1
|
Zhu Y, Chu Y, Wang S, Tang J, Li H, Feng L, Yu F, Ma X. Vascular Smooth Muscle TRPV4 (Transient Receptor Potential Vanilloid Family Member 4) Channels Regulate Vasoconstriction and Blood Pressure in Obesity. Hypertension 2023; 80:757-770. [PMID: 36794584 DOI: 10.1161/hypertensionaha.122.20109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
BACKGROUND Vascular endothelium and smooth muscle work together to keep the balance of vasomotor tone and jointly maintain vascular homeostasis. Ca2+-permeable ion channel TRPV4 (transient receptor potential vanilloid family member 4) in endothelial cells regulates endothelium-dependent vasodilation and contraction in various states. However, how vascular smooth muscle cell TRPV4 (TRPV4SMC) contributes to vascular function and blood pressure regulation in physiological and pathologically obese condition has not been fully studied. METHODS We generated smooth muscle TRPV4-deficient mice and developed diet-induced obese mice model and analyzed the role of TRPV4SMC in intracellular Ca2+ ([Ca2+]i) regulation and vasoconstriction. Vasomotor changes of mouse mesenteric artery were measured by wire, and pressure myography. [Ca2+]i were measured by fluo-4 staining. Blood pressure was recorded by telemetric device. RESULTS Vascular TRPV4SMC played different roles in regulating vasomotor tone than endothelial TRPV4 due to their different features of [Ca2+]i regulation. Loss of TRPV4SMC attenuated U46619- and phenylephrine-induced contraction, suggesting its involvement in regulating vascular contractility. Mesenteric arteries from obese mice showed SMC hyperplasia, suggesting an increased level of TRPV4SMC. Loss of TRPV4SMC did not influence the development of obesity but protected mice from obesity-induced vasoconstriction and hypertension. In arteries deficient in SMC TRPV4, SMCs F-actin polymerization and RhoA dephosphorylation were attenuated under contractile stimuli. Moreover, SMC-dependent vasoconstriction was inhibited in human resistance arteries with TRPV4 inhibitor application. CONCLUSIONS Our data identify TRPV4SMC as a regulator of vascular contraction in both physiological states and pathologically obese mice. TRPV4SMC contributes to the ontogeny of vasoconstriction and hypertension induced by TRPV4SMC over-expression in obese mice mesenteric artery.
Collapse
Affiliation(s)
- Yifei Zhu
- Wuxi School of Medicine, Jiangnan University, Wuxi, China (Y.Z., Y.C., S.W., L.F., F.Y., X.M.)
| | - Yuan Chu
- Wuxi School of Medicine, Jiangnan University, Wuxi, China (Y.Z., Y.C., S.W., L.F., F.Y., X.M.)
| | - Sheng Wang
- Wuxi School of Medicine, Jiangnan University, Wuxi, China (Y.Z., Y.C., S.W., L.F., F.Y., X.M.)
| | - Junjian Tang
- Department of Vascular Surgery, Affiliated Hospital of Jiangnan University, Wuxi, China (J.T., H.L.)
| | - Hu Li
- Department of Vascular Surgery, Affiliated Hospital of Jiangnan University, Wuxi, China (J.T., H.L.)
| | - Lei Feng
- Wuxi School of Medicine, Jiangnan University, Wuxi, China (Y.Z., Y.C., S.W., L.F., F.Y., X.M.)
| | - Fan Yu
- Wuxi School of Medicine, Jiangnan University, Wuxi, China (Y.Z., Y.C., S.W., L.F., F.Y., X.M.)
| | - Xin Ma
- Wuxi School of Medicine, Jiangnan University, Wuxi, China (Y.Z., Y.C., S.W., L.F., F.Y., X.M.)
| |
Collapse
|
2
|
Increased eHSP70-to-iHSP70 ratio disrupts vascular responses to calcium and activates the TLR4-MD2 complex in type 1 diabetes. Life Sci 2022; 310:121079. [DOI: 10.1016/j.lfs.2022.121079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/24/2022] [Accepted: 10/11/2022] [Indexed: 11/09/2022]
|
3
|
Intrauterine Nitric Oxide Deficiency Weakens Differentiation of Vascular Smooth Muscle in Newborn Rats. Int J Mol Sci 2021; 22:ijms22158003. [PMID: 34360769 PMCID: PMC8347173 DOI: 10.3390/ijms22158003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/22/2021] [Accepted: 07/24/2021] [Indexed: 12/22/2022] Open
Abstract
Nitric oxide (NO) deficiency during pregnancy is a key reason for preeclampsia development. Besides its important vasomotor role, NO is shown to regulate the cell transcriptome. However, the role of NO in transcriptional regulation of developing smooth muscle has never been studied before. We hypothesized that in early ontogeny, NO is important for the regulation of arterial smooth muscle-specific genes expression. Pregnant rats consumed NO-synthase inhibitor L-NAME (500 mg/L in drinking water) from gestational day 10 till delivery, which led to an increase in blood pressure, a key manifestation of preeclampsia. L-NAME reduced blood concentrations of NO metabolites in dams and their newborn pups, as well as relaxations of pup aortic rings to acetylcholine. Using qPCR, we demonstrated reduced abundances of the smooth muscle-specific myosin heavy chain isoform, α-actin, SM22α, and L-type Ca2+-channel mRNAs in the aorta of newborn pups from the L-NAME group compared to control pups. To conclude, the intrauterine NO deficiency weakens gene expression specific for a contractile phenotype of arterial smooth muscle in newborn offspring.
Collapse
|
4
|
Ünüvar S, Gürsoy Ş, Berk A, Kaymaz B, İlhan N, Aktay G. Antioxidant Effect of a Dihydropyridine
Calcium Antagonist Nitrendipine in Streptozotocin-Induced Diabetes. J EVOL BIOCHEM PHYS+ 2021. [DOI: 10.1134/s0022093021010129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Discovery of new phthalazinones as vasodilator agents and novel pharmacological tools to study calcium channels. Future Med Chem 2019; 11:179-191. [PMID: 30801201 DOI: 10.4155/fmc-2018-0250] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
AIM Hydralazine has led to the synthesis of phthalazinone derivatives which induce vasorelaxation. METHODS A new series of 2-(aminoalkyl)-4-benzyl-2H-phthalazin-1-one derivatives has been synthesized to study their vasorelaxant activity. RESULTS At the highest-studied concentration, most of the new compounds relaxed the denuded aortic rings precontracted with phenylephrine by 72.9-85.7%. Compound 25 (C25) suppressed almost totally the contractile effects of phenylephrine, high KCl concentration, ionomycin and caffeine related to the activation of Ca2+ channels, whereas its inhibitory effect was reversed with high CaCl2 concentrations. CONCLUSION Vasodilator effects of C25 appear to be due exclusively to the reversible blockage of different calcium channels. As broad range calcium channel blocker, C25 seems to be suitable as a pharmacological tool for calcium channel research.
Collapse
|
6
|
Lorigo M, Mariana M, Feiteiro J, Cairrao E. How is the human umbilical artery regulated? J Obstet Gynaecol Res 2018; 44:1193-1201. [PMID: 29727040 DOI: 10.1111/jog.13667] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 03/31/2018] [Indexed: 01/12/2023]
Abstract
The purpose of this review is to present an update of the main mechanisms involved in the physiological regulation of contraction and relaxation of the human umbilical artery (HUA) smooth muscle cells. A literature review was performed based on the analysis of papers available on PubMed. The most important and relevant studies regarding the regulation of the HUA are presented in this article. The vascular smooth muscle is a highly specialized structure, whose main function is to regulate the vascular tonus. This is controlled by a balance between the cellular signaling pathways that mediate contraction and relaxation. The cells responsible for the contractile property of this muscle are the smooth muscle cells (SMC), and an excellent source of these cells is the HUA, involved in fetoplacental circulation. Since the umbilical blood vessels are not innervated, the HUA tonus is modulated by vasoactive substances that regulate the contractile process. The main vasoactive substances that induce contraction are serotonin, histamine, thromboxane, bradykinin, endothelin 1 and prostaglandin F2α, that are linked to the activation of proteins Gq and Gi/0 . On the other hand, the main vasorelaxation mechanisms are the activation of adenyl and guanil cyclases, potassium channels and the inhibition of calcium channels. The SMC from the HUA allow the study of different cellular mechanisms and their functions. Therefore, these cells are an important tool to study the mechanisms regulating the contractility of this artery, allowing to detect potential therapeutic targets to treat HUA disorders (gestational hypertension and pre-eclampsia).
Collapse
Affiliation(s)
- Margarida Lorigo
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Melissa Mariana
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Joana Feiteiro
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Elisa Cairrao
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| |
Collapse
|
7
|
Xyloketal B exerts antihypertensive effect in renovascular hypertensive rats via the NO-sGC-cGMP pathway and calcium signaling. Acta Pharmacol Sin 2018; 39:875-884. [PMID: 29595193 DOI: 10.1038/aps.2018.12] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Accepted: 01/12/2018] [Indexed: 12/22/2022]
Abstract
Xyloketal B (Xyl-B) is a novel marine compound isolated from mangrove fungus Xylaria sp. (No 2508). We previously showed that Xyl-B promoted endothelial NO release and protected against atherosclerosis through the Akt/eNOS pathway. Vascular NO production regulates vasoconstriction in central and peripheral arteries and plays an important role in blood pressure control. In this study, we examined whether Xyl-B exerted an antihypertensive effect in a hypertensive rat model, and further explored the possible mechanisms underlying its antihypertensive action. Administration of Xyl-B (20 mg·kg-1·d-1, ip, for 12 weeks) significantly decreased the systolic and diastolic blood pressure in a two-kidney, two-clip (2K2C) renovascular hypertensive rats. In endothelium-intact and endothelium-denuded thoracic aortic rings, pretreatment with Xyl-B (20 μmol/L) significantly suppressed phenylephrine (Phe)-induced contractions, suggesting that its vasorelaxant effect was attributed to both endothelial-dependent and endothelial-independent mechanisms. We used SNP, methylene blue (MB, guanylate cyclase inhibitor) and indomethacin (IMC, cyclooxygenase inhibitor) to examine which endothelial pathway was involved, and found that MB, but not IMC, reversed the inhibitory effects of Xyl-B on Phe-induced vasocontraction. Moreover, Xyl-B increased the endothelial NO bioactivity and smooth muscle cGMP level, revealing that the NO-sGC-cGMP pathway, rather than PGI2, mediated the anti-hypertensive effect of Xyl-B. We further showed that Xyl-B significantly attenuated KCl-induced Ca2+ entry in smooth muscle cells in vitro, which was supposed to be mediated by voltage-dependent Ca2+ channels (VDCCs), and reduced ryanodine-induced aortic contractions, which may be associated with store-operated Ca2+ entry (SOCE). Taken together, these findings demonstrate that Xyl-B exerts significant antihypertensive effects not only through the endothelial NO-sGC-cGMP pathway but also through smooth muscle calcium signaling, including VDCCs and SOCE.
