, and rice. The achievements gained so far in the use of viral vectors as a carrier for GE reagent delivery are depicted along with the benefits and limitations of each viral vector. Moreover, recent advances have been explored in employing viral vectors for GE and adapting this technology for future research.
Collapse
Affiliation(s)
- Muhammad Arslan Mahmood
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), College of Pakistan Institute of Engineering and Applied Sciences (PIEAS), Jhang Road, Faisalabad 38000, Pakistan
- Department of Biological Sciences, University of Sialkot, Sialkot 51310, Pakistan
| | - Rubab Zahra Naqvi
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), College of Pakistan Institute of Engineering and Applied Sciences (PIEAS), Jhang Road, Faisalabad 38000, Pakistan
| | - Saleem Ur Rahman
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), College of Pakistan Institute of Engineering and Applied Sciences (PIEAS), Jhang Road, Faisalabad 38000, Pakistan
| | - Imran Amin
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), College of Pakistan Institute of Engineering and Applied Sciences (PIEAS), Jhang Road, Faisalabad 38000, Pakistan
| | - Shahid Mansoor
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), College of Pakistan Institute of Engineering and Applied Sciences (PIEAS), Jhang Road, Faisalabad 38000, Pakistan
- International Center for Chemical and Biological Sciences, University of Karachi, Karachi 74000, Pakistan
- Correspondence:
| |
Collapse
|
18
|
Mabuza LM, Mchunu NP, Crampton BG, Swanevelder DZH. Accelerated Breeding for Helianthus annuus (Sunflower) through Doubled Haploidy: An Insight on Past and Future Prospects in the Era of Genome Editing. PLANTS (BASEL, SWITZERLAND) 2023; 12:485. [PMID: 36771570 PMCID: PMC9921946 DOI: 10.3390/plants12030485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/11/2023] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
The aim of any breeding process is to fully express the targeted, superior/desirable parent characteristic in the progeny. Hybrids are often used in this dynamic, and complex process for which homozygous parents-which may require up to eight generations of back crossing and selection-are required. Doubled haploid (DH) technologies can facilitate the production of true breeding lines faster and in a more efficient manner than the traditional back crossing and selection strategies. Sunflower is the third most important oilseed crop in the world and has no available double haploid induction procedure/technique that can be efficiently used in breeding programs. A reproducible and efficient doubled haploid induction method would be a valuable tool in accelerating the breeding of new elite sunflower varieties. Although several attempts have been made, the establishment of a sunflower doubled haploid induction protocol has remained a challenge owing recalcitrance to in vitro culture regeneration. Approaches for haploid development in other crops are often cultivar specific, difficult to reproduce, and rely on available tissue culture protocols-which on their own are also cultivar and/or species specific. As an out-crossing crop, the lack of a double haploid system limits sunflower breeding and associated improvement processes, thereby delaying new hybrid and trait developments. Significant molecular advances targeting genes, such as the centromeric histone 3 (CenH3) and Matrilineal (MTL) gene with CRISPR/Cas9, and the successful use of viral vectors for the delivery of CRISPR/Cas9 components into plant cells eliminating the in vitro culture bottleneck, have the potential to improve double haploid technology in sunflower. In this review, the different strategies, their challenges, and opportunities for achieving doubled haploids in sunflower are explored.
Collapse
Affiliation(s)
- Londiwe M. Mabuza
- Biotechnology Platform, Agricultural Research Council, Onderstepoort Campus, Onderstepoort, Pretoria 0110, South Africa
- Department of Plant Sciences, Faculty of Natural and Agricultural Sciences, University of Pretoria, Private Bag X20, Pretoria 0028, South Africa
| | - Nokuthula P. Mchunu
- Biotechnology Platform, Agricultural Research Council, Onderstepoort Campus, Onderstepoort, Pretoria 0110, South Africa
- Strategy, Planning and Partnerships, National Research Foundation, Pretoria 0184, South Africa
| | - Bridget G. Crampton
- Department of Plant Sciences, Faculty of Natural and Agricultural Sciences, University of Pretoria, Private Bag X20, Pretoria 0028, South Africa
| | - Dirk Z. H. Swanevelder
- Biotechnology Platform, Agricultural Research Council, Onderstepoort Campus, Onderstepoort, Pretoria 0110, South Africa
| |
Collapse
|
19
|
Heritable Virus-Induced Genome Editing (VIGE) in Nicotiana attenuata. Methods Mol Biol 2023; 2606:203-218. [PMID: 36592318 DOI: 10.1007/978-1-0716-2879-9_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The CRISPR/Cas9 system is an extremely powerful tool for targeted mutagenesis in plants. However, plant genome editing relies on the labor-intensive plant regeneration method for generating gene-edited plants. To overcome this bottleneck, several virus-induced genome editing (VIGE) techniques have been developed. The VIGE system aims to induce targeted mutations in germ cells without plant regeneration. However, due to the delivery issues of a large Cas9 protein, scientists focus on developing a virus-mediated delivery system for guide RNA into Cas9-overproducing plants. Here, we describe how to induce heritable targeted mutations in a non-model plant, Nicotiana attenuata, using VIGE system. This method will be applied for manipulating the target genes in any plants that scientists are interested in.
