1
|
TMT-based proteomic analysis of the inactivation effect of high voltage atmospheric cold plasma treatment on Pseudomonas aeruginosa. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
2
|
Warui D, Sil D, Lee KH, Neti SS, Esakova OA, Knox HL, Krebs C, Booker SJ. In Vitro Demonstration of Human Lipoyl Synthase Catalytic Activity in the Presence of NFU1. ACS BIO & MED CHEM AU 2022; 2:456-468. [PMID: 36281303 PMCID: PMC9585516 DOI: 10.1021/acsbiomedchemau.2c00020] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Lipoyl synthase (LS) catalyzes the last step in the biosynthesis of the lipoyl cofactor, which is the attachment of sulfur atoms at C6 and C8 of an n-octanoyllysyl side chain of a lipoyl carrier protein (LCP). The protein is a member of the radical S-adenosylmethionine (SAM) superfamily of enzymes, which use SAM as a precursor to a 5'-deoxyadenosyl 5'-radical (5'-dA·). The role of the 5'-dA· in the LS reaction is to abstract hydrogen atoms from C6 and C8 of the octanoyl moiety of the substrate to initiate subsequent sulfur attachment. All radical SAM enzymes have at least one [4Fe-4S] cluster that is used in the reductive cleavage of SAM to generate the 5'-dA·; however, LSs contain an additional auxiliary [4Fe-4S] cluster from which sulfur atoms are extracted during turnover, leading to degradation of the cluster. Therefore, these enzymes catalyze only 1 turnover in the absence of a system that restores the auxiliary cluster. In Escherichia coli, the auxiliary cluster of LS can be regenerated by the iron-sulfur (Fe-S) cluster carrier protein NfuA as fast as catalysis takes place, and less efficiently by IscU. NFU1 is the human ortholog of E. coli NfuA and has been shown to interact directly with human LS (i.e., LIAS) in yeast two-hybrid analyses. Herein, we show that NFU1 and LIAS form a tight complex in vitro and that NFU1 can efficiently restore the auxiliary cluster of LIAS during turnover. We also show that BOLA3, previously identified as being critical in the biosynthesis of the lipoyl cofactor in humans and Saccharomyces cerevisiae, has no direct effect on Fe-S cluster transfer from NFU1 or GLRX5 to LIAS. Further, we show that ISCA1 and ISCA2 can enhance LIAS turnover, but only slightly.
Collapse
Affiliation(s)
- Douglas
M. Warui
- Department
of Chemistry and Biochemistry and Molecular Biology and the Howard Hughes
Medical Institute, The Pennsylvania State
University, University
Park, Pennsylvania 16802, United States
| | - Debangsu Sil
- Department
of Chemistry and Biochemistry and Molecular Biology and the Howard Hughes
Medical Institute, The Pennsylvania State
University, University
Park, Pennsylvania 16802, United States
| | - Kyung-Hoon Lee
- Department
of Chemistry and Biochemistry and Molecular Biology and the Howard Hughes
Medical Institute, The Pennsylvania State
University, University
Park, Pennsylvania 16802, United States
| | - Syam Sundar Neti
- Department
of Chemistry and Biochemistry and Molecular Biology and the Howard Hughes
Medical Institute, The Pennsylvania State
University, University
Park, Pennsylvania 16802, United States
| | - Olga A. Esakova
- Department
of Chemistry and Biochemistry and Molecular Biology and the Howard Hughes
Medical Institute, The Pennsylvania State
University, University
Park, Pennsylvania 16802, United States
| | - Hayley L. Knox
- Department
of Chemistry and Biochemistry and Molecular Biology and the Howard Hughes
Medical Institute, The Pennsylvania State
University, University
Park, Pennsylvania 16802, United States
| | - Carsten Krebs
- Department
of Chemistry and Biochemistry and Molecular Biology and the Howard Hughes
Medical Institute, The Pennsylvania State
University, University
Park, Pennsylvania 16802, United States
| | - Squire J. Booker
- Department
of Chemistry and Biochemistry and Molecular Biology and the Howard Hughes
Medical Institute, The Pennsylvania State
University, University
Park, Pennsylvania 16802, United States
| |
Collapse
|
3
|