Collapse
|
8
|
Yochum M, Laforêt J, Marque C. Multi-scale and multi-physics model of the uterine smooth muscle with mechanotransduction. Comput Biol Med 2017; 93:17-30. [PMID: 29253628 DOI: 10.1016/j.compbiomed.2017.12.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 12/02/2017] [Accepted: 12/02/2017] [Indexed: 11/18/2022]
Abstract
Preterm labor is an important public health problem. However, the efficiency of the uterine muscle during labor is complex and still poorly understood. This work is a first step towards a model of the uterine muscle, including its electrical and mechanical components, to reach a better understanding of the uterus synchronization. This model is proposed to investigate, by simulation, the possible role of mechanotransduction for the global synchronization of the uterus. The electrical diffusion indeed explains the local propagation of contractile activity, while the tissue stretching may play a role in the synchronization of distant parts of the uterine muscle. This work proposes a multi-physics (electrical, mechanical) and multi-scales (cell, tissue, whole uterus) model, which is applied to a realistic uterus 3D mesh. This model includes electrical components at different scales: generation of action potentials at the cell level, electrical diffusion at the tissue level. It then links these electrical events to the mechanical behavior, at the cellular level (via the intracellular calcium concentration), by simulating the force generated by each active cell. It thus computes an estimation of the intra uterine pressure (IUP) by integrating the forces generated by each active cell at the whole uterine level, as well as the stretching of the tissue (by using a viscoelastic law for the behavior of the tissue). It finally includes at the cellular level stretch activated channels (SACs) that permit to create a loop between the mechanical and the electrical behavior (mechanotransduction). The simulation of different activated regions of the uterus, which in this first "proof of concept" case are electrically isolated, permits the activation of inactive regions through the stretching (induced by the electrically active regions) computed at the whole organ scale. This permits us to evidence the role of the mechanotransduction in the global synchronization of the uterus. The results also permit us to evidence the effect on IUP of this enhanced synchronization induced by the presence of SACs. This proposed simplified model will be further improved in order to permit a better understanding of the global uterine synchronization occurring during efficient labor contractions.
Collapse
Affiliation(s)
- Maxime Yochum
- Sorbonne University, Université de Technologie de Compiègne, CNRS UMR 7338, Biomechanics and Bioengineering, Centre de Recherche Royallieu, CS 60319-60203 Compiègne cedex, France.
| | - Jérémy Laforêt
- Sorbonne University, Université de Technologie de Compiègne, CNRS UMR 7338, Biomechanics and Bioengineering, Centre de Recherche Royallieu, CS 60319-60203 Compiègne cedex, France.
| | - Catherine Marque
- Sorbonne University, Université de Technologie de Compiègne, CNRS UMR 7338, Biomechanics and Bioengineering, Centre de Recherche Royallieu, CS 60319-60203 Compiègne cedex, France
| |
Collapse
|
9
|
Huang Y, Smith CA, Chen G, Sharma B, Miner AS, Barbee RW, Ratz PH. The AMP-Dependent Protein Kinase (AMPK) Activator A-769662 Causes Arterial Relaxation by Reducing Cytosolic Free Calcium Independently of an Increase in AMPK Phosphorylation. Front Pharmacol 2017; 8:756. [PMID: 29093683 PMCID: PMC5651270 DOI: 10.3389/fphar.2017.00756] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 10/05/2017] [Indexed: 12/15/2022] Open
Abstract
Although recent studies reveal that activation of the metabolic and Ca2+ sensor AMPK strongly inhibits smooth muscle contraction, there is a paucity of information about the potential linkage between pharmacological AMPK activation and vascular smooth muscle (VSM) contraction regulation. Our aim was to test the general hypothesis that the allosteric AMPK activator A-769662 causes VSM relaxation via inhibition of contractile protein activation, and to specifically determine which activation mechanism(s) is(are) affected. The ability of A-769662 to cause endothelium-independent relaxation of contractions induced by several contractile stimuli was examined in large and small musculocutaneous and visceral rabbit arteries. For comparison, the structurally dissimilar AMPK activators MET, SIM, and BBR were assessed. A-769662 displayed artery- and agonist-dependent differential inhibitory activities that depended on artery size and location. A-769662 did not increase AMPK-pT172 levels, but did increase phosphorylation of the downstream AMPK substrate, acetyl-CoA carboxylase (ACC). A-769662 did not inhibit basal phosphorylation levels of several contractile protein regulatory proteins, and did not alter the activation state of rhoA. A-769662 did not inhibit Ca2+- and GTPγS-induced contractions in β-escin-permeabilized muscle, suggesting that A-769662 must act by inhibiting Ca2+ signaling. In intact artery, A-769662 immediately reduced basal intracellular free calcium ([Ca2+]i), inhibited a stimulus-induced increase in [Ca2+]i, and inhibited a cyclopiazonic acid (CPA)-induced contraction. MET increased AMPK-pT172, and caused neither inhibition of contraction nor inhibition of [Ca2+]i. Together, these data support the hypothesis that the differential inhibition of stimulus-induced arterial contractions by A-769662 was due to selective inhibition of a Ca2+ mobilization pathway, possibly involving CPA-dependent Ca2+ entry via an AMPK-independent pathway. That MET activated AMPK without causing arterial relaxation suggests that AMPK activation does not necessarily cause VSM relaxation.
Collapse
Affiliation(s)
- Yi Huang
- Department of Emergency Medicine and Physiology, Virginia Commonwealth University, Richmond, VA, United States
| | - Corey A Smith
- Department of Biochemistry and Molecular Biology, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Grace Chen
- Department of Biochemistry and Molecular Biology, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Bharti Sharma
- Department of Biochemistry and Molecular Biology, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Amy S Miner
- Department of Biochemistry and Molecular Biology, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Robert W Barbee
- Department of Emergency Medicine and Physiology, Virginia Commonwealth University, Richmond, VA, United States
| | - Paul H Ratz
- Department of Biochemistry and Molecular Biology, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
10
|
Yochum M, Laforêt J, Marque C. An electro-mechanical multiscale model of uterine pregnancy contraction. Comput Biol Med 2016; 77:182-94. [PMID: 27567400 DOI: 10.1016/j.compbiomed.2016.08.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 07/30/2016] [Accepted: 08/01/2016] [Indexed: 11/16/2022]
Abstract
Detecting preterm labor as early as possible is important because tocolytic drugs are much more likely to delay preterm delivery if administered early. Having good information on the real risk of premature labor also leads to fewer women who do not need aggressive treatment for premature labor threat. Currently, one of the most promising ways to diagnose preterm labor threat is the analysis of the electrohysterogram (EHG). Its characteristics have been related to preterm labor risk but they have not proven to be sufficiently accurate to use in clinical routine. One of the reasons for this is that the physiology of the pregnant uterus is insufficiently understood. Models already exist in literature that simulate either the electrical or the mechanical component of the uterine smooth muscle. Few include both components in a co-simulation of electrical and mechanical aspects. A model that can represent realistically both the electrical and the mechanical behavior of the uterine muscle could be useful for better understanding the EHG and therefore for preterm labor detection. Processing the EHG considers only the electrical component of the uterus but the electrical activity does not seem to explain by itself the synchronization of the uterine muscle that occurs during labor and not at other times. Recent studies have demonstrated that the mechanical behavior of the uterine muscle seems to play an important role in uterus synchronization during labor. The aim of the proposed study is to link three different models of the uterine smooth muscle behavior by using co-simulation. The models go from the electrical activity generated at the cellular level to the mechanical force generated by the muscle and from there to the deformation of the tissue. The results show the feasibility of combining these three models to model a whole uterus contraction on 3D realistic uterus model.
Collapse
Affiliation(s)
- Maxime Yochum
- Sorbonne University,Université de technologie de Compiègne, CNRS, UMR 7338 Biomechanics and Bioengineering, Centre de recherche Royallieu, CS 60319-60203 Compiègne cedex, France.
| | - Jérémy Laforêt
- Sorbonne University,Université de technologie de Compiègne, CNRS, UMR 7338 Biomechanics and Bioengineering, Centre de recherche Royallieu, CS 60319-60203 Compiègne cedex, France
| | - Catherine Marque
- Sorbonne University,Université de technologie de Compiègne, CNRS, UMR 7338 Biomechanics and Bioengineering, Centre de recherche Royallieu, CS 60319-60203 Compiègne cedex, France
| |
Collapse
|
11
|
Randhawa PK, Jaggi AS. Gadolinium and ruthenium red attenuate remote hind limb preconditioning-induced cardioprotection: possible role of TRP and especially TRPV channels. Naunyn Schmiedebergs Arch Pharmacol 2016; 389:887-96. [PMID: 27118661 DOI: 10.1007/s00210-016-1251-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 04/20/2016] [Indexed: 01/16/2023]
Abstract
Remote ischemic preconditioning is a well reported therapeutic strategy that induces cardioprotective effects but the underlying intracellular mechanisms have not been widely explored. The current study was designed to investigate the involvement of TRP and especially TRPV channels in remote hind limb preconditioning-induced cardioprotection. Remote hind limb preconditioning stimulus (4 alternate cycles of inflation and deflation of 5 min each) was delivered using a blood pressure cuff tied on the hind limb of the anesthetized rat. Using Langendorff's system, the heart was perfused and subjected to 30-min ischemia and 120-min reperfusion. The myocardial injury was assessed by measuring infarct size, lactate dehydrogenase (LDH), creatine kinase (CK), LVDP, +dp/dtmax, -dp/dtmin, heart rate, and coronary flow rate. Gadolinium, TRP blocker, and ruthenium red, TRPV channel blocker, were employed as pharmacological tools. Remote hind limb preconditioning significantly reduced the infarct size, LDH release, CK release and improved coronary flow rate, hemodynamic parameters including LVDP, +dp/dtmax, -dp/dtmin, and heart rate. However, gadolinium (7.5 and 15 mg kg(-1)) and ruthenium red (4 and 8 mg kg(-1)) significantly attenuated the cardioprotective effects suggesting the involvement of TRP especially TRPV channels in mediating remote hind limb preconditioning-induced cardioprotection. Remote hind limb preconditioning stimulus possibly activates TRPV channels on the heart or sensory nerve fibers innervating the heart to induce cardioprotective effects. Alternatively, remote hind limb preconditioning stimulus may also activate the mechanosensitive TRP and especially TRPV channels on the sensory nerve fibers innervating the skeletal muscles to trigger cardioprotective neurogenic signaling cascade. The cardioprotective effects of remote hind limb preconditioning may be mediated via activation of mechanosensitive TRP and especially TRPV channels.
