1
|
Jeong KY, Sang M, Lee YS, Gadermaier G, Ferreira F, Park JW. Characterization of Hum j 6, a Major Allergen From Humulus japonicus Pollen, the Primary Cause of Weed Pollinosis in East Asia. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2023; 15:767-778. [PMID: 37957794 PMCID: PMC10643856 DOI: 10.4168/aair.2023.15.6.767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/30/2023] [Accepted: 06/13/2023] [Indexed: 11/15/2023]
Abstract
PURPOSE Humulus japonicus (HJ) is one of the most important causes of weed pollinosis in East Asia. The 10 kDa protein with pI 10 in 2-dimensional gel has been recognized as the representative major allergen of HJ, but its major allergens have not been characterized. This study aimed to characterize the major allergen of HJ. METHODS A major allergen in Japanese hop was detected by proteome analysis; it was purified to homogeneity and its sequence was obtained by transcriptome analysis. The recombinant proteins were produced in Escherichia coli and Pichia expression systems, and their immunoglobulin E (IgE) reactivities were compared to those of the natural counterpart. We also analyzed post-translational modifications such as glycosylation and phosphorylation. RESULTS Pectin methylesterase inhibitor, Hum j 6, was found to be the major allergen of HJ, and in silico signal peptide prediction corresponds to a 15.1 kDa protein with a theoretical pI of 8.28. Natural Hum j 6 was recognized by IgE antibodies from 86.4% (19/22) of HJ pollinosis patients, whereas the recombinant proteins did not show strong IgE reactivity. No glycosylation was detected, while at least 15 phosphorylated amino acids, possibly causing the pI and molecular weight shift, were detected by tandem mass spectrometry analysis. CONCLUSIONS Hum j 6 was identified as the representative major allergen of HJ and seems to be modified significantly after translation. These findings are useful for the development of component-resolved diagnosis and immunotherapy.
Collapse
Affiliation(s)
- Kyoung Yong Jeong
- Department of Internal Medicine, Institute of Allergy, Yonsei University College of Medicine, Seoul, Korea.
| | - Minkyu Sang
- Department of Biology, Soonchunhyang University, Asan, Korea
| | - Yong Seok Lee
- Department of Biology, Soonchunhyang University, Asan, Korea
| | - Gabriele Gadermaier
- Department of Bioscience and Medical Biology, Paris Lodron University Salzburg, Salzburg, Austria
| | - Fatima Ferreira
- Department of Bioscience and Medical Biology, Paris Lodron University Salzburg, Salzburg, Austria
| | - Jung-Won Park
- Department of Internal Medicine, Institute of Allergy, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
2
|
Koeberl M, Kamath SD, Saptarshi SR, Smout MJ, Rolland JM, O'Hehir RE, Lopata AL. Auto-induction for high yield expression of recombinant novel isoallergen tropomyosin from King prawn (Melicertus latisulcatus) for improved diagnostics and immunotherapeutics. J Immunol Methods 2014; 415:6-16. [PMID: 25450004 DOI: 10.1016/j.jim.2014.10.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 10/20/2014] [Accepted: 10/20/2014] [Indexed: 01/18/2023]
Abstract
Food allergies are increasing worldwide, demonstrating a considerable public health concern. Shellfish allergy is one of the major food groups causing allergic sensitization among adults and children, affecting up to 2% of the general world population. Tropomyosin (TM) is the major allergen in shellfish and frequently used in the diagnosis of allergic sensitization and the detection of cross-contaminated food. To improve and establish better and more sensitive diagnostics for allergies and immunotherapeutics, large quantities of pure allergens are required. To establish a reproducible method for the generation of pure recombinant tropomyosin we utilized in this study different Escherichia coli strains (NM522, TOP10 and BL21(DE3)RIPL). In addition, isopropyl-β-D-thiogalactoside (IPTG) induction was compared with a novel auto-induction system to allow the generation of larger quantities of recombinant allergen. We demonstrated that the B-strain of E. coli is better for the expression of TM compared to the K-strain. Moreover, a higher yield could be achieved when using the auto-induction system, with up to 62 mg/l. High yield expressed recombinant TM from King prawn (KP) was compared to recombinant TM from Black tiger prawn (Pen m 1). We demonstrated that recombinant TM from KP and known isoallergen Pen m 1 have very similar molecular and immunological characteristics. Overall, we demonstrate that auto-induction can be used to express larger quantities of recombinant allergens for the development of diagnostic, to quantify allergens as well as immunotherapeutics employing isoallergens.