Collapse
|
20
|
Ma X, Li X, Li Z. Transgene-Free Genome Editing in Nicotiana benthamiana with CRISPR/Cas9 Delivered by a Rhabdovirus Vector. Methods Mol Biol 2023; 2653:173-185. [PMID: 36995626 DOI: 10.1007/978-1-0716-3131-7_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
The clustered regularly interspersed short palindromic repeats (CRISPR)/Cas systems have become the most widely adopted genome editing platform owing to their unprecedented simplicity, efficiency, and versatility. Typically, the genome editing enzyme is expressed in plant cells from an integrated transgene delivered by either Agrobacterium-mediated or biolistic transformation. Recently, plant virus vectors have emerged as promising tools for the in planta delivery of CRISPR/Cas reagent. Here, we provide a protocol for CRISPR/Cas9-mediated genome editing in the model tobacco plant Nicotiana benthamiana using a recombinant negative-stranded RNA rhabdovirus vector. The method is based on infection of N. benthamiana with a Sonchus yellow net virus (SYNV)-based vector that carries the Cas9 and guide RNA expression cassettes to target specific genome loci for mutagenesis. With this method, mutant plants free of foreign DNA can be obtained within 4-5 months.
Collapse
Affiliation(s)
- Xiaonan Ma
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Xuemei Li
- Technology Center, China Tobacco Yunnan Industrial Co. LTD, Kunming, Yunnan, China
| | - Zhenghe Li
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China.
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China.
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China.
| |
Collapse
|
21
|
Su Y, Xu J, Jiang Q, Zhang Q, Wang C, Bin Y, Song Z. Construction of Full-Length Infectious cDNA Clones of Citrus Mosaic Virus RNA1 and RNA2 and Infection of Citrus Seedlings by Agrobacterium-Mediated Vacuum-Infiltration. PHYTOPATHOLOGY 2023; 113:6-10. [PMID: 35906769 DOI: 10.1094/phyto-05-22-0154-sc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The development of full-length infectious cDNA clones for plant RNA viruses is important for studying their molecular biological characteristics, functional genomics, pathogenesis, and vectorization applications. Citrus mosaic virus (CiMV), a member of the genus Sadwavirus, is of economic importance to the citrus industry and comprises a bipartite, positive-sense, single-stranded RNA genome encapsidated in icosahedral virions. In the present study, full-length cDNA clones of CiMV RNA1 and RNA2 were constructed based on a ternary yeast-Escherichia coli-Agrobacterium tumefaciens shuttle vector, pTY, using transformation-associated recombination (TAR) strategy. Infectivity of cDNA clones of CiMV RNA1 and RNA2 was examined in multiple citrus varieties via Agrobacterium-mediated vacuum-infiltration (AVI) through symptom observation, RT-PCR, and virion detection with an electron microscope. Furthermore, the genome-sized RT-PCR fragments of RNA1 and RNA2 were obtained from symptomatic Jinchengyou (Citrus grandis) plants infected by the cloned virus (CiMV211). In addition, CiMV211 produced typical symptoms of wild-type CiMV in cowpea (Vigna angularis) plants inoculated by Agrobacterium-mediated injection. This is the first report of infectious cDNA clones of CiMV, which may lay the foundation for research on the pathogenesis and vectorization of the virus.
Collapse
Affiliation(s)
- Yue Su
- Citrus Research Institute, Southwest University/National Citrus Engineering Research Center, Chongqing 400712, P.R. China
| | - Jianjian Xu
- Citrus Research Institute, Southwest University/National Citrus Engineering Research Center, Chongqing 400712, P.R. China
| | - Qiqi Jiang
- Citrus Research Institute, Southwest University/National Citrus Engineering Research Center, Chongqing 400712, P.R. China
| | - Qi Zhang
- Citrus Research Institute, Southwest University/National Citrus Engineering Research Center, Chongqing 400712, P.R. China
| | - Chunqing Wang
- Citrus Research Institute, Southwest University/National Citrus Engineering Research Center, Chongqing 400712, P.R. China
| | - Yu Bin
- Citrus Research Institute, Southwest University/National Citrus Engineering Research Center, Chongqing 400712, P.R. China
| | - Zhen Song
- Citrus Research Institute, Southwest University/National Citrus Engineering Research Center, Chongqing 400712, P.R. China
| |
Collapse
|
22
|
Guo G, Li MJ, Lai JL, Du ZY, Liao QS. Development of tobacco rattle virus-based platform for dual heterologous gene expression and CRISPR/Cas reagent delivery. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 325:111491. [PMID: 36216296 DOI: 10.1016/j.plantsci.2022.111491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 09/29/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
A large number of viral delivery systems have been developed for characterizing functional genes and producing heterologous recombinant proteins in plants, and but most of them are unable to co-express two fusion-free foreign proteins in the whole plant for extended periods of time. In this study, we modified tobacco rattle virus (TRV) as a TRVe dual delivery vector, using the strategy of gene substitution. The reconstructed TRVe had the capability to simultaneously produce two fusion-free foreign proteins at the whole level of Nicotiana benthamiana, and maintained the genetic stability for the insert of double foreign genes. Moreover, TRVe allowed systemic expression of two foreign proteins with the total lengths up to ∼900 aa residues. In addition, Cas12a protein and crRNA were delivered by the TRVe expression system for site-directed editing of genomic DNA in N. benthamiana 16c line constitutively expressing green fluorescent protein (GFP). Taker together, the TRV-based delivery system will be a simple and powerful means to rapidly co-express two non-fused foreign proteins at the whole level and facilitate functional genomics studies in plants.
