1
|
Mahanta DK, Komal J, Samal I, Bhoi TK, Kumar PVD, Mohapatra S, Athulya R, Majhi PK, Mastinu A. Plant Defense Responses to Insect Herbivores Through Molecular Signaling, Secondary Metabolites, and Associated Epigenetic Regulation. PLANT-ENVIRONMENT INTERACTIONS (HOBOKEN, N.J.) 2025; 6:e70035. [PMID: 39959634 PMCID: PMC11830398 DOI: 10.1002/pei3.70035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 12/26/2024] [Accepted: 01/31/2025] [Indexed: 02/18/2025]
Abstract
Over millions of years of interactions, plants have developed complex defense mechanisms to counteract diverse insect herbivory strategies. These defenses encompass morphological, biochemical, and molecular adaptations that mitigate the impacts of herbivore attacks. Physical barriers, such as spines, trichomes, and cuticle layers, deter herbivores, while biochemical defenses include the production of secondary metabolites and volatile organic compounds (VOCs). The initial step in the plant's defense involves sensing mechanical damage and chemical cues, including herbivore oral secretions and herbivore-induced VOCs. This triggers changes in plasma membrane potential driven by ion fluxes across plant cell membranes, activating complex signal transduction pathways. Key hormonal mediators, such as jasmonic acid, salicylic acid, and ethylene, orchestrate downstream defense responses, including VOC release and secondary metabolites biosynthesis. This review provides a comprehensive analysis of plant responses to herbivory, emphasizing early and late defense mechanisms, encompassing physical barriers, signal transduction cascades, secondary metabolites synthesis, phytohormone signaling, and epigenetic regulation.
Collapse
Affiliation(s)
- Deepak Kumar Mahanta
- Forest Entomology Discipline, Forest Protection DivisionIndian Council of Forestry Research and Education (ICFRE)‐Forest Research Institute (ICFRE‐FRI)DehradunUttarakhandIndia
| | - J. Komal
- Basic Seed Multiplication and Training CentreCentral Silk BoardKharsawanJharkhandIndia
| | - Ipsita Samal
- Department of EntomologyICAR‐National Research Centre on LitchiMuzaffarpurBiharIndia
| | - Tanmaya Kumar Bhoi
- Forest Protection DivisionICFRE‐Arid Forest Research Institute (ICFRE‐AFRI)JodhpurRajasthanIndia
| | - P. V. Dinesh Kumar
- Research Extension CentreCentral Silk BoardHoshangabadMadhya PradeshIndia
| | - Swapnalisha Mohapatra
- Department of Agriculture and Allied SciencesC. V. Raman Global UniversityBhubaneswarOdishaIndia
| | - R. Athulya
- Forest Protection DivisionICFRE‐Institute of Wood Science and Technology (ICFRE‐IWST)BengaluruKarnatakaIndia
| | - Prasanta Kumar Majhi
- Regional Research and Technology Transfer Station (RRTTS)Odisha University of Agriculture and Technology (OUAT)KeonjharOdishaIndia
| | - Andrea Mastinu
- Division of Pharmacology, Department of Molecular and Translational MedicineUniversity of BresciaBresciaItaly
| |
Collapse
|
2
|
Dobránszki J, Agius DR, Berger MMJ, Moschou PN, Gallusci P, Martinelli F. Plant memory and communication of encounters. TRENDS IN PLANT SCIENCE 2025; 30:199-212. [PMID: 39547849 DOI: 10.1016/j.tplants.2024.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/03/2024] [Accepted: 09/23/2024] [Indexed: 11/17/2024]
Abstract
Plants can communicate with each other and other living organisms in a very sophisticated manner. They use biological molecules and even physical cues to establish a molecular dialogue with beneficial organisms as well as with their predators and pathogens. Several studies were recently published that explore how plants communicate with each other about their previous encounters or stressful experiences. However, there is an almost complete lack of knowledge about how these intra- and interspecies communications are directly regulated at the epigenetic level. In this perspective article we provide new hypotheses for the possible epigenetic modifications that regulate plant responses at the communication level.
Collapse
Affiliation(s)
- Judit Dobránszki
- Centre for Agricultural Genomics and Biotechnology, FAFSEM, University of Debrecen, Debrecen, Hungary
| | - Dolores R Agius
- Centre for Molecular Medicine and Biobanking, University of Malta, Msida, Malta; Ġ.F. Abela Junior College, University of Malta, Msida, Malta
| | - Margot M J Berger
- Ecophysiologie et Génomique Fonctionnelle de la Vigne (EGFV), University of Bordeaux, Bordeaux Sciences Agro, Institut National de la Recherche Agronomique (INRAE), Institut des Sciences de la Vigne et du Vin (ISVV), Villenave d'Ornon, France
| | - Panagiotis N Moschou
- Department of Biology, University of Crete, Heraklion, Greece; Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, Heraklion, Greece; Molecular Sciences Department, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
| | - Philippe Gallusci
- Ecophysiologie et Génomique Fonctionnelle de la Vigne (EGFV), University of Bordeaux, Bordeaux Sciences Agro, Institut National de la Recherche Agronomique (INRAE), Institut des Sciences de la Vigne et du Vin (ISVV), Villenave d'Ornon, France
| | | |
Collapse
|
3
|
Kessler A, Mueller MB. Induced resistance to herbivory and the intelligent plant. PLANT SIGNALING & BEHAVIOR 2024; 19:2345985. [PMID: 38687704 PMCID: PMC11062368 DOI: 10.1080/15592324.2024.2345985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 04/17/2024] [Indexed: 05/02/2024]
Abstract
Plant induced responses to environmental stressors are increasingly studied in a behavioral ecology context. This is particularly true for plant induced responses to herbivory that mediate direct and indirect defenses, and tolerance. These seemingly adaptive alterations of plant defense phenotypes in the context of other environmental conditions have led to the discussion of such responses as intelligent behavior. Here we consider the concept of plant intelligence and some of its predictions for chemical information transfer in plant interaction with other organisms. Within this framework, the flow, perception, integration, and storage of environmental information are considered tunable dials that allow plants to respond adaptively to attacking herbivores while integrating past experiences and environmental cues that are predictive of future conditions. The predictive value of environmental information and the costs of acting on false information are important drivers of the evolution of plant responses to herbivory. We identify integrative priming of defense responses as a mechanism that allows plants to mitigate potential costs associated with acting on false information. The priming mechanisms provide short- and long-term memory that facilitates the integration of environmental cues without imposing significant costs. Finally, we discuss the ecological and evolutionary prediction of the plant intelligence hypothesis.
Collapse
Affiliation(s)
- André Kessler
- Cornell University, Department of Ecology and Evolutionary Biology, Ithaca, NY, USA
| | - Michael B. Mueller
- Cornell University, Department of Ecology and Evolutionary Biology, Ithaca, NY, USA
| |
Collapse
|
4
|
Zanetti ME, Blanco F, Ferrari M, Ariel F, Benoit M, Niebel A, Crespi M. Epigenetic control during root development and symbiosis. PLANT PHYSIOLOGY 2024; 196:697-710. [PMID: 38865442 DOI: 10.1093/plphys/kiae333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/02/2024] [Accepted: 05/24/2024] [Indexed: 06/14/2024]
Abstract
The roots of plants play multiple functions that are essential for growth and development, including anchoring to the soil as well as water and nutrient acquisition. These underground organs exhibit the plasticity to modify their root system architecture in response to environmental cues, allowing adaptation to change in water and nutrient availability. In addition, roots enter in mutualistic interactions with soil microorganisms, for example, the root nodule symbiosis (RNS) established between a limited group of plants and nitrogen-fixing soil bacteria and the arbuscular mycorrhiza symbiosis involving most land plants and fungi of the Glomeromycetes phylum. In the past 20 years, genetic approaches allowed the identification and functional characterization of genes required for the specific programs of root development, root nodule, and arbuscular mycorrhiza symbioses. These genetic studies provided evidence that the program of the RNS recruited components of the arbuscular mycorrhiza symbiosis and the root developmental programs. The execution of these programs is strongly influenced by epigenetic changes-DNA methylation and histone post-translational modifications-that alter chromatin conformation modifying the expression of key genes. In this review, we summarize recent advances that highlight how DNA methylation and histone post-translational modifications, as well as chromatin remodeling factors and long noncoding RNAs, shape the root system architecture and allow the successful establishment of both root nodule and arbuscular mycorrhiza symbioses. We anticipate that the analysis of dynamic epigenetic changes and chromatin 3D structure in specific single cells or tissue types of root organs will illuminate our understanding of how root developmental and symbiotic programs are orchestrated, opening exciting questions and new perspectives to modulate agronomical and ecological traits linked to nutrient acquisition.
