1
|
Deir S, Mozhdehbakhsh Mofrad Y, Mashayekhan S, Shamloo A, Mansoori-Kermani A. Step-by-step fabrication of heart-on-chip systems as models for cardiac disease modeling and drug screening. Talanta 2024; 266:124901. [PMID: 37459786 DOI: 10.1016/j.talanta.2023.124901] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/23/2023] [Accepted: 07/01/2023] [Indexed: 09/20/2023]
Abstract
Cardiovascular diseases are caused by hereditary factors, environmental conditions, and medication-related issues. On the other hand, the cardiotoxicity of drugs should be thoroughly examined before entering the market. In this regard, heart-on-chip (HOC) systems have been developed as a more efficient and cost-effective solution than traditional methods, such as 2D cell culture and animal models. HOCs must replicate the biology, physiology, and pathology of human heart tissue to be considered a reliable platform for heart disease modeling and drug testing. Therefore, many efforts have been made to find the best methods to fabricate different parts of HOCs and to improve the bio-mimicry of the systems in the last decade. Beating HOCs with different platforms have been developed and techniques, such as fabricating pumpless HOCs, have been used to make HOCs more user-friendly systems. Recent HOC platforms have the ability to simultaneously induce and record electrophysiological stimuli. Additionally, systems including both heart and cancer tissue have been developed to investigate tissue-tissue interactions' effect on cardiac tissue response to cancer drugs. In this review, all steps needed to be considered to fabricate a HOC were introduced, including the choice of cellular resources, biomaterials, fabrication techniques, biomarkers, and corresponding biosensors. Moreover, the current HOCs used for modeling cardiac diseases and testing the drugs are discussed. We finally introduced some suggestions for fabricating relatively more user-friendly HOCs and facilitating the commercialization process.
Collapse
Affiliation(s)
- Sara Deir
- School of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Yasaman Mozhdehbakhsh Mofrad
- Nano-Bioengineering Lab, School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran; Stem Cell and Regenerative Medicine Center, Sharif University of Technology, Tehran, Iran
| | - Shohreh Mashayekhan
- School of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran.
| | - Amir Shamloo
- Nano-Bioengineering Lab, School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran; Stem Cell and Regenerative Medicine Center, Sharif University of Technology, Tehran, Iran.
| | | |
Collapse
|
2
|
Yu B, Li H, Zhang Z, Chen P, Wang L, Fan X, Ning X, Pan Y, Zhou F, Hu X, Chang J, Ou C. Extracellular vesicles engineering by silicates-activated endothelial progenitor cells for myocardial infarction treatment in male mice. Nat Commun 2023; 14:2094. [PMID: 37055411 PMCID: PMC10102163 DOI: 10.1038/s41467-023-37832-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 04/03/2023] [Indexed: 04/15/2023] Open
Abstract
Extracellular vesicles have shown good potential in disease treatments including ischemic injury such as myocardial infarction. However, the efficient production of highly active extracellular vesicles is one of the critical limitations for their clinical applications. Here, we demonstrate a biomaterial-based approach to prepare high amounts of extracellular vesicles with high bioactivity from endothelial progenitor cells (EPCs) by stimulation with silicate ions derived from bioactive silicate ceramics. We further show that hydrogel microspheres containing engineered extracellular vesicles are highly effective in the treatment of myocardial infarction in male mice by significantly enhancing angiogenesis. This therapeutic effect is attributed to significantly enhanced revascularization by the high content of miR-126a-3p and angiogenic factors such as VEGF and SDF-1, CXCR4 and eNOS in engineered extracellular vesicles, which not only activate endothelial cells but also recruit EPCs from the circulatory system.
Collapse
Affiliation(s)
- Bin Yu
- The 10th Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Southern Medical University, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, 510280, Guangzhou, China
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, 510280, Guangzhou, China
| | - Hekai Li
- Department of Cardiology and Laboratory of Heart Center, Zhujiang Hospital, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Southern Medical University, 510515, Guangzhou, China
| | - Zhaowenbin Zhang
- Wenzhou Institute, Zhejiang Engineering Research Center for Tissue Repair Materials, University of Chinese Academy of Sciences, 325000, Wenzhou, China
- State Key Laboratory of High-Performance Ceramics and Super fine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 200050, Shanghai, People's Republic of China
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, 325000, Wenzhou, China
| | - Peier Chen
- Department of Cardiology and Laboratory of Heart Center, Zhujiang Hospital, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Southern Medical University, 510515, Guangzhou, China
| | - Ling Wang
- School of Biomedical Engineering, Biomaterials Research Center, Southern Medical University, 510515, Guangzhou, People's Republic of China
| | - Xianglin Fan
- Department of Cardiology and Laboratory of Heart Center, Zhujiang Hospital, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Southern Medical University, 510515, Guangzhou, China
| | - Xiaodong Ning
- The 10th Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Southern Medical University, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, 510280, Guangzhou, China
| | - Yuxuan Pan
- The 10th Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Southern Medical University, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, 510280, Guangzhou, China
| | - Feiran Zhou
- Department of Cardiology and Laboratory of Heart Center, Zhujiang Hospital, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Southern Medical University, 510515, Guangzhou, China
| | - Xinyi Hu
- Department of Cardiology and Laboratory of Heart Center, Zhujiang Hospital, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Southern Medical University, 510515, Guangzhou, China
| | - Jiang Chang
- The 10th Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Southern Medical University, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, 510280, Guangzhou, China.
- Wenzhou Institute, Zhejiang Engineering Research Center for Tissue Repair Materials, University of Chinese Academy of Sciences, 325000, Wenzhou, China.
- State Key Laboratory of High-Performance Ceramics and Super fine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 200050, Shanghai, People's Republic of China.
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, 325000, Wenzhou, China.
| | - Caiwen Ou
- The 10th Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Southern Medical University, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, 510280, Guangzhou, China.
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, 510280, Guangzhou, China.
- Department of Cardiology and Laboratory of Heart Center, Zhujiang Hospital, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Southern Medical University, 510515, Guangzhou, China.
| |
Collapse
|
3
|
Sarkar A, Saha S, Paul A, Maji A, Roy P, Maity TK. Understanding stem cells and its pivotal role in regenerative medicine. Life Sci 2021; 273:119270. [PMID: 33640402 DOI: 10.1016/j.lfs.2021.119270] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/06/2021] [Accepted: 02/14/2021] [Indexed: 02/07/2023]
Abstract
Stem cells (SCs) are clonogenic cells that develop into the specialized cells which later responsible for making up various types of tissue in the human body. SCs are not only the appropriate source of information for cell division, molecular and cellular processes, and tissue homeostasis but also one of the major putative biological aids to diagnose and cure various degenerative diseases. This study emphasises on various research outputs that occurred in the past two decades. This will give brief information on classification, differentiation, detection, and various isolation techniques of SCs. Here, the various signalling pathways which includes WNT, Sonic hedgehog, Notch, BMI1 and C-met pathways and how does it effect on the regeneration of various classes of SCs and factors that regulates the potency of the SCs are also been discussed. We also focused on the application of SCs in the area of regenerative medicine along with the cellular markers that are useful as salient diagnostic or curative tools or in both, by the process of reprogramming, which includes diabetes, cancer, cardiovascular disorders and neurological disorders. The biomarkers that are mentioned in various literatures and experiments include PDX1, FOXA2, HNF6, and NKX6-1 (for diabetes); CD33, CD24, CD133 (for cancer); c-Kit, SCA-1, Wilm's tumor 1 (for cardiovascular disorders); and OCT4, SOX2, c-MYC, EN1, DAT and VMAT2 (for neurological disorders). In this review, we come to know the advancements and scopes of potential SC-based therapies, its diverse applications in clinical fields that can be helpful in the near future.
Collapse
Affiliation(s)
- Arnab Sarkar
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata 700032, India
| | - Sanjukta Saha
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata 700032, India
| | - Abhik Paul
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata 700032, India
| | - Avik Maji
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata 700032, India
| | - Puspita Roy
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata 700032, India
| | - Tapan Kumar Maity
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata 700032, India.
| |
Collapse
|
4
|
Abstract
Vascularization is a major hurdle in complex tissue and organ engineering. Tissues greater than 200 μm in diameter cannot rely on simple diffusion to obtain nutrients and remove waste. Therefore, an integrated vascular network is required for clinical translation of engineered tissues. Microvessels have been described as <150 μm in diameter, but clinically they are defined as <1 mm. With new advances in super microsurgery, vessels less than 1 mm can be anastomosed to the recipient circulation. However, this technical advancement still relies on the creation of a stable engineered microcirculation that is amenable to surgical manipulation and is readily perfusable. Microvascular engineering lays on the crossroads of microfabrication, microfluidics, and tissue engineering strategies that utilize various cellular constituents. Early research focused on vascularization by co-culture and cellular interactions, with the addition of angiogenic growth factors to promote vascular growth. Since then, multiple strategies have been utilized taking advantage of innovations in additive manufacturing, biomaterials, and cell biology. However, the anatomy and dynamics of native blood vessels has not been consistently replicated. Inconsistent results can be partially attributed to cell sourcing which remains an enigma for microvascular engineering. Variations of endothelial cells, endothelial progenitor cells, and stem cells have all been used for microvascular network fabrication along with various mural cells. As each source offers advantages and disadvantages, there continues to be a lack of consensus. Furthermore, discord may be attributed to incomplete understanding about cell isolation and characterization without considering the microvascular architecture of the desired tissue/organ.
Collapse
|
5
|
Menger MM, Laschke MW, Orth M, Pohlemann T, Menger MD, Histing T. Vascularization Strategies in the Prevention of Nonunion Formation. TISSUE ENGINEERING PART B-REVIEWS 2020; 27:107-132. [PMID: 32635857 DOI: 10.1089/ten.teb.2020.0111] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Delayed healing and nonunion formation are major challenges in orthopedic surgery, which require the development of novel treatment strategies. Vascularization is considered one of the major prerequisites for successful bone healing, providing an adequate nutrient supply and allowing the infiltration of progenitor cells to the fracture site. Hence, during the last decade, a considerable number of studies have focused on the evaluation of vascularization strategies to prevent or to treat nonunion formation. These involve (1) biophysical applications, (2) systemic pharmacological interventions, and (3) tissue engineering, including sophisticated scaffold materials, local growth factor delivery systems, cell-based techniques, and surgical vascularization approaches. Accumulating evidence indicates that in nonunions, these strategies are indeed capable of improving the process of bone healing. The major challenge for the future will now be the translation of these strategies into clinical practice to make them accessible for the majority of patients. If this succeeds, these vascularization strategies may markedly reduce the incidence of nonunion formation. Impact statement Delayed healing and nonunion formation are a major clinical problem in orthopedic surgery. This review provides an overview of vascularization strategies for the prevention and treatment of nonunions. The successful translation of these strategies in clinical practice is of major importance to achieve adequate bone healing.
Collapse
Affiliation(s)
- Maximilian M Menger
- Department of Trauma, Hand and Reconstructive Surgery, Saarland University, Homburg, Germany
| | - Matthias W Laschke
- Institute for Clinical & Experimental Surgery, Saarland University, Homburg, Germany
| | - Marcel Orth
- Department of Trauma, Hand and Reconstructive Surgery, Saarland University, Homburg, Germany
| | - Tim Pohlemann
- Department of Trauma, Hand and Reconstructive Surgery, Saarland University, Homburg, Germany
| | - Michael D Menger
- Institute for Clinical & Experimental Surgery, Saarland University, Homburg, Germany
| | - Tina Histing
- Department of Trauma, Hand and Reconstructive Surgery, Saarland University, Homburg, Germany
| |
Collapse
|
6
|
Wu WQ, Peng S, Song ZY, Lin S. Collagen biomaterial for the treatment of myocardial infarction: an update on cardiac tissue engineering and myocardial regeneration. Drug Deliv Transl Res 2020; 9:920-934. [PMID: 30877625 DOI: 10.1007/s13346-019-00627-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Myocardial infarction (MI) remains one of the leading cause of mortality over the world. However, current treatments are more palliative than curative, which only stall the progression of the disease, but not reverse the disease. While stem cells or bioactive molecules therapy is promising, the limited survival and engraftment of bioactive agent due to a hostile environment is a bottleneck for MI treatment. In order to maximize the utility of stem cells and bioactive molecules for myocardial repair and regeneration, various types of biomaterials have been developed. Among them, collagen-based biomaterial is widely utilized for cardiac tissue engineering and regeneration due to its optimal physical and chemical properties. In this review, we summarize the properties of collagen-based biomaterial. Then, we discuss collagen-based biomaterial currently being applied to treat MI alone, or together with stem cells and/or bioactive molecules. Finally, the delivery system of collagen-based biomaterial will also be discussed.