Collapse
Affiliation(s)
- Puneet Kaur Randhawa
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, 147002, India
| | - Amteshwar Singh Jaggi
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, 147002, India.
| |
Collapse
|
12
|
Xu YJ, Elimban V, Dhalla NS. Reduction of blood pressure by store-operated calcium channel blockers. J Cell Mol Med 2015; 19:2763-70. [PMID: 26471725 PMCID: PMC4687696 DOI: 10.1111/jcmm.12684] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 08/14/2015] [Indexed: 12/16/2022] Open
Abstract
The voltage-operated Ca(2+) channels (VOCC), which allow Ca(2+) influx from the extracellular space, are inhibited by anti-hypertensive agents such as verapamil and nifedipine. The Ca(2+) entering from outside into the cell triggers Ca(2+) release from the sarcoplasmic reticulum (SR) stores. To refill the depleted Ca(2+) stores in the SR, another type of Ca(2+) channels in the cell membrane, known as store-operated Ca(2+) channels (SOCC), are activated. These SOCCs are verapamil and nifedipine resistant, but are SKF 96465 (SK) and gadolinium (Gd(3+) ) sensitive. Both SK and Gd(3+) have been shown to reduce [Ca(2+) ]i in the smooth muscle, but their effects on blood pressure have not been reported. Our results demonstrated that both SK and Gd(3+) produced a dose-dependent reduction in blood pressure in rat. The combination of SK and verapamil produced an additive action in lowering the blood pressure. Furthermore, SK, but not Gd(3+) suppressed proliferation of vascular smooth muscle cells in the absence or presence of lysophosphatidic acid (LPA). SK decreased the elevation of [Ca(2+) ]i induced by LPA, endothelin-1 (ET-1) and angiotensin II (Ang II), but did not affect the norepinephrine (NE)-evoked increase in [Ca(2+) ]i . On the other hand, Gd(3+) inhibited the LPA and Ang II induced change in [Ca(2+) ]i , but had no effect on the ET-1 and NE induced increase in [Ca(2+) ]i . The combination of verapamil and SK abolished the LPA- or adenosine-5'-triphosphate (ATP)-induced [Ca(2+) ]i augmentation. These results suggest that SOCC inhibitors, like VOCC blocker, may serve as promising drugs for the treatment of hypertension.
Collapse
Affiliation(s)
- Yan-Jun Xu
- Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre, Department of Physiology and Pathophysiology, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Vijayan Elimban
- Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre, Department of Physiology and Pathophysiology, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Naranjan S Dhalla
- Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre, Department of Physiology and Pathophysiology, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
13
|
Calabresi MFF, Quini CC, Matos JF, Moretto GM, Americo MF, Graça JRV, Santos AA, Oliveira RB, Pina DR, Miranda JRA. Alternate current biosusceptometry for the assessment of gastric motility after proximal gastrectomy in rats: a feasibility study. Neurogastroenterol Motil 2015; 27:1613-20. [PMID: 26303680 DOI: 10.1111/nmo.12660] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 07/25/2015] [Indexed: 12/12/2022]
Abstract
BACKGROUND This study proposes an experimental model to assess the consequences of gastric surgeries on gastric motility. We investigated the effects of proximal gastrectomy (PG) using a non-invasive technique (alternate current biosusceptometry [ACB]) on gastric contractility (GC), gastric emptying (GE), and orocecal transit (OCT) after the ingestion of liquids and solids in rats. METHODS Twenty-four male rats were subjected to gastric motility assessment before and after the PG procedure. The GE and OCT results are expressed as the mean time of gastric emptying (MGET) and cecum arrival (MCAT). The GC recordings are presented as the frequency and amplitude of contractions. KEY RESULTS Mean time of gastric emptying after solid meals were significantly different (p < 0.001) between control and PG (113 ± 5 to 99 ± 6 min). Mean time of cecum arrival ranged from 265 ± 9 to 223 ± 11 min (p < 0.001) and 164 ± 9 to 136 ± 17 min (p < 0.050) for solid and liquid meals, respectively. The assessment of GC showed that surgery decreased the phasic frequency (4.4 ± 0.4 to 3.0 ± 1.1 cpm, p < 0.050) and increased the amplitude of contractions (3.6 ± 2.7 to 7.2 ± 3.0 V/s, p < 0.050). No significant difference was found in tonic frequency. CONCLUSIONS & INFERENCES The ACB system was able to assess GE, OCT, and GC in gastrectomized rats. Overall, PG accelerated GE and gastrointestinal transit, likely due to the increase in both intragastric pressure and amplitude contraction. Our data presented an efficient model to investigate functional consequences from gastric surgeries that will allow further studies involving different procedures.
Collapse
Affiliation(s)
- M F F Calabresi
- Departamento de Física e Biofísica, Instituto de Biociências de Botucatu, UNESP-Universidade Estadual Paulista, Botucatu, São Paulo, Brazil
| | - C C Quini
- Departamento de Física e Biofísica, Instituto de Biociências de Botucatu, UNESP-Universidade Estadual Paulista, Botucatu, São Paulo, Brazil
| | - J F Matos
- Departamento de Física e Biofísica, Instituto de Biociências de Botucatu, UNESP-Universidade Estadual Paulista, Botucatu, São Paulo, Brazil
| | - G M Moretto
- Departamento de Física e Biofísica, Instituto de Biociências de Botucatu, UNESP-Universidade Estadual Paulista, Botucatu, São Paulo, Brazil
| | - M F Americo
- Instituto de Ciências Biológicas e da Saúde, UFMT-Universidade Federal de Mato Grosso, Barra do Garças, Mato Grosso, Brazil
| | - J R V Graça
- Departamento de Fisiologia, Faculdade de Medicina de Sobral, UFC-Universidade Federal do Ceará, Sobral, Ceará, Brazil
| | - A A Santos
- Departamento de Fisiologia e Farmacologia, Faculdade de Medicina, UFC-Universidade Federal do Ceará, Fortaleza, Ceará, Brazil
| | - R B Oliveira
- Departamento de Clínica Médica, Faculdade de Medicina de Ribeirão Preto, USP-Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - D R Pina
- Departamento de Doenças Tropicais e Diagnóstico por Imagem, Faculdade de Medicina de Botucatu, UNESP - Universidade Estadual Paulista, Botucatu, São Paulo, Brazil
| | - J R A Miranda
- Departamento de Física e Biofísica, Instituto de Biociências de Botucatu, UNESP-Universidade Estadual Paulista, Botucatu, São Paulo, Brazil
| |
Collapse
|
14
|
Bencze M, Behuliak M, Vavřínová A, Zicha J. Broad-range TRP channel inhibitors (2-APB, flufenamic acid, SKF-96365) affect differently contraction of resistance and conduit femoral arteries of rat. Eur J Pharmacol 2015; 765:533-40. [PMID: 26384458 DOI: 10.1016/j.ejphar.2015.09.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 09/07/2015] [Accepted: 09/10/2015] [Indexed: 11/27/2022]
Abstract
Transient receptor potential (TRP) channels are proposed to contribute to membrane depolarization and Ca2+ influx into vascular smooth muscle (VSM) cells. Our aim was to study the effects of widely used broad-range TRP channel inhibitors--2-aminoethoxydiphenyl borate (2-APB), flufenamic acid (FFA) and SKF-96365--on the contraction of freshly isolated small and large arteries. Endothelium-denuded resistance (≈250 µm) and conduit (≈1000 µm) femoral arteries were isolated from adult Wistar rats and mounted in wire myograph. The effects of the above mentioned TRP channel inhibitors and voltage-dependent calcium channel inhibitor nifedipine were studied on arterial contractions induced by phenylephrine, U-46619 or K+. Phenylephrine-induced contractions were also studied in the absence of extracellular Na+. mRNA expression of particular canonical and melastatin TRP channel subunits in femoral vascular bed was determined. TRP channel inhibitors attenuated K+-induced contraction less than nifedipine. Phenylephrine-induced contraction was more influenced by 2-APB in resistance arteries, while FFA completely prevented U-46619-induced contraction in both sizes of arteries. The absence of extracellular Na+ prevented the inhibitory effects of 2-APB, but not those of FFA. The observed effects of broad-range TRP channel inhibitors, which were dependent on the size of the artery, confirmed the involvement of TRP channels in agonist-induced contractions. The inhibitory effects of 2-APB (but not those of FFA or SKF-96365) were dependent on the presence of extracellular Na+.
Collapse
Affiliation(s)
- Michal Bencze
- Department of Experimental Hypertension, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic; Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic.
| | - Michal Behuliak
- Department of Experimental Hypertension, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Anna Vavřínová
- Department of Experimental Hypertension, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic; Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Josef Zicha
- Department of Experimental Hypertension, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
15
|
Leblanc N, Forrest AS, Ayon RJ, Wiwchar M, Angermann JE, Pritchard HAT, Singer CA, Valencik ML, Britton F, Greenwood IA. Molecular and functional significance of Ca(2+)-activated Cl(-) channels in pulmonary arterial smooth muscle. Pulm Circ 2015; 5:244-68. [PMID: 26064450 DOI: 10.1086/680189] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 07/22/2014] [Indexed: 12/31/2022] Open
Abstract
Increased peripheral resistance of small distal pulmonary arteries is a hallmark signature of pulmonary hypertension (PH) and is believed to be the consequence of enhanced vasoconstriction to agonists, thickening of the arterial wall due to remodeling, and increased thrombosis. The elevation in arterial tone in PH is attributable, at least in part, to smooth muscle cells of PH patients being more depolarized and displaying higher intracellular Ca(2+) levels than cells from normal subjects. It is now clear that downregulation of voltage-dependent K(+) channels (e.g., Kv1.5) and increased expression and activity of voltage-dependent (Cav1.2) and voltage-independent (e.g., canonical and vanilloid transient receptor potential [TRPC and TRPV]) Ca(2+) channels play an important role in the functional remodeling of pulmonary arteries in PH. This review focuses on an anion-permeable channel that is now considered a novel excitatory mechanism in the systemic and pulmonary circulations. It is permeable to Cl(-) and is activated by a rise in intracellular Ca(2+) concentration (Ca(2+)-activated Cl(-) channel, or CaCC). The first section outlines the biophysical and pharmacological properties of the channel and ends with a description of the molecular candidate genes postulated to encode for CaCCs, with particular emphasis on the bestrophin and the newly discovered TMEM16 and anoctamin families of genes. The second section provides a review of the various sources of Ca(2+) activating CaCCs, which include stimulation by mobilization from intracellular Ca(2+) stores and Ca(2+) entry through voltage-dependent and voltage-independent Ca(2+) channels. The third and final section summarizes recent findings that suggest a potentially important role for CaCCs and the gene TMEM16A in PH.