Collapse
Affiliation(s)
- María Eugenia Zanetti
- Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata and Centro Científico y Tecnológico-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, La Plata 1900, Argentina
| | - Flavio Blanco
- Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata and Centro Científico y Tecnológico-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, La Plata 1900, Argentina
| | - Milagros Ferrari
- Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata and Centro Científico y Tecnológico-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, La Plata 1900, Argentina
| | - Federico Ariel
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Universidad de Buenos Aires (UBA), Facultad de Ciencias Exactas y Naturales, and Consejo Nacional de Investigaciones Científicas y Técnicas CONICET, Buenos Aires C1428EGA, Argentina
| | - Matthias Benoit
- Laboratoire des Interactions Plantes-Microorganismes (LIPME), INRAE, CNRS, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan 31326, France
| | - Andreas Niebel
- Laboratoire des Interactions Plantes-Microorganismes (LIPME), INRAE, CNRS, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan 31326, France
| | - Martin Crespi
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette 91190, France
- Université Paris Cité, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette 91190, France
| |
Collapse
|
5
|
Peña-Ponton C, Diez-Rodriguez B, Perez-Bello P, Becker C, McIntyre LM, van der Putten WH, De Paoli E, Heer K, Opgenoorth L, Verhoeven KJF. High-resolution methylome analysis uncovers stress-responsive genomic hotspots and drought-sensitive transposable element superfamilies in the clonal Lombardy poplar. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:5839-5856. [PMID: 38836523 PMCID: PMC11427840 DOI: 10.1093/jxb/erae262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 06/04/2024] [Indexed: 06/06/2024]
Abstract
DNA methylation is environment-sensitive and can mediate stress responses. In trees, changes in the environment might cumulatively shape the methylome landscape over time. However, because high-resolution methylome studies usually focus on single environmental cues, the stress-specificity and long-term stability of methylation responses remain unclear. Here, we studied the methylome plasticity of a Populus nigra cv. 'Italica' clone widely distributed across Europe. Adult trees from different geographic locations were clonally propagated in a common garden experiment and exposed to cold, heat, drought, herbivory, rust infection, and salicylic acid treatments. Whole-genome bisulfite sequencing revealed stress-induced and naturally occurring DNA methylation variants. In CG/CHG contexts, the same genomic regions were often affected by multiple stresses, suggesting a generic methylome response. Moreover, these variants showed striking overlap with naturally occurring methylation variants between trees from different locations. Drought treatment triggered CHH hypermethylation of transposable elements, affecting entire superfamilies near drought-responsive genes. Thus, we revealed genomic hotspots of methylation change that are not stress-specific and that contribute to natural DNA methylation variation, and identified stress-specific hypermethylation of entire transposon superfamilies with possible functional consequences. Our results underscore the importance of studying multiple stressors in a single experiment for recognizing general versus stress-specific methylome responses.
Collapse
Affiliation(s)
- Cristian Peña-Ponton
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands
- Laboratory of Molecular Biology, Wageningen University & Research, 6708 PB Wageningen, The Netherlands
| | - Barbara Diez-Rodriguez
- Department of Biology, Philipps-University Marburg, Karl-von-Frisch Strasse 8, D-35043 Marburg, Germany
- Eva Mayr-Stihl professorship of Forest Genetics, Albert-Ludwigs-Universität Freiburg, Bertoldstraße 17, 79098 Freiburg i. Br., Germany
- Natural Resources and Climate Area, CARTIF Technology Centre, 47151 Boecillo, Valladolid, Spain
| | - Paloma Perez-Bello
- IGA Technology Services Srl. Via Jacopo Linussio 51, 33100 Udine UD, Italy
| | - Claude Becker
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna BioCenter (VBC), 1030 Vienna, Austria
- LMU Biocenter, Faculty of Biology, Ludwig-Maximilians-University Munich, 82152 Martinsried, Germany
| | - Lauren M McIntyre
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32611, USA
| | - Wim H van der Putten
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands
- Department of Nematology, Wageningen University & Research, Wageningen 6700 ES, The Netherlands
| | - Emanuele De Paoli
- Department of Agri-Food, Environmental and Animal Sciences, University of Udine, via delle Scienze 206, 33100 Udine, Italy
| | - Katrin Heer
- Department of Biology, Philipps-University Marburg, Karl-von-Frisch Strasse 8, D-35043 Marburg, Germany
- Eva Mayr-Stihl professorship of Forest Genetics, Albert-Ludwigs-Universität Freiburg, Bertoldstraße 17, 79098 Freiburg i. Br., Germany
| | - Lars Opgenoorth
- Department of Biology, Philipps-University Marburg, Karl-von-Frisch Strasse 8, D-35043 Marburg, Germany
- Biodiversity and Conservation Biology, Swiss Federal Research Institute WSL, Zürcherstrasse 111, CH-8903 Birmensdorf, Switzerland
| | - Koen J F Verhoeven
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
6
|
Yarzábal Rodríguez LA, Álvarez Gutiérrez PE, Gunde-Cimerman N, Ciancas Jiménez JC, Gutiérrez-Cepeda A, Ocaña AMF, Batista-García RA. Exploring extremophilic fungi in soil mycobiome for sustainable agriculture amid global change. Nat Commun 2024; 15:6951. [PMID: 39138171 PMCID: PMC11322326 DOI: 10.1038/s41467-024-51223-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 07/24/2024] [Indexed: 08/15/2024] Open
Abstract
As the Earth warms, alternatives to traditional farming are crucial. Exploring fungi, especially poly extremophilic and extremotolerant species, to be used as plant probiotics, represents a promising option. Extremophilic fungi offer avenues for developing and producing innovative biofertilizers, effective biocontrol agents against plant pathogens, and resilient enzymes active under extreme conditions, all of which are crucial to enhance agricultural efficiency and sustainability through improved soil fertility and decreased reliance on agrochemicals. Yet, extremophilic fungi's potential remains underexplored and, therefore, comprehensive research is needed to understand their roles as tools to foster sustainable agriculture practices amid climate change. Efforts should concentrate on unraveling the complex dynamics of plant-fungi interactions and harnessing extremophilic fungi's ecological functions to influence plant growth and development. Aspects such as plant's epigenome remodeling, fungal extracellular vesicle production, secondary metabolism regulation, and impact on native soil microbiota are among many deserving to be explored in depth. Caution is advised, however, as extremophilic and extremotolerant fungi can act as both mitigators of crop diseases and as opportunistic pathogens, underscoring the necessity for balanced research to optimize benefits while mitigating risks in agricultural settings.
Collapse
Grants
- This work was supported by Fondo Nacional de Innovación y Desarrollo Científico-Tecnológico (FONDOCYT), Ministerio de Educación Superior, Ciencia y Tecnología (MESCYT), Government of Dominican Republic: Project COD. 2022-2B2-078. This work was supported by Darwin Initiative Round 27: Partnership Project DARPP220, and Darwin Initiative Round 30: Project DIR30S2/1004. This study was also supported by funding from the Slovenian Research Agency to Infrastructural Centre Mycosmo (MRIC UL, I0-0022), programs P4-0432 and P1-0198. Authors appreciate the support received from the European Commission – Program H2020, Project GEN4OLIVE: 101000427, Topic SFS-28-2018-2019-2020 Genetic resources and pre-breeding communities. RAB-G received a Sabbatical fellowship (CVU: 389616) from the National Council of Humanities, Sciences and Technologies (CONAHCyT), Government of Mexico. This work was supported by RYC2022-037554-I project funded by MCIN/AEI/10.13039/501100011033 and FSE+.
