1
|
Xiong Y, Guo J, Yu W, Zeng D, Song C, Zhou L, Anatolyevna NL, Baranenko D, Xiao D, Zhou Y, Lu W. Molecular Mechanism of Microgravity-Induced Intestinal Flora Dysbiosis on the Abnormalities of Liver and Brain Metabolism. Int J Mol Sci 2025; 26:3094. [PMID: 40243802 PMCID: PMC11988970 DOI: 10.3390/ijms26073094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/06/2025] [Accepted: 03/21/2025] [Indexed: 04/18/2025] Open
Abstract
Space flight has many adverse effects on the physiological functions of astronauts. Certain similarities have been observed in some physiological processes of rodents and astronauts in space, although there are also differences. These similarities make rodents helpful models for initial investigations into space-induced physiological changes. This study uses a 3D-Clinostat to simulate microgravity and explores the role of microgravity in space flight-induced liver and brain abnormalities by comparing changes in the gut microbiota, serum metabolites, and the function and physiological biochemistry of liver and brain tissues between the simulated microgravity (SMG) group mice and the wild type (WT) group mice. The study, based on hematoxylin-eosin (HE) staining, 16S sequencing technology, and non-targeted metabolomics analysis, shows that the gut tissue morphology of the SMG group mice is abnormal, and the structure of the gut microbiota and the serum metabolite profile are imbalanced. Furthermore, using PICRUST 2 technology, we have predicted the functions of the gut microbiota and serum metabolites, and the results indicate that the liver metabolism and functions (including lipid metabolism, amino acid metabolism, and sugar metabolism, etc.) of the SMG group mice are disrupted, and the brain tissue metabolism and functions (including neurotransmitters and hormone secretion, etc.) are abnormal, suggesting a close relationship between microgravity and liver metabolic dysfunction and brain dysfunction. Additionally, the high similarity in the structure of the gut microbiota and serum metabolite profile between the fecal microbiota transplant (FMT) group mice and the SMG group mice, and the physiological and biochemical differences in liver and brain tissues compared to the WT group mice, suggest that microgravity induces imbalances in the gut microbiota, which in turn triggers abnormalities in liver and brain metabolism and function. Finally, through MetaMapp analysis and Pearson correlation analysis, we found that valeric acid, a metabolite of gut microbiota, is more likely to be the key metabolite that relates to microgravity-induced gut microbiota abnormalities, disorders of amino acid and lipid metabolism, and further induced metabolic or functional disorders in the liver and brain. This study has significant practical application value for deepening the understanding of the adaptability of living organisms in the space environment.
Collapse
Affiliation(s)
- Yi Xiong
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China; (Y.X.)
- National and Local Joint Engineering Laboratory for Synthesis, Harbin Institute of Technology, Harbin 150001, China
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou 450000, China
| | - Jianguo Guo
- National Human Diseases Animal Model Resource Center, National Center of Technology Innovation for Animal Model, State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Science, CAMS & PUMC, Beijing 100021, China
| | - Wenchen Yu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China; (Y.X.)