Collapse
Affiliation(s)
- Normand Leblanc
- Department of Pharmacology, University of Nevada School of Medicine, Reno, Nevada, USA
| | - Abigail S Forrest
- Department of Pharmacology, University of Nevada School of Medicine, Reno, Nevada, USA
| | - Ramon J Ayon
- Department of Medicine, University of Illinois, Chicago, Illinois, USA
| | - Michael Wiwchar
- Department of Pharmacology, University of Nevada School of Medicine, Reno, Nevada, USA
| | - Jeff E Angermann
- School of Community Health Sciences, University of Nevada, Reno, Nevada, USA
| | - Harry A T Pritchard
- Vascular Biology Research Centre, Institute of Cardiovascular and Cell Sciences, St. George's University of London, London, United Kingdom
| | - Cherie A Singer
- Department of Pharmacology, University of Nevada School of Medicine, Reno, Nevada, USA
| | - Maria L Valencik
- Department of Biochemistry and Molecular Biology, University of Nevada School of Medicine, Reno, Nevada, USA
| | - Fiona Britton
- Department of Physiology, School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Iain A Greenwood
- Vascular Biology Research Centre, Institute of Cardiovascular and Cell Sciences, St. George's University of London, London, United Kingdom
| |
Collapse
|
16
|
Parpaite T, Cardouat G, Mauroux M, Gillibert-Duplantier J, Robillard P, Quignard JF, Marthan R, Savineau JP, Ducret T. Effect of hypoxia on TRPV1 and TRPV4 channels in rat pulmonary arterial smooth muscle cells. Pflugers Arch 2015; 468:111-130. [PMID: 25799977 DOI: 10.1007/s00424-015-1704-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 03/09/2015] [Accepted: 03/10/2015] [Indexed: 10/23/2022]
Abstract
Transient receptor potential (TRP) channels of the vanilloid subfamily, mainly TRPV1 and TRPV4, are expressed in pulmonary artery smooth muscle cells (PASMC) and implicated in the remodeling of pulmonary artery, a landmark of pulmonary hypertension (PH). Among a variety of PH subtypes, PH of group 3 are mostly related to a prolonged hypoxia exposure occurring in a variety of chronic lung diseases. In the present study, we thus investigated the role of hypoxia on TRPV1 and TRPV4 channels independently of the increased pulmonary arterial pressure that occurs during PH. We isolated PASMC from normoxic rat and cultured these cells under in vitro hypoxia. Using microspectrofluorimetry and the patch-clamp technique, we showed that hypoxia (1 % O2 for 48 h) significantly increased stretch- and TRPV4-induced calcium responses. qRT-PCR, Western blotting, and immunostaining experiments revealed that the expression of TRPV1 and TRPV4 was not enhanced under hypoxic conditions, but we observed a membrane translocation of TRPV1. Furthermore, hypoxia induced a reorganization of the F-actin cytoskeleton, the tubulin, and intermediate filament networks (immunostaining experiments), associated with an enhanced TRPV1- and TRPV4-induced migratory response (wound-healing assay). Finally, as assessed by immunostaining, exposure to in vitro hypoxia elicited a significant increase in NFATc4 nuclear localization. Cyclosporin A and BAPTA-AM inhibited NFATc4 translocation, indicating the activation of the Ca(2+)/calcineurin/NFAT pathway. In conclusion, these data point out the effect of hypoxia on TRPV1 and TRPV4 channels in rat PASMC, suggesting that these channels can act as direct signal transducers in the pathophysiology of PH.
Collapse
Affiliation(s)
- Thibaud Parpaite
- Univ. Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, F-33000, Bordeaux, France.,INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, F-33000, Bordeaux, France
| | - Guillaume Cardouat
- Univ. Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, F-33000, Bordeaux, France.,INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, F-33000, Bordeaux, France
| | - Marthe Mauroux
- Univ. Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, F-33000, Bordeaux, France.,INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, F-33000, Bordeaux, France
| | - Jennifer Gillibert-Duplantier
- Univ. Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, F-33000, Bordeaux, France.,INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, F-33000, Bordeaux, France
| | - Paul Robillard
- Univ. Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, F-33000, Bordeaux, France.,INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, F-33000, Bordeaux, France
| | - Jean-François Quignard
- Univ. Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, F-33000, Bordeaux, France.,INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, F-33000, Bordeaux, France
| | - Roger Marthan
- Univ. Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, F-33000, Bordeaux, France.,INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, F-33000, Bordeaux, France
| | - Jean-Pierre Savineau
- Univ. Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, F-33000, Bordeaux, France.,INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, F-33000, Bordeaux, France
| | - Thomas Ducret
- Univ. Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, F-33000, Bordeaux, France. .,INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, F-33000, Bordeaux, France. .,Centre de Recherche Cardio-Thoracique de Bordeaux, INSERM U1045, Université de Bordeaux, 146 rue Léo-Saignat (case 13), F-33076, Bordeaux cedex, France.
| |
Collapse
|
17
|
Fransen P, Van Hove CE, Leloup AJA, Martinet W, De Meyer GRY, Lemmens K, Bult H, Schrijvers DM. Dissecting out the complex Ca2+-mediated phenylephrine-induced contractions of mouse aortic segments. PLoS One 2015; 10:e0121634. [PMID: 25803863 PMCID: PMC4372603 DOI: 10.1371/journal.pone.0121634] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 02/12/2015] [Indexed: 01/04/2023] Open
Abstract
L-type Ca2+ channel (VGCC) mediated Ca2+ influx in vascular smooth muscle cells (VSMC) contributes to the functional properties of large arteries in arterial stiffening and central blood pressure regulation. How this influx relates to steady-state contractions elicited by α1-adrenoreceptor stimulation and how it is modulated by small variations in resting membrane potential (Vm) of VSMC is not clear yet. Here, we show that α1-adrenoreceptor stimulation of aortic segments of C57Bl6 mice with phenylephrine (PE) causes phasic and tonic contractions. By studying the relationship between Ca2+ mobilisation and isometric tension, it was found that the phasic contraction was due to intracellular Ca2+ release and the tonic contraction determined by Ca2+ influx. The latter component involves both Ca2+ influx via VGCC and via non-selective cation channels (NSCC). Influx via VGCC occurs only within the window voltage range of the channel. Modulation of this window Ca2+ influx by small variations of the VSMC Vm causes substantial effects on the contractile performance of aortic segments. The relative contribution of VGCC and NSCC to the contraction by α1-adrenoceptor stimulation could be manipulated by increasing intracellular Ca2+ release from non-contractile sarcoplasmic reticulum Ca2+ stores. Results of this study point to a complex interactions between α1-adrenoceptor-mediated VSMC contractile performance and Ca2+ release form contractile or non-contractile Ca2+ stores with concomitant Ca2+ influx. Given the importance of VGCC and their blockers in arterial stiffening and hypertension, they further point toward an additional role of NSCC (and NSCC blockers) herein.
Collapse
Affiliation(s)
- Paul Fransen
- Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium
- * E-mail:
| | - Cor E. Van Hove
- Department of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Arthur J. A. Leloup
- Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium
| | - Wim Martinet
- Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium
| | | | - Katrien Lemmens
- Department of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Hidde Bult
- Department of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | | |
Collapse
|
18
|
Macêdo CL, Vasconcelos LHC, de Correia ACC, Martins IRR, de Lira DP, de O Santos BV, de A Cavalcante F, Silva BAD. Mechanisms underlying vasorelaxation induced in rat aorta by galetin 3,6-dimethyl ether, a flavonoid from Piptadenia stipulacea (Benth.) Ducke. Molecules 2014; 19:19678-95. [PMID: 25438079 PMCID: PMC6271539 DOI: 10.3390/molecules191219678] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 11/17/2014] [Accepted: 11/17/2014] [Indexed: 11/20/2022] Open
Abstract
In this study, we investigated the relaxant action of galetin 3,6-dimethyl ether (FGAL) on rat aorta. The flavonoid relaxed both PMA‑ and phenylephrine (Phe)-induced contractions (pD2 = 5.36 ± 0.11 and 4.17 ± 0.10, respectively), suggesting the involvement of PKC and Phe pathways or α1 adrenergic receptor blockade. FGAL inhibited and rightward shifted Phe-induced cumulative concentration‑response curves, indicating a noncompetitive antagonism of α1 adrenergic receptors. The flavonoid was more potent in relaxing 30 mM KCl- than 80 mM KCl-induced contractions (pD2 = 5.50 ± 0.22 and 4.37 ± 0.12). The vasorelaxant potency of FGAL on Phe-induced contraction was reduced in the presence of 10 mM TEA+. Furthermore, in the presence of apamin, glibenclamide, BaCl2 or 4-AP, FGAL-induced relaxation was attenuated, indicating the participation of small conductance calcium-activated K+ channels (SKCa), ATP-sensitive K+ channels (KATP), inward rectifier K+ channels (Kir) and voltage-dependent K+ channels (KV), respectively. FGAL inhibited and rightward shifted CaCl2-induced cumulative concentration-response curves in both depolarizing medium (high K+) and in the presence of verapamil and phenylephrine, suggesting inhibition of Ca2+ influx through voltage-gated calcium channels (CaV) and receptor operated channels (ROCs), respectively. Likewise, FGAL inhibited Phe-induced contractions in Ca2+-free medium, indicating inhibition of Ca2+ release from the sarcoplasmic reticulum (SR). FGAL potentiated the relaxant effect of aminophylline and sildenafil but not milrinone, suggesting the involvement of phosphodiesterase V (PDE V). Thus, the FGAL vasorelaxant mechanism involves noncompetitive antagonism of α1 adrenergic receptors, the non-selective opening of K+ channels, inhibition of Ca2+ influx through CaV or ROCs and the inhibition of intracellular Ca2+ release. Additionally, there is the involvement of cyclic nucleotide pathway, particularly through PDE V inhibition.
