1
|
Wang'ondu RW, Ashcraft E, Chang TC, Roberts KG, Brady SW, Fan Y, Evans W, Relling MV, Crews KR, Yang J, Yang W, Pounds S, Wu G, Devidas M, Maloney K, Mattano L, Schore RJ, Angiolillo A, Larsen E, Salzer W, Burke MJ, Loh ML, Jeha S, Pui CH, Inaba H, Cheng C, Mullighan CG. Heterogeneity of IKZF1 genomic alterations and risk of relapse in childhood B-cell precursor acute lymphoblastic leukemia. Leukemia 2025:10.1038/s41375-025-02633-3. [PMID: 40360879 DOI: 10.1038/s41375-025-02633-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 04/18/2025] [Accepted: 04/24/2025] [Indexed: 05/15/2025]
Abstract
Genomic alterations of IKZF1 are common and associated with adverse clinical features in B-progenitor acute lymphoblastic leukemia (B-ALL). The relationship between the type of IKZF1 alteration, B-ALL genomic subtype and outcome are incompletely understood. B-ALL subtype and genomic alterations were determined using transcriptome and genomic sequencing, and SNP microarray analysis in 688 pediatric patients with B-ALL in the St. Jude Total Therapy XV and 16 studies. IKZF1 alterations were identified in 115 (16.7%) patients, most commonly in BCR::ABL1 (78%) and CRLF2-rearranged, BCR::ABL1-like B-ALL (70%). These alterations were associated with 5-year cumulative incidence of relapse (CIR) of 14.8 ± 3.3% compared to 5.0 ± 0.9% for patients without any IKZF1 alteration (P < 0.0001). In separate multivariable analyses adjusting for genetic subtype groups and other factors, IKZF1 deletions of exons 4-7 (P = 0.0002), genomic IKZF1plus with any IKZF1 deletion (P = 0.006) or with focal IKZF1 deletion (P = 0.0007), and unfavorable genomic subtypes (P < 0.005) were independently adverse prognostic factors. Associations of genomic IKZF1plus and exon 4-7 deletions with adverse outcomes were confirmed in an independent cohort. The type of IKZF1 alteration, together with the subtype, are informative for risk stratification and to predict response in patients with B-ALL.
Collapse
Affiliation(s)
- Ruth W Wang'ondu
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Emily Ashcraft
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ti-Cheng Chang
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Kathryn G Roberts
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Center of Excellence for Leukemia Studies, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Samuel W Brady
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yiping Fan
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - William Evans
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Mary V Relling
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Kristine R Crews
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jun Yang
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Wenjian Yang
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Stanley Pounds
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Gang Wu
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Meenakshi Devidas
- Department of Global Pediatric Medicine, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Kelly Maloney
- Department of Pediatrics and Children's Hospital Colorado, University of Colorado, Aurora, CO, USA
| | | | - Reuven J Schore
- Division of Oncology, Center for Cancer and Blood Disorders, Children's National Hospital, Washington DC, WA, USA
- Department of Pediatrics and Clinical and Translational Oncology Program, George Washington University School of Medicine and Health Sciences, Washington DC, WA, USA
| | | | - Eric Larsen
- Department of Pediatrics, Maine Children's Cancer Program, Scarborough, ME, USA
| | - Wanda Salzer
- Uniformed Services University, School of Medicine, Bethesda, MD, USA
| | - Michael J Burke
- Division of Pediatric Hematology-Oncology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Mignon L Loh
- Ben Towne Center for Childhood Cancer Research and the Department of Pediatrics, Seattle Children's Hospital, University of Washington, and the Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Sima Jeha
- Department of Global Pediatric Medicine, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ching-Hon Pui
- Department of Global Pediatric Medicine, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Hiroto Inaba
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Cheng Cheng
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Charles G Mullighan
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA.
- Center of Excellence for Leukemia Studies, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
2
|
Gillenwater LA, Galbraith MD, Rachubinski AL, Eduthan NP, Sullivan KD, Espinosa JM, Costello JC. Integrated analysis of immunometabolic interactions in Down syndrome. SCIENCE ADVANCES 2024; 10:eadq3073. [PMID: 39671500 PMCID: PMC11641111 DOI: 10.1126/sciadv.adq3073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 11/05/2024] [Indexed: 12/15/2024]
Abstract
Down syndrome (DS), caused by trisomy 21 (T21), results in immune and metabolic dysregulation. People with DS experience co-occurring conditions at higher rates than the euploid population. However, the interplay between immune and metabolic alterations and the clinical manifestations of DS are poorly understood. Here, we report an integrated analysis of immunometabolic pathways in DS. Using multi-omics data, we infered cytokine-metabolite relationships mediated by specific transcriptional programs. We observed increased mediation of immunometabolic interactions in those with DS compared to euploid controls by genes in interferon response, heme metabolism, and oxidative phosphorylation. Unsupervised clustering of immunometabolic relationships in people with DS revealed subgroups with different frequencies of co-occurring conditions. Across the subgroups, we observed distinct mediation by DNA repair, Hedgehog signaling, and angiogenesis. The molecular stratification associates with the clinical heterogeneity observed in DS, suggesting that integrating multiple omic profiles reveals axes of coordinated dysregulation specific to DS co-occurring conditions.