- National and Local Joint Engineering Laboratory for Synthesis, Harbin Institute of Technology, Harbin 150001, China
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou 450000, China
| | - Deyong Zeng
- National and Local Joint Engineering Laboratory for Synthesis, Harbin Institute of Technology, Harbin 150001, China
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou 450000, China
| | - Chenchen Song
- National Human Diseases Animal Model Resource Center, National Center of Technology Innovation for Animal Model, State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Science, CAMS & PUMC, Beijing 100021, China
| | - Li Zhou
- National Human Diseases Animal Model Resource Center, National Center of Technology Innovation for Animal Model, State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Science, CAMS & PUMC, Beijing 100021, China
| | - Nadtochii Liudmila Anatolyevna
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou 450000, China
- School of Life Sciences, International Research Centre Biotechnologies of the Third Millennium, ITMO University, St. Petersburg 197101, Russia
| | - Denis Baranenko
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou 450000, China
- School of Life Sciences, International Research Centre Biotechnologies of the Third Millennium, ITMO University, St. Petersburg 197101, Russia
| | - Dan Xiao
- National and Local Joint Engineering Laboratory for Synthesis, Harbin Institute of Technology, Harbin 150001, China
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou 450000, China
| | - Yingyu Zhou
- National and Local Joint Engineering Laboratory for Synthesis, Harbin Institute of Technology, Harbin 150001, China
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou 450000, China
| | - Weihong Lu
- National and Local Joint Engineering Laboratory for Synthesis, Harbin Institute of Technology, Harbin 150001, China
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou 450000, China
| |
Collapse
|
2
|
Wei Y, Wu B, Liu M, Cui CP. The Discovery of a Specific CKIP-1 Ligand for the Potential Treatment of Disuse Osteoporosis. Int J Mol Sci 2024; 25:8870. [PMID: 39201556 PMCID: PMC11354310 DOI: 10.3390/ijms25168870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/30/2024] [Accepted: 08/03/2024] [Indexed: 09/02/2024] Open
Abstract
Bone homeostasis relies on the delicate balance between osteoblast-mediated bone formation and osteoclast-mediated bone resorption. The casein kinase 2 interacting protein-1 (CKIP-1), a specific CK2α subunit-interacting protein, has been documented as one of the crucial negative regulators of bone formation. CKIP-1 siRNA therapy has constraints that limit its use in clinical applications. Therefore, it is necessary to explore effective targeting strategies for CKIP-1. In this study, we observed an upregulation of CKIP-1 protein expression in the microgravity environment, while its ubiquitination levels decreased. We further investigated the interaction between CKIP-1 and VHL and found that VHL enhanced CKIP-1 degradation through the ubiquitylation-proteasome system (UPS). Additionally, we discovered a small molecule ligand, named C77, through DNA-encoded library (DEL) screening, which binds to CKIP-1 both in vivo and in vitro, as confirmed by Surface Plasmon Resonance (SPR) and the Cellular Thermal shift assay (CETSA), respectively. Our findings demonstrated the potential of VHL and C77 as guiding factors in the development of CKIP-1-based Proteolysis-Targeting Chimeras (PROTACs), which could be future therapeutic interventions in disuse osteoporosis.
Collapse
Affiliation(s)
| | | | | | - Chun-Ping Cui
- State Key Laboratory of Medical Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 100850, China; (Y.W.); (B.W.); (M.L.)
| |
Collapse
|
3
|
Wang H, Wang J, Lyu L, Wei S, Zhang C. Numerical simulation on mass transfer in the bone lacunar-canalicular system under different gravity fields. Comput Methods Biomech Biomed Engin 2024; 27:478-488. [PMID: 36912751 DOI: 10.1080/10255842.2023.2187738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/13/2023] [Indexed: 03/14/2023]
Abstract
The bone lacunar-canalicular system (LCS) is a unique complex 3D microscopic tubular network structure within the osteon that contains interstitial fluid flow to ensure the efficient transport of signaling molecules, nutrients, and wastes to guarantee the normal physiological activities of bone tissue. The mass transfer laws in the LCS under microgravity and hypergravity are still unclear. In this paper, a multi-scale 3D osteon model was established to mimic the cortical osteon, and a finite element method was used to numerically analyze the mass transfer in the LCS under hypergravity, normal gravity and microgravity and combined with high-intensity exercise conditions. It was shown that hypergravity promoted mass transfer in the LCS to the deep lacunae, and the number of particles in lacunae increased more significantly from normal gravity to hypergravity the further away from the Haversian canal. The microgravity environment inhibited particles transport in the LCS to deep lacunae. Under normal gravity and microgravity, the number of particles in lacunae increased greatly when doing high-intensity exercise compared to stationary standing. This paper presents the first simulation of mass transfer within the LCS with different gravity fields combined with high-intensity exercise using the finite element method. The research suggested that hypergravity can greatly promote mass transfer in the LCS to deep lacunae, and microgravity strongly inhibited this mass transfer; high-intensity exercise increased the mass transfer rate in the LCS. This study provided a new strategy to combat and treat microgravity-induced osteoporosis.