Collapse
Affiliation(s)
- Cibério L Macêdo
- Programa de Pós-graduação em Produtos Naturais e Sintéticos Bioativos, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa, PB 58051-900, Brazil.
| | - Luiz H C Vasconcelos
- Programa de Pós-graduação em Produtos Naturais e Sintéticos Bioativos, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa, PB 58051-900, Brazil.
| | - Ana C C de Correia
- Programa de Pós-graduação em Produtos Naturais e Sintéticos Bioativos, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa, PB 58051-900, Brazil.
| | - Italo R R Martins
- Programa de Pós-graduação em Produtos Naturais e Sintéticos Bioativos, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa, PB 58051-900, Brazil.
| | - Daysianne P de Lira
- Departamento de Farmácia, Faculdade Santa Maria (FSM), Cajazeiras, PB 58900-000, Brazil.
| | - Bárbara V de O Santos
- Programa de Pós-graduação em Produtos Naturais e Sintéticos Bioativos, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa, PB 58051-900, Brazil.
| | - Fabiana de A Cavalcante
- Programa de Pós-graduação em Produtos Naturais e Sintéticos Bioativos, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa, PB 58051-900, Brazil.
| | - Bagnólia A da Silva
- Programa de Pós-graduação em Produtos Naturais e Sintéticos Bioativos, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa, PB 58051-900, Brazil.
| |
Collapse
|
19
|
Padilla J, López RM, López P, Castillo MC, Querejeta E, Ruiz A, Castillo EF. Inhibition of PKC-dependent extracellular Ca2+ entry contributes to the depression of contractile activity in long-term pressure-overloaded endothelium-denuded rat aortas. Braz J Med Biol Res 2014; 47:789-98. [PMID: 25098618 PMCID: PMC4143207 DOI: 10.1590/1414-431x20143073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 05/22/2014] [Indexed: 11/22/2022] Open
Abstract
We examined the contractile responsiveness of rat thoracic aortas under pressure
overload after long-term suprarenal abdominal aortic coarctation (lt-Srac).
Endothelium-dependent angiotensin II (ANG II) type 2 receptor
(AT2R)-mediated depression of contractions to ANG II has been reported in
short-term (1 week) pressure-overloaded rat aortas. Contractility was evaluated in
the aortic rings of rats subjected to lt-Srac or sham surgery (Sham) for 8 weeks. ANG
I and II levels and AT2R protein expression in the aortas of lt-Srac and
Sham rats were also evaluated. lt-Srac attenuated the contractions of ANG II and
phenylephrine in the aortas in an endothelium-independent manner. However, lt-Srac
did not influence the transient contractions induced in endothelium-denuded aortic
rings by ANG II, phenylephrine, or caffeine in Ca2+-free medium or the
subsequent tonic constrictions induced by the addition of Ca2+ in the
absence of agonists. Thus, the contractions induced by Ca2+ release from
intracellular stores and Ca2+ influx through stored-operated channels were
not inhibited in the aortas of lt-Srac rats. Potassium-elicited contractions in
endothelium-denuded aortic rings of lt-Srac rats remained unaltered compared with
control tissues. Consequently, the contractile depression observed in aortic tissues
of lt-Srac rats cannot be explained by direct inhibition of voltage-operated
Ca2+ channels. Interestingly,
12-O-tetradecanoylphorbol-13-acetate-induced contractions in
endothelium-denuded aortic rings of lt-Srac rats were depressed in the presence but
not in the absence of extracellular Ca2+. Neither levels of angiotensins
nor of AT2R were modified in the aortas after lt-Srac. The results suggest
that, in rat thoracic aortas, lt-Srac selectively inhibited protein kinase C-mediated
activation of contraction that is dependent on extracellular Ca2+
entry.
Collapse
Affiliation(s)
- J Padilla
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, México, DF, México
| | - R M López
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, México, DF, México
| | - P López
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, México, DF, México
| | - M C Castillo
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, México, DF, México
| | - E Querejeta
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, México, DF, México
| | - A Ruiz
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, México, DF, México
| | - E F Castillo
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, México, DF, México
| |
Collapse
|
20
|
Abstract
BACKGROUND Understanding the physiology of pregnancy enables effective management of pregnancy complications that could otherwise be life threatening for both mother and fetus. A functional uterus (i) retains the fetus in utero during pregnancy without initiating stretch-induced contractions and (ii) is able to dilate the cervix and contract the myometrium at term to deliver the fetus. The onset of labour is associated with successful cervical remodelling and contraction of myometrium, arising from concomitant activation of uterine immune and endocrine systems. A large body of evidence suggests that actions of local steroid hormones may drive changes occurring in the uterine microenvironment at term. Although there have been a number of studies considering the potential role(s) played by progesterone and estrogen at the time of parturition, the bio-availability and effects of androgens during pregnancy have received less scrutiny. The aim of this review is to highlight potential roles of androgens in the biology of pregnancy and parturition. METHODS A review of published literature was performed to address (i) androgen concentrations, including biosynthesis and clearance, in maternal and fetal compartments throughout gestation, (ii) associations of androgen concentrations with adverse pregnancy outcomes, (iii) the role of androgens in the physiology of cervical remodelling and finally (iv) the role of androgens in the physiology of myometrial function including any impact on contractility. RESULTS Some, but not all, androgens increase throughout gestation in maternal circulation. The effects of this increase are not fully understood; however, evidence suggests that increased androgens might regulate key processes during pregnancy and parturition. For example, androgens are believed to be critical for cervical remodelling at term, in particular cervical ripening, via regulation of cervical collagen fibril organization. Additionally, a number of studies highlight potential roles for androgens in myometrial relaxation via non-genomic, AR-independent pathways critical for the pregnancy reaching term. Understanding of the molecular events leading to myometrial relaxation is an important step towards development of novel targeted tocolytic drugs. CONCLUSIONS The increase in androgen levels throughout gestation is likely to be important for establishment and maintenance of pregnancy and initiation of parturition. Further investigation of the underlying mechanisms of androgen action on cervical remodelling and myometrial contractility is needed. The insights gained may facilitate the development of new therapeutic approaches to manage pregnancy complications such as preterm birth.
Collapse
Affiliation(s)
- Sofia Makieva
- Medical Research Council Centre for Reproductive Health, The University of Edinburgh, Queen's Medical Research Institute, Edinburgh EH16 4TJ, United Kingdom and Tommy's Centre for Maternal and Fetal Health, University of Edinburgh, Queen's Medical Research Institute, Edinburgh EH16 4TJ, United Kingdom
| | - Philippa T K Saunders
- Medical Research Council Centre for Reproductive Health, The University of Edinburgh, Queen's Medical Research Institute, Edinburgh EH16 4TJ, United Kingdom and
| | - Jane E Norman
- Medical Research Council Centre for Reproductive Health, The University of Edinburgh, Queen's Medical Research Institute, Edinburgh EH16 4TJ, United Kingdom and Tommy's Centre for Maternal and Fetal Health, University of Edinburgh, Queen's Medical Research Institute, Edinburgh EH16 4TJ, United Kingdom
| |
Collapse
|
21
|
Song JN, Yan WT, An JY, Hao GS, Guo XY, Zhang M, Li Y, Li DD, Sun P. Potential contribution of SOCC to cerebral vasospasm after experimental subarachnoid hemorrhage in rats. Brain Res 2013; 1517:93-103. [PMID: 23542055 DOI: 10.1016/j.brainres.2013.01.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2012] [Revised: 01/02/2013] [Accepted: 01/04/2013] [Indexed: 11/27/2022]
Abstract
Cerebral vasospasm (CVS) is the most treatable component of subarachnoid hemorrhage (SAH), which can be reduced by endothelin receptor antagonists. Endothelin-evoked vasospasm is considered to be mediated by Ca(2+) influx in the smooth muscle through voltage-dependent Ca(2+) channel (VDCC) and nonselective cation channels (NSCC). Because VDCC antagonists such as nimodipine have been shown to be relatively less effective than the endothelin receptor antagonists, it is assumed that NSCC maybe a more important component in mediating Ca(2+) influx during CVS. In this study, we used the basilar arteries from a "two-hemorrhage" rat model of SAH to investigate expressions of transient receptor potential channel 1 (TRPC1), transient receptor potential channel 3 (TRPC3) and stromal interaction molecule 1 (STIM1), which are considered as the promising candidates constituting NSCC. To investigate the possible role of NSCC in phenotypic switching, we performed immunohistochemical staining to examine expressions of SMα-actin and PCNA, markers of smooth muscle phenotypic switching. We found that the basilar arteries exhibited vasospasm after SAH and that vasospasm became more severe on days 5 and 7 after SAH. Elevated mRNA and protein expressions of TRPC1 and STIM1 were detected after SAH and peaked on days 5 and 7, which was in a parallel time course to the development of cerebral vasospasm. The mRNA and protein expressions of TRPC3 were not changed in the SAH group when compared with those in the control. Results of immunohistochemical staining with anti-PCNA and anti-SMα-actin antibodies also showed enhanced expression of PCNA and disappearance of SMα-actin from day 1 to day 7. Taken together, the above results supported a novel mechanism that the components of store-operated calcium channels, TRPC1 and STIM1 mediated the Ca(2+) influx and phenotypic switching in smooth muscle cells, which promoted the development of vasospasm after SAH. TRPC3, which is a component of receptor-operated calcium channels, was not involved in the above-mentioned mechanism.
Collapse
Affiliation(s)
- Jin-Ning Song
- Department of Neurosurgery, First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Edwards DH. Local, integrated control of blood flow: Professor Tudor Griffith Memorial. Auton Neurosci 2013; 178:4-8. [PMID: 23522722 DOI: 10.1016/j.autneu.2013.02.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 02/07/2013] [Accepted: 02/24/2013] [Indexed: 11/24/2022]
Abstract
Professor Tudor Griffith was one of the founding members of the European Study Group on Cardiovascular Oscillations, and hosted the 1st ESGCO Conference in Cardiff, Wales in 2000. Tudor was a passionate scientist, who managed to combine his enthusiasm for vascular biology with his background in physics, to make key and insightful advances to our knowledge and understanding of the integrated vascular control mechanisms that co-ordinate blood flow in tissue perfusion. He had a particular interest in the endothelium, the monolayer of cells that lines the entire cardiovascular system and which is in prime position to sense a wide variety of modulatory stimuli, both chemical and mechanical. Over the last 20 years Tudor produced a series of research papers in which he used chaos theory to analyse the behaviour of arteries that underpins vasomotion. The research led to the development of mathematical models that were able to predict calcium oscillations in vascular smooth muscle with a view to predicting events in a complete virtual artery. This article will review the field in which he worked, with an obvious emphasis on his contribution.