Collapse
Affiliation(s)
- Lucas A. Gillenwater
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Computational Bioscience Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Matthew D. Galbraith
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Angela L. Rachubinski
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Pediatrics, Section of Developmental Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Neetha Paul Eduthan
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kelly D. Sullivan
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Pediatrics, Section of Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Joaquin M. Espinosa
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - James C. Costello
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Computational Bioscience Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
3
|
Mullighan C, Wangondu R, Ashcraft E, Chang TC, Roberts K, Brady S, Fan Y, Evans W, Relling M, Crews K, Yang J, Yang W, Pounds S, Wu G, Devidas M, Maloney K, Mattano L, Schore R, Angiolillo A, Larsen E, Salzer W, Burke M, Loh M, Jeha S, Pui CH, Inaba H, Cheng C. Heterogeneity of IKZF1 genomic alterations and risk of relapse in childhood B-cell precursor acute lymphoblastic leukemia. RESEARCH SQUARE 2024:rs.3.rs-5292018. [PMID: 39606455 PMCID: PMC11601832 DOI: 10.21203/rs.3.rs-5292018/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Genomic alterations of IKZF1 are common and associated with adverse clinical features in B-ALL. The relationship between the type of IKZF1 alteration, disease subtype and outcome are incompletely understood. Leukemia subtype and genomic alterations were determined using transcriptome and genomic sequencing and SNP microarray in 688 pediatric patients with B-ALL in St. Jude Total Therapy 15 and 16 studies. IKZF1 alterations were identified in 115 (16.7%) patients, most commonly in BCR::ABL1 (78%) and CRLF2-rearranged, BCR::ABL1-like B-ALL (70%). These alterations were associated with 5-year cumulative incidence of relapse (CIR) of 14.8 ± 3.3% compared to 5.0 ± 0.9% for patients without any IKZF1 alteration (P < 0.0001). IKZF1 deletions of exon 4-7 (P = 0.0002), genomic IKZF1 plus with any IKZF1 deletion (P = 0.006) or with focal IKZF1 deletion (P = 0.0007), and unfavorable genomic subtypes (P < 0.005) were independently adversely prognostic factors. Associations of genomic IKZF1 plus and exon 4-7 deletions with adverse outcomes were confirmed in an independent cohort. Genomic IKZF1 plus with any IKZF1 deletion, IKZF1 deletion of exon 4-7, and unfavorable subtype confer increased risk of relapse. The type of IKZF1 alteration, together with the subtype, are informative for risk stratification and predict response in patients with B-ALL.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yiping Fan
- Department of Computational Biology, St. Jude Children's Research Hospital
| | | | | | | | - Jun Yang
- St. Jude Children's Research Hospital
| | | | | | - Gang Wu
- St Jude Children's Research Hospital
| | | | | | | | | | | | | | | | | | | | - Sima Jeha
- St Jude Children's Research Hospital
| | | | | | | |
Collapse
|
4
|
Pinto CM, Bertolucci CM, Severino AR, Dos Santos Tosi JF, Ikoma-Colturato MRV. Immunophenotypic markers for the evaluation of minimal/measurable residual disease in acute megakaryoblastic leukemia. Hematol Transfus Cell Ther 2024; 46:542-548. [PMID: 38008596 PMCID: PMC11451363 DOI: 10.1016/j.htct.2023.09.2364] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/21/2023] [Accepted: 09/04/2023] [Indexed: 11/28/2023] Open
Abstract
Acute megakaryoblastic leukemia is characterized by heterogeneous biology and clinical behavior. Immunophenotypic characteristics include the expression of megakaryocytic differentiation markers (e.g. CD41, CD42a, CD42b, CD61) associated with immaturity markers (CD34, CD117, HLA-DR) and myeloid markers (e.g. CD13, CD33) and even with lymphoid cross-lineage markers (e.g. CD7, CD56). Although the diagnostic immunophenotype has already been well described, given the rarity of the disease, its immunophenotypic heterogeneity and post-therapeutic instability, there is no consensus on the combination of monoclonal markers to detect minimal/measurable residual disease (MRD). Currently, MRD is an important tool for assessing treatment efficacy and prognostic risk. In this study, we evaluated the immunophenotypic profile of MRD in a retrospective cohort of patients diagnosed with acute megakaryoblastic leukemia, to identify which markers, positive or negative, were more stable after treatment and which could be useful for MRD evaluation. The expression profile of each marker was evaluated in sequential MRD samples. In conclusion, the markers evaluated in this study can be combined in an MRD immunophenotypic panel to investigate for megakaryoblastic leukemia. Although this study is retrospective and some data are missing, the information obtained may contribute to prospective studies to validate more specific strategies in the detection of MRD in acute megakaryoblastic leukemia.
Collapse
|
5
|
Copy Number Changes and Allele Distribution Patterns of Chromosome 21 in B Cell Precursor Acute Lymphoblastic Leukemia. Cancers (Basel) 2021; 13:cancers13184597. [PMID: 34572826 PMCID: PMC8465600 DOI: 10.3390/cancers13184597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/07/2021] [Accepted: 09/09/2021] [Indexed: 01/12/2023] Open
Abstract
Chromosome 21 is the most affected chromosome in childhood acute lymphoblastic leukemia. Many of its numerical and structural abnormalities define diagnostically and clinically important subgroups. To obtain an overview about their types and their approximate genetic subgroup-specific incidence and distribution, we performed cytogenetic, FISH and array analyses in a total of 578 ALL patients (including 26 with a constitutional trisomy 21). The latter is the preferred method to assess genome-wide large and fine-scale copy number abnormalities (CNA) together with their corresponding allele distribution patterns. We identified a total of 258 cases (49%) with chromosome 21-associated CNA, a number that is perhaps lower-than-expected because ETV6-RUNX1-positive cases (11%) were significantly underrepresented in this array-analyzed cohort. Our most interesting observations relate to hyperdiploid leukemias with tetra- and pentasomies of chromosome 21 that develop in constitutionally trisomic patients. Utilizing comparative short tandem repeat analyses, we were able to prove that switches in the array-derived allele patterns are in fact meiotic recombination sites, which only become evident in patients with inborn trisomies that result from a meiosis 1 error. The detailed analysis of such cases may eventually provide important clues about the respective maldistribution mechanisms and the operative relevance of chromosome 21-specific regions in hyperdiploid leukemias.