Collapse
Affiliation(s)
- Luis Andrés Yarzábal Rodríguez
- Carrera de Bioquímica y Farmacia. Grupo de Microbiología Molecular y Biotecnología (GI-M2YB). Unidad de Salud y Bienestar, Universidad Católica de Cuenca, Cuenca, Ecuador
| | | | - Nina Gunde-Cimerman
- Departament of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | | | - Adrián Gutiérrez-Cepeda
- Instituto de Investigación en Salud, Facultad de Ciencias de la Salud, Universidad Autónoma de Santo Domingo, Santo Domingo, Dominican Republic
- Instituto de Química, Facultad de Ciencias, Universidad Autónoma de Santo Domingo, Santo Domingo, Dominican Republic
| | - Ana María Fernández Ocaña
- Departamento de Biología Animal, Biología Vegetal y Ecología. Facultad de Ciencias Experimentales, Universidad de Jaén, Jaén, Spain
| | - Ramón Alberto Batista-García
- Departamento de Biología Animal, Biología Vegetal y Ecología. Facultad de Ciencias Experimentales, Universidad de Jaén, Jaén, Spain.
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico.
| |
Collapse
|
7
|
Jyoti TP, Chandel S, Singh R. Unveiling the epigenetic landscape of plants using flow cytometry approach. Cytometry A 2024; 105:231-241. [PMID: 38437027 DOI: 10.1002/cyto.a.24834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 01/12/2024] [Accepted: 02/22/2024] [Indexed: 03/06/2024]
Abstract
Plants are sessile creatures that have to adapt constantly changing environmental circumstances. Plants are subjected to a range of abiotic stressors as a result of unpredictable climate change. Understanding how stress-responsive genes are regulated can help us better understand how plants can adapt to changing environmental conditions. Epigenetic markers that dynamically change in response to stimuli, such as DNA methylation and histone modifications are known to regulate gene expression. Individual cells or particles' physical and/or chemical properties can be measured using the method known as flow cytometry. It may therefore be used to evaluate changes in DNA methylation, histone modifications, and other epigenetic markers, making it a potent tool for researching epigenetics in plants. We explore the use of flow cytometry as a technique for examining epigenetic traits in this thorough discussion. The separation of cell nuclei and their subsequent labeling with fluorescent antibodies, offering information on the epigenetic mechanisms in plants when utilizing flow cytometry. We also go through the use of high-throughput data analysis methods to unravel the complex epigenetic processes occurring inside plant systems.
Collapse
Affiliation(s)
- Thakur Prava Jyoti
- Department of Pharmacognosy, ISF College of Pharmacy, Moga, Punjab, India
| | - Shivani Chandel
- Department of Pharmacognosy, ISF College of Pharmacy, Moga, Punjab, India
| | - Rajveer Singh
- Department of Pharmacognosy, ISF College of Pharmacy, Moga, Punjab, India
| |
Collapse
|
8
|
Doddavarapu B, Lata C, Shah JM. Epigenetic regulation influenced by soil microbiota and nutrients: Paving road to epigenome editing in plants. Biochim Biophys Acta Gen Subj 2024; 1868:130580. [PMID: 38325761 DOI: 10.1016/j.bbagen.2024.130580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 12/25/2023] [Accepted: 02/02/2024] [Indexed: 02/09/2024]
Abstract
Soil is a complex ecosystem that houses microbes and nutrients that are necessary for plant development. Edaphic properties of the soil and environmental conditions influence microbial growth and nutrient accessibility. Various environmental stimuli largely affect the soil microbes and ionic balance, in turn influencing plants. Soil microflora helps decompose organic matter and is involved in mineral uptake. The combination of soil microbes and mineral nutrients notably affects plant growth. Recent advancements have enabled a deeper understanding of plant genetic/molecular regulators. Deficiencies/sufficiencies of soil minerals and microbes also alter plant gene regulation. Gene regulation mediated by epigenetic mechanisms comprises conformational alterations in chromatin structure, DNA/histone modifications, or involvement of small RNAs. Epigenetic regulation is unique due to its potential to inherit without involving alteration of the DNA sequence. Thus, the compilation study of heritable epigenetic changes driven by nutrient imbalances and soil microbes would facilitate understanding this molecular phenomenon in plants. This information can aid in epigenome editing, which has recently emerged as a promising technology for plant non-transgenic/non-mutagenic modification. Potential epigenetic marks induced by biotic and abiotic stresses in plants could be explored as target sites for epigenome editing. This review discusses novel ways of epigenome editing to create epigenome edited plants with desirable and heritable phenotypes. As plants are sessile and in constant exposure to the soil microbiome and nutrients, epigenetic changes induced by these factors could provide more effective, stable and a sustainable molecular solution for crop improvement.
Collapse
Affiliation(s)
- Bhavya Doddavarapu
- Department of Plant Science, Central University of Kerala, Kerala, India
| | - Charu Lata
- Inclusive Health & Traditional Knowledge Studies Division, CSIR- National Institute of Science Communication and Policy Research, New Delhi, India
| | - Jasmine M Shah
- Department of Plant Science, Central University of Kerala, Kerala, India.
| |
Collapse
|
9
|
Masenya K, Manganyi MC, Dikobe TB. Exploring Cereal Metagenomics: Unravelling Microbial Communities for Improved Food Security. Microorganisms 2024; 12:510. [PMID: 38543562 PMCID: PMC10974370 DOI: 10.3390/microorganisms12030510] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/21/2024] [Accepted: 02/28/2024] [Indexed: 11/12/2024] Open
Abstract
Food security is an urgent global challenge, with cereals playing a crucial role in meeting the nutritional requirements of populations worldwide. In recent years, the field of metagenomics has emerged as a powerful tool for studying the microbial communities associated with cereal crops and their impact on plant health and growth. This chapter aims to provide a comprehensive overview of cereal metagenomics and its role in enhancing food security through the exploration of beneficial and pathogenic microbial interactions. Furthermore, we will examine how the integration of metagenomics with other tools can effectively address the adverse effects on food security. For this purpose, we discuss the integration of metagenomic data and machine learning in providing novel insights into the dynamic interactions shaping plant-microbe relationships. We also shed light on the potential applications of leveraging microbial diversity and epigenetic modifications in improving crop resilience and yield sustainability. Ultimately, cereal metagenomics has revolutionized the field of food security by harnessing the potential of beneficial interactions between cereals and their microbiota, paving the way for sustainable agricultural practices.
Collapse
Affiliation(s)
- Kedibone Masenya
- National Zoological Gardens, South African National Biodiversity Institute, 32 Boom St., Pretoria 0001, South Africa
| | - Madira Coutlyne Manganyi
- Department of Biological and Environmental Sciences, Sefako Makgatho Health Sciences University, P.O. Box 139, Pretoria 0204, South Africa;
| | - Tshegofatso Bridget Dikobe
- Department of Botany, School of Biological Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa;
| |
Collapse
|
10
|
Kimotho RN, Maina S. Unraveling plant-microbe interactions: can integrated omics approaches offer concrete answers? JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:1289-1313. [PMID: 37950741 PMCID: PMC10901211 DOI: 10.1093/jxb/erad448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 11/08/2023] [Indexed: 11/13/2023]
Abstract
Advances in high throughput omics techniques provide avenues to decipher plant microbiomes. However, there is limited information on how integrated informatics can help provide deeper insights into plant-microbe interactions in a concerted way. Integrating multi-omics datasets can transform our understanding of the plant microbiome from unspecified genetic influences on interacting species to specific gene-by-gene interactions. Here, we highlight recent progress and emerging strategies in crop microbiome omics research and review key aspects of how the integration of host and microbial omics-based datasets can be used to provide a comprehensive outline of complex crop-microbe interactions. We describe how these technological advances have helped unravel crucial plant and microbial genes and pathways that control beneficial, pathogenic, and commensal plant-microbe interactions. We identify crucial knowledge gaps and synthesize current limitations in our understanding of crop microbiome omics approaches. We highlight recent studies in which multi-omics-based approaches have led to improved models of crop microbial community structure and function. Finally, we recommend holistic approaches in integrating host and microbial omics datasets to achieve precision and efficiency in data analysis, which is crucial for biotic and abiotic stress control and in understanding the contribution of the microbiota in shaping plant fitness.