Collapse
Affiliation(s)
- David H Edwards
- Institute of Molecular and Experimental Medicine, Wales Heart Research Institute, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, United Kingdom.
| |
Collapse
|
23
|
Dahan D, Ducret T, Quignard JF, Marthan R, Savineau JP, Estève E. Implication of the ryanodine receptor in TRPV4-induced calcium response in pulmonary arterial smooth muscle cells from normoxic and chronically hypoxic rats. Am J Physiol Lung Cell Mol Physiol 2012; 303:L824-33. [DOI: 10.1152/ajplung.00244.2011] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
There is a growing body of evidence indicating that transient receptor potential (TRP) channels are implicated in calcium signaling and various cellular functions in the pulmonary vasculature. The aim of this study was to investigate the expression, functional role, and coupling to reticulum calcium channels of the type 4 vanilloid TRP subfamily (TRPV4) in the pulmonary artery from both normoxic (Nx) and chronically hypoxic (CH) rats. Activation of TRPV4 with the specific agonist 4α-phorbol-12,13-didecanoate (4α-PDD, 5 μM) increased the intracellular calcium concentration ([Ca2+]i). This effect was significantly reduced by a high concentration of ryanodine (100 μM) or chronic caffeine (5 mM) that blocked ryanodine receptor (RyR) but was insensitive to xestospongin C (10 μM), an inositol trisphosphate receptor antagonist. Inhibition of RyR1 and RyR3 only with 10 μM of dantrolene did not attenuate the 4α-PDD-induced [Ca2+]i increase. Western blotting experiments revealed the expression of TRPV4 and RyR2 with an increase in both receptors in pulmonary arteries from CH rats vs. Nx rats. Accordingly, the 4α-PDD-activated current, measured with patch-clamp technique, was increased in pulmonary artery smooth muscle cells (PASMC) from CH rats vs. Nx rats. 4α-PDD increased isometric tension in artery rings, and this response was also potentiated under chronic hypoxia conditions. 4α-PDD-induced calcium response, current, and contraction were all inhibited by the selective TRPV4 blocker HC-067047. Collectively, our findings provide evidence of the interplay between TRPV4 and RyR2 in the Ca2+ release mechanism and contraction in PASMC. This study provides new insights onto the complex calcium signaling in PASMC and point out the importance of the TRPV4-RyR2 signaling pathway under hypoxic conditions that may lead to pulmonary hypertension.
Collapse
Affiliation(s)
- Diana Dahan
- Université de Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux, Bordeaux, France
- Institut National de la Santé et de la Recherche Médicale, U 1045, Bordeaux, France; and
| | - Thomas Ducret
- Université de Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux, Bordeaux, France
- Institut National de la Santé et de la Recherche Médicale, U 1045, Bordeaux, France; and
| | - Jean-François Quignard
- Université de Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux, Bordeaux, France
- Institut National de la Santé et de la Recherche Médicale, U 1045, Bordeaux, France; and
| | - Roger Marthan
- Université de Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux, Bordeaux, France
- Institut National de la Santé et de la Recherche Médicale, U 1045, Bordeaux, France; and
| | - Jean-Pierre Savineau
- Université de Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux, Bordeaux, France
- Institut National de la Santé et de la Recherche Médicale, U 1045, Bordeaux, France; and
| | - Eric Estève
- Université de Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux, Bordeaux, France
- Institut National de la Santé et de la Recherche Médicale, U 1045, Bordeaux, France; and
- Université Grenoble 1 UJF, Institut National de la Santé et de la Recherche Médicale U1042, La Tronche, France
| |
Collapse
|
24
|
Involvement of TRPV1 and TRPV4 channels in migration of rat pulmonary arterial smooth muscle cells. Pflugers Arch 2012; 464:261-72. [PMID: 22820913 DOI: 10.1007/s00424-012-1136-5] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Accepted: 06/26/2012] [Indexed: 12/11/2022]
Abstract
Pulmonary hypertension, the main disease of the pulmonary circulation, is characterized by an increase in pulmonary vascular resistance, involving proliferation and migration of pulmonary arterial smooth muscle cells (PASMC). However, cellular and molecular mechanisms underlying these phenomena remain to be identified. In the present study, we thus investigated in rat intrapulmonary arteries (1) the expression and the functional activity of TRPV1 and TRPV4, (2) the PASMC migration triggered by these TRPV channels, and (3) the associated reorganization of the cytoskeleton. Reverse transcriptase-polymerase chain reaction (RT-PCR) analysis demonstrated expression of TRPV1 and TRPV4 mRNA in rat intrapulmonary arteries. These results were confirmed at the protein level by western blot. Using microspectrofluorimetry (indo-1), we show that capsaicin and 4α-phorbol-12,13-didecanoate (4α-PDD), selective agonists of TRPV1 and TRPV4, respectively, increased the intracellular calcium concentration of PASMC. Furthermore, stimulation of TRPV1 and TRPV4 induced PASMC migratory responses, as assessed by two different methods (a modified Boyden chamber assay and a wound-healing migration assay). This response cannot seem to be attributed to a proliferative effect as assessed by BrdU and Wst-1 colorimetric methods. Capsaicin- and 4α-PDD-induced calcium and migratory responses were inhibited by the selective TRPV1 and TRPV4 blockers, capsazepine and HC067047, respectively. Finally, as assessed by immunostaining, these TRPV-induced migratory responses were associated with reorganization of the F-actin cytoskeleton and the tubulin and intermediate filament networks. In conclusion, these data point out, for the first time, the implication of TRPV1 and TRPV4 in rat PASMC migration, suggesting the implication of these TRPV channels in the physiopathology of pulmonary hypertension.
Collapse
|
25
|
|
26
|
Angermann JE, Forrest AS, Greenwood IA, Leblanc N. Activation of Ca2+-activated Cl- channels by store-operated Ca2+ entry in arterial smooth muscle cells does not require reverse-mode Na+/Ca2+ exchange. Can J Physiol Pharmacol 2012; 90:903-21. [PMID: 22734601 DOI: 10.1139/y2012-081] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The main purpose of this study was to characterize the stimulation of Ca(2+)-activated Cl(-) (Cl(Ca)) by store-operated Ca(2+) entry (SOCE) channels in rabbit pulmonary arterial smooth muscle cells (PASMCs) and determine if this process requires reverse-mode Na(+)/Ca(2+) exchange (NCX). In whole-cell voltage clamped PASMCs incubated with 1 μmol/L nifedipine (Nif) to inhibit Ca(2+) channels, 30 μmol/L cyclopiazonic acid (CPA), a SERCA pump inhibitor, activated a nonselective cation conductance permeable to Na(+) (I(SOC)) during an initial 1-3 s step, ranging from-120 to +60 mV, and Ca(2+)-activated Cl(-) current (I(Cl(Ca))) during a second step to +90 mV that increased with the level of the preceding hyperpolarizing step. Niflumic acid (100 μmol/L), a Cl(Ca) channel blocker, abolished I(Cl(Ca)) but had no effect on I(SOC), whereas the I(SOC) blocker SKF-96365 (50 μmol/L) suppressed both currents. Dual patch clamp and Fluo-4 fluorescence measurements revealed the appearance of CPA-induced Ca(2+) transients of increasing magnitude with increasing hyperpolarizing steps, which correlated with I(Cl(Ca)) amplitude. The absence of Ca(2+) transients at positive potentials following a hyperpolarizing step combined with the observation that SOCE-stimulated I(Cl(Ca)) was unaffected by the NCX blocker KB-R7943 (1 μmol/L) suggest that the SOCE/Cl(Ca) interaction does not require reverse-mode NCX in our conditions.
Collapse
Affiliation(s)
- Jeff E Angermann
- School of Community Health Sciences, University of Nevada, Reno, 89557, USA
| | | | | | | |
Collapse
|
27
|
Inoue R, Shi J, Jian Z, Imai Y. Regulation of cardiovascular TRP channel functions along the NO-cGMP-PKG axis. Expert Rev Clin Pharmacol 2012; 3:347-60. [PMID: 22111615 DOI: 10.1586/ecp.10.15] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
There is growing body of evidence that nitric oxide (NO)-cGMP-PKG signaling plays a central role in negative regulation of cardiovascular (CV) responses and its disorders through suppressed Ca(2+) dynamics. Other lines of evidence also reveal the stimulatory effects of this signaling on some CV functions. Recently, transient receptor potential (TRP) channels have received much attention as non-voltage-gated Ca(2+) channels involved in CV physiology and pathophysiology. Available information suggests that these channels undergo both inhibition and activation by NO via PKG-mediated phosphorylation and S-nitrosylation, respectively, and also act as upstream regulators to promote endothelial NO production. This review summarizes the roles of NO-cGMP-PKG signaling pathway, particularly in regulating TRP channel functions with their associated physiology and pathophysiology.