Collapse
Affiliation(s)
- Hao Wang
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, School of Mechanical Engineering, Tianjin University of Technology, Tianjin, P.R. China
| | - Jiaming Wang
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, School of Mechanical Engineering, Tianjin University of Technology, Tianjin, P.R. China
| | - Linwei Lyu
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, School of Mechanical Engineering, Tianjin University of Technology, Tianjin, P.R. China
| | - Shuping Wei
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, School of Mechanical Engineering, Tianjin University of Technology, Tianjin, P.R. China
| | - Chunqiu Zhang
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, School of Mechanical Engineering, Tianjin University of Technology, Tianjin, P.R. China
| |
Collapse
|
4
|
Wang H, Wang J, Li K, Gao L, Wang A, Wei S, Lyu L, Zhang C. The effect of different gravity fields on mass transfer in the rat bone lacunar-canalicular system. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2023. [DOI: 10.1016/j.medntd.2023.100208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
|
5
|
Wang H, Gao L, Chen X, Zhang C. Study on mass transfer in the bone lacunar-canalicular system under different gravity fields. J Bone Miner Metab 2022; 40:940-950. [PMID: 36350408 DOI: 10.1007/s00774-022-01373-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/22/2022] [Indexed: 11/11/2022]
Abstract
INTRODUCTION The bone lacunar-canalicular system (LCS) is an important microstructural basis for signaling and material transport in bone tissue, guaranteeing normal physiological processes in tissues. Spaceflight astronauts and elderly osteoporosis are related to its function, so it is necessary to reveal the mass transfer laws in bone microstructure under different gravity fields to provide insight for effective clinical treatment. MATERIALS AND METHODS Using the natural LCS structure of bovine tibial cortical bone as the object, the mass transfer experiments on cortical bone were conducted by using sodium fluorescein tracer through different frequency pulsating pressure provided by dynamic perfusion loading device and different high G environments provided by high-speed centrifuge to analyze the mass transfer laws under different gravity fields and different pulsating pressures. RESULTS The fluorescence intensity of lacunae within the osteon was lower the farther away from the Haversian canal. As the gravity field magnitude increased, the fluorescence intensity within each lacuna enhanced, and the more distant the lacunae from the Haversian canal, the greater the fluorescence intensity enhancement. High-frequency pulsating pressure simulated high-intensity exercise in humans can improve mass transfer efficiency in the LCS. CONCLUSION High-intensity exercise may greatly increase solute molecules, nutrients, and signaling molecules in osteocytes and improve the activity of osteocytes. Hypergravity can enhance the transport of solute molecules, nutrients, and signaling molecules in the LCS, especially promoting mass transfer to deep layer lacunae. Conversely, mass transfer to deep layer lacunae may be inhibited under microgravity, causing bone loss and ultimately leading to osteoporosis.
Collapse
Affiliation(s)
- Hao Wang
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, School of Mechanical Engineering, Tianjin University of Technology, Tianjin, 300384, People's Republic of China
| | - Lilan Gao
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, School of Mechanical Engineering, Tianjin University of Technology, Tianjin, 300384, People's Republic of China
| | - Xuyi Chen
- Characteristic Medical Center of People's Armed Police Forces, Institute of Brain Trauma and Neurological Diseases of the Armed Police Force, Tianjin, People's Republic of China.
| | - Chunqiu Zhang
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, School of Mechanical Engineering, Tianjin University of Technology, Tianjin, 300384, People's Republic of China.