Collapse
Affiliation(s)
- Roy Njoroge Kimotho
- Hebei Key Laboratory of Soil Ecology, Key Laboratory of Agricultural Water Resources, Centre for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Solomon Maina
- Elizabeth Macarthur Agricultural Institute, NSW Department of Primary Industries, Menangle, New South Wales 2568, Australia
| |
Collapse
|
11
|
Tung A, Sperry MM, Clawson W, Pavuluri A, Bulatao S, Yue M, Flores RM, Pai VP, McMillen P, Kuchling F, Levin M. Embryos assist morphogenesis of others through calcium and ATP signaling mechanisms in collective teratogen resistance. Nat Commun 2024; 15:535. [PMID: 38233424 PMCID: PMC10794468 DOI: 10.1038/s41467-023-44522-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 12/17/2023] [Indexed: 01/19/2024] Open
Abstract
Information for organismal patterning can come from a variety of sources. We investigate the possibility that instructive influences for normal embryonic development are provided not only at the level of cells within the embryo, but also via interactions between embryos. To explore this, we challenge groups of embryos with disruptors of normal development while varying group size. Here, we show that Xenopus laevis embryos are much more sensitive to a diverse set of chemical and molecular-biological perturbations when allowed to develop alone or in small groups, than in large groups. Keeping per-embryo exposure constant, we find that increasing the number of exposed embryos in a cohort increases the rate of survival while incidence of defects decreases. This inter-embryo assistance effect is mediated by short-range diffusible signals and involves the P2 ATP receptor. Our data and computational model emphasize that morphogenesis is a collective phenomenon not only at the level of cells, but also of whole bodies, and that cohort size is a crucial variable in studies of ecotoxicology, teratogenesis, and developmental plasticity.
Collapse
Affiliation(s)
- Angela Tung
- Allen Discovery Center at Tufts University, Medford, MA, 02155, USA
| | - Megan M Sperry
- Allen Discovery Center at Tufts University, Medford, MA, 02155, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - Wesley Clawson
- Allen Discovery Center at Tufts University, Medford, MA, 02155, USA
| | - Ananya Pavuluri
- Allen Discovery Center at Tufts University, Medford, MA, 02155, USA
| | - Sydney Bulatao
- Allen Discovery Center at Tufts University, Medford, MA, 02155, USA
| | - Michelle Yue
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - Ramses Martinez Flores
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - Vaibhav P Pai
- Allen Discovery Center at Tufts University, Medford, MA, 02155, USA
| | - Patrick McMillen
- Allen Discovery Center at Tufts University, Medford, MA, 02155, USA
| | - Franz Kuchling
- Allen Discovery Center at Tufts University, Medford, MA, 02155, USA
| | - Michael Levin
- Allen Discovery Center at Tufts University, Medford, MA, 02155, USA.
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA.
| |
Collapse
|
12
|
Somers DJ, Kushner DB, McKinnis AR, Mehmedovic D, Flame RS, Arnold TM. Epigenetic weapons in plant-herbivore interactions: Sulforaphane disrupts histone deacetylases, gene expression, and larval development in Spodoptera exigua while the specialist feeder Trichoplusia ni is largely resistant to these effects. PLoS One 2023; 18:e0293075. [PMID: 37856454 PMCID: PMC10586618 DOI: 10.1371/journal.pone.0293075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/03/2023] [Indexed: 10/21/2023] Open
Abstract
Cruciferous plants produce sulforaphane (SFN), an inhibitor of nuclear histone deacetylases (HDACs). In humans and other mammals, the consumption of SFN alters enzyme activities, DNA-histone binding, and gene expression within minutes. However, the ability of SFN to act as an HDAC inhibitor in nature, disrupting the epigenetic machinery of insects feeding on these plants, has not been explored. Here, we demonstrate that SFN consumed in the diet inhibits the activity of HDAC enzymes and slows the development of the generalist grazer Spodoptera exigua, in a dose-dependent fashion. After consuming SFN for seven days, the activities of HDAC enzymes in S. exigua were reduced by 50%. Similarly, larval mass was reduced by 50% and pupation was delayed by 2-5 days, with no additional mortality. Similar results were obtained when SFN was applied topically to eggs. RNA-seq analyses confirm that SFN altered the expression of thousands of genes in S. exigua. Genes associated with energy conversion pathways were significantly downregulated while those encoding for ribosomal proteins were dramatically upregulated in response to the consumption of SFN. In contrast, the co-evolved specialist feeder Trichoplusia ni was not negatively impacted by SFN, whether it was consumed in their diet at natural concentrations or applied topically to eggs. The activities of HDAC enzymes were not inhibited and development was not disrupted. In fact, SFN exposure sometimes accelerated T. ni development. RNA-seq analyses revealed that the consumption of SFN alters gene expression in T. ni in similar ways, but to a lesser degree, compared to S. exigua. This apparent resistance of T. ni can be overwhelmed by unnaturally high levels of SFN or by exposure to more powerful pharmaceutical HDAC inhibitors. These results demonstrate that dietary SFN interferes with the epigenetic machinery of insects, supporting the hypothesis that plant-derived HDAC inhibitors serve as "epigenetic weapons" against herbivores.
Collapse
Affiliation(s)
- Dana J. Somers
- Department of Biology, Program in Biochemistry and Molecular Biology, Dickinson College, Carlisle, PA United States of America
| | - David B. Kushner
- Department of Biology, Program in Biochemistry and Molecular Biology, Dickinson College, Carlisle, PA United States of America
| | - Alexandria R. McKinnis
- Department of Biology, Program in Biochemistry and Molecular Biology, Dickinson College, Carlisle, PA United States of America
| | - Dzejlana Mehmedovic
- Department of Biology, Program in Biochemistry and Molecular Biology, Dickinson College, Carlisle, PA United States of America
| | - Rachel S. Flame
- Department of Biology, Program in Biochemistry and Molecular Biology, Dickinson College, Carlisle, PA United States of America
| | - Thomas M. Arnold
- Department of Biology, Program in Biochemistry and Molecular Biology, Dickinson College, Carlisle, PA United States of America
| |
Collapse
|
13
|
Forte FP, Malinowska M, Nagy I, Schmid J, Dijkwel P, Hume DE, Johnson RD, Simpson WR, Asp T. Methylome changes in Lolium perenne associated with long-term colonisation by the endophytic fungus Epichloë sp. LpTG-3 strain AR37. FRONTIERS IN PLANT SCIENCE 2023; 14:1258100. [PMID: 37810388 PMCID: PMC10557135 DOI: 10.3389/fpls.2023.1258100] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 08/31/2023] [Indexed: 10/10/2023]
Abstract
Epichloë spp. often form mutualistic interactions with cool-season grasses, such as Lolium perenne. However, the molecular mechanisms underlying this interaction remain poorly understood. In this study, we employed reduced representation bisulfite sequencing method (epiGBS) to investigate the impact of the Epichloë sp. LpTG-3 strain AR37 on the methylome of L. perenne across multiple grass generations and under drought stress conditions. Our results showed that the presence of the endophyte leads to a decrease in DNA methylation across genomic features, with differentially methylated regions primarily located in intergenic regions and CHH contexts. The presence of the endophyte was consistently associated with hypomethylation in plants across generations. This research sheds new light on the molecular mechanisms governing the mutualistic interaction between Epichloë sp. LpTG-3 strain AR37 and L. perenne. It underscores the role of methylation changes associated with endophyte infection and suggests that the observed global DNA hypomethylation in L. perenne may be influenced by factors such as the duration of the endophyte-plant association and the accumulation of genetic and epigenetic changes over time.