Collapse
Affiliation(s)
- Ryuji Inoue
- Department of Physiology, Graduate School of Medcial Sciences, Fukuoka University, Fukuoka, Japan.
| | | | | | | |
Collapse
|
28
|
Ohya S, Niwa S, Kojima Y, Sasaki S, Sakuragi M, Kohri K, Imaizumi Y. Intermediate-conductance Ca2+-activated K+ channel, KCa3.1, as a novel therapeutic target for benign prostatic hyperplasia. J Pharmacol Exp Ther 2011; 338:528-36. [PMID: 21602424 DOI: 10.1124/jpet.111.182782] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Recently, a new experimental stromal hyperplasia animal model corresponding to clinical benign prostatic hyperplasia (BPH) was established. The main objective of this study was to elucidate the roles of the intermediate-conductance Ca(2+)-activated K(+) channel (K(Ca)3.1) in the implanted urogenital sinus (UGS) of stromal hyperplasia BPH model rats. Using DNA microarray, real-time polymerase chain reaction, Western blot, and/or immunohistochemical analyses, we identified the expression of K(Ca)3.1 and its transcriptional regulators in implanted UGS of BPH model rats and prostate needle-biopsy samples and surgical prostate specimens of BPH patients. We also examined the in vivo effects of a K(Ca)3.1 blocker, 1-[(2-chlorophenyl)diphenylmethyl]-1H-pyrazole (TRAM-34), on the proliferation index of implanted UGS by measurement of UGS weights and proliferating cell nuclear antigen immunostaining. K(Ca)3.1 genes and proteins were highly expressed in implanted UGS rather than in the normal host prostate. In the implanted UGS, the gene expressions of two transcriptional regulators of K(Ca)3.1, repressor element 1-silencing transcription factor and c-Jun, were significantly down- and up-regulated, and the regulations were correlated negatively or positively with K(Ca)3.1 expression, respectively. Positive signals of K(Ca)3.1 proteins were detected exclusively in stromal cells, whereas they were scarcely immunolocalized to basal cells of the epithelium in implanted UGS. In vivo treatment with TRAM-34 significantly suppressed the increase in implanted UGS weights compared with the decrease in stromal cell components. Moreover, significant levels of K(Ca)3.1 expression were observed in human BPH samples. K(Ca)3.1 blockers may be a novel treatment option for patients suffering from BPH.
Collapse
Affiliation(s)
- Susumu Ohya
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Muzuhoku, Nagoya 467-8603, Japan
| | | | | | | | | | | | | |
Collapse
|
29
|
Hishinuma S, Shoji M. Desensitization of depolarization-mediated contractile pathways does not necessarily regulate receptor-mediated excitation-contraction coupling in longitudinal smooth muscle of guinea pig ileum. Clin Exp Pharmacol Physiol 2011; 38:233-8. [DOI: 10.1111/j.1440-1681.2011.05491.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
30
|
Abstract
Pulmonary hypertension (PH) is a severe, life-threatening disease for which there are no effective curative therapies. A diverse group of agents such as prostacyclins, endothelin antagonists, phosphodiesterase inhibitors, calcium channel blockers, diuretics, inotropic agents, and anticoagulants are used to treat PH; however, none of these agents have a marked effect upon survival. Among the new agents that promise treatment of PH are rho-kinase inhibitors and soluble guanylate cyclase stimulators. Although these new classes of agents have beneficial effects in experimental animal models and clinical studies, they are not selective in their actions on the pulmonary vascular bed. This manuscript reviews the actions of rho-kinase inhibitors and soluble guanylate cyclase stimulators on the pulmonary vascular bed. It is our hypothesis that these new agents may be more effective than current therapies in the treatment of PH. Moreover, new methods in the delivery of these agents to the lung need to be developed so that their main effects will be exerted in the pulmonary vascular bed and their systemic effects can be minimized or avoided.
Collapse
|
31
|
Muñoz E, Valero RA, Quintana A, Hoth M, Núñez L, Villalobos C. Nonsteroidal anti-inflammatory drugs inhibit vascular smooth muscle cell proliferation by enabling the Ca2+-dependent inactivation of calcium release-activated calcium/orai channels normally prevented by mitochondria. J Biol Chem 2011; 286:16186-96. [PMID: 21402693 DOI: 10.1074/jbc.m110.198952] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Abnormal vascular smooth muscle cell (VSMC) proliferation contributes to occlusive and proliferative disorders of the vessel wall. Salicylate and other nonsteroidal anti-inflammatory drugs (NSAIDs) inhibit VSMC proliferation by an unknown mechanism unrelated to anti-inflammatory activity. In search for this mechanism, we have studied the effects of salicylate and other NSAIDs on subcellular Ca(2+) homeostasis and Ca(2+)-dependent cell proliferation in rat aortic A10 cells, a model of neointimal VSMCs. We found that A10 cells displayed both store-operated Ca(2+) entry (SOCE) and voltage-operated Ca(2+) entry (VOCE), the former being more important quantitatively than the latter. Inhibition of SOCE by specific Ca(2+) released-activated Ca(2+) (CRAC/Orai) channels antagonists prevented A10 cell proliferation. Salicylate and other NSAIDs, including ibuprofen, indomethacin, and sulindac, inhibited SOCE and thereby Ca(2+)-dependent, A10 cell proliferation. SOCE, but not VOCE, induced mitochondrial Ca(2+) uptake in A10 cells, and mitochondrial depolarization prevented SOCE, thus suggesting that mitochondrial Ca(2+) uptake controls SOCE (but not VOCE) in A10 cells. NSAIDs depolarized mitochondria and prevented mitochondrial Ca(2+) uptake, suggesting that they favor the Ca(2+)-dependent inactivation of CRAC/Orai channels. NSAIDs also inhibited SOCE in rat basophilic leukemia cells where mitochondrial control of CRAC/Orai is well established. NSAIDs accelerate slow inactivation of CRAC currents in rat basophilic leukemia cells under weak Ca(2+) buffering conditions but not in strong Ca(2+) buffer, thus excluding that NSAIDs inhibit SOCE directly. Taken together, our results indicate that NSAIDs inhibit VSMC proliferation by facilitating the Ca(2+)-dependent inactivation of CRAC/Orai channels which normally is prevented by mitochondria clearing of entering Ca(2+).
Collapse
Affiliation(s)
- Eva Muñoz
- Institute of Molecular Biology and Genetics, University of Valladolid and Spanish Research Council, Valladolid, Spain
| | | | | | | | | | | |
Collapse
|
32
|
Salido GM, Jardín I, Rosado JA. The TRPC ion channels: association with Orai1 and STIM1 proteins and participation in capacitative and non-capacitative calcium entry. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 704:413-33. [PMID: 21290309 DOI: 10.1007/978-94-007-0265-3_23] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Transient receptor potential (TRP) proteins are involved in a large number of non-selective cation channels that are permeable to both monovalent and divalent cations. Two general classes of receptor-mediated Ca(2+) entry has been proposed: one of then is conduced by receptor-operated Ca(2+) channels (ROC), the second is mediated by channels activated by the emptying of intracellular Ca(2+) stores (store-operated channels or SOC). TRP channels have been presented as subunits of both ROC and SOC, although the precise mechanism that regulates the participation of TRP proteins in these Ca(2+) entry mechanisms remains unclear. Recently, TRPC proteins have been shown to associate with Orai1 and STIM1 in a dynamic ternary complex regulated by the occupation of membrane receptors in several cell models, which might play an important role in the function of TRPC proteins. The present review summarizes the current knowledge concerning the association of TRP proteins with Orai and STIM proteins and how this affects the participation of TRP proteins in store-operated or receptor-operated Ca(2+) entry.
Collapse
Affiliation(s)
- Gines M Salido
- Cell Physiology Group, Department of Physiology, University of Extremadura, Cáceres, Spain.
| | | | | |
Collapse
|
33
|
Expression and physiological roles of TRP channels in smooth muscle cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 704:687-706. [PMID: 21290322 DOI: 10.1007/978-94-007-0265-3_36] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Smooth muscles are widely distributed in mammal body through various systems such as circulatory, respiratory, gastro-intestinal and urogenital systems. The smooth muscle cell (SMC) is not only a contractile cell but is able to perform other important functions such as migration, proliferation, production of cytokines, chemokines, extracellular matrix proteins, growth factors and cell surface adhesion molecules. Thus, SMC appears today as a fascinating cell with remarkable plasticity that contributes to its roles in physiology and disease. Most of the SMC functions are dependent on a key event: the increase in intracellular calcium concentration ([Ca(2+)](i)). Calcium entry from the extracellular space is a major step in the elevation of [Ca(2+)](i) in SMC and involves a variety of plasmalemmal calcium channels, among them is the superfamily of transient receptor potential (TRP) proteins. TRPC (canonical), TRPM (melastatin), TRPV (vanilloid) and TRPP (polycystin), are widely expressed in both visceral (airways, gastrointestinal tract, uterus) and vascular (systemic and pulmonary circulation) smooth muscles. Mainly, TRPC, TRPV and TRPM are implicated in a variety of physiological and pathophysiological processes such as: SMC contraction, relaxation, growth, migration and proliferation; control of blood pressure, arterial myogenic tone, pulmonary hypertension, intestinal motility, gastric acidity, uterine activity during parturition and labor. Thus it is becoming evident that TRP are major element of SMC calcium homeostasis and, thus, appear as novel drug targets for a better management of diseases originating from SMC dysfunction.
Collapse
|
34
|
Vennekens R. Emerging concepts for the role of TRP channels in the cardiovascular system. J Physiol 2010; 589:1527-34. [PMID: 21173080 DOI: 10.1113/jphysiol.2010.202077] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The transient receptor potential (TRP) family of ion channels is a large family of cation selective ion channels, which are expressed and functional in a variety of tissues. In this review we focus on the most recent results detailing the role of TRP channels in the cardiovascular system. The presented results underscore the role of TRP channels in cardiomyocytes, smooth cells and endothelium, and in disease states such as hypertension, cardiac conduction block and cardiac hypertrophy.
Collapse
Affiliation(s)
- Rudi Vennekens
- Laboratory of Ion Channel Research, Katholieke Universiteit Leuven, Physiology, Campus Gasthuisberg O/N, Herestraat 49, bus 802, Leuven B-3000, Belgium.
| |
Collapse
|
35
|
Ducret T, El Arrouchi J, Courtois A, Quignard JF, Marthan R, Savineau JP. Stretch-activated channels in pulmonary arterial smooth muscle cells from normoxic and chronically hypoxic rats. Cell Calcium 2010; 48:251-9. [DOI: 10.1016/j.ceca.2010.09.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Revised: 09/10/2010] [Accepted: 09/30/2010] [Indexed: 10/18/2022]
|
36
|
Raizman I, De Croos JNA, Pilliar R, Kandel RA. Calcium regulates cyclic compression-induced early changes in chondrocytes during in vitro cartilage tissue formation. Cell Calcium 2010; 48:232-42. [PMID: 20932575 DOI: 10.1016/j.ceca.2010.09.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Revised: 09/07/2010] [Accepted: 09/08/2010] [Indexed: 11/18/2022]
Abstract
A single application of cyclic compression (1kPa, 1Hz, 30min) to bioengineered cartilage results in improved tissue formation through sequential catabolic and anabolic changes mediated via cell shape changes that are regulated by α5β1 integrin and membrane-type metalloprotease (MT1-MMP). To determine if calcium was involved in this process, the role of calcium in regulating cell shape changes, MT1-MMP expression and integrin activity in response to mechanical stimulation was examined. Stimulation-induced changes in cell shape and MT1-MMP expression were abolished by chelation of extracellular calcium, and this effect was reversed by re-introduction of calcium. Spreading was inhibited by blocking stretch-activated channels (with gadolinium), while retraction was prevented by blocking the L-Type voltage-gated channel (with nifedipine); both compounds inhibited MT1-MMP upregulation. Calcium A23187 ionophore restored cellular response further supporting a role for these channels. Calcium regulated the integrin-mediated signalling pathway, which was facilitated through Src kinase. Both calcium- and integrin-mediated pathways converged on ERK-MAPK in response to stimulation. While both integrins and calcium signalling mediate chondrocyte mechanotransduction, calcium appears to play the major regulatory role. Understanding the underlying molecular mechanisms involved in chondrocyte mechanotransduction may lead to the development of improved bioengineered cartilage.