| |
Collapse
|
6
|
Niu Q, Shen S, He J, Wang L. CKIP-1 contributes to osteogenic differentiation of mouse bone marrow mesenchymal stem cells. Regen Med 2021; 16:847-859. [PMID: 34498492 DOI: 10.2217/rme-2020-0119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Background: Osteogenesis greatly depends on the differentiation of bone marrow mesenchymal stem cells (BMSCs). CKIP-1 is considered to be a negative regulator of BMSCs. Methods: We established a CKIP-1 knockout mouse model, then isolated and cultured BMSCs from wild-type and knockout groups. Results: Our data demonstrated that CKIP-1 knockout significantly increased bone structure in the experimental mouse model and enhanced BMSC proliferation. CKIP-1 knockout contributed to osteoblastic and adipogenic differentiation. Furthermore, CKIP-1 regulated osteogenesis in BMSCs via the MAPK signaling pathway, and BMSCs from the CKIP-1 knockout mice were effective in repairing the skull defect null mice. Conclusion: Our results concluded that silencing of CKIP-1 promoted osteogenesis in experimental mice and increased BMSCs differentiation via upregulation of the MAPK signaling pathway.
Collapse
Affiliation(s)
- Qiannan Niu
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of Orthodontics, The Hospital of Stomatology, The Fourth Military Medical University, No.145 West Changle Road, Xi'an, 710000, Shaanxi, China
| | - Shuning Shen
- Department of Stomatology, No.984 Hospital of PLA, Beijing, 100094, China
| | - Jiaojiao He
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of Orthodontics, The Hospital of Stomatology, The Fourth Military Medical University, No.145 West Changle Road, Xi'an, 710000, Shaanxi, China
| | - Lei Wang
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of Orthodontics, The Hospital of Stomatology, The Fourth Military Medical University, No.145 West Changle Road, Xi'an, 710000, Shaanxi, China
| |
Collapse
|
7
|
Xu G, Hu X, Han L, Zhao Y, Li Z. The construction of a novel xenograft bovine bone scaffold, (DSS)6-liposome/CKIP-1 siRNA/calcine bone and its osteogenesis evaluation on skull defect in rats. J Orthop Translat 2021; 28:74-82. [PMID: 33738240 PMCID: PMC7932888 DOI: 10.1016/j.jot.2021.02.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 01/23/2021] [Accepted: 02/01/2021] [Indexed: 11/18/2022] Open
Abstract
Background Xenograft bone scaffolds have advantages such as mechanical strength, sufficient source and safety. Combined with siRNA properly targeting CKIP-1, a negative regulator of osteogenesis, may contribute to the repair result of calcine bone alone. Methods Herein, we constructed a novel xenograft bovine bone scaffold namely (DSS)6-liposome/CKIP-1 siRNA/calcine bone, the characteristics of which were investigated by confirming the effect of (DSS)6-liposome, observing the appearance and testing mechanical strength of calcine bone, and observing the combined result of CKIP-1 siRNA by FAM immunofluorescence. In addition, cytotoxicity by CCK-8 and LDH activity of L929 cells and MC3T3-E1 osteoblasts cultured with the scaffold were tested in vitro, primary osteoblasts proliferation, the mRNA expressions of CKIP-1, ALP, COL1-α and OCN, the protein expressions of CKIP-1, BMP-2, COL-1 and Runx2 and calcium nodules were also determined by CCK-8, RT-qPCR, western-blot and Alizarin Red staining in vitro. Then, we successively established the skull defect model for evaluating the repair result of the novel scaffold by HE staining of 2, 4, 8 and 12 weeks, immumohistochemical stainings of 2, 4, 8 and 12 weeks such as ALP, COL-1α and OCN, Mirco-CT scanning of 4 and 12 weeks and the relative parameters and so on in vivo. Results It indicated that (DSS)6-liposome/CKIP-1 siRNA/calcine bone could successfully knock down the CKIP-1 mRNA and protein expressions, promote osteoblasts proliferation with the little cytotoxicity in vitro, increase the protein expressions of BMP-2, COL-1 and Runx2 in vitro, increase mRNA expressions of ALP, COL-1α and OCN in vitro and in vivo, and have a better bone defect repair effect with few side effects in rats after 12 weeks. Conclusion Our research indicates (DSS)6-liposome/CKIP-1 siRNA/calcine bone could repair skull defects well in rats, and it may lay the foundation of applicating the novel xenograft bone scaffold in the clinical. The Translational potential of this article These findings provide evidence that (DSS)6- liposome/CKIP-1 siRNA/calcine bone could be used as a novel xenograft bone scaffold for osteogenesis with the good safety.