Collapse
Affiliation(s)
- Flavia Pilar Forte
- Center for Quantitative Genetics and Genomics, Faculty of Technical Sciences, Aarhus University, Aarhus, Denmark
| | - Marta Malinowska
- Center for Quantitative Genetics and Genomics, Faculty of Technical Sciences, Aarhus University, Aarhus, Denmark
| | - Istvan Nagy
- Center for Quantitative Genetics and Genomics, Faculty of Technical Sciences, Aarhus University, Aarhus, Denmark
| | - Jan Schmid
- Ferguson Street Laboratories, Palmerston North, New Zealand
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - Paul Dijkwel
- Ferguson Street Laboratories, Palmerston North, New Zealand
| | - David E. Hume
- AgResearch, Grasslands Research Centre, Palmerston North, New Zealand
| | | | - Wayne R. Simpson
- AgResearch, Grasslands Research Centre, Palmerston North, New Zealand
| | - Torben Asp
- Center for Quantitative Genetics and Genomics, Faculty of Technical Sciences, Aarhus University, Aarhus, Denmark
| |
Collapse
|
14
|
Troyee AN, Peña-Ponton C, Medrano M, Verhoeven KJF, Alonso C. Herbivory induced methylation changes in the Lombardy poplar: A comparison of results obtained by epiGBS and WGBS. PLoS One 2023; 18:e0291202. [PMID: 37682835 PMCID: PMC10490839 DOI: 10.1371/journal.pone.0291202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
DNA cytosine methylation is an epigenetic mechanism involved in regulation of plant responses to biotic and abiotic stress and its ability to change can vary with the sequence context in which a cytosine appears (CpG, CHG, CHH, where H = Adenine, Thymine, Cytosine). Quantification of DNA methylation in model plant species is frequently addressed by Whole Genome Bisulfite Sequencing (WGBS), which requires a good-quality reference genome. Reduced Representation Bisulfite Sequencing (RRBS) is a cost-effective potential alternative for ecological research with limited genomic resources and large experimental designs. In this study, we provide for the first time a comprehensive comparison between the outputs of RRBS and WGBS to characterize DNA methylation changes in response to a given environmental factor. In particular, we used epiGBS (recently optimized RRBS) and WGBS to assess global and sequence-specific differential methylation after insect and artificial herbivory in clones of Populus nigra cv. 'italica'. We found that, after any of the two herbivory treatments, global methylation percentage increased in CHH, and the shift was detected as statistically significant only by epiGBS. As regards to loci-specific differential methylation induced by herbivory (cytosines in epiGBS and regions in WGBS), both techniques indicated the specificity of the response elicited by insect and artificial herbivory, together with higher frequency of hypo-methylation in CpG and hyper-methylation in CHH. Methylation changes were mainly found in gene bodies and intergenic regions when present at CpG and CHG and in transposable elements and intergenic regions at CHH context. Thus, epiGBS succeeded to characterize global, genome-wide methylation changes in response to herbivory in the Lombardy poplar. Our results support that epiGBS could be particularly useful in large experimental designs aimed to explore epigenetic changes of non-model plant species in response to multiple environmental factors.
Collapse
Affiliation(s)
- A. Niloya Troyee
- Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas (CSIC), Sevilla, Spain
| | - Cristian Peña-Ponton
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - Mónica Medrano
- Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas (CSIC), Sevilla, Spain
| | - Koen J. F. Verhoeven
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - Conchita Alonso
- Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas (CSIC), Sevilla, Spain
| |
Collapse
|
15
|
Liu W, Wei Y, Sha S, Xu Y, Li H, Yuan H, Wang A. The mechanisms underpinning anthocyanin accumulation in a red-skinned bud sport in pear (Pyrus ussuriensis). PLANT CELL REPORTS 2023; 42:1089-1105. [PMID: 37062789 DOI: 10.1007/s00299-023-03015-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/31/2023] [Indexed: 05/12/2023]
Abstract
KEY MESSAGE In our study, we demonstrated that histone acetylation promotes anthocyanin accumulation in pears by affecting the expression of key genes. Color is an important trait of horticultural plants, and the anthocyanin content directly affects the nutritional value and commercial value of colored fruits. Therefore, it is important for fruit breeding to cultivate new varieties with bright colors. 'Nanhong' (NH) pear (Pyrus ussuriensis) is a bud sport cultivar of 'Nanguo' (NG) pear. The anthocyanin content in NH pear is significantly higher than that in NG pear, but the underlying molecular mechanism remains unclear. Here, we observed that the anthocyanin biosynthesis structural gene PuUFGT (UDP-glucose: flavonoids 3-O-glucosyltransferase) and an anthocyanin transporter gene PuGSTF6 (glutathione S-transferase) had significantly higher expression levels in NH than in NG pears during the late stages of fruit development. Meanwhile, the R2R3-MYB transcription factor PuMYB110a was also highly expressed in NH pears and could positively regulate the transcription of PuUFGT and PuGSTF6. Overexpression of PuMYB110a in pear increased the fruit anthocyanin content. In addition, despite no significant differences in methylation levels being found in the promoters of PuMYB110a, PuUFGT, and PuGSTF6 when comparing the two varieties, the histone acetylation levels of PuMYB110a were significantly higher in NH pear compared with those in NG pear. Our findings suggest a mechanism for anthocyanin accumulation in NH fruit.
Collapse
Affiliation(s)
- Weiting Liu
- Key Laboratory of Fruit Postharvest Biology (Liaoning Province), Key Laboratory of Protected Horticulture (Ministry of Education), National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
| | - Yun Wei
- Key Laboratory of Fruit Postharvest Biology (Liaoning Province), Key Laboratory of Protected Horticulture (Ministry of Education), National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
| | - Shoufeng Sha
- Liaoning Institute of Pomology, Xiongyue, 115009, China
| | - Yaxiu Xu
- Key Laboratory of Fruit Postharvest Biology (Liaoning Province), Key Laboratory of Protected Horticulture (Ministry of Education), National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
| | - Hongjian Li
- Liaoning Institute of Pomology, Xiongyue, 115009, China
| | - Hui Yuan
- Key Laboratory of Fruit Postharvest Biology (Liaoning Province), Key Laboratory of Protected Horticulture (Ministry of Education), National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China.
| | - Aide Wang
- Key Laboratory of Fruit Postharvest Biology (Liaoning Province), Key Laboratory of Protected Horticulture (Ministry of Education), National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China.
| |
Collapse
|
16
|
Vigneaud J, Kohler A, Sow MD, Delaunay A, Fauchery L, Guinet F, Daviaud C, Barry KW, Keymanesh K, Johnson J, Singan V, Grigoriev I, Fichot R, Conde D, Perales M, Tost J, Martin FM, Allona I, Strauss SH, Veneault-Fourrey C, Maury S. DNA hypomethylation of the host tree impairs interaction with mutualistic ectomycorrhizal fungus. THE NEW PHYTOLOGIST 2023; 238:2561-2577. [PMID: 36807327 DOI: 10.1111/nph.18734] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 12/21/2022] [Indexed: 05/19/2023]
Abstract
Ectomycorrhizas are an intrinsic component of tree nutrition and responses to environmental variations. How epigenetic mechanisms might regulate these mutualistic interactions is unknown. By manipulating the level of expression of the chromatin remodeler DECREASE IN DNA METHYLATION 1 (DDM1) and two demethylases DEMETER-LIKE (DML) in Populus tremula × Populus alba lines, we examined how host DNA methylation modulates multiple parameters of the responses to root colonization with the mutualistic fungus Laccaria bicolor. We compared the ectomycorrhizas formed between transgenic and wild-type (WT) trees and analyzed their methylomes and transcriptomes. The poplar lines displaying lower mycorrhiza formation rate corresponded to hypomethylated overexpressing DML or RNAi-ddm1 lines. We found 86 genes and 288 transposable elements (TEs) differentially methylated between WT and hypomethylated lines (common to both OX-dml and RNAi-ddm1) and 120 genes/1441 TEs in the fungal genome suggesting a host-induced remodeling of the fungal methylome. Hypomethylated poplar lines displayed 205 differentially expressed genes (cis and trans effects) in common with 17 being differentially methylated (cis). Our findings suggest a central role of host and fungal DNA methylation in the ability to form ectomycorrhizas including not only poplar genes involved in root initiation, ethylene and jasmonate-mediated pathways, and immune response but also terpenoid metabolism.