Collapse
Affiliation(s)
- Wei-Qiang Wu
- Department of Cardiology, Southwest Hospital, Third Military Medical University (Army Medical University), No. 30 Gaotanyan, Shapingba, Chongqing, 400038, China
| | - Song Peng
- Department of Cardiology, Southwest Hospital, Third Military Medical University (Army Medical University), No. 30 Gaotanyan, Shapingba, Chongqing, 400038, China
| | - Zhi-Yuan Song
- Department of Cardiology, Southwest Hospital, Third Military Medical University (Army Medical University), No. 30 Gaotanyan, Shapingba, Chongqing, 400038, China.
| | - Shu Lin
- Department of Cardiology, Southwest Hospital, Third Military Medical University (Army Medical University), No. 30 Gaotanyan, Shapingba, Chongqing, 400038, China. .,School of Medicine, University of Wollongong and Illawarra Health and Medical Research Institute, Keiraville, NSW, 2522, Australia.
| |
Collapse
|
7
|
Jones RE, Foster DS, Hu MS, Longaker MT. Wound healing and fibrosis: current stem cell therapies. Transfusion 2019; 59:884-892. [PMID: 30737822 DOI: 10.1111/trf.14836] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 02/01/2018] [Indexed: 12/20/2022]
Abstract
Scarring is a result of the wound healing response and causes tissue dysfunction after injury. This process is readily evident in the skin, but also occurs internally across organ systems in the form of fibrosis. Stem cells are crucial to the innate tissue healing response and, as such, present a possible modality to therapeutically promote regenerative healing while minimizing scaring. In this review, the cellular basis of scaring and fibrosis is examined. Current stem cell therapies under exploration for skin wound healing and internal organ fibrosis are discussed. While most therapeutic approaches rely on the direct application of progenitor-type cells to injured tissue to promote healing, novel strategies to manipulate the scarring response are also presented. As our understanding of developmental and stem cell biology continues to increase, therapies to encourage regeneration of healthy functional tissue after damage secondary to injury or disease will continue to expand.
Collapse
Affiliation(s)
- Ruth Ellen Jones
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, California
| | - Deshka S Foster
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, California
| | - Michael S Hu
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, California
| | - Michael T Longaker
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
8
|
Obesity and type-2 diabetes as inducers of premature cellular senescence and ageing. Biogerontology 2018; 19:447-459. [PMID: 30054761 PMCID: PMC6223730 DOI: 10.1007/s10522-018-9763-7] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 07/21/2018] [Indexed: 12/13/2022]
Abstract
Cellular senescence is now considered as a major mechanism in the development and progression of various diseases and this may include metabolic diseases such as obesity and type-2 diabetes. The presence of obesity and diabetes is a major risk factor in the development of additional health conditions, such as cardiovascular disease, kidney disease and cancer. Since senescent cells can drive disease development, obesity and diabetes can potentially create an environment that accelerates cell senescence within other tissues of the body. This can consequently manifest as age-related biological impairments and secondary diseases. Cell senescence in cell types linked with obesity and diabetes, namely adipocytes and pancreatic beta cells will be explored, followed by a discussion on the role of obesity and diabetes in accelerating ageing through induction of premature cell senescence mediated by high glucose levels and oxidised low-density lipoproteins. Particular emphasis will be placed on accelerated cell senescence in endothelial progenitor cells, endothelial cells and vascular smooth muscle cells with relation to cardiovascular disease and proximal tubular cells with relation to kidney disease. A summary of the potential strategies for therapeutically targeting senescent cells for improving health is also presented.
Collapse
|
9
|
Ravishankar P, Zeballos MA, Balachandran K. Isolation of Endothelial Progenitor Cells from Human Umbilical Cord Blood. J Vis Exp 2017. [PMID: 28994769 DOI: 10.3791/56021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The existence of endothelial progenitor cells (EPCs) in peripheral blood and its involvement in vasculogenesis was first reported by Ashara and colleagues1. Later, others documented the existence of similar types of EPCs originating from bone marrow2,3. More recently, Yoder and Ingram showed that EPCs derived from umbilical cord blood had a higher proliferative potential compared to ones isolated from adult peripheral blood4,5,6. Apart from being involved in postnatal vasculogenesis, EPCs have also shown promise as a cell source for creating tissue-engineered vascular and heart valve constructs7,8. Various isolation protocols exist, some of which involve the cell sorting of mononuclear cells (MNCs) derived from the sources mentioned earlier with the help of endothelial and hematopoietic markers, or culturing these MNCs with specialized endothelial growth medium, or a combination of these techniques9. Here, we present a protocol for the isolation and culture of EPCs using specialized endothelial medium supplemented with growth factors, without the use of immunosorting, followed by the characterization of the isolated cells using Western blotting and immunostaining.
Collapse
|
10
|
Overexpression of LOXIN Protects Endothelial Progenitor Cells From Apoptosis Induced by Oxidized Low Density Lipoprotein. J Cardiovasc Pharmacol 2017; 67:326-35. [PMID: 26771151 DOI: 10.1097/fjc.0000000000000358] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Human endothelial progenitor cells (hEPC) are adult stem cells located in the bone marrow and peripheral blood. Studies have indicated that hEPC play an important role in the recovery and repair of injured endothelium, however, their quantity and functional capacity is reduced in several diseases including hypercholesterolemia. Recently, it has been demonstrated that hEPC express lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) and its activation by oxidized low-density lipoprotein (ox-LDL) induces cellular dysfunction and apoptosis. This study aimed to investigate whether overexpression of LOXIN, a truncated isoform of LOX-1 that acts as a dominant negative, plays a protective role against ox-LDL-induced apoptosis in hEPC. Human endothelial progenitor cells exposed to ox-LDL showed a significant increase in LOX-1 expression, and apoptosis began at ox-LDL concentrations above 50 μg/mL. All hEPC apoptosed at 200 μg/mL ox-LDL. High LOXIN expression was generated using adenoviral systems in hEPC and SiHa cells transduced with 100 colony-forming units per cell. Transduced LOXIN localized to the plasma membrane and blocked ox-LDL uptake mediated by LOX-1. Overexpression of LOXIN protected hEPC from ox-LDL-induced apoptosis, and therefore maybe a novel way of improving hEPC function and quantity. These results suggest that adenoviral vectors of LOXIN may provide a possible treatment for diseases related to ox-LDL and vascular endothelium dysfunction, including atherosclerosis.
Collapse
|
11
|
Zhou ZW, Li YD, Gao WW, Chen JL, Yue SY, Zhang JN. Cold water swimming pretreatment reduces cognitive deficits in a rat model of traumatic brain injury. Neural Regen Res 2017; 12:1322-1328. [PMID: 28966648 PMCID: PMC5607828 DOI: 10.4103/1673-5374.213553] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
A moderate stress such as cold water swimming can raise the tolerance of the body to potentially injurious events. However, little is known about the mechanism of beneficial effects induced by moderate stress. In this study, we used a classic rat model of traumatic brain injury to test the hypothesis that cold water swimming preconditioning improved the recovery of cognitive functions and explored the mechanisms. Results showed that after traumatic brain injury, pre-conditioned rats (cold water swimming for 3 minutes at 4°C) spent a significantly higher percent of times in the goal quadrant of cold water swim, and escape latencies were shorter than for non-pretreated rats. The number of circulating endothelial progenitor cells was significantly higher in pre-conditioned rats than those without pretreatment at 0, 3, 6 and 24 hours after traumatic brain injury. Immunohistochemical staining and Von Willebrand factor staining demonstrated that the number of CD34+ stem cells and new blood vessels in the injured hippocampus tissue increased significantly in pre-conditioned rats. These data suggest that pretreatment with cold water swimming could promote the proliferation of endothelial progenitor cells and angiogenesis in the peripheral blood and hippocampus. It also ameliorated cognitive deficits caused by experimental traumatic brain injury.
Collapse
Affiliation(s)
- Zi-Wei Zhou
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Neurological Institute, Tianjin, China.,Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China.,Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Ya-Dan Li
- Intensive Care Units, Tianjin Huanhu Hospital, Tianjin, China
| | - Wei-Wei Gao
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Neurological Institute, Tianjin, China.,Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China.,Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Jie-Li Chen
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA
| | - Shu-Yuan Yue
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Neurological Institute, Tianjin, China.,Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China.,Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Jian-Ning Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Neurological Institute, Tianjin, China.,Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China.,Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| |
Collapse
|
12
|
Cho H, Balaji S, Hone NL, Moles CM, Sheikh AQ, Crombleholme TM, Keswani SG, Narmoneva DA. Diabetic wound healing in a MMP9-/- mouse model. Wound Repair Regen 2016; 24:829-840. [PMID: 27292154 DOI: 10.1111/wrr.12453] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 05/12/2016] [Indexed: 12/12/2022]
Abstract
Reduced mobilization of endothelial progenitor cells (EPCs) from the bone marrow (BM) and impaired EPC recruitment into the wound represent a fundamental deficiency in the chronic ulcers. However, mechanistic understanding of the role of BM-derived EPCs in cutaneous wound neovascularization and healing remains incomplete, which impedes development of EPC-based wound healing therapies. The objective of this study was to determine the role of EPCs in wound neovascularization and healing both under normal conditions and using single deficiency (EPC) or double-deficiency (EPC + diabetes) models of wound healing. MMP9 knockout (MMP9 KO) mouse model was utilized, where impaired EPC mobilization can be rescued by stem cell factor (SCF). The hypotheses were: (1) MMP9 KO mice exhibit impaired wound neovascularization and healing, which are further exacerbated with diabetes; (2) these impairments can be rescued by SCF administration. Full-thickness excisional wounds with silicone splints to minimize contraction were created on MMP9 KO mice with/without streptozotocin-induced diabetes in the presence or absence of tail-vein injected SCF. Wound morphology, vascularization, inflammation, and EPC mobilization and recruitment were quantified at day 7 postwounding. Results demonstrate no difference in wound closure and granulation tissue area between any groups. MMP9 deficiency significantly impairs wound neovascularization, increases inflammation, decreases collagen deposition, and decreases peripheral blood EPC (pb-EPC) counts when compared with wild-type (WT). Diabetes further increases inflammation, but does not cause further impairment in vascularization, as compared with MMP9 KO group. SCF improves neovascularization and increases EPCs to WT levels (both nondiabetic and diabetic MMP9 KO groups), while exacerbating inflammation in all groups. SCF rescues EPC-deficiency and impaired wound neovascularization in both diabetic and nondiabetic MMP9 KO mice. Overall, the results demonstrate that BM-derived EPCs play a significant role during wound neovascularization and that the SCF-based therapy with controlled inflammation could be a viable approach to enhance healing in chronic diabetic wounds.