Collapse
Affiliation(s)
- Martina Koeberl
- Molecular Immunology Group, James Cook University, Townsville, QLD, Australia; Centre for Biodiscovery and Molecular Discovery of Therapeutics, James Cook University, Townsville, QLD, Australia; Comparative Genomic Centre, James Cook University, Townsville, QLD, Australia; Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD, Australia
| | - Sandip D Kamath
- Molecular Immunology Group, James Cook University, Townsville, QLD, Australia; Centre for Biodiscovery and Molecular Discovery of Therapeutics, James Cook University, Townsville, QLD, Australia; Comparative Genomic Centre, James Cook University, Townsville, QLD, Australia; Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD, Australia
| | - Shruti R Saptarshi
- Molecular Immunology Group, James Cook University, Townsville, QLD, Australia; Centre for Biodiscovery and Molecular Discovery of Therapeutics, James Cook University, Townsville, QLD, Australia; Comparative Genomic Centre, James Cook University, Townsville, QLD, Australia; Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD, Australia
| | - Michael J Smout
- Centre for Biodiscovery and Molecular Discovery of Therapeutics, James Cook University, Townsville, QLD, Australia; Queensland Tropical Health Alliance, James Cook University, Cairns, QLD, Australia; Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD, Australia
| | - Jennifer M Rolland
- Department of Immunology, Monash University, Melbourne, Victoria, Australia; Department of Allergy, Immunology and Respiratory Medicine, The Alfred Hospital and Monash University, Melbourne, Victoria, Australia
| | - Robyn E O'Hehir
- Department of Immunology, Monash University, Melbourne, Victoria, Australia; Department of Allergy, Immunology and Respiratory Medicine, The Alfred Hospital and Monash University, Melbourne, Victoria, Australia
| | - Andreas L Lopata
- Molecular Immunology Group, James Cook University, Townsville, QLD, Australia; Centre for Biodiscovery and Molecular Discovery of Therapeutics, James Cook University, Townsville, QLD, Australia; Comparative Genomic Centre, James Cook University, Townsville, QLD, Australia; Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD, Australia.
| |
Collapse
|
3
|
Mindykowski B, Jaenicke E, Tenzer S, Cirak S, Schweikardt T, Schild H, Decker H. Cockroach allergens Per a 3 are oligomers. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2010; 34:722-733. [PMID: 20100511 DOI: 10.1016/j.dci.2010.01.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Revised: 01/14/2010] [Accepted: 01/15/2010] [Indexed: 05/28/2023]
Abstract
Allergens from cockroaches cause major asthma-related health problems worldwide. Among them Per a 3 belongs to the most potent allergens. Although the sequences of some members of the Per a 3-family are known, their biochemical and biophysical properties have not been investigated. Here we present for the first time a thorough structural characterization of these allergens, which have recently been tested to induce an increase of allergy specific indicators in blood of Europeans. We isolated two Per a 3 isoforms, which occur freely dissolved in the hemolymph as hexamers with molecular masses of 465+/-25kDa (P II) and 512+/-25kDa (P I). Their sedimentation coefficients (S(20,W)) were determined to be 17.4+/-0.7 S (P II) and 19.0+/-0.9 S (P I), respectively. Sequence analysis revealed that P II consists of two subunit types known as allergens Per a 3.01 and Per a 3.0201, while PI consists of a new allergenic subunit type designated as Per a 3.03. A 3D model of the hexameric allergen Per a 3 was obtained by homology modelling. Almost all of the recently predicted 11 putative antigenic peptides and reported IgE-epitopes could be located on the surface of the hexamer, thus being freely accessible in the hexameric structure of the native molecules. We propose this might contribute to their allergic potential as well as their extreme stability with respect to temperature.