Collapse
Affiliation(s)
- Ge Guo
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Meng-Jiao Li
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Jia-Liang Lai
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Zhi-You Du
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Qian-Sheng Liao
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, PR China.
| |
Collapse
|
23
|
Zhang C, Liu S, Li X, Zhang R, Li J. Virus-Induced Gene Editing and Its Applications in Plants. Int J Mol Sci 2022; 23:10202. [PMID: 36142116 PMCID: PMC9499690 DOI: 10.3390/ijms231810202] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/28/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
CRISPR/Cas-based genome editing technologies, which allow the precise manipulation of plant genomes, have revolutionized plant science and enabled the creation of germplasms with beneficial traits. In order to apply these technologies, CRISPR/Cas reagents must be delivered into plant cells; however, this is limited by tissue culture challenges. Recently, viral vectors have been used to deliver CRISPR/Cas reagents into plant cells. Virus-induced genome editing (VIGE) has emerged as a powerful method with several advantages, including high editing efficiency and a simplified process for generating gene-edited DNA-free plants. Here, we briefly describe CRISPR/Cas-based genome editing. We then focus on VIGE systems and the types of viruses used currently for CRISPR/Cas9 cassette delivery and genome editing. We also highlight recent applications of and advances in VIGE in plants. Finally, we discuss the challenges and potential for VIGE in plants.
Collapse
Affiliation(s)
| | | | | | | | - Jun Li
- State Key Laboratory of North China Crop Improvement and Regulation, College of Life Sciences, Hebei Agricultural University, Baoding 071001, China
| |
Collapse
|
24
|
Wagemans J, Holtappels D, Vainio E, Rabiey M, Marzachì C, Herrero S, Ravanbakhsh M, Tebbe CC, Ogliastro M, Ayllón MA, Turina M. Going Viral: Virus-Based Biological Control Agents for Plant Protection. ANNUAL REVIEW OF PHYTOPATHOLOGY 2022; 60:21-42. [PMID: 35300520 DOI: 10.1146/annurev-phyto-021621-114208] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The most economically important biotic stresses in crop production are caused by fungi, oomycetes, insects, viruses, and bacteria. Often chemical control is still the most commonly used method to manage them. However, the development of resistance in the different pathogens/pests, the putative damage on the natural ecosystem, the toxic residues in the field, and, thus, the contamination of the environment have stimulated the search for saferalternatives such as the use of biological control agents (BCAs). Among BCAs, viruses, a major driver for controlling host populations and evolution, are somewhat underused, mostly because of regulatory hurdles that make the cost of registration of such host-specific BCAs not affordable in comparison with the limited potential market. Here, we provide a comprehensive overview of the state of the art of virus-based BCAs against fungi, bacteria, viruses, and insects, with a specific focus on new approaches that rely on not only the direct biocidal virus component but also the complex ecological interactions between viruses and their hosts that do not necessarily result in direct damage to the host.
Collapse
Affiliation(s)
| | | | - Eeva Vainio
- Forest Health and Biodiversity, Natural Resources Institute Finland (Luke), Helsinki, Finland
| | - Mojgan Rabiey
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Cristina Marzachì
- Istituto per la Protezione Sostenibile delle Piante, CNR, Torino, Italy;
| | - Salvador Herrero
- Department of Genetics and University Institute of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Burjassot, Spain
| | | | - Christoph C Tebbe
- Thünen Institute of Biodiversity, Federal Research Institute for Rural Areas, Forestry and Fisheries, Braunschweig, Germany
| | | | - María A Ayllón
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid-Instituto Nacional de Investigación Agraria y Alimentaria, Campus de Montegancedo, Pozuelo de Alarcón, Madrid, Spain
- Departamento Biotecnología-Biología Vegetal, E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
| | - Massimo Turina
- Istituto per la Protezione Sostenibile delle Piante, CNR, Torino, Italy;
| |
Collapse
|
25
|
Aragonés V, Aliaga F, Pasin F, Daròs JA. Simplifying plant gene silencing and genome editing logistics by a one-Agrobacterium system for simultaneous delivery of multipartite virus vectors. Biotechnol J 2022; 17:e2100504. [PMID: 35332696 DOI: 10.1002/biot.202100504] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 02/17/2022] [Accepted: 03/17/2022] [Indexed: 11/07/2022]
Abstract
Viral vectors provide a quick and effective way to express exogenous sequences in eukaryotic cells and to engineer eukaryotic genomes through the delivery of CRISPR/Cas components. Here, we present JoinTRV, an improved vector system based on tobacco rattle virus (TRV) that simplifies gene silencing and genome editing logistics. Our system consists of two mini T-DNA vectors from which TRV RNA1 (pLX-TRV1) and an engineered version of TRV RNA2 (pLX-TRV2) are expressed. The two vectors have compatible origins that allow their cotransformation and maintenance into a single Agrobacterium cell, as well as their simultaneous delivery to plants by a one-Agrobacterium/two-vector approach. The JoinTRV vectors are substantially smaller than those of any known TRV vector system, and pLX-TRV2 can be easily customized to express desired sequences by one-step digestion-ligation and homology-based cloning. The system was successfully used in Nicotiana benthamiana for launching TRV infection, for recombinant protein production, as well as for robust virus-induced gene silencing (VIGS) of endogenous transcripts using bacterial suspensions at low optical densities. JoinTRV-mediated delivery of single-guide RNAs in a Cas9 transgenic host allowed somatic cell editing efficiencies of ≈90%; editing events were heritable and >50% of the progeny seedlings showed mutations at the targeted loci.