Collapse
|
6
|
Gadgeel M, AlQanber B, Buck S, Taub JW, Ravindranath Y, Savaşan S. Aberrant myelomonocytic CD56 expression in Down syndrome is frequent and not associated with leukemogenesis. Ann Hematol 2021; 100:1695-1700. [PMID: 33890142 DOI: 10.1007/s00277-021-04531-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 04/12/2021] [Indexed: 11/29/2022]
Abstract
Children with Down syndrome (DS) are at an increased risk of developing transient abnormal myelopoiesis (TAM) and acute leukemia. Aberrant expression of CD56 has been observed on myeloid leukemic blasts in DS patients. In general, CD56 expression in acute myeloid leukemia (AML) is considered a promoter of leukemogenesis. We did a retrospective flow cytometric study to investigate mature myelomonocytic cell CD56 expression patterns in TAM, non-TAM, and leukemia cases with DS. Flow cytometric analysis showed that granulocyte and monocyte aberrant/dysplastic CD56 expression is an inherent characteristic of most DS patients irrespective of the presence of TAM or leukemia. Increased CD56 expression in monocyte and granulocyte populations in DS could be multifactorial; greater expression of RUNX1 secondary to the gene dose effect of trisomy 21 along with the maturational state of the cells are the potential contributors. Unlike AML seen in non-DS patients, CD56 overexpression in DS AML cases does not appear to play a role in leukemogenesis.
Collapse
Affiliation(s)
- Manisha Gadgeel
- Children's Hospital of Michigan, Division of Hematology/Oncology, Hematology/Oncology Flow Cytometry Laboratory, Detroit, MI, USA
| | - Batool AlQanber
- Children's Hospital of Michigan, Division of Hematology/Oncology, Hematology/Oncology Flow Cytometry Laboratory, Detroit, MI, USA
| | - Steven Buck
- Children's Hospital of Michigan, Division of Hematology/Oncology, Hematology/Oncology Flow Cytometry Laboratory, Detroit, MI, USA
| | - Jeffrey W Taub
- Children's Hospital of Michigan, Division of Hematology/Oncology, Barbara Ann Karmanos Cancer Center, Wayne State University School of Medicine, Detroit, MI, USA
| | - Yaddanapudi Ravindranath
- Children's Hospital of Michigan, Division of Hematology/Oncology, Hematology/Oncology Flow Cytometry Laboratory, Detroit, MI, USA.,Children's Hospital of Michigan, Division of Hematology/Oncology, Barbara Ann Karmanos Cancer Center, Wayne State University School of Medicine, Detroit, MI, USA
| | - Süreyya Savaşan
- Children's Hospital of Michigan, Division of Hematology/Oncology, Hematology/Oncology Flow Cytometry Laboratory, Detroit, MI, USA. .,Children's Hospital of Michigan, Division of Hematology/Oncology, Pediatric Blood and Marrow Transplant Program, Barbara Ann Karmanos Cancer Center, Central Michigan University College of Medicine, 3901 Beaubien Blvd., Detroit, MI, 48201, USA.
| |
Collapse
|
7
|
Inhibition of cystathionine β-synthase promotes apoptosis and reduces cell proliferation in chronic myeloid leukemia. Signal Transduct Target Ther 2021; 6:52. [PMID: 33558454 PMCID: PMC7870845 DOI: 10.1038/s41392-020-00410-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 10/23/2020] [Accepted: 11/01/2020] [Indexed: 01/30/2023] Open
Abstract
Increased endogenous hydrogen sulfide (H2S) level by cystathionine β-synthase (CBS) has been shown to closely relate tumorigenesis. H2S promotes angiogenesis, stimulates bioenergy metabolism and inhibits selective phosphatases. However, the role of CBS and H2S in chronic myeloid leukemia (CML) remains elusive. In this study, we found that CBS and H2S levels were increased in the bone marrow mononuclear cells of pediatric CML patients, as well as in the CML-derived K562 cells and CBS expression levels were correlated with different disease phases. Inhibition of CBS reduced the proliferation of the CML primary bone marrow mononuclear cells and induced growth inhibition, apoptosis, cell cycle arrest, and migration suppression in K562 cells and tumor xenografts. The knockdown of CBS expression by shRNA and inhibiting CBS activity by AOAA decreased the endogenous H2S levels, promoted mitochondrial-related apoptosis and inhibited the NF-κB-mediated gene expression. Our study suggests that inhibition of CBS induces cell apoptosis, as well as limits cell proliferation and migration, a potential target for the treatment of chronic myeloid leukemia.
Collapse
|
8
|
JAK1 Inhibition Blocks Lethal Immune Hypersensitivity in a Mouse Model of Down Syndrome. Cell Rep 2020; 33:108407. [PMID: 33207208 DOI: 10.1016/j.celrep.2020.108407] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 09/21/2020] [Accepted: 10/28/2020] [Indexed: 12/14/2022] Open
Abstract
Individuals with Down syndrome (DS; trisomy 21) display hyperactivation of interferon (IFN) signaling and chronic inflammation, which could potentially be explained by the extra copy of four IFN receptor (IFNR) genes encoded on chromosome 21. However, the clinical effects of IFN hyperactivity in DS remain undefined. Here, we report that a commonly used mouse model of DS overexpresses IFNR genes and shows hypersensitivity to IFN ligands in diverse immune cell types. When treated repeatedly with a TLR3 agonist to induce chronic inflammation, these animals overexpress key IFN-stimulated genes, induce cytokine production, exhibit liver pathology, and undergo rapid weight loss. Importantly, the lethal immune hypersensitivity and cytokine production and the ensuing pathology are ameliorated by JAK1 inhibition. These results indicate that individuals with DS may experience harmful hyperinflammation upon IFN-inducing immune stimuli, as observed during severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, pointing to JAK1 inhibition as a strategy to restore immune homeostasis in DS.