Collapse
Affiliation(s)
- Gang Xu
- Department of Orthopaedics, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, PR China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopaedic Diseases, Liaoning Province, Dalian, 116011, PR China
| | - Xiantong Hu
- Department of Orthopaedics, Fourth Medical Center of PLA General Hospital, Beijing, 100048, PR China
- Beijing Engineering Research Center of Orthopaedic Implants, Beijing, 100048, PR China
| | - Liwei Han
- Department of Orthopaedics, Fourth Medical Center of PLA General Hospital, Beijing, 100048, PR China
- Beijing Engineering Research Center of Orthopaedic Implants, Beijing, 100048, PR China
| | - Yantao Zhao
- Department of Orthopaedics, Fourth Medical Center of PLA General Hospital, Beijing, 100048, PR China
- Beijing Engineering Research Center of Orthopaedic Implants, Beijing, 100048, PR China
- Corresponding author. Department of Orthopaedics, Fourth Medical Center of PLA General Hospital, Beijing, 100048, PR China
| | - Zhonghai Li
- Department of Orthopaedics, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, PR China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopaedic Diseases, Liaoning Province, Dalian, 116011, PR China
- Corresponding author. Department of Orthopaedics, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, PR China.
| |
Collapse
|
8
|
Zhang Y, Cheng W, Han B, Guo Y, Wei S, Yu L, Zhang X. Let-7i-5p functions as a putative osteogenic differentiation promoter by targeting CKIP-1. Cytotechnology 2021; 73:79-90. [PMID: 33505116 DOI: 10.1007/s10616-020-00444-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 11/21/2020] [Indexed: 12/23/2022] Open
Abstract
MicroRNA (miRNA) is an endogenous regulatory small molecule RNA. Growing evidence shows that miRNA plays an important regulatory role in gene expression. Although miRNA is a more intensive regulatory noncoding RNA in recent years, few studies have investigated the regulation of targeting genes involved in bone repair. Meanwhile, as a negative bone regulator, previous studies showed that casein kinase 2-interacting protein 1 (CKIP-1) is closely associated with bone formation and regeneration. However, the gene knockout method may not be suitable for clinical application. Therefore, it was hypothesized that miRNA molecules can inhibit the expression of CKIP-1 and ultimately promote the osteogenesis process. The present study revealed that let-7i-5p plays an important role in the process of fracture healing by inhibiting the expression of CKIP-1. Related research provides a novel gene target for fracture healing. Supplementary information The online version of this article (10.1007/s10616-020-00444-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yang Zhang
- The School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191 China
| | - Wei Cheng
- Tianjin Medical University General Hospital, Tianjin, 300052 China
| | - Biao Han
- Department of Biomedical Engineering, College of Biotechnology of Guilin Medical University, Guilin, 541004 Guangxi China
| | - Yong Guo
- Department of Biomedical Engineering, College of Biotechnology of Guilin Medical University, Guilin, 541004 Guangxi China
| | - Shuping Wei
- Institute of Medical Service and Technology, Academy of Military Sciences, Tianjin, 300052 China
| | - Lu Yu
- The School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191 China
| | - Xizheng Zhang
- The School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191 China.,Institute of Medical Service and Technology, Academy of Military Sciences, Tianjin, 300052 China
| |
Collapse
|
9
|
Huang X, Cheng B, Song W, Wang L, Zhang Y, Hou Y, Song Y, Kong L. Superior CKIP-1 sensitivity of orofacial bone-derived mesenchymal stem cells in proliferation and osteogenic differentiation compared to long bone-derived mesenchymal stem cells. Mol Med Rep 2020; 22:1169-1178. [PMID: 32626993 PMCID: PMC7339610 DOI: 10.3892/mmr.2020.11239] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 04/09/2020] [Indexed: 01/02/2023] Open