Collapse
Affiliation(s)
- Julien Vigneaud
- LBLGC, INRAE, Université d'Orleans, EA 1207 USC 1328, Orléans, 45067, France
| | - Annegret Kohler
- UMR 1136 Interactions Arbres-Microorganismes, Centre INRAE Grand Est-Nancy, INRAE, Université de Lorraine, Champenoux, 54280, France
| | - Mamadou Dia Sow
- LBLGC, INRAE, Université d'Orleans, EA 1207 USC 1328, Orléans, 45067, France
| | - Alain Delaunay
- LBLGC, INRAE, Université d'Orleans, EA 1207 USC 1328, Orléans, 45067, France
| | - Laure Fauchery
- UMR 1136 Interactions Arbres-Microorganismes, Centre INRAE Grand Est-Nancy, INRAE, Université de Lorraine, Champenoux, 54280, France
| | - Frederic Guinet
- UMR 1136 Interactions Arbres-Microorganismes, Centre INRAE Grand Est-Nancy, INRAE, Université de Lorraine, Champenoux, 54280, France
| | - Christian Daviaud
- Laboratory for Epigenetics and Environment Centre National de Recherche en Génomique Humaine, CEA-Institut de Biologie Francois Jacob, Université Paris-Saclay, Evry, 91000, France
| | - Kerrie W Barry
- Lawrence Berkeley National Laboratory, US Department of Energy Joint Genome Institute, Berkeley, CA, 94720, USA
| | - Keykhosrow Keymanesh
- Lawrence Berkeley National Laboratory, US Department of Energy Joint Genome Institute, Berkeley, CA, 94720, USA
| | - Jenifer Johnson
- Lawrence Berkeley National Laboratory, US Department of Energy Joint Genome Institute, Berkeley, CA, 94720, USA
| | - Vasanth Singan
- Lawrence Berkeley National Laboratory, US Department of Energy Joint Genome Institute, Berkeley, CA, 94720, USA
| | - Igor Grigoriev
- Lawrence Berkeley National Laboratory, US Department of Energy Joint Genome Institute, Berkeley, CA, 94720, USA
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Régis Fichot
- LBLGC, INRAE, Université d'Orleans, EA 1207 USC 1328, Orléans, 45067, France
| | - Daniel Conde
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Campus de Montegancedo UPM, Pozuelo de Alarcón, Madrid, 28223, Spain
| | - Mariano Perales
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Campus de Montegancedo UPM, Pozuelo de Alarcón, Madrid, 28223, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), Madrid, 28040, Spain
| | - Jörg Tost
- Laboratory for Epigenetics and Environment Centre National de Recherche en Génomique Humaine, CEA-Institut de Biologie Francois Jacob, Université Paris-Saclay, Evry, 91000, France
| | - Francis M Martin
- UMR 1136 Interactions Arbres-Microorganismes, Centre INRAE Grand Est-Nancy, INRAE, Université de Lorraine, Champenoux, 54280, France
| | - Isabel Allona
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Campus de Montegancedo UPM, Pozuelo de Alarcón, Madrid, 28223, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), Madrid, 28040, Spain
| | - Steven H Strauss
- Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR, 97331-5752, USA
| | - Claire Veneault-Fourrey
- UMR 1136 Interactions Arbres-Microorganismes, Centre INRAE Grand Est-Nancy, INRAE, Université de Lorraine, Champenoux, 54280, France
| | - Stéphane Maury
- LBLGC, INRAE, Université d'Orleans, EA 1207 USC 1328, Orléans, 45067, France
| |
Collapse
|
17
|
Zimmermann SD, Gaillard I. Epigenetic control is involved in molecular dialogue in plant-microbe symbiosis. THE NEW PHYTOLOGIST 2023; 238:2259-2260. [PMID: 37097195 DOI: 10.1111/nph.18916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 03/27/2023] [Indexed: 05/19/2023]
Affiliation(s)
| | - Isabelle Gaillard
- IPSiM, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| |
Collapse
|
18
|
Horvath DP, Clay SA, Swanton CJ, Anderson JV, Chao WS. Weed-induced crop yield loss: a new paradigm and new challenges. TRENDS IN PLANT SCIENCE 2023; 28:567-582. [PMID: 36610818 DOI: 10.1016/j.tplants.2022.12.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 05/22/2023]
Abstract
Direct competition for resources is generally considered the primary mechanism for weed-induced yield loss. A re-evaluation of physiological evidence suggests weeds initially impact crop growth and development through resource-independent interference. We suggest weed perception by crops induce a shift in crop development, before resources become limited, which ultimately reduce crop yield, even if weeds are subsequently removed. We present the mechanisms by which crops perceive and respond to weeds and discuss the technologies used to identify these mechanisms. These data lead to a fundamental paradigm shift in our understanding of how weeds reduce crop yield and suggest new research directions and opportunities to manipulate or engineer crops and cropping systems to reduce weed-induced yield losses.
Collapse
Affiliation(s)
- David P Horvath
- USDA-ARS Edward T. Schafer Agricultural Research Center, Fargo, ND, USA.
| | | | | | - James V Anderson
- USDA-ARS Edward T. Schafer Agricultural Research Center, Fargo, ND, USA
| | - Wun S Chao
- USDA-ARS Edward T. Schafer Agricultural Research Center, Fargo, ND, USA
| |
Collapse
|
19
|
Becker C, Berthomé R, Delavault P, Flutre T, Fréville H, Gibot-Leclerc S, Le Corre V, Morel JB, Moutier N, Muños S, Richard-Molard C, Westwood J, Courty PE, de Saint Germain A, Louarn G, Roux F. The ecologically relevant genetics of plant-plant interactions. TRENDS IN PLANT SCIENCE 2023; 28:31-42. [PMID: 36114125 DOI: 10.1016/j.tplants.2022.08.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 08/03/2022] [Accepted: 08/19/2022] [Indexed: 06/15/2023]
Abstract
Interactions among plants have been long recognized as a major force driving plant community dynamics and crop yield. Surprisingly, our knowledge of the ecological genetics associated with variation of plant-plant interactions remains limited. In this opinion article by scientists from complementary disciplines, the international PLANTCOM network identified four timely questions to foster a better understanding of the mechanisms mediating plant assemblages. We propose that by identifying the key relationships among phenotypic traits involved in plant-plant interactions and the underlying adaptive genetic and molecular pathways, while considering environmental fluctuations at diverse spatial and time scales, we can improve predictions of genotype-by-genotype-by-environment interactions and modeling of productive and stable plant assemblages in wild habitats and crop fields.
Collapse
Affiliation(s)
- Claude Becker
- Genetics, Faculty of Biology, Ludwig Maximilians-University, 82152 Martinsried, Germany
| | - Richard Berthomé
- LIPME, INRAE, CNRS, Université de Toulouse, Castanet-Tolosan, France
| | | | - Timothée Flutre
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, UMR GQE-Le Moulon, 91190 Gif-sur-Yvette, France
| | - Hélène Fréville
- AGAP, Université Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Stéphanie Gibot-Leclerc
- Agroécologie, INRAE, Institut Agro, Université du Bourgogne, Université Bourgogne-Franche-Comté, F-21000 Dijon, France
| | - Valérie Le Corre
- Agroécologie, INRAE, Institut Agro, Université du Bourgogne, Université Bourgogne-Franche-Comté, F-21000 Dijon, France
| | - Jean-Benoit Morel
- PHIM Plant Health Institute, Université Montpellier, INRAE, CIRAD, Institut Agro, IRD, Montpellier, France
| | - Nathalie Moutier
- Institute for Genetics, Environment and Plant Protection (IGEPP), INRAE, Institut Agro, Université Rennes 1, 35650 Le Rheu, France
| | - Stéphane Muños
- LIPME, INRAE, CNRS, Université de Toulouse, Castanet-Tolosan, France
| | - Céline Richard-Molard
- Université Paris-Saclay, INRAE, AgroParisTech, UMR EcoSys, 78850 Thiverval-Grignon, France
| | - James Westwood
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Pierre-Emmanuel Courty
- Agroécologie, INRAE, Institut Agro, Université du Bourgogne, Université Bourgogne-Franche-Comté, F-21000 Dijon, France
| | - Alexandre de Saint Germain
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000 Versailles, France
| | | | - Fabrice Roux
- LIPME, INRAE, CNRS, Université de Toulouse, Castanet-Tolosan, France.