A Lipoate-Protein Ligase Is Required for De Novo Lipoyl-Protein Biosynthesis in the Hyperthermophilic Archaeon Thermococcus kodakarensis. Appl Environ Microbiol 2022; 88:e0064422. [PMID: 35736229 PMCID: PMC9275244 DOI: 10.1128/aem.00644-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Lipoic acid is an organosulfur cofactor essential for several key enzyme complexes in oxidative and one-carbon metabolism. It is covalently bound to the lipoyl domain of the E2 subunit in some 2-oxoacid dehydrogenase complexes and the H-protein in the glycine cleavage system. Lipoate-protein ligase (Lpl) is involved in the salvage of exogenous lipoate and attaches free lipoate to the E2 subunit or the H-protein in an ATP-dependent manner. In the hyperthermophilic archaeon Thermococcus kodakarensis, TK1234 and TK1908 are predicted to encode the N- and C-terminal regions of Lpl, respectively. TK1908 and TK1234 recombinant proteins form a heterodimer and together displayed significant ligase activity toward octanoate in addition to lipoate when a chemically synthesized octapeptide was used as the acceptor. The proteins also displayed activity toward other fatty acids, indicating broad fatty acid specificity. On the other hand, lipoyl synthase from T. kodakarensis only recognized octanoyl-peptide as a substrate. Examination of individual proteins indicated that the TK1908 protein alone was able to catalyze the ligase reaction although with a much lower activity. Gene disruption of TK1908 led to lipoate/serine auxotrophy, whereas TK1234 gene deletion did not. Acyl carrier protein homologs are not found on the archaeal genomes, and the TK1908/TK1234 protein complex did not utilize octanoyl-CoA, raising the possibility that the substrate of the ligase reaction is octanoic acid itself. Although Lpl has been considered as an enzyme involved in lipoate salvage, the results imply that in T. kodakarensis, the TK1908 and TK1234 proteins function in de novo lipoyl-protein biosynthesis. IMPORTANCE Based on previous studies in bacteria and eukaryotes, lipoate-protein ligases (Lpls) have been considered to be involved exclusively in lipoate salvage. The genetic analyses in this study on the lipoate-protein ligase in T. kodakarensis, however, suggest otherwise and that the enzyme is additionally involved in de novo protein lipoylation. We also provide biochemical evidence that the lipoate-protein ligase displays broad substrate specificity and is capable of ligating acyl groups of various chain-lengths to the peptide substrate. We show that this apparent ambiguity in Lpl is resolved by the strict substrate specificity of the lipoyl synthase LipS in this organism, which only recognizes octanoyl-peptide. The results provide relevant physiological insight into archaeal protein lipoylation.
Collapse
|
4
|
Lipoate protein ligase B primarily recognizes the C 8-phosphopantetheine arm of its donor substrate and weakly binds the acyl carrier protein. J Biol Chem 2022; 298:102203. [PMID: 35764173 PMCID: PMC9307952 DOI: 10.1016/j.jbc.2022.102203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/22/2022] [Accepted: 06/22/2022] [Indexed: 11/22/2022] Open
Abstract
Lipoic acid is a sulfur containing cofactor indispensable for the function of several metabolic enzymes. In microorganisms, lipoic acid can be salvaged from the surroundings by Lipoate protein ligase A (LplA), an ATP-dependent enzyme. Alternatively, it can be synthesized by the sequential actions of Lipoate protein ligase B (LipB) and Lipoyl synthase (LipA). LipB takes up the octanoyl chain from C8-acyl carrier protein (C8-ACP), a byproduct of the type II fatty acid synthesis pathway, and transfers it to a conserved lysine of the lipoyl domain of a dehydrogenase. However, the molecular basis of its substrate recognition is still not fully understood. Using E. coli LipB as a model enzyme, we show here that the octanoyl-transferase mainly recognizes the 4'-phosphopantetheine-tethered acyl-chain of its donor substrate and weakly binds the apo-acyl carrier protein. We demonstrate LipB can accept octanoate from its own ACP and noncognate ACPs, as well as C8-CoA. Furthermore, our 1H STD and 31P NMR studies demonstrate the binding of adenosine, as well as the phosphopantetheine arm of CoA to LipB, akin to binding to LplA. Finally, we show a conserved 71RGG73 loop, analogous to the lipoate binding loop of LplA, is required for full LipB activity. Collectively, our studies highlight commonalities between LipB and LplA in their mechanism of substrate recognition. This knowledge could be of significance in the treatment of mitochondrial fatty acid synthesis related disorders.