Abstract
Maxillofacial bone defects caused by multiple factors, including congenital deformations and tumors, have become a research focus in the field of oral medicine. Bone tissue engineering is increasingly regarded as a potential approach for maxillofacial bone repair. Mesenchymal stem cells (MSCs) with different origins display various biological characteristics. The aim of the present study was to investigate the effects of casein kinase‑2 interaction protein‑1 (CKIP‑1) on MSCs, including femoral bone marrow‑derived MSCs (BMMSCs) and orofacial bone‑derived MSCs (OMSCs), isolated from the femoral and orofacial bones of wild‑type (WT) and CKIP‑1 knockout (KO) mice. MSCs were isolated using collagenase II and the main biological characteristics, including proliferation, apoptosis and osteogenic differentiation, were investigated. Subcutaneous transplantation of MSCs in mice was also performed to assess ectopic bone formation. MTT and clone formation assay results indicated that cell proliferation in the KO group was increased compared with the WT group, and OMSCs exhibited significantly increased levels of proliferation compared with BMMSCs. However, the proportion of apoptotic cells was not significantly different between CKIP‑1 KO OMSCs and BMMSCs. Furthermore, it was revealed that osteogenic differentiation was increased in CKIP‑1 KO MSCs compared with WT MSCs, particularly in OMSCs. Consistent with the in vitro results, enhanced ectopic bone formation was observed in CKIP‑1 KO mice compared with WT mice, particularly in OMSCs compared with BMMSCs. In conclusion, the present results indicated that OMSCs may have a superior sensitivity to CKIP‑1 in promoting osteogenesis compared with BMMSCs; therefore, CKIP‑1 KO in OMSCs may serve as an efficient strategy for maxillofacial bone repair.
Collapse
Affiliation(s)
- Xin Huang
- School of Stomatology of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Bingkun Cheng
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Wen Song
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Le Wang
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Yanyuan Zhang
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Yan Hou
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Yu Song
- Department of Orthodontics, Qingdao Stomatological Hospital, Qingdao, Shandong 266001, P.R. China
| | - Liang Kong
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| |
Collapse
|
10
|
Overexpression of CKIP-1 alleviates hypoxia-induced cardiomyocyte injury by up-regulating Nrf2 antioxidant signaling via Keap1 inhibition. Biochimie 2019; 163:163-170. [DOI: 10.1016/j.biochi.2019.06.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 06/10/2019] [Indexed: 01/22/2023]
|
11
|
Physiological functions of CKIP-1: From molecular mechanisms to therapy implications. Ageing Res Rev 2019; 53:100908. [PMID: 31082489 DOI: 10.1016/j.arr.2019.05.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/07/2019] [Accepted: 05/09/2019] [Indexed: 02/07/2023]
Abstract
The casein kinase 2 interacting protein-1 (CKIP-1, also known as PLEKHO1) is initially identified as a specific CK2α subunit-interacting protein. Subsequently, various proteins, including CPα, PAK1, Arp2/3, HDAC1, c-Jun, ATM, Smurf1, Rpt6, Akt, IFP35, TRAF6, REGγ and CARMA1, were reported to interact with CKIP-1. Owing to the great diversity of interacted proteins, CKIP-1 exhibits multiple biologic functions in cell morphology, cell differentiation and cell apoptosis. Besides, these functions are subcellular localization, cell type, and regulatory signaling dependent. CKIP-1 is involved in biological processes consisting of bone formation, tumorigenesis and immune regulation. Importantly, deregulation of CKIP-1 results in osteoporosis, tumor, and atherosclerosis. In this review, we introduce the molecular functions, biological processes and promising of therapeutic strategies. Through summarizing the intrinsic mechanisms, we expect to open new therapeutic avenues for CKIP-1.