Collapse
Affiliation(s)
- Hongkwan Cho
- Department of Biomedical, Chemical and Environmental Engineering, College of Engineering and Applied Sciences, University of Cincinnati, Cincinnati, Ohio
| | - Swathi Balaji
- Department of Biomedical, Chemical and Environmental Engineering, College of Engineering and Applied Sciences, University of Cincinnati, Cincinnati, Ohio.,Division of Pediatric Surgery, Baylor College of Medicine, Houston, Texas
| | - Natalie L Hone
- Department of Biomedical, Chemical and Environmental Engineering, College of Engineering and Applied Sciences, University of Cincinnati, Cincinnati, Ohio
| | - Chad M Moles
- Division of Pediatric Surgery, Baylor College of Medicine, Houston, Texas
| | - Abdul Q Sheikh
- Department of Biomedical, Chemical and Environmental Engineering, College of Engineering and Applied Sciences, University of Cincinnati, Cincinnati, Ohio
| | - Timothy M Crombleholme
- Children's Hospital Colorado and the University of Colorado School of Medicine, Aurora, Colorado
| | - Sundeep G Keswani
- Division of Pediatric Surgery, Baylor College of Medicine, Houston, Texas
| | - Daria A Narmoneva
- Department of Biomedical, Chemical and Environmental Engineering, College of Engineering and Applied Sciences, University of Cincinnati, Cincinnati, Ohio.
| |
Collapse
|
13
|
Wu JR, Hsu JH, Dai ZK, Wu BN, Chen IJ, Liou SF, Yeh JL. Activation of endothelial NO synthase by a xanthine derivative ameliorates hypoxia-induced apoptosis in endothelial progenitor cells. ACTA ACUST UNITED AC 2016; 68:810-8. [PMID: 27109251 DOI: 10.1111/jphp.12555] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Accepted: 03/13/2016] [Indexed: 01/05/2023]
Abstract
OBJECTIVES Endothelial damage is strongly associated with cardiovascular diseases such as atherosclerosis, thrombosis and hypertension. Endothelial progenitor cells (EPCs) are primitive bone marrow (BM) cells that possess the capacity to mature into endothelial cells and play a role in neovascularization and vascular remodelling. This study aimed to investigate whether KMUP-1, a synthetic xanthine-based derivative, atorvastatin and simvastatin, can prevent endothelial dysfunction and apoptosis induced by hypoxia and to elucidate the underlying mechanisms. METHODS Mononuclear cells were separated and were induced to differentiate into EPCs. KMUP-1, atorvastatin or simvastatin were administered prior to hypoxia. KEY FINDINGS We found that EPCs exposed to hypoxia increased apoptosis as well as diminished proliferation. Pretreatment with KMUP-1, atorvastatin and simvastatin significantly prevented hypoxia-induced EPCs death and apoptosis, with associated increased of the Bcl-2/Bax ratio, and reduced caspase-3 and caspase-9 expression. We also assessed the nitrite production and Ser(1177)-phospho-eNOS expression and found that KMUP-1, atorvastatin and simvastatin not only increased the secretion of NO compared with the hypoxia group but also upregulated the eNOS activation. CONCLUSIONS KMUP-1 inhibited hypoxia-induced dysfunction and apoptosis in EPCs, which may be mediated through suppressing oxidative stress, upregulating eNOS and downregulating the caspase-3 signalling pathway.
Collapse
Affiliation(s)
- Jiunn-Ren Wu
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Paediatrics, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jong-Hau Hsu
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Paediatrics, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Zen-Kong Dai
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Paediatrics, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Bin-Nan Wu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department and Graduate Institute of Pharmacology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ing-Jun Chen
- Department and Graduate Institute of Pharmacology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shu-Fen Liou
- Department of Pharmacy, Chia-Nan University of Pharmacy and Science, Tainan, Taiwan
| | - Jwu-Lai Yeh
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department and Graduate Institute of Pharmacology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
| |
Collapse
|
14
|
Functional and Biological Role of Endothelial Precursor Cells in Tumour Progression: A New Potential Therapeutic Target in Haematological Malignancies. Stem Cells Int 2015; 2016:7954580. [PMID: 26788072 PMCID: PMC4691637 DOI: 10.1155/2016/7954580] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Revised: 06/19/2015] [Accepted: 08/10/2015] [Indexed: 12/11/2022] Open
Abstract
It was believed that vasculogenesis occurred only during embryo life and that postnatal formation of vessels arose from angiogenesis. Recent findings demonstrate the existence of Endothelial Precursor Cells (EPCs), which take partin postnatal vasculogenesis. EPCs are recruited from the bone marrow under the stimulation of growth factors and cytokines and reach the sites of neovascularization in both physiological and pathological conditions such as malignancies where they contribute to the “angiogenic switch” and tumor progression. An implementation of circulating EPCs in the bloodstream of patients with haematological malignancies has been demonstrated. This increase is strictly related to the bone marrow microvessel density and correlated with a poor prognosis. The EPCs characterization is a very complex process and still under investigation. This literature review aims to provide an overview of the functional and biological role of EPCs in haematological malignancies and to investigate their potential as a new cancer therapeutic target.
Collapse
|
15
|
Heme-Mediated Induction of CXCL10 and Depletion of CD34+ Progenitor Cells Is Toll-Like Receptor 4 Dependent. PLoS One 2015; 10:e0142328. [PMID: 26555697 PMCID: PMC4640861 DOI: 10.1371/journal.pone.0142328] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 10/19/2015] [Indexed: 11/19/2022] Open
Abstract
Plasmodium falciparum infection can cause microvascular dysfunction, cerebral encephalopathy and death if untreated. We have previously shown that high concentrations of free heme, and C-X-C motif chemokine 10 (CXCL10) in sera of malaria patients induce apoptosis in microvascular endothelial and neuronal cells contributing to vascular dysfunction, blood-brain barrier (BBB) damage and mortality. Endothelial progenitor cells (EPC) are microvascular endothelial cell precursors partly responsible for repair and regeneration of damaged BBB endothelium. Studies have shown that EPC's are depleted in severe malaria patients, but the mechanisms mediating this phenomenon are unknown. Toll-like receptors recognize a wide variety of pathogen-associated molecular patterns generated by pathogens such as bacteria and parasites. We tested the hypothesis that EPC depletion during malaria pathogenesis is a function of heme-induced apoptosis mediated by CXCL10 induction and toll-like receptor (TLR) activation. Heme and CXCL10 concentrations in plasma obtained from malaria patients were elevated compared with non-malaria subjects. EPC numbers were significantly decreased in malaria patients (P < 0.02) and TLR4 expression was significantly elevated in vivo. These findings were confirmed in EPC precursors in vitro; where it was determined that heme-induced apoptosis and CXCL10 expression was TLR4-mediated. We conclude that increased serum heme mediates depletion of EPC during malaria pathogenesis.
Collapse
|
16
|
Arici V, Perotti C, Fabrizio C, Del Fante C, Ragni F, Alessandrino F, Viarengo G, Pagani M, Moia A, Tinelli C, Bozzani A. Autologous immuno magnetically selected CD133+ stem cells in the treatment of no-option critical limb ischemia: clinical and contrast enhanced ultrasound assessed results in eight patients. J Transl Med 2015; 13:342. [PMID: 26526721 PMCID: PMC4630831 DOI: 10.1186/s12967-015-0697-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2015] [Accepted: 10/14/2015] [Indexed: 01/10/2023] Open
Abstract
Objectives Demonstrate the safety and effectiveness of highly purified CD133+ autologous stem cells in critical limb ischemia (CLI). Design Prospective single-center not randomized. Clinicaltrials.gov identifier: NCT01595776 Methods Eight patients with a history of stable CLI were enrolled in a period of 2 years. After bone marrow stimulation and single leukapheresis collection, CD133+ immunomagnetic cell selection was performed. CD133+ cells in buffer phosphate suspension was administered intramuscularly. Muscular and arterial contrast enhanced ultra sound (CEUS), lesion evolution and pain management were assessed preoperatively and 3, 6 and 12 months after the implant. Results No patient had early or late complications related to the procedure. Two patients (25 %) didn’t get any relief from the treatment and underwent major amputation. Six patients (75 %) had a complete healing of the wounds, rest pain cessation and walking recovery. An increase in CEUS values was shown in all eight patients at 6 months and in the six clinical healed patients at 12 months and had statistical relevance. Conclusions Highly purified autologous CD133+ cells can stimulate neo-angiogenesis, as based on clinical and CEUS data. Electronic supplementary material The online version of this article (doi:10.1186/s12967-015-0697-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Vittorio Arici
- Vascular Surgery Unit, Fondazione IRCCS Policlinico S. Matteo and University of Pavia, Piazzale Golgi 19, 27100, Pavia, Italy.
| | - Cesare Perotti
- Haemotransfusional Service, Fondazione IRCCS Policlinico S. Matteo and University of Pavia, Pavia, Italy.
| | - Calliada Fabrizio
- Radiology Service, Fondazione IRCCS Policlinico S. Matteo and University of Pavia, Pavia, Italy.
| | - Claudia Del Fante
- Haemotransfusional Service, Fondazione IRCCS Policlinico S. Matteo and University of Pavia, Pavia, Italy.
| | - Franco Ragni
- Vascular Surgery Unit, Fondazione IRCCS Policlinico S. Matteo and University of Pavia, Piazzale Golgi 19, 27100, Pavia, Italy.
| | - Francesco Alessandrino
- Radiology Service, Fondazione IRCCS Policlinico S. Matteo and University of Pavia, Pavia, Italy.
| | - Gianluca Viarengo
- Haemotransfusional Service, Fondazione IRCCS Policlinico S. Matteo and University of Pavia, Pavia, Italy.
| | - Michele Pagani
- Anesthesiology and Intensive Care Unit 2, Fondazione IRCCS Policlinico S. Matteo and University of Pavia, Pavia, Italy.
| | - Alessia Moia
- Vascular Surgery Unit, Fondazione IRCCS Policlinico S. Matteo and University of Pavia, Piazzale Golgi 19, 27100, Pavia, Italy.
| | - Carmine Tinelli
- Statistics and Epidemiology Service, Fondazione IRCCS Policlinico S. Matteo and University of Pavia, Pavia, Italy.
| | - Antonio Bozzani
- Vascular Surgery Unit, Fondazione IRCCS Policlinico S. Matteo and University of Pavia, Piazzale Golgi 19, 27100, Pavia, Italy.
| |
Collapse
|
17
|
Litwin M, Radwańska A, Paprocka M, Kieda C, Dobosz T, Witkiewicz W, Baczyńska D. The role of FGF2 in migration and tubulogenesis of endothelial progenitor cells in relation to pro-angiogenic growth factor production. Mol Cell Biochem 2015; 410:131-42. [PMID: 26314253 DOI: 10.1007/s11010-015-2545-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 08/18/2015] [Indexed: 01/23/2023]
Abstract
In recent years, special attention has been paid to finding new pro-angiogenic factors which could be used in gene therapy of vascular diseases such as critical limb ischaemia (CLI). Angiogenesis, the formation of new blood vessels, is a complex process dependent on different cytokines, matrix proteins, growth factors and other pro- or anti-angiogenic stimuli. Numerous lines of evidence suggest that key mediators of angiogenesis, vascular endothelial growth factor (VEGF) and hepatocyte growth factor (HGF) together with fibroblast growth factor2 (FGF2) are involved in regulation of the normal and pathological process of angiogenesis. However, less information is available on the complex interactions between these and other angiogenic factors. The aim of this study was to characterise the effect of fibroblast growth factor2 on biological properties of human endothelial progenitor cells with respect to the expression level of other regulatory cytokines. Ectopic expression of FGF2 in EP cells stimulates their pro-angiogenic behaviour, leading to increased proliferation, migration and tube formation abilities. Moreover, we show that the expression profile of VEGF and other pro-angiogenic cytokines, such as HGF, MCP2, and interleukins, is affected differently by FGF2 in EPC. In conclusion, we provide evidence that FGF2 directly affects not only the biological properties of EP cells but also the expression pattern and secretion of numerous chemocytokines. Our results suggest that FGF2 could be applied in therapeutic approaches for CLI and other ischaemic diseases of the vascular system in vivo.