Collapse
|
5
|
Biochemical Approaches to Probe the Role of the Auxiliary Iron-Sulfur Cluster of Lipoyl Synthase from Mycobacterium Tuberculosis. Methods Mol Biol 2021. [PMID: 34292556 DOI: 10.1007/978-1-0716-1605-5_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Lipoic acid is an essential sulfur-containing cofactor used by several multienzyme complexes involved in energy metabolism and the breakdown of certain amino acids. It is composed of n-octanoic acid with sulfur atoms appended at C6 and C8. Lipoic acid is biosynthesized de novo in its cofactor form, in which it is covalently bound in an amide linkage to a target lysyl residue on a lipoyl carrier protein (LCP). The n-octanoyl moiety of the cofactor is derived from type 2 fatty acid biosynthesis and is transferred to an LCP to afford an octanoyllysyl amino acid. Next, lipoyl synthase (LipA in bacteria) catalyzes the attachment of the two sulfur atoms to afford the intact cofactor. LipA is a radical S-adenosylmethionine (SAM) enzyme that contains two [4Fe-4S] clusters. One [4Fe-4S] cluster is used to facilitate a reductive cleavage of SAM to render the highly oxidizing 5'-deoxyadenosyl 5'-radical needed to abstract C6 and C8 hydrogen atoms to allow for sulfur attachment. By contrast, the second cluster is the sulfur source, necessitating its destruction during turnover. In Escherichia coli, this auxiliary cluster can be restored after each turnover by NfuA or IscU, which are two iron-sulfur cluster carrier proteins that are implicated in iron-sulfur cluster biogenesis. In this chapter, we describe methods for purifying and characterizing LipA and NfuA from Mycobacterium tuberculosis, a human pathogen for which endogenously synthesized lipoic acid is essential. These studies provide the foundation for assessing lipoic acid biosynthesis as a potential target for the design of novel antituberculosis agents.
Collapse
|
6
|
Hu Z, Yao Y, Lv M, Zhang Y, Zhang L, Yuan Y, Yue T. Isolation and identification of three water-soluble selenoproteins in Se-enriched Agaricus blazei Murrill. Food Chem 2020; 344:128691. [PMID: 33248838 DOI: 10.1016/j.foodchem.2020.128691] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 11/13/2020] [Accepted: 11/17/2020] [Indexed: 12/28/2022]
Abstract
Selenoproteins in selenium (Se)-enriched vegetables play an important role in human health. In this study, three water-soluble selenoproteins PR-Se-1, PR-Se-2 and PR-Se-3 in Agaricus blazei Murrill (ABM) were isolated by anion exchange chromatography, gel filtration chromatography and SDS-PAGE. Sequence analyses performed by HPLC-MS/MS showed that PR-Se-1, a 114024 Da selenoprotein with 1019 amino acids (AAs), is an isoenzyme of isocitrate dehydrogenase. PR-Se-2, a 53983 Da selenoprotein with 508 AAs, is a kind of dihydrolipoyl dehydrogenase. PR-Se-3, a 47179 Da selenoprotein with 415 AAs, is a kind d-proline reductase. Se content is high at 26.1 μg/g, and selenocystine is the predominant Se unit in the three selenoproteins. Se content of ABM is 9.15 μg/g, and the organic form of Se accounts for ~81% of total Se content. ABM could be a promising source of Se in Se-poor regions.