Collapse
Affiliation(s)
- Verónica Aragonés
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València), Valencia, Spain
| | - Flavio Aliaga
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València), Valencia, Spain
- Dirección de Desarrollo Tecnológico Agrario, Instituto Nacional de Innovación Agraria (INIA), Lima, Peru
- Centro Experimental La Molina (CELM), Instituto Nacional de Innovación Agraria (INIA), Lima, Peru
| | - Fabio Pasin
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València), Valencia, Spain
- School of Science, University of Padova, Padova, Italy
| | - José-Antonio Daròs
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València), Valencia, Spain
| |
Collapse
|
26
|
Oh Y, Kim H, Lee HJ, Kim SG. Ribozyme-processed guide RNA enhances virus-mediated plant genome editing. Biotechnol J 2022; 17:e2100189. [PMID: 34102014 DOI: 10.1002/biot.202100189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/31/2021] [Accepted: 06/03/2021] [Indexed: 11/10/2022]
Abstract
In virus-induced gene-editing system, subgenomic promoters have been used to express guide RNAs (gRNAs). However, the transcription initiation site of the subgenomic promoters remains elusive. Here, we examined the sequence of gRNAs expressed by subgenomic promoters and found the variable length of overhangs at 5'-end of gRNAs. The overhangs at 5'-end of gRNA decrease the cleavage activity of SpCas9. To overcome this problem, we inserted hammerhead ribozyme between the subgenomic promoter and gRNA and confirmed that gRNAs with a precise 5'-end increase the editing efficacy in wild tobacco. This system will be widely used for editing target genes in plants with high efficiency.
Collapse
Affiliation(s)
- Youngbin Oh
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Hyeonjin Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Hyo-Jun Lee
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Sang-Gyu Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| |
Collapse
|
27
|
Chen W, Huang C, Luo C, Zhang Y, Zhang B, Xie Z, Hao M, Ling H, Cao G, Tian B, Wei F, Shi G. A New Method for Rapid Subcellular Localization and Gene Function Analysis in Cotton Based on Barley Stripe Mosaic Virus. PLANTS 2022; 11:plants11131765. [PMID: 35807717 PMCID: PMC9268801 DOI: 10.3390/plants11131765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/26/2022] [Accepted: 06/29/2022] [Indexed: 11/17/2022]
Abstract
The difficulty of genetic transformation has restricted research on functional genomics in cotton. Thus, a rapid and efficient method for gene overexpression that does not rely on genetic transformation is needed. Virus-based vectors offer a reasonable alternative for protein expression, as viruses can infect the host systemically to achieve expression and replication without transgene integration. Previously, a novel four-component barley stripe mosaic virus (BSMV) was reported to overexpress large fragments of target genes in plants over a long period of time, which greatly simplified the study of gene overexpression. However, whether this system can infect cotton and stably overexpress target genes has not yet been studied. In this study, we verified that this new BSMV system can infect cotton through seed imbibition and systemically overexpress large fragments of genes (up to 2340 bp) in cotton. The target gene that was fused with GFP was expressed at a high level in the roots, stems, and cotyledons of cotton seedlings, and stable fluorescence signals were detected in the cotton roots and leaves even after 4 weeks. Based on the BSMV overexpression system, the subcellular localization marker line of endogenous proteins localized in the nucleus, endoplasmic reticulum, plasma membrane, Golgi body, mitochondria, peroxisomes, tonoplast, and plastids were quickly established. The overexpression of a cotton Bile Acid Sodium Symporter GhBASS5 using the BSMV system indicated that GhBASS5 negatively regulated salt tolerance in cotton by transporting Na+ from underground to the shoots. Furthermore, multiple proteins were co-delivered, enabling co-localization and the study of protein–protein interactions through co-transformation. We also confirmed that the BSMV system can be used to conduct DNA-free gene editing in cotton by delivering split-SpCas9/sgRNA. Ultimately, the present work demonstrated that this BSMV system could be used as an efficient overexpression system for future cotton gene function research.
Collapse
Affiliation(s)
- Weiwei Chen
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (W.C.); (C.H.); (C.L.); (Y.Z.); (B.Z.); (Z.X.); (M.H.); (G.C.); (B.T.)