Collapse
|
9
|
Waugh KA, Araya P, Pandey A, Jordan KR, Smith KP, Granrath RE, Khanal S, Butcher ET, Estrada BE, Rachubinski AL, McWilliams JA, Minter R, Dimasi T, Colvin KL, Baturin D, Pham AT, Galbraith MD, Bartsch KW, Yeager ME, Porter CC, Sullivan KD, Hsieh EW, Espinosa JM. Mass Cytometry Reveals Global Immune Remodeling with Multi-lineage Hypersensitivity to Type I Interferon in Down Syndrome. Cell Rep 2020; 29:1893-1908.e4. [PMID: 31722205 DOI: 10.1016/j.celrep.2019.10.038] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 08/28/2019] [Accepted: 10/09/2019] [Indexed: 02/06/2023] Open
Abstract
People with Down syndrome (DS; trisomy 21) display a different disease spectrum relative to the general population, including lower rates of solid malignancies and higher incidence of neurological and autoimmune conditions. However, the mechanisms driving this unique clinical profile await elucidation. We completed a deep mapping of the immune system in adults with DS using mass cytometry to evaluate 100 immune cell types, which revealed global immune dysregulation consistent with chronic inflammation, including key changes in the myeloid and lymphoid cell compartments. Furthermore, measurement of interferon-inducible phosphorylation events revealed widespread hypersensitivity to interferon-α in DS, with cell-type-specific variations in downstream intracellular signaling. Mechanistically, this could be explained by overexpression of the interferon receptors encoded on chromosome 21, as demonstrated by increased IFNAR1 surface expression in all immune lineages tested. These results point to interferon-driven immune dysregulation as a likely contributor to the developmental and clinical hallmarks of DS.
Collapse
Affiliation(s)
- Katherine A Waugh
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Paula Araya
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Ahwan Pandey
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO 80302, USA
| | - Kimberly R Jordan
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Keith P Smith
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Ross E Granrath
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Santosh Khanal
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Eric T Butcher
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Belinda Enriquez Estrada
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Angela L Rachubinski
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Jennifer A McWilliams
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Ross Minter
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Tiana Dimasi
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kelley L Colvin
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Dmitry Baturin
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Andrew T Pham
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Matthew D Galbraith
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kyle W Bartsch
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Michael E Yeager
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Christopher C Porter
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Kelly D Sullivan
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Elena W Hsieh
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Joaquin M Espinosa
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO 80302, USA.
| |
Collapse
|
10
|
Abstract
Acute megakaryoblastic leukemia (AMKL) is a rare malignancy affecting megakaryocytes, platelet-producing cells that reside in the bone marrow. Children with Down syndrome (DS) are particularly prone to developing the disease and have a different age of onset, distinct genetic mutations, and better prognosis as compared with individuals without DS who develop the disease. Here, we discuss the contributions of chromosome 21 genes and other genetic mutations to AMKL, the clinical features of the disease, and the differing features of DS- and non-DS-AMKL. Further studies elucidating the role of chromosome 21 genes in this disease may aid our understanding of how they function in other types of leukemia, in which they are frequently mutated or differentially expressed. Although researchers have made many insights into understanding AMKL, much more remains to be learned about its underlying molecular mechanisms.
Collapse
Affiliation(s)
- Maureen McNulty
- Northwestern University, Division of Hematology/Oncology, Chicago, Illinois 60611, USA
| | - John D Crispino
- Northwestern University, Division of Hematology/Oncology, Chicago, Illinois 60611, USA
| |
Collapse
|
11
|
Successful Use of EPOCH-R in 2 Young Adult Patients With Burkitt Lymphoma and Acute Kidney Injury: A Case Report. J Pediatr Hematol Oncol 2019; 41:498-500. [PMID: 30095692 PMCID: PMC6661241 DOI: 10.1097/mph.0000000000001287] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Pediatric Burkitt lymphoma has historically been treated with intensive methotrexate-based chemotherapy, which improves patient survival while causing severe toxicities. Young patients typically have better outcomes with intensive therapies, while adults and immunocompromised patients have higher toxicities and worse outcomes. Newer treatment regimens, including etoposide, prednisone, vincristine, cyclophosphamide, doxorubicin, rituximab (EPOCH-R), show promise for these patients. However, few studies exist to demonstrate efficacy and improved toxicity profile with EPOCH-R. We present 2 cases: a 25-year-old male with Down syndrome and an 18-year-old male with Burkitt lymphoma and significant renal injury who were successfully treated with EPOCH-R with minimal toxicities.
Collapse
|
12
|
Abstract
Advances in genomic research and risk-directed therapy have led to improvements in the long-term survival and quality of life outcomes of patients with childhood acute lymphoblastic leukaemia (ALL). The application of next-generation sequencing technologies, especially transcriptome sequencing, has resulted in the identification of novel molecular subtypes of ALL with prognostic and therapeutic implications, as well as cooperative mutations that account for much of the heterogeneity in clinical responses observed among patients with specific ALL subtypes. In addition, germline genetic variants have been shown to influence the risk of developing ALL and/or the responses of non-malignant and leukaemia cells to therapy; shared pathways for drug activation and metabolism are implicated in treatment-related toxicity and drug sensitivity or resistance, depending on whether the genetic changes are germline, somatic or both. Indeed, although once considered a non-hereditary disease, genomic investigations of familial and sporadic ALL have revealed a growing number of genetic alterations or conditions that predispose individuals to the development of ALL and treatment-related second cancers. The identification of these genetic alterations holds the potential to direct genetic counselling, testing and possibly monitoring for the early detection of ALL and other cancers. Herein, we review these advances in our understanding of the genomic landscape of childhood ALL and their clinical implications.