| |
Collapse
|
20
|
Mapuranga J, Chang J, Yang W. Combating powdery mildew: Advances in molecular interactions between Blumeria graminis f. sp. tritici and wheat. FRONTIERS IN PLANT SCIENCE 2022; 13:1102908. [PMID: 36589137 PMCID: PMC9800938 DOI: 10.3389/fpls.2022.1102908] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
Wheat powdery mildew caused by a biotrophic fungus Blumeria graminis f. sp. tritici (Bgt), is a widespread airborne disease which continues to threaten global wheat production. One of the most chemical-free and cost-effective approaches for the management of wheat powdery mildew is the exploitation of resistant cultivars. Accumulating evidence has reported that more than 100 powdery mildew resistance genes or alleles mapping to 63 different loci (Pm1-Pm68) have been identified from common wheat and its wild relatives, and only a few of them have been cloned so far. However, continuous emergence of new pathogen races with novel degrees of virulence renders wheat resistance genes ineffective. An essential breeding strategy for achieving more durable resistance is the pyramiding of resistance genes into a single genotype. The genetics of host-pathogen interactions integrated with temperature conditions and the interaction between resistance genes and their corresponding pathogen a virulence genes or other resistance genes within the wheat genome determine the expression of resistance genes. Considerable progress has been made in revealing Bgt pathogenesis mechanisms, identification of resistance genes and breeding of wheat powdery mildew resistant cultivars. A detailed understanding of the molecular interactions between wheat and Bgt will facilitate the development of novel and effective approaches for controlling powdery mildew. This review gives a succinct overview of the molecular basis of interactions between wheat and Bgt, and wheat defense mechanisms against Bgt infection. It will also unleash the unsung roles of epigenetic processes, autophagy and silicon in wheat resistance to Bgt.
Collapse
|
21
|
Azevedo V, Daddiego L, Cardone MF, Perrella G, Sousa L, Santos RB, Malhó R, Bergamini C, Marsico AD, Figueiredo A, Alagna F. Transcriptomic and methylation analysis of susceptible and tolerant grapevine genotypes following Plasmopara viticola infection. PHYSIOLOGIA PLANTARUM 2022; 174:e13771. [PMID: 36053855 PMCID: PMC9826190 DOI: 10.1111/ppl.13771] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/05/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
Downy mildew, caused by the biotrophic oomycete Plasmopara viticola, is one of the most economically significant grapevine diseases worldwide. Current strategies to cope with this threat rely on the massive use of chemical compounds during each cultivation season. The economic costs and negative environmental impact associated with these applications increased the urge to search for sustainable strategies of disease control. Improved knowledge of plant mechanisms to counteract pathogen infection may allow the development of alternative strategies for plant protection. Epigenetic regulation, in particular DNA methylation, is emerging as a key factor in the context of plant-pathogen interactions associated with the expression modulation of defence genes. To improve our understanding of the genetic and epigenetic mechanisms underpinning grapevine response to P. viticola, we studied the modulation of both 5-mC methylation and gene expression at 6 and 24 h post-infection (hpi). Leaves of two table grape genotypes (Vitis vinifera), selected by breeding activities for their contrasting level of susceptibility to the pathogen, were analysed. Following pathogen infection, we found variations in the 5-mC methylation level and the gene expression profile. The results indicate a genotype-specific response to pathogen infection. The tolerant genotype (N23/018) at 6 hpi exhibits a lower methylation level compared to the susceptible one (N20/020), and it shows an early modulation (at 6 hpi) of defence and epigenetic-related genes during P. viticola infection. These data suggest that the timing of response is an important mechanism to efficiently counteract the pathogen attack.
Collapse
Affiliation(s)
- Vanessa Azevedo
- Faculdade de Ciências, Plant Biology Department, Biosystems & Integrative Sciences Institute (BioISI)Universidade de LisboaLisbonPortugal
| | - Loretta Daddiego
- Energy Technologies and Renewable Sources DepartmentNational Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Trisaia Research CentreRotondellaMateraItaly
| | - Maria Francesca Cardone
- Research Centre for Viticulture and EnologyCouncil for Agricultural Research and Economics (CREA)TuriBariItaly
| | | | - Lisete Sousa
- Department of Statistics and Operations Research, Faculdade de Ciências; Centre of Statistics and its Applications (CEAUL)Universidade de LisboaLisbonPortugal
| | - Rita B. Santos
- Faculdade de Ciências, Plant Biology Department, Biosystems & Integrative Sciences Institute (BioISI)Universidade de LisboaLisbonPortugal
| | - Rui Malhó
- Faculdade de Ciências, Plant Biology Department, Biosystems & Integrative Sciences Institute (BioISI)Universidade de LisboaLisbonPortugal
| | - Carlo Bergamini
- Research Centre for Viticulture and EnologyCouncil for Agricultural Research and Economics (CREA)TuriBariItaly
| | - Antonio Domenico Marsico
- Research Centre for Viticulture and EnologyCouncil for Agricultural Research and Economics (CREA)TuriBariItaly
| | - Andreia Figueiredo
- Faculdade de Ciências, Plant Biology Department, Biosystems & Integrative Sciences Institute (BioISI)Universidade de LisboaLisbonPortugal
| | - Fiammetta Alagna
- Energy Technologies and Renewable Sources DepartmentNational Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Trisaia Research CentreRotondellaMateraItaly
| |
Collapse
|
22
|
Dmitriev AA, Pushkova EN, Melnikova NV. Plant Genome Sequencing: Modern Technologies and Novel Opportunities for Breeding. Mol Biol 2022. [DOI: 10.1134/s0026893322040045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
23
|
Mostafa S, Wang Y, Zeng W, Jin B. Plant Responses to Herbivory, Wounding, and Infection. Int J Mol Sci 2022; 23:ijms23137031. [PMID: 35806046 PMCID: PMC9266417 DOI: 10.3390/ijms23137031] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/15/2022] [Accepted: 06/22/2022] [Indexed: 12/26/2022] Open
Abstract
Plants have various self-defense mechanisms against biotic attacks, involving both physical and chemical barriers. Physical barriers include spines, trichomes, and cuticle layers, whereas chemical barriers include secondary metabolites (SMs) and volatile organic compounds (VOCs). Complex interactions between plants and herbivores occur. Plant responses to insect herbivory begin with the perception of physical stimuli, chemical compounds (orally secreted by insects and herbivore-induced VOCs) during feeding. Plant cell membranes then generate ion fluxes that create differences in plasma membrane potential (Vm), which provokes the initiation of signal transduction, the activation of various hormones (e.g., jasmonic acid, salicylic acid, and ethylene), and the release of VOCs and SMs. This review of recent studies of plant–herbivore–infection interactions focuses on early and late plant responses, including physical barriers, signal transduction, SM production as well as epigenetic regulation, and phytohormone responses.
Collapse
|
24
|
Endophytic bacterial communities are associated with leaf mimicry in the vine Boquila trifoliolata. Sci Rep 2021; 11:22673. [PMID: 34811460 PMCID: PMC8608808 DOI: 10.1038/s41598-021-02229-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 11/08/2021] [Indexed: 11/08/2022] Open
Abstract
The mechanisms behind the unique capacity of the vine Boquila trifoliolata to mimic the leaves of several tree species remain unknown. A hypothesis in the original leaf mimicry report considered that microbial vectors from trees could carry genes or epigenetic factors that would alter the expression of leaf traits in Boquila. Here we evaluated whether leaf endophytic bacterial communities are associated with the mimicry pattern. Using 16S rRNA gene sequencing, we compared the endophytic bacterial communities in three groups of leaves collected in a temperate rainforest: (1) leaves from the model tree Rhaphithamnus spinosus (RS), (2) Boquila leaves mimicking the tree leaves (BR), and (3) Boquila leaves from the same individual vine but not mimicking the tree leaves (BT). We hypothesized that bacterial communities would be more similar in the BR-RS comparison than in the BT-RS comparison. We found significant differences in the endophytic bacterial communities among the three groups, verifying the hypothesis. Whereas non-mimetic Boquila leaves and tree leaves (BT-RS) showed clearly different bacterial communities, mimetic Boquila leaves and tree leaves (BR-RS) showed an overlap concerning their bacterial communities. The role of bacteria in this unique case of leaf mimicry should be studied further.