- Henan International Joint Laboratory of Crop Gene Resources and Improvements, Zhengzhou University, Zhengzhou 450001, China;
| | - Chaolin Huang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (W.C.); (C.H.); (C.L.); (Y.Z.); (B.Z.); (Z.X.); (M.H.); (G.C.); (B.T.)
- Henan International Joint Laboratory of Crop Gene Resources and Improvements, Zhengzhou University, Zhengzhou 450001, China;
| | - Chenmeng Luo
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (W.C.); (C.H.); (C.L.); (Y.Z.); (B.Z.); (Z.X.); (M.H.); (G.C.); (B.T.)
- Henan International Joint Laboratory of Crop Gene Resources and Improvements, Zhengzhou University, Zhengzhou 450001, China;
| | - Yongshan Zhang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (W.C.); (C.H.); (C.L.); (Y.Z.); (B.Z.); (Z.X.); (M.H.); (G.C.); (B.T.)
- National Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang 455000, China
| | - Bin Zhang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (W.C.); (C.H.); (C.L.); (Y.Z.); (B.Z.); (Z.X.); (M.H.); (G.C.); (B.T.)
- Henan International Joint Laboratory of Crop Gene Resources and Improvements, Zhengzhou University, Zhengzhou 450001, China;
| | - Zhengqing Xie
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (W.C.); (C.H.); (C.L.); (Y.Z.); (B.Z.); (Z.X.); (M.H.); (G.C.); (B.T.)
- Henan International Joint Laboratory of Crop Gene Resources and Improvements, Zhengzhou University, Zhengzhou 450001, China;
| | - Mengyuan Hao
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (W.C.); (C.H.); (C.L.); (Y.Z.); (B.Z.); (Z.X.); (M.H.); (G.C.); (B.T.)
- Henan International Joint Laboratory of Crop Gene Resources and Improvements, Zhengzhou University, Zhengzhou 450001, China;
| | - Hua Ling
- Henan International Joint Laboratory of Crop Gene Resources and Improvements, Zhengzhou University, Zhengzhou 450001, China;
- Department of Biochemistry, National University of Singapore, Singapore 117597, Singapore
| | - Gangqiang Cao
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (W.C.); (C.H.); (C.L.); (Y.Z.); (B.Z.); (Z.X.); (M.H.); (G.C.); (B.T.)
- Henan International Joint Laboratory of Crop Gene Resources and Improvements, Zhengzhou University, Zhengzhou 450001, China;
| | - Baoming Tian
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (W.C.); (C.H.); (C.L.); (Y.Z.); (B.Z.); (Z.X.); (M.H.); (G.C.); (B.T.)
- Henan International Joint Laboratory of Crop Gene Resources and Improvements, Zhengzhou University, Zhengzhou 450001, China;
- National Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang 455000, China
| | - Fang Wei
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (W.C.); (C.H.); (C.L.); (Y.Z.); (B.Z.); (Z.X.); (M.H.); (G.C.); (B.T.)
- Henan International Joint Laboratory of Crop Gene Resources and Improvements, Zhengzhou University, Zhengzhou 450001, China;
- Correspondence: (F.W.); (G.S.)
| | - Gongyao Shi
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (W.C.); (C.H.); (C.L.); (Y.Z.); (B.Z.); (Z.X.); (M.H.); (G.C.); (B.T.)
- Henan International Joint Laboratory of Crop Gene Resources and Improvements, Zhengzhou University, Zhengzhou 450001, China;
- Correspondence: (F.W.); (G.S.)
| |
Collapse
|
28
|
Touzdjian Pinheiro Kohlrausch Távora F, de Assis dos Santos Diniz F, de Moraes Rêgo-Machado C, Chagas Freitas N, Barbosa Monteiro Arraes F, Chumbinho de Andrade E, Furtado LL, Osiro KO, Lima de Sousa N, Cardoso TB, Márcia Mertz Henning L, Abrão de Oliveira Molinari P, Feingold SE, Hunter WB, Fátima Grossi de Sá M, Kobayashi AK, Lima Nepomuceno A, Santiago TR, Correa Molinari HB. CRISPR/Cas- and Topical RNAi-Based Technologies for Crop Management and Improvement: Reviewing the Risk Assessment and Challenges Towards a More Sustainable Agriculture. Front Bioeng Biotechnol 2022; 10:913728. [PMID: 35837551 PMCID: PMC9274005 DOI: 10.3389/fbioe.2022.913728] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated gene (Cas) system and RNA interference (RNAi)-based non-transgenic approaches are powerful technologies capable of revolutionizing plant research and breeding. In recent years, the use of these modern technologies has been explored in various sectors of agriculture, introducing or improving important agronomic traits in plant crops, such as increased yield, nutritional quality, abiotic- and, mostly, biotic-stress resistance. However, the limitations of each technique, public perception, and regulatory aspects are hindering its wide adoption for the development of new crop varieties or products. In an attempt to reverse these mishaps, scientists have been researching alternatives to increase the specificity, uptake, and stability of the CRISPR and RNAi system components in the target organism, as well as to reduce the chance of toxicity in nontarget organisms to minimize environmental risk, health problems, and regulatory issues. In this review, we discuss several