Collapse
Affiliation(s)
- Monika Litwin
- WroVasc - Integrated Cardiovascular Centre, Regional Specialist Hospital, Research and Development Centre, Kamienskiego 73a, Wrocław, Poland.
| | - Agata Radwańska
- WroVasc - Integrated Cardiovascular Centre, Regional Specialist Hospital, Research and Development Centre, Kamienskiego 73a, Wrocław, Poland
- Institut de Biologie Valrose, CNRS UMR 7277, Faculte des Sciences, Universite Nice-Sophia Antipolis, ParcValrose, 28 Avenue Valrose, 06108, Nice cedex, France
| | - Maria Paprocka
- WroVasc - Integrated Cardiovascular Centre, Regional Specialist Hospital, Research and Development Centre, Kamienskiego 73a, Wrocław, Poland
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Claudine Kieda
- Centre de Biophysique Moléculaire, CNRS, 45071, Orléans Cedex 2, France
| | - Tadeusz Dobosz
- WroVasc - Integrated Cardiovascular Centre, Regional Specialist Hospital, Research and Development Centre, Kamienskiego 73a, Wrocław, Poland
- Laboratory of Molecular Technique, Institute of Forensic Medicine, Medical University of Wrocław, Wrocław, Poland
| | - Wojciech Witkiewicz
- WroVasc - Integrated Cardiovascular Centre, Regional Specialist Hospital, Research and Development Centre, Kamienskiego 73a, Wrocław, Poland
| | - Dagmara Baczyńska
- WroVasc - Integrated Cardiovascular Centre, Regional Specialist Hospital, Research and Development Centre, Kamienskiego 73a, Wrocław, Poland
- Laboratory of Molecular Technique, Institute of Forensic Medicine, Medical University of Wrocław, Wrocław, Poland
| |
Collapse
|
18
|
Avolio E, Caputo M, Madeddu P. Stem cell therapy and tissue engineering for correction of congenital heart disease. Front Cell Dev Biol 2015; 3:39. [PMID: 26176009 PMCID: PMC4485350 DOI: 10.3389/fcell.2015.00039] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 06/10/2015] [Indexed: 01/08/2023] Open
Abstract
This review article reports on the new field of stem cell therapy and tissue engineering and its potential on the management of congenital heart disease. To date, stem cell therapy has mainly focused on treatment of ischemic heart disease and heart failure, with initial indication of safety and mild-to-moderate efficacy. Preclinical studies and initial clinical trials suggest that the approach could be uniquely suited for the correction of congenital defects of the heart. The basic concept is to create living material made by cellularized grafts that, once implanted into the heart, grows and remodels in parallel with the recipient organ. This would make a substantial improvement in current clinical management, which often requires repeated surgical corrections for failure of implanted grafts. Different types of stem cells have been considered and the identification of specific cardiac stem cells within the heterogeneous population of mesenchymal and stromal cells offers opportunities for de novo cardiomyogenesis. In addition, endothelial cells and vascular progenitors, including cells with pericyte characteristics, may be necessary to generate efficiently perfused grafts. The implementation of current surgical grafts by stem cell engineering could address the unmet clinical needs of patients with congenital heart defects.
Collapse
Affiliation(s)
- Elisa Avolio
- Division of Experimental Cardiovascular Medicine, School of Clinical Sciences, Bristol Heart Institute, University of Bristol Bristol, UK
| | - Massimo Caputo
- Congenital Heart Surgery, School of Clinical Sciences, Bristol Heart Institute, University of Bristol Bristol, UK
| | - Paolo Madeddu
- Division of Experimental Cardiovascular Medicine, School of Clinical Sciences, Bristol Heart Institute, University of Bristol Bristol, UK
| |
Collapse
|
19
|
Zullo JA, Nadel EP, Rabadi MM, Baskind MJ, Rajdev MA, Demaree CM, Vasko R, Chugh SS, Lamba R, Goligorsky MS, Ratliff BB. The Secretome of Hydrogel-Coembedded Endothelial Progenitor Cells and Mesenchymal Stem Cells Instructs Macrophage Polarization in Endotoxemia. Stem Cells Transl Med 2015; 4:852-61. [PMID: 25947337 DOI: 10.5966/sctm.2014-0111] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 03/16/2015] [Indexed: 01/27/2023] Open
Abstract
UNLABELLED : We previously reported the delivery of endothelial progenitor cells (EPCs) embedded in hyaluronic acid-based (HA)-hydrogels protects renal function during acute kidney injury (AKI) and promotes angiogenesis. We attempted to further ameliorate renal dysfunction by coembedding EPCs with renal mesenchymal stem cells (MSCs), while examining their paracrine influence on cytokine/chemokine release and proinflammatory macrophages. A live/dead assay determined whether EPC-MSC coculturing improved viability during lipopolysaccharide (LPS) treatment, and HA-hydrogel-embedded delivery of cells to LPS-induced AKI mice was assessed for effects on mean arterial pressure (MAP), renal blood flow (RBF), circulating cytokines/chemokines, serum creatinine, proteinuria, and angiogenesis (femoral ligation). Cytokine/chemokine release from embedded stem cells was examined, including effects on macrophage polarization and release of proinflammatory molecules. EPC-MSC coculturing improved stem cell viability during LPS exposure, an effect augmented by MSC hypoxic preconditioning. The delivery of coembedded EPCs with hypoxic preconditioned MSCs to AKI mice demonstrated additive improvement (compared with EPC delivery alone) in medullary RBF and proteinuria, with comparable effects on serum creatinine, MAP, and angiogenesis. Exposure of proinflammatory M1 macrophages to EPC-MSC conditioned medium changed their polarization to anti-inflammatory M2. Incubation of coembedded EPCs-MSCs with macrophages altered their release of cytokines/chemokines, including enhanced release of anti-inflammatory interleukin (IL)-4 and IL-10. EPC-MSC delivery to endotoxemic mice elevated the levels of circulating M2 macrophages and reduced the circulating cytokines/chemokines. In conclusion, coembedding EPCs-MSCs improved their resistance to stress, impelled macrophage polarization from M1 to M2 while altering their cytokine/chemokines release, reduced circulating cytokines/chemokines, and improved renal and vascular function when MSCs were hypoxically preconditioned. SIGNIFICANCE This report provides insight into a new therapeutic approach for treatment of sepsis and provides a new and improved strategy using hydrogels for the delivery of stem cells to treat sepsis and, potentially, other injuries and/or diseases. The delivery of two different stem cell lines (endothelial progenitor cells and mesenchymal stem cells; delivered alone and together) embedded in a protective bioengineered scaffolding (hydrogel) offers many therapeutic benefits for the treatment of sepsis. This study shows how hydrogel-delivered stem cells elicit their effects and how hydrogel embedding enhances the therapeutic efficacy of delivered stem cells. Hydrogel-delivered stem cells influence the components of the overactive immune system during sepsis and work to counterbalance the release of many proinflammatory and prodamage substances from immune cells, thereby improving the associated vascular and kidney damage.
Collapse
Affiliation(s)
- Joseph A Zullo
- Departments of Medicine, Pharmacology, and Physiology, Renal Research Institute, New York Medical College, Valhalla, New York, USA; Department of Nephrology and Rheumatology, University Medical Center Goettingen, Goettingen, Germany
| | - Ellen P Nadel
- Departments of Medicine, Pharmacology, and Physiology, Renal Research Institute, New York Medical College, Valhalla, New York, USA; Department of Nephrology and Rheumatology, University Medical Center Goettingen, Goettingen, Germany
| | - May M Rabadi
- Departments of Medicine, Pharmacology, and Physiology, Renal Research Institute, New York Medical College, Valhalla, New York, USA; Department of Nephrology and Rheumatology, University Medical Center Goettingen, Goettingen, Germany
| | - Matthew J Baskind
- Departments of Medicine, Pharmacology, and Physiology, Renal Research Institute, New York Medical College, Valhalla, New York, USA; Department of Nephrology and Rheumatology, University Medical Center Goettingen, Goettingen, Germany
| | - Maharshi A Rajdev
- Departments of Medicine, Pharmacology, and Physiology, Renal Research Institute, New York Medical College, Valhalla, New York, USA; Department of Nephrology and Rheumatology, University Medical Center Goettingen, Goettingen, Germany
| | - Cameron M Demaree
- Departments of Medicine, Pharmacology, and Physiology, Renal Research Institute, New York Medical College, Valhalla, New York, USA; Department of Nephrology and Rheumatology, University Medical Center Goettingen, Goettingen, Germany
| | - Radovan Vasko
- Departments of Medicine, Pharmacology, and Physiology, Renal Research Institute, New York Medical College, Valhalla, New York, USA; Department of Nephrology and Rheumatology, University Medical Center Goettingen, Goettingen, Germany
| | - Savneek S Chugh
- Departments of Medicine, Pharmacology, and Physiology, Renal Research Institute, New York Medical College, Valhalla, New York, USA; Department of Nephrology and Rheumatology, University Medical Center Goettingen, Goettingen, Germany
| | - Rajat Lamba
- Departments of Medicine, Pharmacology, and Physiology, Renal Research Institute, New York Medical College, Valhalla, New York, USA; Department of Nephrology and Rheumatology, University Medical Center Goettingen, Goettingen, Germany
| | - Michael S Goligorsky
- Departments of Medicine, Pharmacology, and Physiology, Renal Research Institute, New York Medical College, Valhalla, New York, USA; Department of Nephrology and Rheumatology, University Medical Center Goettingen, Goettingen, Germany
| | - Brian B Ratliff
- Departments of Medicine, Pharmacology, and Physiology, Renal Research Institute, New York Medical College, Valhalla, New York, USA; Department of Nephrology and Rheumatology, University Medical Center Goettingen, Goettingen, Germany
| |
Collapse
|
20
|
Chou SH, Lin SZ, Kuo WW, Pai P, Lin JY, Lai CH, Kuo CH, Lin KH, Tsai FJ, Huang CY. Mesenchymal stem cell insights: prospects in cardiovascular therapy. Cell Transplant 2015; 23:513-29. [PMID: 24816448 DOI: 10.3727/096368914x678436] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Ischemic heart damage usually triggers cardiomyopathological remodeling and fibrosis, thus promoting the development of heart functional failure. Mesenchymal stem cells (MSCs) are a heterogeneous group of cells in culture, with multipotent and hypoimmunogenic characters to aid tissue repair and avoid immune responses, respectively. Numerous experimental findings have proven the feasibility, safety, and efficiency of MSC therapy for cardiac regeneration. Despite that the exact mechanism remains unclear, the therapeutic ability of MSCs to treat ischemia heart diseases has been tested in phase I/II clinical trials. Based on encouraging preliminary findings, MSCs might become a potentially efficacious tool in the therapeutic options available to treat ischemic and nonischemic cardiovascular disorders. The molecular mechanism behind the efficacy of MSCs on promoting engraftment and accelerating the speed of heart functional recovery is still waiting for clarification. It is hypothesized that cardiomyocyte regeneration, paracrine mechanisms for cardiac repair, optimization of the niche for cell survival, and cardiac remodeling by inflammatory control are involved in the interaction between MSCs and the damaged myocardial environment. This review focuses on recent experimental and clinical findings related to cellular cardiomyoplasticity. We focus on MSCs, highlighting their roles in cardiac tissue repair, transdifferentiation, the MSC niche in myocardial tissues, discuss their therapeutic efficacy that has been tested for cardiac therapy, and the current bottleneck of MSC-based cardiac therapies.