Collapse
|
13
|
Petersen ME, O’Bryant S. Blood-based biomarkers for Down syndrome and Alzheimer's disease: A systematic review. Dev Neurobiol 2019; 79:699-710. [PMID: 31389185 PMCID: PMC8284928 DOI: 10.1002/dneu.22714] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/01/2019] [Accepted: 08/01/2019] [Indexed: 12/20/2022]
Abstract
Down syndrome (DS) occurs due to triplication of chromosome 21. Individuals with DS face an elevated risk for development of Alzheimer's disease (AD) due to increased amyloid beta (Aβ) resulting from the over-expression of the amyloid precursor protein found on chromosome 21. Diagnosis of AD among individuals with DS poses particular challenges resulting in an increased focus on alternative diagnostic methods such as blood-based biomarkers. The aim of this review was to evaluate the current state of the literature of blood-based biomarkers found in individuals with DS and particularly among those also diagnosed with AD or in prodromal stages (mild cognitive impairment [MCI]). A systematic review was conducted utilizing a comprehensive search strategy. Twenty-four references were identified, of those, 22 fulfilled inclusion criteria were selected for further analysis with restriction to only plasma-based biomarkers. Studies found Aβ to be consistently higher among individuals with DS; however, the link between Aβ peptides (Aβ1-42 and Aβ1-40) and AD among DS was inconsistent. Inflammatory-based proteins were more reliably found to be elevated leading to preliminary work focused on an algorithmic approach with predominantly inflammatory-based proteins to detect AD and MCI as well as predict risk of incidence among DS. Separate work has also shown remarkable diagnostic accuracy with the use of a single protein (NfL) as compared to combined proteomic profiles. This review serves to outline the current state of the literature and highlights the potential plasma-based biomarkers for use in detecting AD and MCI among this at-risk population.
Collapse
Affiliation(s)
- Melissa E. Petersen
- University of Texas MD Anderson Cancer Center, Department of Neuro-Oncology, Houston, Texas USA
| | - Sid O’Bryant
- University of North Texas Health Science Center, Department of Pharmacology & Neuroscience, Fort Worth, Texas, USA,Address correspondence to: Sid E. O’Bryant, Ph.D., University of North Texas Health Science Center, Institute for Translational Research3500 Camp Bowie Blvd, Fort Worth, TX 76107. Phone: (817) 735-2963; Fax: (817) 735-0611;
| |
Collapse
|
14
|
Sas V, Blag C, Zaharie G, Puscas E, Lisencu C, Andronic-Gorcea N, Pasca S, Petrushev B, Chis I, Marian M, Dima D, Teodorescu P, Iluta S, Zdrenghea M, Berindan-Neagoe I, Popa G, Man S, Colita A, Stefan C, Kojima S, Tomuleasa C. Transient leukemia of Down syndrome. Crit Rev Clin Lab Sci 2019; 56:247-259. [PMID: 31043105 DOI: 10.1080/10408363.2019.1613629] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Childhood leukemia is mostly a "developmental accident" during fetal hematopoiesis and may require multiple prenatal and postnatal "hits". The World Health Organization defines transient leukemia of Down syndrome (DS) as increased peripheral blood blasts in neonates with DS and classifies this type of leukemia as a separate entity. Although it was shown that DS predisposes children to myeloid leukemia, neither the nature of the predisposition nor the associated genetic lesions have been defined. Acute myeloid leukemia of DS is a unique disease characterized by a long pre-leukemic, myelodysplastic phase, unusual chromosomal findings and a high cure rate. In the present manuscript, we present a comprehensive review of the literature about clinical and biological findings of transient leukemia of DS (TL-DS) and link them with the genetic discoveries in the field. We address the manuscript to the pediatric generalist and especially to the next generation of pediatric hematologists.
Collapse
Affiliation(s)
- Valentina Sas
- a Department of Hematology , Iuliu Hatieganu University of Medicine and Pharmacy , Cluj Napoca , Romania.,b Department of Pediatrics , Iuliu Hatieganu University of Medicine and Pharmacy , Cluj Napoca , Romania
| | - Cristina Blag
- b Department of Pediatrics , Iuliu Hatieganu University of Medicine and Pharmacy , Cluj Napoca , Romania
| | - Gabriela Zaharie
- c Department of Neonatology , Iuliu Hatieganu University of Medicine and Pharmacy , Cluj Napoca , Romania
| | - Emil Puscas
- d Department of Surgery , Iuliu Hatieganu University of Medicine and Pharmacy , Cluj Napoca , Romania
| | - Cosmin Lisencu
- d Department of Surgery , Iuliu Hatieganu University of Medicine and Pharmacy , Cluj Napoca , Romania
| | - Nicolae Andronic-Gorcea
- a Department of Hematology , Iuliu Hatieganu University of Medicine and Pharmacy , Cluj Napoca , Romania
| | - Sergiu Pasca
- a Department of Hematology , Iuliu Hatieganu University of Medicine and Pharmacy , Cluj Napoca , Romania
| | - Bobe Petrushev
- a Department of Hematology , Iuliu Hatieganu University of Medicine and Pharmacy , Cluj Napoca , Romania
| | - Irina Chis
- e Department of Physiology , Iuliu Hatieganu University of Medicine and Pharmacy , Cluj Napoca , Romania
| | - Mirela Marian
- f Department of Hematology , Ion Chiricuta Clinical Cancer Center , Cluj Napoca , Romania
| | - Delia Dima
- f Department of Hematology , Ion Chiricuta Clinical Cancer Center , Cluj Napoca , Romania
| | - Patric Teodorescu
- a Department of Hematology , Iuliu Hatieganu University of Medicine and Pharmacy , Cluj Napoca , Romania
| | - Sabina Iluta
- a Department of Hematology , Iuliu Hatieganu University of Medicine and Pharmacy , Cluj Napoca , Romania
| | - Mihnea Zdrenghea
- f Department of Hematology , Ion Chiricuta Clinical Cancer Center , Cluj Napoca , Romania
| | - Ioana Berindan-Neagoe
- g MedFuture Research Center for Advanced Medicine , Iuliu Hatieganu University of Medicine and Pharmacy , Cluj Napoca , Romania
| | - Gheorghe Popa
- b Department of Pediatrics , Iuliu Hatieganu University of Medicine and Pharmacy , Cluj Napoca , Romania
| | - Sorin Man