aspects related to risk assessment, toxicity, and advances in the use of CRISPR/Cas and topical RNAi-based technologies in crop management and breeding. The present study also highlights the advantages and possible drawbacks of each technology, provides a brief overview of how to circumvent the off-target occurrence, the strategies to increase on-target specificity, the harm/benefits of association with nanotechnology, the public perception of the available techniques, worldwide regulatory frameworks regarding topical RNAi and CRISPR technologies, and, lastly, presents successful case studies of biotechnological solutions derived from both technologies, raising potential challenges to reach the market and being social and environmentally safe.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Karen Ofuji Osiro
- Department of Phytopathology, University of Brasília, Brasília, Brazil
- Embrapa Agroenergy, Brasília, Brazil
| | | | | | | | | | | | - Wayne B. Hunter
- USDA-ARS, U.S. Horticultural Research Laboratory, Fort Pierce, FL, United States
| | | | | | | | | | | |
Collapse
|
29
|
Zhang RX, Li BB, Yang ZG, Huang JQ, Sun WH, Bhanbhro N, Liu WT, Chen KM. Dissecting Plant Gene Functions Using CRISPR Toolsets for Crop Improvement. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:7343-7359. [PMID: 35695482 DOI: 10.1021/acs.jafc.2c01754] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The CRISPR-based gene editing technology has become more and more powerful in genome manipulation for agricultural breeding, with numerous improved toolsets springing up. In recent years, many CRISPR toolsets for gene editing, such as base editors (BEs), CRISPR interference (CRISPRi), CRISPR activation (CRISPRa), and plant epigenetic editors (PEEs), have been developed to clarify gene function and full-level gene regulation. Here, we comprehensively summarize the application and capacity of the different CRISPR toolsets in the study of plant gene expression regulation, highlighting their potential application in gene regulatory networks' analysis. The general problems in CRISPR application and the optimal solutions in the existing schemes for high-throughput gene function analysis are also discussed. The CRISPR toolsets targeting gene manipulation discussed here provide new solutions for further genetic improvement and molecular breeding of crops.
Collapse
Affiliation(s)
- Rui-Xiang Zhang
- State Key Laboratory of Crop Stress Biology in Arid Area/College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Bin-Bin Li
- State Key Laboratory of Crop Stress Biology in Arid Area/College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zheng-Guang Yang
- State Key Laboratory of Crop Stress Biology in Arid Area/College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jia-Qi Huang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Wei-Hang Sun
- State Key Laboratory of Crop Stress Biology in Arid Area/College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Nadeem Bhanbhro
- State Key Laboratory of Crop Stress Biology in Arid Area/College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wen-Ting Liu
- State Key Laboratory of Crop Stress Biology in Arid Area/College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Kun-Ming Chen
- State Key Laboratory of Crop Stress Biology in Arid Area/College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
30
|
Rössner C, Lotz D, Becker A. VIGS Goes Viral: How VIGS Transforms Our Understanding of Plant Science. ANNUAL REVIEW OF PLANT BIOLOGY 2022; 73:703-728. [PMID: 35138878 DOI: 10.1146/annurev-arplant-102820-020542] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Virus-induced gene silencing (VIGS) has developed into an indispensable approach to gene function analysis in a wide array of species, many of which are not amenable to stable genetic transformation. VIGS utilizes the posttranscriptional gene silencing (PTGS) machinery of plants to restrain viral infections systemically and is used to downregulate the plant's endogenous genes. Here, we review the molecular mechanisms of DNA- and RNA-virus-based VIGS, its inherent connection to PTGS, and what is known about the systemic spread of silencing. Recently, VIGS-based technologies have been expanded to enable not only gene silencing but also overexpression [virus-induced overexpression (VOX)], genome editing [virus-induced genome editing (VIGE)], and host-induced gene silencing (HIGS). These techniques expand the genetic toolbox for nonmodel organisms even more. Further, we illustrate the versatility of VIGS and the methods derived from it in elucidating molecular mechanisms, using tomato fruit ripening and programmed cell death as examples. Finally, we discuss challenges of and future perspectives on the use of VIGS to advance gene function analysis in nonmodel plants in the postgenomic era.