Collapse
Affiliation(s)
- Beatrice Mindykowski
- Institute for Molecular Biophysics, University of Mainz, Jakob Welder Weg 26, Mainz, Germany
| | | | | | | | | | | | | |
Collapse
|
4
|
Yong TS, Jeong KY. Household arthropod allergens in Korea. THE KOREAN JOURNAL OF PARASITOLOGY 2010; 47 Suppl:S143-53. [PMID: 19885330 DOI: 10.3347/kjp.2009.47.s.s143] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2009] [Revised: 09/28/2009] [Accepted: 09/28/2009] [Indexed: 11/23/2022]
Abstract
Arthropods are important in human health, which can transmit pathogens to humans, parasitize, or produce important allergens. Allergy prevalence becomes higher in Korea recently as well as other developed countries in contrast to a decrease of infectious diseases. Allergic diseases caused by household arthropods have increased dramatically during the last few decades since human beings spend more their time for indoor activities in modernized life style. Household arthropods are one of the most common causes of allergic diseases. Biological characterization of household arthropods and researches on their allergens will provide better understanding of the pathogenesis of allergic diseases and suggest new therapeutic ways. Therefore, studies on arthropods of allergenic importance can be considered one of the major research areas in medical arthropodology and parasitology. Here, the biology of several household arthropods, including house dust mites and cockroaches, the 2 most well known arthropods living indoor together with humans worldwide, and characteristics of their allergens, especially the research activities on these allergens performed in Korea, are summarized.
Collapse
Affiliation(s)
- Tai-Soon Yong
- Department of Environmental Medical Biology, Institute of Tropical Medicine and Arthropods of Medical Importance Resource Bank, Yonsei University College of Medicine, Seoul 120-752, Korea.
| | | |
Collapse
|
5
|
Vlahopoulos S, Gritzapis AD, Perez SA, Cacoullos N, Papamichail M, Baxevanis CN. Mannose addition by yeast Pichia Pastoris on recombinant HER-2 protein inhibits recognition by the monoclonal antibody herceptin. Vaccine 2009; 27:4704-8. [PMID: 19520203 DOI: 10.1016/j.vaccine.2009.05.063] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2008] [Revised: 05/11/2009] [Accepted: 05/21/2009] [Indexed: 01/11/2023]
Abstract
We report here the generation of a full-length, highly glycosylated HER-2 oncoprotein using yeast strain, Pichia Pastoris. Upon treatment of secreted HER-2 with alpha-mannosidase, reactivity with the monoclonal antibody Herceptin is significantly increased. This phenomenon is due to glycosylation via mannose of the full-length HER-2 protein that extends over the antigenic epitope, which is recognized by Herceptin. The extensive glycosylation of HER-2 in Pichia Pastoris significantly increases its recognition and uptake by dendritic cells, which could be associated with increased vaccine performance.
Collapse
|
6
|
Wang C, Zhang CW, Liu HC, Yu Q, Pei XF. Non-fusion and fusion expression of beta-galactosidase from Lactobacillus bulgaricus in Lactococcus lactis. BIOMEDICAL AND ENVIRONMENTAL SCIENCES : BES 2008; 21:389-397. [PMID: 19133612 DOI: 10.1016/s0895-3988(08)60059-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
OBJECTIVE To construct four recombinant Lactococcus lactis strains exhibiting high beta-galactosidase activity in fusion or non-fusion ways, and to study the influence factors for their protein expression and secretion. METHODS The gene fragments encoding beta-galactosidase from two strains of Lactobacillus bulgaricus, wch9901 isolated from yogurt and 1.1480 purchased from the Chinese Academy of Sciences, were amplified and inserted into lactococcal expression vector pMG36e. For fusion expression, the open reading frame of the beta-galactosidase gene was amplified, while for non-fusion expression, the open reading frame of the beta-galactosidase gene was amplified with its native Shine-Dalgarno sequence upstream. The start codon of the beta-galactosidase gene partially overlapped with the stop codon of vector origin open reading frame. Then, the recombinant plasmids were transformed into Escherichia coli DH5 alpha and Lactococcus lactis subsp. lactis MG1363 and confirmed by determining beta-galactosidase activities. RESULTS The non-fusion expression plasmids showed a significantly higher beta-galactosidase activity in transformed strains than the fusion expression plasmids. The highest enzyme activity was observed in Lactococcus lactis transformed with the non-fusion expression plasmids which were inserted into the beta-galactosidase gene from Lactobacillus bulgaricus wch9901. The beta-galactosidase activity was 2.75 times as high as that of the native counterpart. In addition, beta-galactosidase expressed by recombinant plasmids in Lactococcus lactis could be secreted into the culture medium. The highest secretion rate (27.1%) was observed when the culture medium contained 20 g/L of lactose. CONCLUSION Different properties of the native bacteria may have some effects on the protein expression of recombinant plasmids. Non-fusion expression shows a higher enzyme activity in host bacteria. There may be a host-related weak secretion signal peptide gene within the structure gene of Lb. bulgaricus beta-galactosidase, and its translation product may introduce the enzyme secretion out of cells in special hosts.