- b Department of Pediatrics , Iuliu Hatieganu University of Medicine and Pharmacy , Cluj Napoca , Romania
| | - Anca Colita
- h Department of Pediatrics , Carol Davila University of Medicine and Pharmacy , Bucharest , Romania.,i Department of Pediatrics , Fundeni Clinical Institute , Bucharest , Romania
| | - Cristina Stefan
- j African Organization for Research and Training in Cancer , Cape Town , South Africa
| | - Seiji Kojima
- k Department of Pediatrics , Nagoya University Graduate School of Medicine , Nagoya , Japan.,l Center for Advanced Medicine and Clinical Research , Nagoya University Hospital , Nagoya , Japan
| | - Ciprian Tomuleasa
- a Department of Hematology , Iuliu Hatieganu University of Medicine and Pharmacy , Cluj Napoca , Romania.,f Department of Hematology , Ion Chiricuta Clinical Cancer Center , Cluj Napoca , Romania.,m Research Center for Functional Genomics and Translational Medicine , Iuliu Hatieganu University of Medicine and Pharmacy , Cluj Napoca , Romania
| |
Collapse
|
15
|
Gallaway L, Jnah AJ. Transient Myeloproliferative Disorder: An Update for Neonatal Nurses. Neonatal Netw 2019; 38:144-150. [PMID: 31470381 DOI: 10.1891/0730-0832.38.3.144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Down syndrome (DS) is a well-known genetic disorder that affects 700-1,000 infants per year. One particular comorbidity of DS is transient myeloproliferative disorder (TMD), a disease characterized by leukocytosis with elevated blast counts. Approximately 10 percent of DS infants develop TMD, which usually manifests during the first week of life and can lead to an extended hospitalization in a NICU. In addition to hallmark hematologic findings, other manifestations include jaundice, conjugated hyperbilirubinemia, hepatomegaly, and pericardial or pleural effusions. TMD generally resolves spontaneously in the first three months of life with the provision of timely medical management; however, survivors are at increased risk of developing acute myeloid leukemia (AML). Neonatal nurses need to have knowledge of this disorder to facilitate screening of DS infants and optimize family education and coordination of care.
Collapse
|
16
|
Srinath M, Coberly E, Ebersol K, Binz K, Laziuk K, Gunning WT, Gruner B, Hammer R, Sathi BK. ZRSR2 mutation in a child with refractory macrocytic anemia and Down Syndrome. Pediatr Hematol Oncol 2019; 36:236-243. [PMID: 31361176 DOI: 10.1080/08880018.2019.1621969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Here we report a case of refractory macrocytic anemia with a spliceosomal point mutation involving the ZRSR2 gene in a child with Down syndrome (DS). Such mutations have been shown to cause refractory macrocytic anemia and myelodysplastic syndrome (MDS) in elderly individuals. We report the hematological indices of a child with DS and a ZRSR2 spliceosomal mutation. DS is known to produce macrocytic anemia but does not lead to transfusion dependence. In this case, the ZRSR2 mutation was the likely implicating factor for severe transfusion-dependent anemia in a child with DS. The clinical implication of a ZRSR2 mutation in a child with DS has not been previously described and warrants close surveillance to detect potential insidious transformation to MDS.
Collapse
Affiliation(s)
- Meghna Srinath
- a University of Missouri School of Medicine , Columbia , Missouri , USA
| | - Emily Coberly
- b Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine , Columbia , Missouri , USA
| | - Kimberly Ebersol
- c Department of Pediatric Hematology and Oncology, University of Missouri School of Medicine , Columbia , Missouri , USA
| | - Kirstin Binz
- a University of Missouri School of Medicine , Columbia , Missouri , USA
| | - Katsiaryna Laziuk
- b Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine , Columbia , Missouri , USA
| | - William T Gunning
- d Department of Pathology, University of Toledo College of Medicine , Toledo , Ohio , USA
| | - Barbara Gruner
- c Department of Pediatric Hematology and Oncology, University of Missouri School of Medicine , Columbia , Missouri , USA
| | - Richard Hammer
- b Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine , Columbia , Missouri , USA
| | - Bindu Kanathezhath Sathi
- c Department of Pediatric Hematology and Oncology, University of Missouri School of Medicine , Columbia , Missouri , USA
| |
Collapse
|
17
|
Wenzinger C, Williams E, Gru AA. Updates in the Pathology of Precursor Lymphoid Neoplasms in the Revised Fourth Edition of the WHO Classification of Tumors of Hematopoietic and Lymphoid Tissues. Curr Hematol Malig Rep 2018; 13:275-288. [PMID: 29951888 DOI: 10.1007/s11899-018-0456-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW Acute lymphoblastic leukemias (ALL) are malignant disorders of immature B or T cells that occur characteristically in children, usually under the age of 6 (75%). Approximately 6000 new cases of ALL are diagnosed each year in the USA, 80-85% of which represent B-ALL forms. Most presentations of B-ALL are leukemic, whereas T-ALL presents with a mediastinal mass, with or without leukemic involvement. The revised fourth edition of the World Health Organization (WHO) classification (2017) has introduced some changes in both B and T-ALL. Here, we summarize the categories of lymphoblastic leukemia/lymphomas as defined by the WHO and recent developments in the understanding of this group of hematologic malignancy. RECENT FINDINGS Two provisional categories of B-ALL have now been identified including B-ALL, BCR-ABL1-like, and B-ALL with iAMP21. The Philadelphia chromosome-like B-ALL includes forms of the disease that shares the expression profiling of B-ALL with t(9;22) but lack such rearrangement. The second one shows amplification of part of the chromosome 21. Both entities are associated with worse prognosis. Within the T-ALL group, an early precursor T cell form has now been introduced as a provisional category. Such group demonstrates expression of stem cell and myeloid markers in conjunction with the T cell antigens. The current review summarizes the recent updates to the WHO classification.