Collapse
|
12
|
Han B, Wei SP, Zhang XC, Li H, Li Y, Li RX, Li K, Zhang XZ. Effects of constrained dynamic loading, CKIP‑1 gene knockout and combination stimulations on bone loss caused by mechanical unloading. Mol Med Rep 2018; 18:2506-2514. [PMID: 29956799 DOI: 10.3892/mmr.2018.9222] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 06/20/2018] [Indexed: 11/05/2022] Open
Abstract
Mechanical stimulation plays an important role in maintaining the growth and normal function of the skeletal system. Mechanical unloading occurs, for example, in astronauts spending long periods of time in space or in patients on prolonged bed rest, and causes a rapid loss of bone mass. Casein kinase 2‑interacting protein‑1 (CKIP‑1) is a novel negative bone regulation factor that has been demonstrated to reduce bone loss and enhance bone formation. The aim of this study was to investigate the effect of constrained dynamic loading (Loading) in combination with CKIP‑1 gene knockout (KO) on unloading‑induced bone loss in tail‑suspension mice. The blood serum metabolism index [alkaline phosphatase (ALP) activity and osteocalcin (OCN) levels], tibia mechanical behavior (including bone trabecular microstructure parameters and tibia biomechanical properties), osteoblast‑related gene expression [ALP, OCN, collagen I and bone morphogenetic protein‑2 and osteoprotegerin (OPG)] and osteoclast‑related gene expression [receptor activators of NF‑kB ligand (RANKL)] were measured. The results demonstrated that mice experienced a loss of bone mass after four weeks of tail suspension compared with a wild type group. The mechanical properties, microarchitecture and mRNA expression were significantly increased in mice after Loading + KO treatment (P<0.05). Furthermore, compared with loading or KO alone, the ratio of OPG/RANKL was increased in the combined treatment group. The combined effect of Loading + KO was greater than that observed with loading or KO alone (P<0.05). The present study demonstrates that Loading + KO can counter unloading‑induced bone loss, and combining the two treatments has an additive effect. These results indicate that combined therapy could be a novel strategy for the clinical treatment of disuse osteoporosis associated with space travel or bed rest.
Collapse
Affiliation(s)
- Biao Han
- Department of Biomedical Engineering and Medical Technology, Tianjin Institute of Medical Equipment, Academy of Military Medical Sciences, Tianjin 300161, P.R. China
| | - Shu-Ping Wei
- Department of Biomedical Engineering and Medical Technology, Tianjin Institute of Medical Equipment, Academy of Military Medical Sciences, Tianjin 300161, P.R. China
| | - Xin-Chang Zhang
- Department of Clinical Medicine, Logistical College of People's Armed Police Forces, Tianjin 300162, P.R. China
| | - Hao Li
- Department of Biomedical Engineering and Medical Technology, Tianjin Institute of Medical Equipment, Academy of Military Medical Sciences, Tianjin 300161, P.R. China
| | - Yu Li
- Department of Clinical Medicine, Logistical College of People's Armed Police Forces, Tianjin 300162, P.R. China
| | - Rui-Xin Li
- Department of Biomedical Engineering and Medical Technology, Tianjin Institute of Medical Equipment, Academy of Military Medical Sciences, Tianjin 300161, P.R. China
| | - Kairen Li
- Department of Biomedical Engineering and Medical Technology, Tianjin Institute of Medical Equipment, Academy of Military Medical Sciences, Tianjin 300161, P.R. China
| | - Xi-Zheng Zhang
- Department of Biomedical Engineering and Medical Technology, Tianjin Institute of Medical Equipment, Academy of Military Medical Sciences, Tianjin 300161, P.R. China
| |
Collapse
|
13
|
Abstract
Osteoporosis is a systemic skeletal disorder characterized by reduced bone mass and deterioration of bone microarchitecture, which results in increased bone fragility and fracture risk. Casein kinase 2-interacting protein-1 (CKIP-1) is a protein that plays an important role in regulation of bone formation. The effect of CKIP-1 on bone formation is mainly mediated through negative regulation of the bone morphogenetic protein pathway. In addition, CKIP-1 has an important role in the progression of osteoporosis. This review provides a summary of the recent studies on the role of CKIP-1 in osteoporosis development and treatment. Cite this article: X. Peng, X. Wu, J. Zhang, G. Zhang, G. Li, X. Pan. The role of CKIP-1 in osteoporosis development and treatment. Bone Joint Res 2018;7:173–178. DOI: 10.1302/2046-3758.72.BJR-2017-0172.R1.