Collapse
Affiliation(s)
- Shiu-Huey Chou
- Department of Life Science, Fu-Jen Catholic University, Xinzhuang District, New Taipei City, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Gao Y, Wang Q, Cui X, Liu Y, Zheng T, Chen C, Sun C, Huang S, Wang X, Liu Y, Jiang X, Zeng C, Quan D. Controlled release of stromal cell-derived factor-1α from silk fibroin-coated coils accelerates intra-aneurysmal organization and occlusion of neck remnant by recruiting endothelial progenitor cells. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2014; 7:8366-8380. [PMID: 25674201 PMCID: PMC4314014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 11/24/2014] [Indexed: 06/04/2023]
Abstract
This study is to test the efficacy of stromal cell-derived factor-1α (SDF-1α)-coated coils together with endothelial progenitor cells (EPCs) transplantation in occluding aneurysms. Bone marrow-derived EPC surface markers were analyzed using flow cytometry. The migratory function of EPCs in response to SDF-1α was evaluated using a modified Boyden chamber assay. Capillary-like tube formation was assessed using Matrigel gel. Coil morphologies before and after coating with SDF-1α were observed under a scanning electron microscope. The level of SDF-1α in supernatants was measured by ELISA. Sprague-Dawley rats were randomly allocated into five groups. Histological analysis was performed on days 14 and 28 after coil implantation. The bone marrow-EPCs could express CD133, CD34, and VEGFR-2 and form tubule-like structures in vitro. Migratory ability of EPCs in the presence of SDF-1α-coated coils was similar to that in the presence of 5 ng/ml SDF-1α gradient. Sustained release of SDF-1α was achieved using silk fibroin as a carrier. In SDF-1α-coated coils + EPCs transplantation group, a well-organized fibrous tissue bridging the orifice of aneurysms was shown on days 14 and 28. On day 28, tissue organization was greater in the SDF-1α-coated coils group than in the unmodified coils group. Immunofluorescence showed α-smooth muscle actin-positive cells in organized tissue in sacs. Combined treatment with SDF-1α-coated coils and EPCs transplantation is a safe and effective treatment for rat aneurysms. This may provide a new strategy for endovascular therapy following aneurysmal subarachnoid hemorrhage.
Collapse
Affiliation(s)
- Yuyuan Gao
- Department of Neurosurgery, Zhujiang Hospital, The National Key Clinic Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Southern Medical UniversityGuangzhou City, Guangdong Province, P.R. China
| | - Qiujing Wang
- Department of Neurosurgery, Zhujiang Hospital, The National Key Clinic Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Southern Medical UniversityGuangzhou City, Guangdong Province, P.R. China
| | - Xubo Cui
- Department of Neurosurgery, Zhujiang Hospital, The National Key Clinic Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Southern Medical UniversityGuangzhou City, Guangdong Province, P.R. China
| | - Yaqi Liu
- Department of Neurosurgery, Zhujiang Hospital, The National Key Clinic Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Southern Medical UniversityGuangzhou City, Guangdong Province, P.R. China
| | - Tao Zheng
- Department of Neurosurgery, Zhujiang Hospital, The National Key Clinic Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Southern Medical UniversityGuangzhou City, Guangdong Province, P.R. China
| | - Chengwei Chen
- Department of Neurosurgery, Zhujiang Hospital, The National Key Clinic Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Southern Medical UniversityGuangzhou City, Guangdong Province, P.R. China
| | - Chengmei Sun
- Department of Neurosurgery, Zhujiang Hospital, The National Key Clinic Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Southern Medical UniversityGuangzhou City, Guangdong Province, P.R. China
| | - Shuyun Huang
- Department of Neurosurgery, Zhujiang Hospital, The National Key Clinic Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Southern Medical UniversityGuangzhou City, Guangdong Province, P.R. China
| | - Xin Wang
- Department of Neurosurgery, Zhujiang Hospital, The National Key Clinic Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Southern Medical UniversityGuangzhou City, Guangdong Province, P.R. China
| | - Yanchao Liu
- Department of Neurosurgery, Zhujiang Hospital, The National Key Clinic Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Southern Medical UniversityGuangzhou City, Guangdong Province, P.R. China
| | - Xiaodan Jiang
- Department of Neurosurgery, Zhujiang Hospital, The National Key Clinic Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Southern Medical UniversityGuangzhou City, Guangdong Province, P.R. China
| | - Chi Zeng
- Scholl of Chemistry and Chemical Engineering, Sun Yat-Sen UniversityGuangzhou City, Guangdong Province, P.R. China
| | - Daping Quan
- Scholl of Chemistry and Chemical Engineering, Sun Yat-Sen UniversityGuangzhou City, Guangdong Province, P.R. China
| |
Collapse
|
22
|
Sharp TE, George JC. Stem cell therapy and breast cancer treatment: review of stem cell research and potential therapeutic impact against cardiotoxicities due to breast cancer treatment. Front Oncol 2014; 4:299. [PMID: 25405100 PMCID: PMC4217360 DOI: 10.3389/fonc.2014.00299] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 10/14/2014] [Indexed: 12/16/2022] Open
Abstract
A new problem has emerged with the ever-increasing number of breast cancer survivors. While early screening and advances in treatment have allowed these patients to overcome their cancer, these treatments often have adverse cardiovascular side effects that can produce abnormal cardiovascular function. Chemotherapeutic and radiation therapy have both been linked to cardiotoxicity; these therapeutics can cause a loss of cardiac muscle and deterioration of vascular structure that can eventually lead to heart failure (HF). This cardiomyocyte toxicity can leave the breast cancer survivor with a probable diagnosis of dilated or restrictive cardiomyopathy (DCM or RCM). While current HF standard of care can alleviate symptoms, other than heart transplantation, there is no therapy that replaces cardiac myocytes that are killed during cancer therapies. There is a need to develop novel therapeutics that can either prevent or reverse the cardiac injury caused by cancer therapeutics. These new therapeutics should promote the regeneration of lost or deteriorating myocardium. Over the last several decades, the therapeutic potential of cell-based therapy has been investigated for HF patients. In this review, we discuss the progress of pre-clinical and clinical stem cell research for the diseased heart and discuss the possibility of utilizing these novel therapies to combat cardiotoxicity observed in breast cancer survivors.
Collapse
Affiliation(s)
- Thomas E Sharp
- Cardiovascular Research Center, Temple University School of Medicine , Philadelphia, PA , USA
| | - Jon C George
- Cardiovascular Research Center, Temple University School of Medicine , Philadelphia, PA , USA ; Division of Cardiovascular Medicine, Temple University Hospital , Philadelphia, PA , USA
| |
Collapse
|
23
|
López-Ruiz E, Perán M, Picón-Ruiz M, García MA, Carrillo E, Jiménez-Navarro M, Hernández MC, Prat I, De Teresa E, Marchal JA. Cardiomyogenic differentiation potential of human endothelial progenitor cells isolated from patients with myocardial infarction. Cytotherapy 2014; 16:1229-1237. [PMID: 24969968 DOI: 10.1016/j.jcyt.2014.05.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 05/09/2014] [Accepted: 05/12/2014] [Indexed: 11/16/2022]
Abstract
BACKGROUND AIMS Endothelial progenitor cells (EPCs) are known to play a beneficial role by promoting postnatal vasculogenesis in pathological events, such as ischemic heart disease and peripheral artery disease. However, little is known about the potential of EPCs to restore heart damage tissue. We compared the cardiac differentiation capacity of EPCs isolated from peripheral blood of patients with acute myocardial infarction (AMI) with EPCs obtained from umbilical cord blood (UCB). METHODS EPCs from both origins were isolated by density gradient centrifugation and characterized through the use of endothelial markers (UEA-1lectin, CD133 and KDR) and endothelial cell colony-forming unit assay. Cardiac differentiation capacity of EPCs was assessed by immunofluorescence and reverse transcriptase-polymerase chain reaction after 5-azacytidine (5-aza) induction. RESULTS No significant differences were observed between the number of endothelial cell colony-forming units in peripheral blood of patients with AMI and samples from UCB. Moreover, 5-aza induced the appearance of myotube-like structures and the positive expression of sarcomeric α-actinin, cardiac troponin I and T and desmin in a similar pattern for both cell sources, which indicates a comparable acquisition of a cardiac-like phenotype. CONCLUSIONS For the first time, we have compared, in vitro, the cardiomyogenic potential of EPCs derived from patients with AMI with UCB-derived EPCs. Our data indicate that EPCs obtained from both origins have similar plasticity and functions and suggest a potential therapeutic efficacy in cardiac cell therapy.
Collapse
Affiliation(s)
| | - Macarena Perán
- Department of Health Sciences, University of Jaén, Jaén, Spain; Biopathology and Medicine Regenerative Institute (IBIMER), University of Granada, Granada, Spain
| | - Manuel Picón-Ruiz
- Biopathology and Medicine Regenerative Institute (IBIMER), University of Granada, Granada, Spain; Braman Family Breast Cancer Institute, Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Maria Angel García
- Department of Oncology, Virgen de las Nieves, University Hospital, Granada, Spain; Biosanitary Institute of Granada (ibs.GRANADA), Hospitales Universitarios de Granada-Universidad de Granada, Granada, Spain
| | - Esmeralda Carrillo
- Biopathology and Medicine Regenerative Institute (IBIMER), University of Granada, Granada, Spain; Department of Human Anatomy and Embryology, University of Granada, Granada, Spain
| | - Manuel Jiménez-Navarro
- UGC Corazón, Hospital ClínicoUniversitarioVirgen de la Victoria de Málaga, IBIMA Instituto de Investigación Biomédica de Málaga, Universidad de Málaga, Spain
| | - M Carmen Hernández
- Cord Blood Bank, Centro Regional de Transfusión Sanguínea, Málaga, Spain
| | - Isidro Prat
- Cord Blood Bank, Centro Regional de Transfusión Sanguínea, Málaga, Spain
| | - Eduardo De Teresa
- UGC Corazón, Hospital ClínicoUniversitarioVirgen de la Victoria de Málaga, IBIMA Instituto de Investigación Biomédica de Málaga, Universidad de Málaga, Spain
| | - Juan Antonio Marchal
- Biopathology and Medicine Regenerative Institute (IBIMER), University of Granada, Granada, Spain; Biosanitary Institute of Granada (ibs.GRANADA), Hospitales Universitarios de Granada-Universidad de Granada, Granada, Spain; Department of Human Anatomy and Embryology, University of Granada, Granada, Spain.
| |
Collapse
|
24
|
Coletta JE, Rosenthal N, Costa MA. Cardiac mapping and stem cell delivery for the damaged myocardium. Expert Rev Cardiovasc Ther 2014; 6:1181-90. [DOI: 10.1586/14779072.6.9.1181] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
25
|
Gelmi A, Ljunggren MK, Rafat M, Jager EWH. Influence of conductive polymer doping on the viability of cardiac progenitor cells. J Mater Chem B 2014; 2:3860-3867. [DOI: 10.1039/c4tb00142g] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Investigating the influence of conductive polymer dopants on surface properties and chemistry, and how they may modify cardiac progenitor cell interactions.