Collapse
MESH Headings
- Child, Preschool
- Chromosomes, Human, Pair 21/genetics
- Chromosomes, Human, Pair 21/metabolism
- Chromosomes, Human, Pair 9/genetics
- Chromosomes, Human, Pair 9/metabolism
- Female
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/metabolism
- Hematopoiesis
- Humans
- Infant
- Lymphoid Tissue/metabolism
- Lymphoid Tissue/pathology
- Male
- Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/classification
- Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/genetics
- Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/metabolism
- Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/pathology
- Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/classification
- Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics
- Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/metabolism
- Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/pathology
- Translocation, Genetic
- World Health Organization
Collapse
Affiliation(s)
| | - Eli Williams
- Department of Pathology, University of Virginia, Charlottesville, VA, USA
| | - Alejandro A Gru
- Departments of Pathology & Dermatology, University of Virginia, 415 Lane Road, Hospital Expansion Bldg Room 3024, Charlottesville, VA, 22908, USA.
| |
Collapse
|
18
|
Philipps G, Tate ED, Pranzatelli MR. Intensive Combination Immunotherapy and Neuroinflammation Resolution in a Child With Anti-PCA-1 (Yo) Paraneoplastic Syndrome and 2 Malignancies. Child Neurol Open 2018; 5:2329048X18795546. [PMID: 30288393 PMCID: PMC6168721 DOI: 10.1177/2329048x18795546] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 06/28/2018] [Accepted: 07/12/2018] [Indexed: 11/19/2022] Open
Abstract
Paraneoplastic cerebellar degeneration is rare and noteworthy in children. In this
7-year-old, it was documented to have occurred within a year of ataxia presentation. The
instigating cancer was stage III adrenal adenocarcinoma, remitted after surgical resection
at age 2. When her severe ataxia progressed, neuroinflammation was characterized by high
cerebrospinal fluid Purkinje cell cytoplasmic antibody type 1 titers, oligoclonal bands,
and neurofilament light chain. The immunotherapy strategy was to replace IV
methylprednisolone, which lowered Purkinje cell cytoplasmic antibody type 1 titers without
clinical improvement, with induction of adrenocorticotropic hormone/intravenous
immunoglobulin/rituximab (ACTH/IVIG/rituximab) combination immunotherapy,
ACTH/dexamethasone transition, and intravenous immunoglobulin maintenance. She became
self-ambulatory and cerebrospinal fluid inflammatory markers regressed. Down syndrome
predisposed her to a second cancer, pre-B acute lymphoblastic leukemia, 4 years later.
Despite reversible cytosine arabinoside-provoked cerebellar toxicity, the ataxia is stable
on monthly intravenous immunoglobulin without relapse, now 5 years after initial
diagnosis. This report illustrates the use of cerebrospinal fluid biomarkers to detect,
target, and monitor neuroinflammation, and successful combinations of immunotherapy to
better the quality of life.
Collapse
Affiliation(s)
- Guillermo Philipps
- Department of Pediatric Neurology, Golisano Children's Hospital of Southwest FL, Fort Myers, FL, USA.,National Pediatric Myoclonus Center and National Pediatric Neuroinflammation Organization, Inc., Orlando, FL, USA
| | - Elizabeth D Tate
- National Pediatric Myoclonus Center and National Pediatric Neuroinflammation Organization, Inc., Orlando, FL, USA
| | - Michael R Pranzatelli
- National Pediatric Myoclonus Center and National Pediatric Neuroinflammation Organization, Inc., Orlando, FL, USA
| |
Collapse
|
19
|
Kehm RD, Spector LG, Poynter JN, Vock DM, Osypuk TL. Socioeconomic Status and Childhood Cancer Incidence: A Population-Based Multilevel Analysis. Am J Epidemiol 2018; 187:982-991. [PMID: 29036606 DOI: 10.1093/aje/kwx322] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 09/18/2017] [Indexed: 12/19/2022] Open
Abstract
The etiology of childhood cancers remains largely unknown, especially regarding environmental and behavioral risk factors. Unpacking the association between socioeconomic status (SES) and incidence may offer insight into such etiology. We tested associations between SES and childhood cancer incidence in a population-based case-cohort study (source cohort: Minnesota birth registry, 1989-2014). Cases, ages 0-14 years, were linked from the Minnesota Cancer Surveillance System to birth records through probabilistic record linkage. Controls were 4:1 frequency matched on birth year (2,947 cases and 11,907 controls). We tested associations of individual-level (maternal education) and neighborhood-level (census tract composite index) SES using logistic mixed models. In crude models, maternal education was positively associated with incidence of acute lymphoblastic leukemia (odds ratio (OR) = 1.10, 95% confidence interval (CI): 1.02, 1.19), central nervous system tumors (OR = 1.12, 95% CI: 1.04, 1.21), and neuroblastoma (OR = 1.15, 95% CI: 1.02, 1.30). Adjustment for established risk factors-including race/ethnicity, maternal age, and birth weight-substantially attenuated these positive associations. Similar patterns were observed for neighborhood-level SES. Conversely, higher maternal education was inversely associated with hepatoblastoma incidence (adjusted OR = 0.70, 95% CI: 0.51, 0.98). Overall, beyond the social patterning of established demographic and pregnancy-related exposures, SES is not strongly associated with childhood cancer incidence.