Collapse
Affiliation(s)
- X Peng
- Department of Orthopaedics and Traumatology, People's Hospital of Bao'an District, Affiliated to Southern Medical University, and Affiliated to Guangdong Medical University, Longjing 2nd Rd, Bao'an District, Shenzhen, China
| | - X Wu
- Department of Orthopaedics and Traumatology, People's Hospital of Bao'an District, Affiliated to Southern Medical University, and Affiliated to Guangdong Medical University, Longjing 2nd Rd, Bao'an District, Shenzhen, China
| | - J Zhang
- Department of Orthopaedics and Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, SAR, China
| | - G Zhang
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Baptist University Road, Kowloon Tong, Hong Kong, China
| | - G Li
- Department of Orthopaedics and Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, SAR, China
| | - X Pan
- Department of Orthopaedics and Traumatology, People's Hospital of Bao'an District, Affiliated to Southern Medical University, and Affiliated to Guangdong Medical University, Longjing 2nd Rd, Bao'an District, Shenzhen, China
| |
Collapse
|
14
|
Liu Q, Guo Y, Wang Y, Zou X, Yan Z. miR‑98‑5p promotes osteoblast differentiation in MC3T3‑E1 cells by targeting CKIP‑1. Mol Med Rep 2018; 17:4797-4802. [PMID: 29328483 DOI: 10.3892/mmr.2018.8416] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 11/20/2017] [Indexed: 11/06/2022] Open
Abstract
Casein kinase 2-interacting protein 1 (CKIP-1) is a negative regulator for bone formation. Previously, using bioinformatics analysis, CKIP‑1 has been predicted to serve the role of target gene of miR‑98‑5p. In the present study, the potential role of miR‑98‑5p in regulating osteoblast differentiation through CKIP‑1 was investigated. Following pre‑treatment with microRNA (miR)‑98‑5p agomir or miR‑98‑5p antagomir, MC3T3‑E1 cells were cultured in an osteoinductive medium. Subsequently, the expression of miR‑98‑5p, CKIP‑1 and levels of osteoblast differentiation markers, including alkaline phosphatase, matrix mineralization, osteocaicin, collagen type I, runt‑related transcription factor 2 and osteopontin were assayed. Using a dual‑luciferase reporter assay, it was demonstrated that CKIP‑1 was the target gene of miR‑98‑5p. miR‑98‑5p was upregulated as a result of treatment with miR‑98‑5p agomir and promoted osteoblast differentiation. Conversely, miR‑98‑5p antagomir inhibited miR‑98‑5p expression and osteoblast differentiation. miR‑98‑5p targeted CKIP‑1 by binding to its 3'‑untranslated region. Furthermore, miR‑98‑5p overexpression decreased the protein levels of CKIP‑1 and inhibition of miR‑98‑5p increased the protein levels of CKIP‑1. The results of the present study indicated that CKIP‑1 was a target gene of miR‑98‑5p and that miR‑98‑5p regulated osteoblast differentiation in MC3T3‑E1 cells by targeting CKIP‑1.
Collapse
Affiliation(s)
- Qiliang Liu
- Department of Biomedical Engineering, College of Biotechnology of Guilin Medical University, Guilin, Guangxi 541004, P.R. China
| | - Yong Guo
- Department of Biomedical Engineering, College of Biotechnology of Guilin Medical University, Guilin, Guangxi 541004, P.R. China
| | - Yang Wang
- Department of Biomedical Engineering, College of Biotechnology of Guilin Medical University, Guilin, Guangxi 541004, P.R. China
| | - Xianqiong Zou
- Department of Biomedical Engineering, College of Biotechnology of Guilin Medical University, Guilin, Guangxi 541004, P.R. China
| | - Zhixiong Yan
- Department of Biomedical Engineering, College of Biotechnology of Guilin Medical University, Guilin, Guangxi 541004, P.R. China
| |
Collapse
|
15
|
Noble D. Regulation of bone metabolism. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2016; 122:83-84. [PMID: 27926456 DOI: 10.1016/j.pbiomolbio.2016.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|