Collapse
Affiliation(s)
- A. Gelmi
- Biosensors and Bioelectronics Centre
- Dept. of Physics, Chemistry and Biology (IFM)
- Linköping University
- Linköping 581 83, Sweden
| | - M. K. Ljunggren
- Integrative Regenerative Medicine Centre
- Department of Clinical and Experimental Medicine
- Linköping University
- Linköping 581 85, Sweden
| | - M. Rafat
- Integrative Regenerative Medicine Centre
- Department of Clinical and Experimental Medicine
- Linköping University
- Linköping 581 85, Sweden
- Department of Biomedical Engineering
| | - E. W. H. Jager
- Biosensors and Bioelectronics Centre
- Dept. of Physics, Chemistry and Biology (IFM)
- Linköping University
- Linköping 581 83, Sweden
| |
Collapse
|
26
|
Li YJ, Duan CL, Liu JX. Salvianolic acid A promotes the acceleration of neovascularization in the ischemic rat myocardium and the functions of endothelial progenitor cells. JOURNAL OF ETHNOPHARMACOLOGY 2013; 151:218-227. [PMID: 24189032 DOI: 10.1016/j.jep.2013.10.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 08/13/2013] [Accepted: 10/07/2013] [Indexed: 06/02/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Salvia miltiorrhiza (SM, also known as DanShen) is one of the well-known widely used Chinese herbal medicines in clinical, containing phenolic compounds and potent antioxidant properties. Salvianolic acid A (SAA) is the most potent component of SM. A modern experimental strategy for treating myocardial ischemia is to induce neovascularization of the heart by the use of "angiogens", mediators that induce the formation of blood vessels, or angiogenesis. Studies demonstrated that coronary collateral vessels protect ischemic myocardium after coronary obstruction; therefore, we sought to examine whether SAA could stimulate myocardial angiogenesis. MATERIALS AND METHODS Male Sprague-Dawley rats myocardial infarct (MI) induced by ligation of left anterior descending coronary artery (LAD) were randomly divided into five groups: sham-operated group; LAD occlusion + administration of physiological saline (vehicle treated group); LAD occlusion + administration of different concentrations of SAA (10, 5.0 and 2.5mg/kg/d). Infarct size and capillary density in the infarct region were measured with a previous experimental method. Immunohistological analysis was performed to measure vascular endothelial growth factor (VEGF) and vascular endothelial growth factor receptor-2 (VEGFR-2) expressions. The secretion of matrix metalloproteinase type X (MMP-9) was evaluated in serum of post-ischemic rats. We also performed the experiments of SAA on rat endothelial progenitor cells (EPCs) numbers and the capacity of migration and vasculargenesis. RESULTS SAA potentiated the ischemia-induced neovascularization after 1week post-operation when compared to vehicle treated group. This effect could be attributed to an increased formation of VEGF, VEGFR-2, and MMP-9 as well as the promotion of numbers and functions of EPCs. CONCLUSION These findings show that SAA has potent proangiogenic properties by promoting the expression of proangiogenic factors, and the functions of EPCs, indicating that SAA might contribute to the protective effect against coronary disease. Chemical compound studied in this paper is salvianolic acid A (PubChem CID: 5281793).
Collapse
Affiliation(s)
- Yu-Juan Li
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Chang-Ling Duan
- Research and Development Center, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Jian-Xun Liu
- Research and Development Center, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China.
| |
Collapse
|
27
|
Sreejit P, Verma RS. Natural ECM as biomaterial for scaffold based cardiac regeneration using adult bone marrow derived stem cells. Stem Cell Rev Rep 2013; 9:158-71. [PMID: 23319217 DOI: 10.1007/s12015-013-9427-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Cellular therapy using stem cells for cardiac diseases has recently gained much interest in the scientific community due to its potential in regenerating damaged and even dead tissue and thereby restoring the organ function. Stem cells from various sources and origin are being currently used for regeneration studies directly or along with differentiation inducing agents. Long term survival and minimal side effects can be attained by using autologous cells and reduced use of inducing agents. Cardiomyogenic differentiation of adult derived stem cells has been previously reported using various inducing agents but the use of a potentially harmful DNA demethylating agent 5-azacytidine (5-azaC) has been found to be critical in almost all studies. Alternate inducing factors and conditions/stimulant like physical condition including electrical stimulation, chemical inducers and biological agents have been attempted by numerous groups to induce cardiac differentiation. Biomaterials were initially used as artificial scaffold in in vitro studies and later as a delivery vehicle. Natural ECM is the ideal biological scaffold since it contains all the components of the tissue from which it was derived except for the living cells. Constructive remodeling can be performed using such natural ECM scaffolds and stem cells since, the cells can be delivered to the site of infraction and once delivered the cells adhere and are not "lost". Due to the niche like conditions of ECM, stem cells tend to differentiate into tissue specific cells and attain several characteristics similar to that of functional cells even in absence of any directed differentiation using external inducers. The development of niche mimicking biomaterials and hybrid biomaterial can further advance directed differentiation without specific induction. The mechanical and electrical integration of these materials to the functional tissue is a problem to be addressed. The search for the perfect extracellular matrix for therapeutic applications including engineering cardiac tissue structures for post ischemic cardiac tissue regeneration continues.
Collapse
Affiliation(s)
- P Sreejit
- Stem Cell and Molecular Biology Laboratory, Department of Biotechnology, Indian Institute of Technology Madras, Chennai, 600036, TN, India
| | | |
Collapse
|
28
|
Cell-based approaches to the engineering of vascularized bone tissue. Cytotherapy 2013; 15:1309-22. [PMID: 23999157 DOI: 10.1016/j.jcyt.2013.06.005] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 06/04/2013] [Accepted: 06/17/2013] [Indexed: 01/14/2023]
Abstract
This review summarizes recent efforts to create vascularized bone tissue in vitro and in vivo through the use of cell-based therapy approaches. The treatment of large and recalcitrant bone wounds is a serious clinical problem, and in the United States approximately 10% of all fractures are complicated by delayed union or non-union. Treatment approaches with the use of growth factor and gene delivery have shown some promise, but results are variable and clinical complications have arisen. Cell-based therapies offer the potential to recapitulate key components of the bone-healing cascade, which involves concomitant regeneration of vasculature and new bone tissue. For this reason, osteogenic and vasculogenic cell types have been combined in co-cultures to capitalize on the function of each cell type and to promote heterotypic interactions. Experiments in both two-dimensional and three-dimensional systems have provided insight into the mechanisms by which osteogenic and vasculogenic cells interact to form vascularized bone, and these approaches have been translated to ectopic and orthotopic models in small-animal studies. The knowledge generated by these studies will inform and facilitate the next generation of pre-clinical studies, which are needed to move cell-based orthopaedic repair strategies into the clinic. The science and application of cytotherapy for repair of large and ischemic bone defects is developing rapidly and promises to provide new treatment methods for these challenging clinical problems.
Collapse
|
29
|
Roura S, Gálvez-Montón C, Bayes-Genis A. The challenges for cardiac vascular precursor cell therapy: lessons from a very elusive precursor. J Vasc Res 2013; 50:304-23. [PMID: 23860201 DOI: 10.1159/000353294] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 05/01/2013] [Indexed: 11/19/2022] Open
Abstract
There is compelling evidence that cardiovascular disorders arise and/or progress due mainly to endothelial dysfunction. Novel therapeutic strategies aim to generate new myocardial tissue using cells with regenerative potential, either alone or in combination with biomaterials, cytokines and advanced monitoring devices. Among the human adult progenitor cells used in such methods, those historically termed 'endothelial progenitor cells' show promise for vascular growth and repair. Asahara et al. [Science 1997;275:964-967] initially described putative endothelial cell precursors in 1997. Subsequently, distinct cell populations termed endothelial colony-forming units-Hill, circulating angiogenic cells and endothelial colony-forming cells were identified that varied in terms of phenotype, vascular homeostasis contribution and purity. Notably, most of these cells are not genuine vascular precursor cells belonging to the endothelial lineage. This review provides a broad overview of the main properties of the endothelium, focusing on the basis governing its growth and repair. We discuss efforts to identify true vascular precursors, a matter of debate for the past 15 years, as well as recent methodological advances in identifying new hierarchies of more homogeneous, clonogenic and proliferative vascular endothelial-lineage precursors. Consideration of these issues provides insights that may help develop more effective therapies against human diseases that involve vascular deficits.
Collapse
Affiliation(s)
- Santiago Roura
- ICREC Research Program, Health Research Institute Germans Trias i Pujol-IGTP, University Hospital Germans Trias i Pujol, Badalona, Spain.
| | | | | |
Collapse
|
30
|
Ha X, Zhao M, Zhao H, Peng J, Deng Z, Dong J, Yang X, Zhao Y, Ju J. Identification and clinical significance of circulating endothelial progenitor cells in gastric cancer. Biomarkers 2013; 18:487-92. [DOI: 10.3109/1354750x.2013.810666] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
31
|
Goligorsky MS, Salven P. Concise review: endothelial stem and progenitor cells and their habitats. Stem Cells Transl Med 2013; 2:499-504. [PMID: 23761107 PMCID: PMC3697817 DOI: 10.5966/sctm.2013-0005] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 03/13/2013] [Indexed: 12/16/2022] Open
Abstract
Recent studies on the stem cell origins of regenerating tissues have provided solid evidence in support of the role of the resident cells, rather than bone marrow-derived or transplanted stem cells, in restoring tissue architecture after an injury. This is also true for endothelial stem and progenitor cells: local pools exist in the vascular wall, and those cells are the primary drivers of vascular regeneration. This paradigm shift offers an opportunity to rethink and refine our understanding of the multiple therapeutic effects of transplanted endothelial progenitor cells, focusing on their secretome, sheddome, intercellular communicational routes, and other potential ways to rejuvenate and replenish the pool of resident cells. The dynamics of vascular wall resident cells, at least in the adipose tissue, may shed light on the origins of other cells present in the vascular wall-pericytes and mesenchymal stem cells. The fate of these cells in aging and disease awaits elucidation.
Collapse
Affiliation(s)
- Michael S. Goligorsky
- Departments of Medicine
- Pharmacology, and
- Physiology, New York Medical College, Valhalla, New York, USA
| | - Petri Salven
- Department of Pathology, Haartman Institute, University of Helsinki, Helsinki, Finland
| |
Collapse
|
32
|
The kinetics and apoptotic profile of circulating endothelial cells in autologous hematopoietic stem cell transplantation in patients with lymphoproliferative disorders. Ann Hematol 2013; 92:1255-62. [DOI: 10.1007/s00277-013-1759-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2013] [Accepted: 04/07/2013] [Indexed: 10/26/2022]
|
33
|
|
34
|
Ratliff BB, Goligorsky MS. Delivery of EPC embedded in HA-hydrogels for treatment of acute kidney injury. BIOMATTER 2013; 3:23284. [PMID: 23507925 PMCID: PMC3732320 DOI: 10.4161/biom.23284] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Adoptive transfer of stem cells has shown potential as an effective treatment for acute kidney injury (AKI). The current strategy for adoptive transfer of stem cells is by intravenous injection. However, this conventional method of stem cell delivery is riddled with problems causing reduced efficacy of the therapeutic potential of delivered stem cells. This review summarizes the recent advancements in an alternative method of stem cell delivery for treatment of AKI, embedding stem cells in hyaluronic acid (HA-) based hydrogels followed by their implantation. Furthermore, one stem cell type in particular, endothelial progenitor cells (EPC), have shown remarkable therapeutic benefits for treatment of AKI when delivered by HA-hydrogels. The review also summarizes the delivery of EPC by HA-hydrogels in the setting of AKI.
Collapse
Affiliation(s)
- Brian B Ratliff
- Departments of Medicine, Pharmacology and Physiology; New York Medical College; Valhalla, NY USA
| | - Michael S Goligorsky
- Departments of Medicine, Pharmacology and Physiology; New York Medical College; Valhalla, NY USA
| |
Collapse
|
35
|
Chun JL, O'Brien R, Song MH, Wondrasch BF, Berry SE. Injection of vessel-derived stem cells prevents dilated cardiomyopathy and promotes angiogenesis and endogenous cardiac stem cell proliferation in mdx/utrn-/- but not aged mdx mouse models for duchenne muscular dystrophy. Stem Cells Transl Med 2012; 2:68-80. [PMID: 23283493 DOI: 10.5966/sctm.2012-0107] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is the most common form of muscular dystrophy. DMD patients lack dystrophin protein and develop skeletal muscle pathology and dilated cardiomyopathy (DCM). Approximately 20% succumb to cardiac involvement. We hypothesized that mesoangioblast stem cells (aorta-derived mesoangioblasts [ADMs]) would restore dystrophin and alleviate or prevent DCM in animal models of DMD. ADMs can be induced to express cardiac markers, including Nkx2.5, cardiac tropomyosin, cardiac troponin I, and α-actinin, and adopt cardiomyocyte morphology. Transplantation of ADMs into the heart of mdx/utrn(-/-) mice prior to development of DCM prevented onset of cardiomyopathy, as measured by echocardiography, and resulted in significantly higher CD31 expression, consistent with new vessel formation. Dystrophin-positive cardiomyocytes and increased proliferation of endogenous Nestin(+) cardiac stem cells were detected in ADM-injected heart. Nestin(+) striated cells were also detected in four of five mdx/utrn(-/-) hearts injected with ADMs. In contrast, when ADMs were injected into the heart of aged mdx mice with advanced fibrosis, no functional improvement was detected by echocardiography. Instead, ADMs exacerbated some features of DCM. No dystrophin protein, increase in CD31 expression, or increase in Nestin(+) cell proliferation was detected following ADM injection in aged mdx heart. Dystrophin was observed following transplantation of ADMs into the hearts of young mdx mice, however, suggesting that pathology in aged mdx heart may alter the fate of donor stem cells. In summary, ADMs delay or prevent development of DCM in dystrophin-deficient heart, but timing of stem cell transplantation may be critical for achieving benefit with cell therapy in DMD cardiac muscle.