Collapse
|
25
|
Tonnessen BW, Bossa-Castro AM, Martin F, Leach JE. Intergenic spaces: a new frontier to improving plant health. THE NEW PHYTOLOGIST 2021; 232:1540-1548. [PMID: 34478160 DOI: 10.1111/nph.17706] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
To more sustainably mitigate the impact of crop diseases on plant health and productivity, there is a need for broader spectrum, long-lasting resistance traits. Defense response (DR) genes, located throughout the genome, participate in cellular and system-wide defense mechanisms to stave off infection by diverse pathogens. This multigenic resistance avoids rapid evolution of a pathogen to overcome host resistance. DR genes reside within resistance-associated quantitative trait loci (QTL), and alleles of DR genes in resistant varieties are more active during pathogen attack relative to susceptible haplotypes. Differential expression of DR genes results from polymorphisms in their regulatory regions, that includes cis-regulatory elements such as transcription factor binding sites as well as features that influence epigenetic structural changes to modulate chromatin accessibility during infection. Many of these elements are found in clusters, known as cis-regulatory modules (CRMs), which are distributed throughout the host genome. Regulatory regions involved in plant-pathogen interactions may also contain pathogen effector binding elements that regulate DR gene expression, and that, when mutated, result in a change in the plants' response. We posit that CRMs and the multiple regulatory elements that comprise them are potential targets for marker-assisted breeding for broad-spectrum, durable disease resistance.
Collapse
Affiliation(s)
- Bradley W Tonnessen
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO, 80523, USA
- Western Colorado Research Center, Colorado State University, 30624 Hwy 92, Hotchkiss, CO, 81419, USA
| | - Ana M Bossa-Castro
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO, 80523, USA
- Universidad de los Andes, Bogotá, 111711, Colombia
| | - Federico Martin
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Jan E Leach
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO, 80523, USA
| |
Collapse
|
26
|
Lv Z, Dai R, Xu H, Liu Y, Bai B, Meng Y, Li H, Cao X, Bai Y, Song X, Zhang J. The rice histone methylation regulates hub species of the root microbiota. J Genet Genomics 2021; 48:836-843. [PMID: 34391677 DOI: 10.1016/j.jgg.2021.06.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 06/20/2021] [Accepted: 06/20/2021] [Indexed: 12/12/2022]
Abstract
Plants have a close relationship with their root microbiota, which comprises a complex microbial network. Histone methylation is an important epigenetic modification influencing multiple plant traits; however, little is known about the role of plant histone methylation in the assembly and network structure of the root microbiota. In this study, we established that the rice (Oryza sativa) histone methylation regulates the structure and composition of the root microbiota, especially the hub species in the microbial network. DJ-jmj703 (defective in histone H3K4 demethylation) and ZH11-sdg714 (defective in H3K9 methylation) showed significant different root microbiota compared with the corresponding wild types at the phylum and family levels, with a consistent increase in the abundance of Betaproteobacteria and a decrease in the Firmicutes. In the root microbial network, 35 of 44 hub species in the top 10 modules in the tested field were regulated by at least one histone methylation-related gene. These observations establish that the rice histone methylation plays a pivotal role in regulating the assembly of the root microbiota, providing insights into the links between plant epigenetic regulation and root microbiota.
Collapse
Affiliation(s)
- Zhiyao Lv
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, Jilin 130118, China
| | - Rui Dai
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China; CAS-JIC Centre of Excellence for Plant and Microbial Science, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haoran Xu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China; CAS-JIC Centre of Excellence for Plant and Microbial Science, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongxin Liu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China; CAS-JIC Centre of Excellence for Plant and Microbial Science, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Bo Bai
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China; Shandong Rice Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Ying Meng
- Institute of Farming and Cultivation, Heilongjiang Provincial Academy of Agricultural Sciences, Harbin 150086, China
| | - Haiyan Li
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, Jilin 130118, China
| | - Xiaofeng Cao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Beijing 100101, China.
| | - Yang Bai
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China; CAS-JIC Centre of Excellence for Plant and Microbial Science, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xianwei Song
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; INASEED, Chinese Academy of Sciences, Beijing 100101, China.
| | - Jingying Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China; CAS-JIC Centre of Excellence for Plant and Microbial Science, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
27
|
Kakoulidou I, Avramidou EV, Baránek M, Brunel-Muguet S, Farrona S, Johannes F, Kaiserli E, Lieberman-Lazarovich M, Martinelli F, Mladenov V, Testillano PS, Vassileva V, Maury S. Epigenetics for Crop Improvement in Times of Global Change. BIOLOGY 2021; 10:766. [PMID: 34439998 PMCID: PMC8389687 DOI: 10.3390/biology10080766] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/04/2021] [Accepted: 08/06/2021] [Indexed: 12/15/2022]
Abstract
Epigenetics has emerged as an important research field for crop improvement under the on-going climatic changes. Heritable epigenetic changes can arise independently of DNA sequence alterations and have been associated with altered gene expression and transmitted phenotypic variation. By modulating plant development and physiological responses to environmental conditions, epigenetic diversity-naturally, genetically, chemically, or environmentally induced-can help optimise crop traits in an era challenged by global climate change. Beyond DNA sequence variation, the epigenetic modifications may contribute to breeding by providing useful markers and allowing the use of epigenome diversity to predict plant performance and increase final crop production. Given the difficulties in transferring the knowledge of the epigenetic mechanisms from model plants to crops, various strategies have emerged. Among those strategies are modelling frameworks dedicated to predicting epigenetically controlled-adaptive traits, the use of epigenetics for in vitro regeneration to accelerate crop breeding, and changes of specific epigenetic marks that modulate gene expression of traits of interest. The key challenge that agriculture faces in the 21st century is to increase crop production by speeding up the breeding of resilient crop species. Therefore, epigenetics provides fundamental molecular information with potential direct applications in crop enhancement, tolerance, and adaptation within the context of climate change.
Collapse
Affiliation(s)
- Ioanna Kakoulidou
- Department of Molecular Life Sciences, Technical University of Munich, Liesel-Beckmann-Str. 2, 85354 Freising, Germany; (I.K.); (F.J.)
| | - Evangelia V. Avramidou
- Laboratory of Forest Genetics and Biotechnology, Institute of Mediterranean Forest Ecosystems, Hellenic Agricultural Organization-Dimitra (ELGO-DIMITRA), 11528 Athens, Greece;
| | - Miroslav Baránek
- Faculty of Horticulture, Mendeleum—Institute of Genetics, Mendel University in Brno, Valtická 334, 69144 Lednice, Czech Republic;
| | - Sophie Brunel-Muguet
- UMR 950 Ecophysiologie Végétale, Agronomie et Nutritions N, C, S, UNICAEN, INRAE, Normandie Université, CEDEX, F-14032 Caen, France;
| | - Sara Farrona
- Plant and AgriBiosciences Centre, Ryan Institute, National University of Ireland (NUI) Galway, H91 TK33 Galway, Ireland;
| | - Frank Johannes
- Department of Molecular Life Sciences, Technical University of Munich, Liesel-Beckmann-Str. 2, 85354 Freising, Germany; (I.K.); (F.J.)
- Institute for Advanced Study, Technical University of Munich, Lichtenberg Str. 2a, 85748 Garching, Germany
| | - Eirini Kaiserli
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, Bower Building, University of Glasgow, Glasgow G12 8QQ, UK;
| | - Michal Lieberman-Lazarovich
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion 7505101, Israel;
| | - Federico Martinelli
- Department of Biology, University of Florence, 50019 Sesto Fiorentino, Italy;
| | - Velimir Mladenov
- Faculty of Agriculture, University of Novi Sad, Sq. Dositeja Obradovića 8, 21000 Novi Sad, Serbia;
| | - Pilar S. Testillano
- Pollen Biotechnology of Crop Plants Group, Centro de Investigaciones Biológicas Margarita Salas-(CIB-CSIC), Ramiro Maeztu 9, 28040 Madrid, Spain;
| | - Valya Vassileva
- Department of Molecular Biology and Genetics, Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str., Bldg. 21, 1113 Sofia, Bulgaria;
| | - Stéphane Maury
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, INRAE, EA1207 USC1328, Université d’Orléans, F-45067 Orléans, France
| |
Collapse
|