Collapse
Affiliation(s)
- Zhongqiu Hu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Yangling 712100, Shaanxi, China.
| | - Yuanxi Yao
- Logistic Affairs Department, Chang'an University, Xi'an 710054, China
| | - Meng Lv
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Yangling 712100, Shaanxi, China
| | - Yiqian Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Yangling 712100, Shaanxi, China
| | - Lin Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Yangling 712100, Shaanxi, China
| | - Yahong Yuan
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Yangling 712100, Shaanxi, China
| | - Tianli Yue
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Yangling 712100, Shaanxi, China.
| |
Collapse
|
7
|
Protein moonlighting elucidates the essential human pathway catalyzing lipoic acid assembly on its cognate enzymes. Proc Natl Acad Sci U S A 2018; 115:E7063-E7072. [PMID: 29987032 DOI: 10.1073/pnas.1805862115] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The lack of attachment of lipoic acid to its cognate enzyme proteins results in devastating human metabolic disorders. These mitochondrial disorders are evident soon after birth and generally result in early death. The mutations causing specific defects in lipoyl assembly map in three genes, LIAS, LIPT1, and LIPT2 Although physiological roles have been proposed for the encoded proteins, only the LIPT1 protein had been studied at the enzyme level. LIPT1 was reported to catalyze only the second partial reaction of the classical lipoate ligase mechanism. We report that the physiologically relevant LIPT1 enzyme activity is transfer of lipoyl moieties from the H protein of the glycine cleavage system to the E2 subunits of the 2-oxoacid dehydrogenases required for respiration (e.g., pyruvate dehydrogenase) and amino acid degradation. We also report that LIPT2 encodes an octanoyl transferase that initiates lipoyl group assembly. The human pathway is now biochemically defined.
Collapse
|
8
|
Yadav U, Sundd M. Backbone chemical shift assignments of the glycine cleavage complex H protein of Escherichia coli. BIOMOLECULAR NMR ASSIGNMENTS 2018; 12:163-165. [PMID: 29335837 DOI: 10.1007/s12104-018-9801-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 01/05/2018] [Indexed: 06/07/2023]
Abstract
Glycine cleavage complex H protein (GcvH) is one of the four components that form the glycine cleavage complex (GCS), essential for the synthesis of C1 (one-carbon units) for cell metabolism, by the oxidative cleavage of glycine. The activity of this complex is induced in the presence of exogenous glycine, and is repressed by purines. GCS, in cooperation with GCA (serine hydroxymethyltransferase) regulates the endogenous levels of glycine and C1 units in the cell. GcvH, the lipoamide containing component of the complex, plays an indispensable role in this reaction, as its prosthetic group shuttles between the active site of the three other components of the GCS complex sequentially. In environments rich in exogenous lipoic acid, GcvH is converted to lipoyl-GcvH by Lipoate protein ligase (LplA), by the salvage pathway. When exogenous lipoic acid is deficient, it is post-translationally modified to lipoyl-GcvH by the consecutive action of two enzymes, (a) Lipoate protein ligase B (LipB) and (b) Lipoyl synthase (LipA). Although, the crystal structure has been determined for Escherichia coli GcvH, no information exists for its interaction with LipB or LipA. Therefore, we plan to study its interactions with the aforementioned enzymes. As a first step, we have carried out the complete backbone chemical shift assignments of the E. coli glycine cleavage complex H protein in its apo-form, as well as its C8- intermediate.
Collapse
Affiliation(s)
- Usha Yadav
- National Institute of Immunology, Aruna Asaf Ali Marg, JNU Campus, New Delhi, 110 067, India
| | - Monica Sundd
- National Institute of Immunology, Aruna Asaf Ali Marg, JNU Campus, New Delhi, 110 067, India.