Collapse
Affiliation(s)
- Clemens Rössner
- Institute of Botany, Justus-Liebig University Gießen, Gießen, Germany;
| | - Dominik Lotz
- Institute of Botany, Justus-Liebig University Gießen, Gießen, Germany;
| | - Annette Becker
- Institute of Botany, Justus-Liebig University Gießen, Gießen, Germany;
| |
Collapse
|
31
|
Detection of Banana Mild Mosaic Virus in Musa In Vitro Plants: High-Throughput Sequencing Presents Higher Diagnostic Sensitivity Than (IC)-RT-PCR and Identifies a New Betaflexiviridae Species. PLANTS 2022; 11:plants11020226. [PMID: 35050114 PMCID: PMC8777661 DOI: 10.3390/plants11020226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 01/04/2023]
Abstract
The banana mild mosaic virus (BanMMV) (Betaflexiviridae, Quinvirinae, unassigned species) is a filamentous virus that infects Musa spp. and has a very wide geographical distribution. The current BanMMV indexing process for an accession requires the testing of no less than four plants cultivated in a greenhouse for at least 6 months and causes a significant delay for the distribution of the germplasm. We evaluated the sensitivity of different protocols for BanMMV detection from in vitro plants to accelerate the testing process. We first used corm tissues from 137 in vitro plants and obtained a diagnostic sensitivity (DSE) of only 61% when testing four plants per accession. After thermotherapy was carried out to eliminate BanMMV infection, the meristem was recovered and further grown in vitro. The same protocol was evaluated in parallel on the corm tissue surrounding the meristem, as a rapid screening to evaluate virus therapy success, and was compared to the results obtained following the standard protocol. The obtained results showed 28% false negatives when conducting testing from corm tissues, making this protocol unsuitable in routine processes. Furthermore, RT-PCR and high-throughput sequencing (HTS) tests were applied on tissues from the base (n = 39) and the leaves (n = 36). For RT-PCR, the average DSE per sample reached 65% from either the base or leaves. HTS was applied on 36 samples and yielded 100% diagnostic specificity (DSP) and 100% DSE, whatever the sampled tissue, allowing the identification of a new Betaflexiviridae species infecting Musa. These results suggest that a reliable diagnostic of BanMMV from in vitro plants using RT-PCR or HTS technologies might represent an efficient alternative for testing after greenhouse cultivation.
Collapse
|
32
|
Son S, Park SR. Challenges Facing CRISPR/Cas9-Based Genome Editing in Plants. FRONTIERS IN PLANT SCIENCE 2022; 13:902413. [PMID: 35677236 PMCID: PMC9169250 DOI: 10.3389/fpls.2022.902413] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 04/29/2022] [Indexed: 05/18/2023]
Abstract
The development of plant varieties with desired traits is imperative to ensure future food security. The revolution of genome editing technologies based on the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated nuclease 9 (Cas9) system has ushered in a new era in plant breeding. Cas9 and the single-guide RNA (sgRNA) form an effective targeting complex on a locus or loci of interest, enabling genome editing in all plants with high accuracy and efficiency. Therefore, CRISPR/Cas9 can save both time and labor relative to what is typically associated with traditional breeding methods. However, despite improvements in gene editing, several challenges remain that limit the application of CRISPR/Cas9-based genome editing in plants. Here, we focus on four issues relevant to plant genome editing: (1) plant organelle genome editing; (2) transgene-free genome editing; (3) virus-induced genome editing; and (4) editing of recalcitrant elite crop inbred lines. This review provides an up-to-date summary on the state of CRISPR/Cas9-mediated genome editing in plants that will push this technique forward.
Collapse
|
33
|
Oh Y, Kim SG. RPS5A Promoter-Driven Cas9 Produces Heritable Virus-Induced Genome Editing in Nicotiana attenuata. Mol Cells 2021; 44:911-919. [PMID: 34963106 PMCID: PMC8718363 DOI: 10.14348/molcells.2021.0237] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 11/27/2022] Open
Abstract
The virus-induced genome editing (VIGE) system aims to induce targeted mutations in seeds without requiring any tissue culture. Here, we show that tobacco rattle virus (TRV) harboring guide RNA (gRNA) edits germ cells in a wild tobacco, Nicotiana attenuata, that expresses Streptococcus pyogenes Cas9 (SpCas9). We first generated N. attenuata transgenic plants expressing SpCas9 under the control of 35S promoter and infected rosette leaves with TRV carrying gRNA. Gene-edited seeds were not found in the progeny of the infected N. attenuata. Next, the N. attenuata ribosomal protein S5 A (RPS5A) promoter fused to SpCas9 was employed to induce the heritable gene editing with TRV. The RPS5A promoter-driven SpCas9 successfully produced monoallelic mutations at three target genes in N. attenuata seeds with TRV-delivered guide RNA. These monoallelic mutations were found in 2%-6% seeds among M1 progenies. This editing method provides an alternative way to increase the heritable editing efficacy of VIGE.