Collapse
MESH Headings
- Age Factors
- Animals
- Antigens, Differentiation/metabolism
- Aorta/pathology
- Cardiomyopathy, Dilated/genetics
- Cardiomyopathy, Dilated/pathology
- Cardiomyopathy, Dilated/prevention & control
- Cell Proliferation
- Cells, Cultured
- Coronary Vessels/metabolism
- Coronary Vessels/physiopathology
- Disease Models, Animal
- Dystrophin/metabolism
- Humans
- Intermediate Filament Proteins/metabolism
- Mice
- Mice, Inbred mdx
- Mice, Knockout
- Muscular Dystrophy, Duchenne/genetics
- Muscular Dystrophy, Duchenne/pathology
- Muscular Dystrophy, Duchenne/therapy
- Myocardium/metabolism
- Myocardium/pathology
- Myocytes, Cardiac/metabolism
- Neovascularization, Physiologic
- Nerve Tissue Proteins/metabolism
- Nestin
- Stem Cell Transplantation
- Stem Cells/metabolism
- Stem Cells/physiology
- Utrophin/genetics
Collapse
Affiliation(s)
- Ju Lan Chun
- Department of Animal Sciences, University of Illinois, Urbana, IL, USA
| | | | | | | | | |
Collapse
|
36
|
Resch T, Pircher A, Kähler CM, Pratschke J, Hilbe W. Endothelial progenitor cells: current issues on characterization and challenging clinical applications. Stem Cell Rev Rep 2012; 8:926-39. [PMID: 22095429 DOI: 10.1007/s12015-011-9332-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Since their discovery about a decade ago, endothelial precursor cells (EPC) have been subjected to intensive investigation. The vision to stimulate respectively suppress a key player of vasculogenesis opened a plethora of clinical applications. However, as research opened deeper insights into EPC biology, the enthusiasm of the pioneer era has been damped in favour of a more critical view. Recent research is focused on three major questions: The fact that the number of EPC in peripheral blood is exceedingly low has consistently raised suspicion whether these cells can plausibly have an impact on physiological or pathophysiological processes. Secondly, whereas the key role of EPC in tumourigenesis has been strongly emphasized by various groups in the past, recent publications are challenging this hypothesis. Thirdly, the lack of consensus on EPC-defining markers and standardized protocols for their detection have repeatedly led to difficulties concerning comparability between papers. In this current review, an overview on recent findings on EPC biology is given, their challenging clinical implications are discussed and the perplexity underlying the current controversial debate is illustrated.
Collapse
Affiliation(s)
- Thomas Resch
- Center of Operative Medicine, Department of Visceral, Transplant, and Thoracic Surgery, Medical University Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria.
| | | | | | | | | |
Collapse
|
37
|
Zhu Z, Chen G, Li X, Yin Q, Yang Z, Yi J. Endothelial progenitor cells homing to the orthotopic implanted liver tumor of nude mice. ACTA ACUST UNITED AC 2012; 32:675-679. [PMID: 23073795 DOI: 10.1007/s11596-012-1016-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Indexed: 12/17/2022]
Abstract
This study investigated the "homing" phenomenon in hepatocellular carcinoma (HCC). The "homing" specificity of endothelial progenitor cells (EPC) by establishing an orthotopic implantation model in nude mice. EPCs harvested from the marrow cells were separated by density gradient centrifugation. Fluorescence microscope, flow cytometry (FCM) and double fluorescence staining with FITC-UEA-I and DiI-ac-LDL, were employed to identify the cells. 4',6-diamidino-2-phenylindole (DAPI) labelling and real-time PCR were used for detecting the expression of CD133 and chemokines to trace and observe the distribution of EPCs. Our results showed that the distribution rate of EPCs was obviously higher than that in other important organs and the negative control group. Detection of CD133 and chemokines yielded similar results in difference tissues. Our experiment confirmed that the chemotaxis of EPCs does exist in HCC. Moreover, HIF-1α, SDF-1 and VEGF might play important roles in the "homing" of EPCs in HCC. EPCs might be a potential candidate for targeting vector of HCC for gene therapy.
Collapse
Affiliation(s)
- Zhi Zhu
- Department of Breast and Thyroid Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Gang Chen
- Department of Hepatobiliary Surgery, the First Affiliated Hospital, Wenzhou Medical College, Wenzhou, 325000, China
| | - Xingrui Li
- Department of Breast and Thyroid Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Qian Yin
- Department of Breast and Thyroid Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhifang Yang
- Department of Breast and Thyroid Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jilin Yi
- Department of Breast and Thyroid Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| |
Collapse
|
38
|
Lavergne M, Derkaoui M, Delmau C, Letourneur D, Uzan G, Le Visage C. Porous Polysaccharide-Based Scaffolds for Human Endothelial Progenitor Cells. Macromol Biosci 2012; 12:901-10. [DOI: 10.1002/mabi.201100431] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Revised: 11/25/2011] [Indexed: 02/01/2023]
|
39
|
MRI tracking of FePro labeled fresh and cryopreserved long term in vitro expanded human cord blood AC133+ endothelial progenitor cells in rat glioma. PLoS One 2012; 7:e37577. [PMID: 22662174 PMCID: PMC3360770 DOI: 10.1371/journal.pone.0037577] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Accepted: 04/24/2012] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Endothelial progenitors cells (EPCs) are important for the development of cell therapies for various diseases. However, the major obstacles in developing such therapies are low quantities of EPCs that can be generated from the patient and the lack of adequate non-invasive imaging approach for in vivo monitoring of transplanted cells. The objective of this project was to determine the ability of cord blood (CB) AC133+ EPCs to differentiate, in vitro and in vivo, toward mature endothelial cells (ECs) after long term in vitro expansion and cryopreservation and to use magnetic resonance imaging (MRI) to assess the in vivo migratory potential of ex vivo expanded and cryopreserved CB AC133+ EPCs in an orthotopic glioma rat model. MATERIALS, METHODS AND RESULTS The primary CB AC133+ EPC culture contained mainly EPCs and long term in vitro conditions facilitated the maintenance of these cells in a state of commitment toward endothelial lineage. At days 15-20 and 25-30 of the primary culture, the cells were labeled with FePro and cryopreserved for a few weeks. Cryopreserved cells were thawed and in vitro differentiated or i.v. administered to glioma bearing rats. Different groups of rats also received long-term cultured, magnetically labeled fresh EPCs and both groups of animals underwent MRI 7 days after i.v. administration of EPCs. Fluorescent microscopy showed that in vitro differentiation of EPCs was not affected by FePro labeling and cryopreservation. MRI analysis demonstrated that in vivo accumulation of previously cryopreserved transplanted cells resulted in significantly higher R2 and R2* values indicating a higher rate of migration and incorporation into tumor neovascularization of previously cryopreserved CB AC133+ EPCs to glioma sites, compared to non-cryopreserved cells. CONCLUSION Magnetically labeled CB EPCs can be in vitro expanded and cryopreserved for future use as MRI probes for monitoring the migration and incorporation to the sites of neovascularization.
Collapse
|
40
|
Karam JP, Muscari C, Montero-Menei CN. Combining adult stem cells and polymeric devices for tissue engineering in infarcted myocardium. Biomaterials 2012; 33:5683-95. [PMID: 22594970 DOI: 10.1016/j.biomaterials.2012.04.028] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2012] [Accepted: 04/08/2012] [Indexed: 12/18/2022]
Abstract
An increasing number of studies in cardiac cell therapy have provided encouraging results for cardiac repair. Adult stem cells may overcome ethical and availability concerns, with the additional advantages, in some cases, to allow autologous grafts to be performed. However, the major problems of cell survival, cell fate determination and engraftment after transplantation, still remain. Tissue-engineering strategies combining scaffolds and cells have been developed and have to be adapted for each type of application to enhance stem cell function. Scaffold properties required for cardiac cell therapy are here discussed. New tissue engineering advances that may be implemented in combination with adult stem cells for myocardial infarction therapy are also presented. Biomaterials not only provide a 3D support for the cells but may also mimic the structural architecture of the heart. Using hydrogels or particulate systems, the biophysical and biochemical microenvironments of transplanted cells can also be controlled. Advances in biomaterial engineering have permitted the development of sophisticated drug-releasing materials with a biomimetic 3D support that allow a better control of the microenvironment of transplanted cells.
Collapse
|
41
|
Robich MP, Chu LM, Oyamada S, Sodha NR, Sellke FW. Myocardial therapeutic angiogenesis: a review of the state of development and future obstacles. Expert Rev Cardiovasc Ther 2012; 9:1469-79. [PMID: 22059795 DOI: 10.1586/erc.11.148] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A significant percentage of patients have coronary artery disease that is too advanced or diffuse for percutaneous or surgical intervention. Therapeutic angiogenesis is a treatment modality to induce vessel formation that is being developed for patients with advanced coronary disease not amenable to currently available interventions. A number of approaches to induce coronary collateralization are being developed. These include gene, protein, cellular and miRNA modalities, each of which have advantages and disadvantages. At this time, no modality has emerged as the single clear choice, and combination therapies may provide synergistic benefits. However, there have been a number of recent studies advancing our knowledge as to how we can refine procollateralizing treatments. In this article, we will examine some recent successes and future obstacles in the effort to bring therapeutic angiogenesis to patients.
Collapse
Affiliation(s)
- Michael P Robich
- Department of Surgery, Division of Cardiothoracic Surgery, Warren Alpert School of Medicine, Brown University, Providence, RI 02905, USA
| | | | | | | | | |
Collapse
|
42
|
Park JH, Yoon JY, Ko SM, Jin SA, Kim JH, Cho CH, Kim JM, Lee JH, Choi SW, Seong IW, Jeong JO. Endothelial progenitor cell transplantation decreases lymphangiogenesis and adverse myocardial remodeling in a mouse model of acute myocardial infarction. Exp Mol Med 2012; 43:479-85. [PMID: 21694495 DOI: 10.3858/emm.2011.43.8.054] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Cardiac lymphatic system in the remodeling after acute myocardial infarction (AMI) has been overlooked. We wanted to investigate the role of bone marrow-derived endothelial progenitor cells (EPCs) and their contribution to lymphatic distribution in myocardial remodeling after AMI. Mouse (C57bl/6J) MI models were created by ligation of the left anterior descending coronary artery and were treated with phosphate buffered saline (PBS) or EPCs. Real-time RT-PCR with 2- to 4-week myocardial tissue samples revealed that lymphangiogenetic factors such as vascular endothelial growth factor (VEGF)-C (8.5 fold, P < 0.05), VEGF-D (6.1 fold, P < 0.05), Lyve-1 (15 fold, P < 0.05), and Prox-1 (11 fold, P < 0.05) were expressed at significantly higher levels in the PBS group than the EPC group. The PBS group also showed a significantly higher density of lymphatic vessels in the peri-infarction area. Echocardiography showed that from 2 weeks after the treatment, left ventricle (LV) dimensions at both systole and diastole were significantly smaller in the EPC group than in the PBS group (P < 0.01) and LV fractional shortening was higher in the EPC group accordingly (P < 0.01). Lymphangiogenic markers increased in a mouse MI model. EPC transplantation decreased lymphangiogenesis and adverse ventricular remodeling after AMI. These novel findings suggest that new lymphatic vessels may be formed in severely damaged myocardium, and may be involved in adverse myocardial remodeling after AMI.