| |
Collapse
|
9
|
Badding ED, Grove TL, Gadsby LK, LaMattina JW, Boal AK, Booker SJ. Rerouting the Pathway for the Biosynthesis of the Side Ring System of Nosiheptide: The Roles of NosI, NosJ, and NosK. J Am Chem Soc 2017; 139:5896-5905. [PMID: 28343381 PMCID: PMC5940322 DOI: 10.1021/jacs.7b01497] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nosiheptide (NOS) is a highly modified thiopeptide antibiotic that displays formidable in vitro activity against a variety of Gram-positive bacteria. In addition to a central hydroxypyridine ring, NOS contains several other modifications, including multiple thiazole rings, dehydro-amino acids, and a 3,4-dimethylindolic acid (DMIA) moiety. The DMIA moiety is required for NOS efficacy and is synthesized from l-tryptophan in a series of reactions that have not been fully elucidated. Herein, we describe the role of NosJ, the product of an unannotated gene in the biosynthetic operon for NOS, as an acyl carrier protein that delivers 3-methylindolic acid (MIA) to NosK. We also reassign the role of NosI as the enzyme responsible for catalyzing the ATP-dependent activation of MIA and MIA's attachment to the phosphopantetheine moiety of NosJ. Lastly, NosK catalyzes the transfer of the MIA group from NosJ-MIA to a conserved serine residue (Ser102) on NosK. The X-ray crystal structure of NosK, solved to 2.3 Å resolution, reveals that the protein is an α/β-fold hydrolase. Ser102 interacts with Glu210 and His234 to form a catalytic triad located at the bottom of an open cleft that is large enough to accommodate the thiopeptide framework.
Collapse
Affiliation(s)
- Edward D Badding
- The Department of Chemistry, §The Department of Biochemistry and Molecular Biology, and ∥The Howard Hughes Medical Institute, The Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | - Tyler L Grove
- The Department of Chemistry, §The Department of Biochemistry and Molecular Biology, and ∥The Howard Hughes Medical Institute, The Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | - Lauren K Gadsby
- The Department of Chemistry, §The Department of Biochemistry and Molecular Biology, and ∥The Howard Hughes Medical Institute, The Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | - Joseph W LaMattina
- The Department of Chemistry, §The Department of Biochemistry and Molecular Biology, and ∥The Howard Hughes Medical Institute, The Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | - Amie K Boal
- The Department of Chemistry, §The Department of Biochemistry and Molecular Biology, and ∥The Howard Hughes Medical Institute, The Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | - Squire J Booker
- The Department of Chemistry, §The Department of Biochemistry and Molecular Biology, and ∥The Howard Hughes Medical Institute, The Pennsylvania State University , University Park, Pennsylvania 16802, United States
| |
Collapse
|
10
|
Abstract
Lipoyl synthase (LipA) catalyzes the insertion of two sulfur atoms at the unactivated C6 and C8 positions of a protein-bound octanoyl chain to produce the lipoyl cofactor. To activate its substrate for sulfur insertion, LipA uses a [4Fe-4S] cluster and S-adenosylmethionine (AdoMet) radical chemistry; the remainder of the reaction mechanism, especially the source of the sulfur, has been less clear. One controversial proposal involves the removal of sulfur from a second (auxiliary) [4Fe-4S] cluster on the enzyme, resulting in destruction of the cluster during each round of catalysis. Here, we present two high-resolution crystal structures of LipA from Mycobacterium tuberculosis: one in its resting state and one at an intermediate state during turnover. In the resting state, an auxiliary [4Fe-4S] cluster has an unusual serine ligation to one of the irons. After reaction with an octanoyllysine-containing 8-mer peptide substrate and 1 eq AdoMet, conditions that allow for the first sulfur insertion but not the second insertion, the serine ligand dissociates from the cluster, the iron ion is lost, and a sulfur atom that is still part of the cluster becomes covalently attached to C6 of the octanoyl substrate. This intermediate structure provides a clear picture of iron-sulfur cluster destruction in action, supporting the role of the auxiliary cluster as the sulfur source in the LipA reaction and describing a radical strategy for sulfur incorporation into completely unactivated substrates.