Collapse
Affiliation(s)
- Rebecca D Kehm
- University of Minnesota School of Public Health, Division of Epidemiology and Community Health, Minneapolis, Minnesota
| | - Logan G Spector
- University of Minnesota, Division of Epidemiology and Clinical Research, Department of Pediatrics, Minneapolis, Minnesota
| | - Jenny N Poynter
- University of Minnesota, Division of Epidemiology and Clinical Research, Department of Pediatrics, Minneapolis, Minnesota
| | - David M Vock
- University of Minnesota School of Public Health, Division of Biostatistics, Minneapolis, Minnesota
| | - Theresa L Osypuk
- University of Minnesota School of Public Health, Division of Epidemiology and Community Health, Minneapolis, Minnesota
| |
Collapse
|
20
|
Smith FO, Dvorak CC, Braun BS. Myelodysplastic Syndromes and Myeloproliferative Neoplasms in Children. Hematology 2018. [DOI: 10.1016/b978-0-323-35762-3.00063-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
21
|
GATA factor mutations in hematologic disease. Blood 2017; 129:2103-2110. [PMID: 28179280 DOI: 10.1182/blood-2016-09-687889] [Citation(s) in RCA: 140] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 10/11/2016] [Indexed: 02/06/2023] Open
Abstract
GATA family proteins play essential roles in development of many cell types, including hematopoietic, cardiac, and endodermal lineages. The first three factors, GATAs 1, 2, and 3, are essential for normal hematopoiesis, and their mutations are responsible for a variety of blood disorders. Acquired and inherited GATA1 mutations contribute to Diamond-Blackfan anemia, acute megakaryoblastic leukemia, transient myeloproliferative disorder, and a group of related congenital dyserythropoietic anemias with thrombocytopenia. Conversely, germ line mutations in GATA2 are associated with GATA2 deficiency syndrome, whereas acquired mutations are seen in myelodysplastic syndrome, acute myeloid leukemia, and in blast crisis transformation of chronic myeloid leukemia. The fact that mutations in these genes are commonly seen in blood disorders underscores their critical roles and highlights the need to develop targeted therapies for transcription factors. This review focuses on hematopoietic disorders that are associated with mutations in two prominent GATA family members, GATA1 and GATA2.
Collapse
|
22
|
Porter CC. Germ line mutations associated with leukemias. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2016; 2016:302-308. [PMID: 27913495 PMCID: PMC6142470 DOI: 10.1182/asheducation-2016.1.302] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Several genetic syndromes have long been associated with a predisposition to the development of leukemia, including bone marrow failure syndromes, Down syndrome, and Li Fraumeni syndrome. Recent work has better defined the leukemia risk and outcomes in these syndromes. Also, in the last several years, a number of other germ line mutations have been discovered to define new leukemia predisposition syndromes, including ANKRD26, GATA2, PAX5, ETV6, and DDX41 In addition, data suggest that a substantial proportion of patients with therapy related leukemias harbor germ line mutations in DNA damage response genes such as BRCA1/2 and TP53 Recognition of clinical associations, acquisition of a thorough family history, and high index-of-suspicion are critical in the diagnosis of these leukemia predisposition syndromes. Accurate identification of patients with germ line mutations associated with leukemia can have important clinical implications as it relates to management of the leukemia, as well as genetic counseling of family members.
Collapse
|
23
|
Low risk of solid tumors in persons with Down syndrome. Genet Med 2016; 18:1151-1157. [DOI: 10.1038/gim.2016.23] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 01/22/2016] [Indexed: 02/07/2023] Open
|
24
|
Abstract
The acquisition of de novo somatic mutations accounts for approximately 90% of all new cancer diagnoses, while the remaining 10% is due to inherited genetic traits. In this latter category, individuals harbouring germline mutations show a higher likelihood of developing potentially life-threatening cancers, often at a very young age. The study of cancer genetics has profoundly helped our understanding of cancer biology, leading to better characterised malignancies, tailored targeted therapies and the identification of individuals at high risk of cancer diagnosis. This review will discuss examples of cancer syndromes in children, adolescents and young adults, the main underlying gene mutations, and the use of genetic testing to identify gene mutation carriers. Finally, we will describe how gene mutation detection is employed for the life-long management of patients with high susceptibility to cancer, including genetic counselling, increased surveillance, early intervention and use of targeted therapies.
Collapse
Affiliation(s)
- Federica Saletta
- 1 Children's Cancer Research Unit, Kids Research Institute, 2 Oncology Department, 3 The University of Sydney Discipline of Paediatrics and Child Health, The Children's Hospital at Westmead, Westmead 2145, NSW, Australia
| | - Luciano Dalla Pozza
- 1 Children's Cancer Research Unit, Kids Research Institute, 2 Oncology Department, 3 The University of Sydney Discipline of Paediatrics and Child Health, The Children's Hospital at Westmead, Westmead 2145, NSW, Australia
| | - Jennifer A Byrne
- 1 Children's Cancer Research Unit, Kids Research Institute, 2 Oncology Department, 3 The University of Sydney Discipline of Paediatrics and Child Health, The Children's Hospital at Westmead, Westmead 2145, NSW, Australia
| |
Collapse
|