Collapse
Affiliation(s)
- Youngbin Oh
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology, Daejeon 34141, Korea
| | - Sang-Gyu Kim
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology, Daejeon 34141, Korea
| |
Collapse
|
34
|
Olivares F, Loyola R, Olmedo B, Miccono MDLÁ, Aguirre C, Vergara R, Riquelme D, Madrid G, Plantat P, Mora R, Espinoza D, Prieto H. CRISPR/Cas9 Targeted Editing of Genes Associated With Fungal Susceptibility in Vitis vinifera L. cv. Thompson Seedless Using Geminivirus-Derived Replicons. FRONTIERS IN PLANT SCIENCE 2021; 12:791030. [PMID: 35003180 PMCID: PMC8733719 DOI: 10.3389/fpls.2021.791030] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/29/2021] [Indexed: 05/14/2023]
Abstract
The woody nature of grapevine (Vitis vinifera L.) has hindered the development of efficient gene editing strategies to improve this species. The lack of highly efficient gene transfer techniques, which, furthermore, are applied in multicellular explants such as somatic embryos, are additional technical handicaps to gene editing in the vine. The inclusion of geminivirus-based replicons in regular T-DNA vectors can enhance the expression of clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) elements, thus enabling the use of these multicellular explants as starting materials. In this study, we used Bean yellow dwarf virus (BeYDV)-derived replicon vectors to express the key components of CRISPR/Cas9 system in vivo and evaluate their editing capability in individuals derived from Agrobacterium-mediated gene transfer experiments of 'Thompson Seedless' somatic embryos. Preliminary assays using a BeYDV-derived vector for green fluorescent protein reporter gene expression demonstrated marker visualization in embryos for up to 33 days post-infiltration. A universal BeYDV-based vector (pGMV-U) was assembled to produce all CRISPR/Cas9 components with up to four independent guide RNA (gRNA) expression cassettes. With a focus on fungal tolerance, we used gRNA pairs to address considerably large deletions of putative grape susceptibility genes, including AUXIN INDUCED IN ROOT CULTURE 12 (VviAIR12), SUGARS WILL EVENTUALLY BE EXPORTED TRANSPORTER 4 (VviSWEET4), LESION INITIATION 2 (VviLIN2), and DIMERIZATION PARTNER-E2F-LIKE 1 (VviDEL1). The editing functionality of gRNA pairs in pGMV-U was evaluated by grapevine leaf agroinfiltration assays, thus enabling longer-term embryo transformations. These experiments allowed for the establishment of greenhouse individuals exhibiting a double-cut edited status for all targeted genes under different allele-editing conditions. After approximately 18 months, the edited grapevine plants were preliminary evaluated regarding its resistance to Erysiphe necator and Botrytis cinerea. Assays have shown that a transgene-free VviDEL1 double-cut edited line exhibits over 90% reduction in symptoms triggered by powdery mildew infection. These results point to the use of geminivirus-based replicons for gene editing in grapevine and other relevant fruit species.
Collapse
Affiliation(s)
- Felipe Olivares
- Biotechnology Laboratory, La Platina Research Station, National Institute of Agriculture Research, Santiago, Chile
| | - Rodrigo Loyola
- Biotechnology Laboratory, La Platina Research Station, National Institute of Agriculture Research, Santiago, Chile
| | - Blanca Olmedo
- Biotechnology Laboratory, La Platina Research Station, National Institute of Agriculture Research, Santiago, Chile
| | - María de los Ángeles Miccono
- Biotechnology Laboratory, La Platina Research Station, National Institute of Agriculture Research, Santiago, Chile
| | - Carlos Aguirre
- Biotechnology Laboratory, La Platina Research Station, National Institute of Agriculture Research, Santiago, Chile
| | - Ricardo Vergara
- Biotechnology Laboratory, La Platina Research Station, National Institute of Agriculture Research, Santiago, Chile
| | - Danae Riquelme
- Phytopathology Laboratory, La Platina Research Station, National Institute of Agriculture Research, Santiago, Chile
| | - Gabriela Madrid
- Biotechnology Laboratory, La Platina Research Station, National Institute of Agriculture Research, Santiago, Chile
| | - Philippe Plantat
- Biotechnology Laboratory, La Platina Research Station, National Institute of Agriculture Research, Santiago, Chile
| | - Roxana Mora
- Biotechnology Laboratory, La Platina Research Station, National Institute of Agriculture Research, Santiago, Chile
| | - Daniel Espinoza
- Biotechnology Laboratory, La Platina Research Station, National Institute of Agriculture Research, Santiago, Chile
| | - Humberto Prieto
- Biotechnology Laboratory, La Platina Research Station, National Institute of Agriculture Research, Santiago, Chile
| |
Collapse
|
35
|
Li T, Hu J, Sun Y, Li B, Zhang D, Li W, Liu J, Li D, Gao C, Zhang Y, Wang Y. Highly efficient heritable genome editing in wheat using an RNA virus and bypassing tissue culture. MOLECULAR PLANT 2021; 14:1787-1798. [PMID: 34274523 DOI: 10.1016/j.molp.2021.07.010] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 07/03/2021] [Accepted: 07/13/2021] [Indexed: 05/25/2023]
Abstract
Genome editing provides novel strategies for improving plant traits but mostly relies on conventional plant genetic transformation and regeneration procedures, which can be inefficient. In this study, we have engineered a Barley stripe mosaic virus-based sgRNA delivery vector (BSMV-sg) that is effective in performing heritable genome editing in Cas9-transgenic wheat plants. Mutated progenies were present in the next generation at frequencies ranging from 12.9% to 100% in three different wheat varieties, and 53.8%-100% of mutants were virus free. We also achieved multiplex mutagenesis in progeny using a pool of BSMV-sg vectors harboring different sgRNAs. Furthermore, we devised a virus-induced transgene-free editing procedure to generate Cas9-free wheat mutants by crossing BSMV-infected Cas9-transgenic wheat pollen with wild-type wheat. Our study provides a robust, convenient, and tissue culture-free approach for genome editing in wheat through virus infection.
Collapse
Affiliation(s)
- Tingdong Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jiacheng Hu
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yu Sun
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Boshu Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Dingliang Zhang
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Wenli Li
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jinxing Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Dawei Li
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Caixia Gao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yongliang Zhang
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, China.
| | - Yanpeng Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|