Collapse
Affiliation(s)
- Chuan Wang
- Department of Medical Technology, West China School of Public Health, Sichuan University, Chengdu 610041, Sichuan, China.
| | | | | | | | | |
Collapse
|
7
|
Abstract
Cockroaches produce several potent allergens associated with sensitization and the development of asthma. Many of these allergens have been cloned and produced as biologically active recombinant proteins. Three-dimensional structure and molecular modeling, in addition to studies on the biological functions of these proteins in the cockroach, have provided new insights into the ability of these allergens to cause immunoglobulin E antibody responses. Recent studies have pointed to a potential role of recombinant cockroach allergens for diagnosis and the development of novel therapeutic strategies that may benefit cockroach-allergic patients.
Collapse
Affiliation(s)
- L Karla Arruda
- Departamento de Clínica Médica, Faculdade de Medicina de Ribeirão Preto - USP, Av. Bandeirantes 3900, Ribeirão Preto, SP 14049-900, Brazil.
| |
Collapse
|
8
|
Abstract
This is the first of a projected series of canonic reviews covering all invertebrate muscle literature prior to 2005 and covers muscle genes and proteins except those involved in excitation-contraction coupling (e.g., the ryanodine receptor) and those forming ligand- and voltage-dependent channels. Two themes are of primary importance. The first is the evolutionary antiquity of muscle proteins. Actin, myosin, and tropomyosin (at least, the presence of other muscle proteins in these organisms has not been examined) exist in muscle-like cells in Radiata, and almost all muscle proteins are present across Bilateria, implying that the first Bilaterian had a complete, or near-complete, complement of present-day muscle proteins. The second is the extraordinary diversity of protein isoforms and genetic mechanisms for producing them. This rich diversity suggests that studying invertebrate muscle proteins and genes can be usefully applied to resolve phylogenetic relationships and to understand protein assembly coevolution. Fully achieving these goals, however, will require examination of a much broader range of species than has been heretofore performed.
Collapse
Affiliation(s)
- Scott L Hooper
- Neuroscience Program, Department of Biological Sciences, Irvine Hall, Ohio University, Athens, Ohio 45701, USA.
| | | |
Collapse
|
9
|
Jeong KY, Lee J, Lee IY, Ree HI, Hong CS, Yong TS. Analysis of amino acid sequence variations and immunoglobulin E-binding epitopes of German cockroach tropomyosin. CLINICAL AND DIAGNOSTIC LABORATORY IMMUNOLOGY 2005; 11:874-8. [PMID: 15358646 PMCID: PMC515276 DOI: 10.1128/cdli.11.5.874-878.2004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The allergenicities of tropomyosins from different organisms have been reported to vary. The cDNA encoding German cockroach tropomyosin (Bla g 7) was isolated, expressed, and characterized previously. In the present study, the amino acid sequence variations in German cockroach tropomyosin were analyzed in order to investigate its influence on allergenicity. We also undertook the identification of immunodominant peptides containing immunoglobulin E (IgE) epitopes which may facilitate the development of diagnostic and immunotherapeutic strategies based on the recombinant proteins. Two-dimensional gel electrophoresis and immunoblot analysis with mouse anti-recombinant German cockroach tropomyosin serum was performed to investigate the isoforms at the protein level. Reverse transcriptase PCR (RT-PCR) was applied to examine the sequence diversity. Eleven different variants of the deduced amino acid sequences were identified by RT-PCR. German cockroach tropomyosin has only minor sequence variations that did not seem to affect its allergenicity significantly. These results support the molecular basis underlying the cross-reactivities of arthropod tropomyosins. Recombinant fragments were also generated by PCR, and IgE-binding epitopes were assessed by enzyme-linked immunosorbent assay. Sera from seven patients revealed heterogeneous IgE-binding responses. This study demonstrates multiple IgE-binding epitope regions in a single molecule, suggesting that full-length tropomyosin should be used for the development of diagnostic and therapeutic reagents.
Collapse
Affiliation(s)
- Kyoung Yong Jeong
- Department of Parasitology and Institute of Tropical Medicine, Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | | | | | | | | | | |
Collapse
|