Collapse
Affiliation(s)
- Jae-Hyeong Park
- Division of Cardiology, Chungnam National University, Daejeon 301-721, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Ramnaraine ML, Mathews WE, Clohisy DR. Lentivirus transduction of human osteoclast precursor cells and differentiation into functional osteoclasts. Bone 2012; 50:97-103. [PMID: 21989297 PMCID: PMC3246560 DOI: 10.1016/j.bone.2011.09.050] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Revised: 08/22/2011] [Accepted: 09/10/2011] [Indexed: 02/06/2023]
Abstract
Gene transfer into stem cells has been an ongoing priority as a treatment for genetic disease and cancer for more than two decades. Methods described herein, form the basis for providing the cell source to determine if osteoclast precursor cells (OcP) can be used as therapeutic gene delivery systems in vivo. Osteoclasts and tumor associated macrophages or OcP, support survival, tumor progression and osteolysis in bone cancers. Two sources of precursor cells are compared: CD14+ cells, the standard OcP, found abundantly in peripheral blood and CD34+ cells, hematopoietic stem cells that are rare, but which can be expanded into OcP. Our findings characterize cell yield at each step of the transduction process and thus provide essential data for planning future in vivo experiments. In addition we demonstrate that essential functions of OcP are preserved following lentiviral transduction. Specifically, neither the transduction method nor the lentiviral transduction influence the OcP's ability to form osteoclasts, express the marker gene, EGFP, or resorb bone. Finally, we conclude that CD34+ cells yield significantly more transduced cells and form functionally superior osteoclasts in vitro. This study represents a step towards considering human gene therapy for bone cancer by demonstrating successful transduction of human OcP for use as cellular delivery vehicles to sites of bone cancer.
Collapse
Affiliation(s)
- Margaret L Ramnaraine
- Department of Orthopedic Surgery, University of Minnesota, 420 Delaware Street SE, MMC 806, Minneapolis, MN 55455, USA
| | | | | |
Collapse
|
44
|
An in vitro study of differentiation of hematopoietic cells to endothelial cells. BONE MARROW RESEARCH 2011; 2011:846096. [PMID: 22242206 PMCID: PMC3254010 DOI: 10.1155/2011/846096] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Revised: 09/26/2011] [Accepted: 09/26/2011] [Indexed: 12/11/2022]
Abstract
Bone-marrow-derived endothelial progenitor cells (BM-EPCs) contribute to postnatal neovascularization and therefore are of great interest for cell therapies to treat ischemic diseases. However, their origin and characteristics are still in controversy. In this paper, we identified the origin/lineage of the BM-EPCs that were isolated from bone marrow mononuclear cells and differentiated with the induction of bone-marrow endothelial-cellconditioned
medium (ECCM). BM-EPCs were characterized in terms of phenotype, lineage potential, and their functional properties. Endothelial cell colonies derived from BM-EPC were cultured with ECCM for 3 months. Cultured EPC colony cells expressed endothelial cell markers and formed the capillary-like network in vitro. EPC colony cells expressed differential proliferative capacity; some of the colonies exhibited a high proliferative potential (HPP) capacity up to 20 population doublings. More importantly, these HPP-EPCs expressed hematopoietic marker CD45, exhibited endocytic activities, and preserved some of the myeloid cell activity. In addition, the HPP-EPCs secrete various growth factors including VEGF and GM-CSF into the culture medium. The results demonstrate that these EPCs were primarily derived from hematopoietic origin of early precursor cells and maintained high proliferative potential capacity, a feature with a significant potential in the application of cell therapy in ischemic diseases.
Collapse
|
45
|
Rajoria S, Suriano R, George AL, Shanmugam A, Jussim C, Shin EJ, Moscatello AL, Geliebter J, Carpi A, Tiwari RK. Estrogen activity as a preventive and therapeutic target in thyroid cancer. Biomed Pharmacother 2011; 66:151-8. [PMID: 22285105 DOI: 10.1016/j.biopha.2011.11.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Accepted: 11/07/2011] [Indexed: 01/22/2023] Open
Abstract
Thyroid cancer is the most common endocrine-related cancer with increasing incidences during the last five years. Interestingly, according to the American Thyroid Association, the incidences of thyroid proliferative diseases occur four to five times more in women than in men with the risk of developing thyroid disorders being one in every eight females. Several epidemiological studies have suggested a possible correlation between incidences of thyroid malignancies and hormones but the precise contribution of estrogen in thyroid proliferative disease initiation, and progression is not well understood. This review is an attempt to define the phenotypic and genotypic modulatory effects of estrogen on thyroid proliferative diseases. The significance and relevance of expression of estrogen receptors, α and β, in normal and malignant thyroid tissues and their effects on different molecular pathways involved in growth and function of the thyroid gland are discussed. These novel findings open up areas of developing alternative therapeutic treatments and preventive approaches which employ the use of antiestrogen to treat thyroid malignancies.
Collapse
Affiliation(s)
- Shilpi Rajoria
- Department of Microbiology and Immunology, New York Medical College, Valhalla, New York 10595, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
George AL, Bangalore-Prakash P, Rajoria S, Suriano R, Shanmugam A, Mittelman A, Tiwari RK. Endothelial progenitor cell biology in disease and tissue regeneration. J Hematol Oncol 2011; 4:24. [PMID: 21609465 PMCID: PMC3123653 DOI: 10.1186/1756-8722-4-24] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Accepted: 05/24/2011] [Indexed: 12/20/2022] Open
Abstract
Endothelial progenitor cells are increasingly being studied in various diseases ranging from ischemia, diabetic retinopathy, and in cancer. The discovery that these cells can be mobilized from their bone marrow niche to sites of inflammation and tumor to induce neovasculogenesis has afforded a novel opportunity to understand the tissue microenvironment and specific cell-cell interactive pathways. This review provides a comprehensive up-to-date understanding of the physiological function and therapeutic utility of these cells. The emphasis is on the systemic factors that modulate their differentiation/mobilization and survival and presents the challenges of its potential therapeutic clinical utility as a diagnostic and prognostic reagent.
Collapse
Affiliation(s)
- Andrea L George
- Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Shah VK, Shalia KK. Stem Cell Therapy in Acute Myocardial Infarction: A Pot of Gold or Pandora's Box. Stem Cells Int 2011; 2011:536758. [PMID: 21804827 PMCID: PMC3142872 DOI: 10.4061/2011/536758] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Revised: 12/18/2010] [Accepted: 12/29/2010] [Indexed: 01/09/2023] Open
Abstract
Stem cell therapy for conditions characterized by myocyte loss in myocardial infarction and heart failure is intuitively appealing. Stem cells from various sources, including heart itself in preclinical and animal studies, have shown the potential to improve the function of ventricular muscle after ischaemic injury. The clinical experience from worldwide studies have indicated the safety profile but with modest benefits. The predominant mechanisms of transplanted cells for improving cardiac function have pointed towards paracrine effects rather than transdifferentiation into cardiomyocytes. Thus, further investigations should be encouraged towards bench side and bedside to resolve various issues for ensuring the correct type and dosing of cells, time, and method of delivery and identify correct mechanism of functional improvement. An interdisciplinary effort at the scientific, clinical, and the government front will bring successful realization of this therapy for healing the heart and may convert what seems now a Pandora's Box into a Pot of Gold.
Collapse
Affiliation(s)
- V K Shah
- Interventional Cardiologist, Sir H.N. Hospital and Research Centre, Raja Rammohan Roy Road, Mumbai 400 004, India
| | | |
Collapse
|
48
|
Abstract
Myocardial infarction (MI) remains a common fatal disease all over the world. The adult cardiac myocytes regenerative capability is very limited after infarct injury. Heart transplantation would be the best therapeutic option currently but is restricted due to the lack of donor organs and the serious side effects of immune suppression. The emerging of tissue engineering has evolved to provide solutions to tissue repair and replacement. Engineering myocardial tissue is considered to be a new therapeutic approach to repair infarcted myocardium and ameliorate cardiac function after MI. Engineering myocardial tissue is the combination of biodegradable scaffolds with viable cells and has made much progress in the experimental phase. However, the largest challenge of this field is the revascularization of the engineering constructs to provide oxygen and nutrients for cells. This review will give an overview on the current evolution of engineering myocardial tissue and address a new method to improve the vascularization of myocardium tissue in vivo.
Collapse
Affiliation(s)
- Runqian Sui
- Department of Cardiothoracic Surgery, Xiangya Second Hospital, Central South University, Changsha, Hunan 410011, China
| | | | | | | |
Collapse
|
49
|
Abstract
Radiotherapy is used to treat approximately 50% of all cancer patients, with varying success. The dose of ionizing radiation that can be given to the tumour is determined by the sensitivity of the surrounding normal tissues. Strategies to improve radiotherapy therefore aim to increase the effect on the tumour or to decrease the effects on normal tissues. These aims must be achieved without sensitizing the normal tissues in the first approach and without protecting the tumour in the second approach. Two factors have made such approaches feasible: namely, an improved understanding of the molecular response of cells and tissues to ionizing radiation and a new appreciation of the exploitable genetic alterations in tumours. These have led to the development of treatments combining pharmacological interventions with ionizing radiation that more specifically target either tumour or normal tissue, leading to improvements in efficacy.
Collapse
Affiliation(s)
- Adrian C Begg
- Division of Experimental Therapy, The Netherlands Cancer Institute, Amsterdam 1066 CX, The Netherlands.
| | | | | |
Collapse
|
50
|
Rajoria S, Suriano R, Wilson YL, George AL, Geliebter J, Schantz SP, Tiwari RK. Estradiol-mediated tumor neo-vascularization. Oncol Lett 2011; 2:453-457. [PMID: 22866102 DOI: 10.3892/ol.2011.283] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Accepted: 01/12/2011] [Indexed: 11/05/2022] Open
Abstract
Neo-vascularization is essential for tumor growth and metastasis and is presumably initiated by bone marrow-derived endothelial progenitor cells (BM-EPCs). These cells predominantly reside in the bone marrow and are recruited at sites of inflammation, tissue damage and tumors. The tissue-specific factors responsible for recruitment of BM-EPCs and neo-vascularization are the subject of intense investigation. Using bone marrow cells from Tek/green fluorescent protein (GFP) transgenic mice, we analyzed the effect of estrogen on the mobilization of BM-EPCs to orthotopically implanted cancer cells in estrogen- and non-estrogen-supplemented ovariectomized mice. The donor marrow cells were unique as they were fluorescently tagged, allowing for the tracking of their migration to the tumor tissues. Results showed that GFP + BM-EPCs were incorporated within the tumor vasculature in comparison to the sham injections. Notably, estrogen supplementation enhanced the mobilization of BM-EPCs to the tumor site. This elevation shows that estrogen may affect tumor neo-vascularization by inducing the mobilization of BM-EPCs. Understanding and characterizing the mechanism involved in the estrogen-induced mobilization of BM-EPCs may serve as a 'Trojan horse' in the delivery of bio-molecules that may disrupt tumor vasculogenesis and induce the targeted killing of tumor cells.
Collapse
Affiliation(s)
- Shilpi Rajoria
- Department of Microbiology and Immunology, New York Medical College, Valhalla, NY 10595
| | | | | | | | | | | | | |
Collapse
|