Collapse
Affiliation(s)
- Igal Raizman
- CIHR-BioEngineering of Skeletal Tissue Team, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada M5G 1X5
| | | | | | | |
Collapse
|
37
|
Nossaman BD, Nossaman VE, Murthy SN, Kadowitz PJ. Role of the RhoA/Rho-kinase pathway in the regulation of pulmonary vasoconstrictor function. Can J Physiol Pharmacol 2010; 88:1-8. [PMID: 20130732 DOI: 10.1139/y09-092] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Calcium is the major intracellular messenger that triggers smooth muscle contraction. The study of calcium-binding proteins, such as calmodulin and its downstream effectors, reveals critical regulation of smooth muscle contraction by protein kinases and phosphatases. Moreover, the small GTP-binding protein RhoA and its downstream effector protein, Rho-kinase, have been shown to play a novel role in the regulation of smooth muscle contraction. Studies have shown that the activation of Rho-kinase is involved in the development of endothelial dysfunction, inflammation, restenosis, and increased vascular tone in a number of cardiovascular disorders. Because inhibitors of this pathway promote vasodilation independent of the mechanism that increases vasoconstrictor tone, it is our hypothesis that Rho-kinase is constitutively active in regulating vasoconstrictor tone in the pulmonary and systemic vascular beds. Studies in the literature suggest that the RhoA/Rho-kinase pathway has an important role in the pathogenesis of pulmonary hypertension.
Collapse
Affiliation(s)
- Bobby D Nossaman
- Department of Anesthesiology, Critical Care Section, Ochsner Medical Center, 1514 Jefferson Highway, New Orleans, LA 70121, USA
| | | | | | | |
Collapse
|
38
|
Ren J, Albinsson S, Hellstrand P. Distinct effects of voltage- and store-dependent calcium influx on stretch-induced differentiation and growth in vascular smooth muscle. J Biol Chem 2010; 285:31829-39. [PMID: 20675376 DOI: 10.1074/jbc.m109.097576] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Stretch of the vascular wall stimulates smooth muscle hypertrophy by activating the MAPK and Rho/Rho kinase (ROK) pathways. We investigated the role of calcium in this response. Stretch-stimulated expression of contractile and cytoskeletal proteins in mouse portal vein was inhibited at mRNA and protein levels by blockade of voltage-dependent Ca(2+) entry (VDCE). In contrast, blockade of store-operated Ca(2+) entry (SOCE) did not affect smooth muscle marker expression but decreased global protein synthesis. Activation of VDCE caused membrane translocation of RhoA followed by phosphorylation of its downstream effectors LIMK-2 and cofilin-2. Stretch-activated cofilin-2 phosphorylation depended on VDCE but not on SOCE. VDCE was associated with increased mRNA expression of myocardin, myocyte enhancer factor (MEF) -2A and -2D, and smooth muscle marker genes, all of which depended on ROK activity. SOCE increased ERK1/2 phosphorylation and c-Fos expression but had no effect on phosphorylation of LIMK-2 and cofilin-2 or on myocardin and MEF2 expression. Knockdown of MEF2A or -2D eliminated the VDCE-induced activation of myocardin expression and increased basal c-Jun and c-Fos mRNA levels. These results indicate that MEF2 mediates VDCE-dependent stimulation of myocardin expression via the Rho/ROK pathway. In addition, SOCE activates the expression of immediate-early genes, known to be regulated by MEF2 via Ca(2+)-dependent phosphorylation of histone deacetylases, but this mode of Ca(2+) entry does not affect the Rho/ROK pathway. Compartmentation of Ca(2+) entry pathways appears as one mechanism whereby extracellular and membrane signals influence smooth muscle phenotype regulation, with MEF2 as a focal point.
Collapse
Affiliation(s)
- Jingli Ren
- Department of Experimental Medical Science, Lund University, SE-221 84 Lund, Sweden
| | | | | |
Collapse
|
39
|
Courtois A, Andujar P, Ladeiro Y, Ducret T, Rogerieux F, Lacroix G, Baudrimont I, Guibert C, Roux E, Canal-Raffin M, Brochard P, Marano F, Marthan R, Muller B. Effect of engineered nanoparticles on vasomotor responses in rat intrapulmonary artery. Toxicol Appl Pharmacol 2010; 245:203-10. [DOI: 10.1016/j.taap.2010.03.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Revised: 02/26/2010] [Accepted: 03/01/2010] [Indexed: 10/19/2022]
|
40
|
Physicochemical control of adult stem cell differentiation: shedding light on potential molecular mechanisms. J Biomed Biotechnol 2010; 2010:743476. [PMID: 20379388 PMCID: PMC2850549 DOI: 10.1155/2010/743476] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Accepted: 01/27/2010] [Indexed: 12/15/2022] Open
Abstract
Realization of the exciting potential for stem-cell-based biomedical and therapeutic applications, including tissue engineering, requires an understanding of the cell-cell and cell-environment interactions. To this end, recent efforts have been focused on the manipulation of adult stem cell differentiation using inductive soluble factors, designing suitable mechanical environments, and applying noninvasive physical forces. Although each of these different approaches has been successfully applied to regulate stem cell differentiation, it would be of great interest and importance to integrate and optimally combine a few or all of the physicochemical differentiation cues to induce synergistic stem cell differentiation. Furthermore, elucidation of molecular mechanisms that mediate the effects of multiple differentiation cues will enable the researcher to better manipulate stem cell behavior and response.
Collapse
|
41
|
Abstract
Store-operated Ca2+ entry (SOCE) is an important Ca2+ influx pathway in many non-excitable and some excitable cells. It is regulated by the filling state of intracellular Ca2+ stores, notably the endoplasmic reticulum (ER). Reduction in [Ca2+]ER results in activation of plasma membrane Ca2+ channels that mediate sustained Ca2+ influx which is required for many cell functions as well as refilling of Ca2+ stores. The Ca2+ release activated Ca2+ (CRAC) channel is the best characterized SOC channel with well-defined electrophysiological properties. In recent years, the molecular components of the CRAC channel, long mysterious, have been defined. ORAI1 (or CRACM1) acts as the pore-forming subunit of the CRAC channel in the plasma membrane. Stromal interaction molecule (STIM) 1 is localized in the ER, senses [Ca2+]ER, and activates the CRAC channel upon store depletion by binding to ORAI1. Both proteins are widely expressed in many tissues in both human and mouse consistent with the widespread prevalence of SOCE and CRAC channel currents in many cells types. CRAC channelopathies in human patients with mutations in STIM1 and ORAI1 are characterized by abolished CRAC channel currents, lack of SOCE and-clinically-immunodeficiency, congenital myopathy, and anhydrotic ectodermal dysplasia. This article reviews the role of ORAI and STIM proteins for SOCE and CRAC channel function in a variety of cell types and tissues and compares the phenotypes of ORAI1 and STIM1-deficient human patients and mice with targeted deletion of Orai and Stim genes.
Collapse
Affiliation(s)
- Stefan Feske
- Department of Pathology, New York University, Langone Medical Center, SRB314, New York, NY 10016, USA.
| |
Collapse
|
42
|
Titushkin IA, Rao VS, Pickard WF, Moros EG, Shafirstein G, Cho MR. Altered Calcium Dynamics Mediates P19-Derived Neuron-Like Cell Responses to Millimeter-Wave Radiation. Radiat Res 2009; 172:725-36. [DOI: 10.1667/rr1760.1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
43
|
Inoue R, Jian Z, Kawarabayashi Y. Mechanosensitive TRP channels in cardiovascular pathophysiology. Pharmacol Ther 2009; 123:371-85. [PMID: 19501617 DOI: 10.1016/j.pharmthera.2009.05.009] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Accepted: 05/14/2009] [Indexed: 12/22/2022]
Abstract
Transient receptor potential (TRP) proteins constitute a large non-voltage-gated cation channel superfamily, activated polymodally by various physicochemical stimuli, and are implicated in a variety of cellular functions. Known activators for TRP include not only chemical stimuli such as receptor stimulation, increased acidity and pungent/cooling agents, but temperature change and various forms of mechanical stimuli such as osmotic stress, membrane stretch, and shear force. Recent investigations have revealed that at least ten mammalian TRPs exhibit mechanosensitivity (TRPC1, 5, 6; TRPV1, 2, 4; TRPM3, 7; TRPA1; TRPP2), but the mechanisms underlying it appear considerably divergent and complex. The proposed mechanisms are associated with lipid bilayer mechanics, specialized force-transducing structures, biochemical reactions, membrane trafficking and transcriptional regulation. Many of mechanosensitive (MS)-TRP channel likely undergo multiple regulations via these mechanisms. In the cardiovascular system in which hemodynamic forces constantly operate, the impact of mechanical stress may be particularly significant. Extensive morphological and functional studies have indicated that several MS-TRP channels are expressed in cardiac muscle, vascular smooth muscle, endothelium and vasosensory neurons, each differentially contributing to cardiovascular (CV) functions. To further complexity, the recent evidence suggests that mechanical stress may synergize with neurohormonal mechanisms thereby amplifying otherwise marginal responses. Furthermore, the currently available data suggest that MS-TRP channels may be involved in CV pathophysiology such as cardiac arrhythmia, cardiac hypertrophy/myopathy, hypertension and aneurysms. This review will overview currently known mechanisms for mechanical activation/modulation of TRPs and possible connections of MS-TRP channels to CV disorders.
Collapse
Affiliation(s)
- Ryuji Inoue
- Department of Physiology, Graduate School of Medical Sciences, Fukuoka University, Nanakuma 7-45-1, Jonan-ku, Fukuoka 814-0180, Japan.
| | | | | |
Collapse
|