Collapse
|
11
|
Assembly of Lipoic Acid on Its Cognate Enzymes: an Extraordinary and Essential Biosynthetic Pathway. Microbiol Mol Biol Rev 2016; 80:429-50. [PMID: 27074917 DOI: 10.1128/mmbr.00073-15] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Although the structure of lipoic acid and its role in bacterial metabolism were clear over 50 years ago, it is only in the past decade that the pathways of biosynthesis of this universally conserved cofactor have become understood. Unlike most cofactors, lipoic acid must be covalently bound to its cognate enzyme proteins (the 2-oxoacid dehydrogenases and the glycine cleavage system) in order to function in central metabolism. Indeed, the cofactor is assembled on its cognate proteins rather than being assembled and subsequently attached as in the typical pathway, like that of biotin attachment. The first lipoate biosynthetic pathway determined was that of Escherichia coli, which utilizes two enzymes to form the active lipoylated protein from a fatty acid biosynthetic intermediate. Recently, a more complex pathway requiring four proteins was discovered in Bacillus subtilis, which is probably an evolutionary relic. This pathway requires the H protein of the glycine cleavage system of single-carbon metabolism to form active (lipoyl) 2-oxoacid dehydrogenases. The bacterial pathways inform the lipoate pathways of eukaryotic organisms. Plants use the E. coli pathway, whereas mammals and fungi probably use the B. subtilis pathway. The lipoate metabolism enzymes (except those of sulfur insertion) are members of PFAM family PF03099 (the cofactor transferase family). Although these enzymes share some sequence similarity, they catalyze three markedly distinct enzyme reactions, making the usual assignment of function based on alignments prone to frequent mistaken annotations. This state of affairs has possibly clouded the interpretation of one of the disorders of human lipoate metabolism.
Collapse
|
12
|
Lanz ND, Lee KH, Horstmann AK, Pandelia ME, Cicchillo RM, Krebs C, Booker SJ. Characterization of Lipoyl Synthase from Mycobacterium tuberculosis. Biochemistry 2016; 55:1372-83. [PMID: 26841001 DOI: 10.1021/acs.biochem.5b01216] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The prevalence of multiple and extensively drug-resistant strains of Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis, is on the rise, necessitating the identification of new targets to combat an organism that has infected one-third of the world's population, according to the World Health Organization. The biosynthesis of the lipoyl cofactor is one possible target, given its critical importance in cellular metabolism and the apparent lack of functional salvage pathways in Mtb that are found in humans and many other organisms. The lipoyl cofactor is synthesized de novo in two committed steps, involving the LipB-catalyzed transfer of an octanoyl chain derived from fatty acid biosynthesis to a lipoyl carrier protein and the LipA-catalyzed insertion of sulfur atoms at C6 and C8 of the octanoyl chain. A number of in vitro studies of lipoyl synthases from Escherichia coli, Sulfolobus solfataricus, and Thermosynechococcus elongatus have been conducted, but the enzyme from Mtb has not been characterized. Herein, we show that LipA from Mtb contains two [4Fe-4S] clusters and converts an octanoyl peptide substrate to the corresponding lipoyl peptide product via the same C6-monothiolated intermediate as that observed in the E. coli LipA reaction. In addition, we show that LipA from Mtb forms a complex with the H protein of the glycine cleavage system and that the strength of association is dependent on the presence of S-adenosyl-l-methionine. We also show that LipA from Mtb can complement a lipA mutant of E. coli, demonstrating the commonalities of the two enzymes. Lastly, we show that the substrate for LipA, which normally acts on a post-translationally modified protein, can be reduced to carboxybenzyl-octanoyllysine.
Collapse
Affiliation(s)
- Nicholas D Lanz
- Department of Biochemistry and Molecular Biology, ‡Department of Chemistry, and §The Howard Hughes Medical Institute, The Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | - Kyung-Hoon Lee
- Department of Biochemistry and Molecular Biology, ‡Department of Chemistry, and §The Howard Hughes Medical Institute, The Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | - Abigail K Horstmann
- Department of Biochemistry and Molecular Biology, ‡Department of Chemistry, and §The Howard Hughes Medical Institute, The Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | - Maria-Eirini Pandelia
- Department of Biochemistry and Molecular Biology, ‡Department of Chemistry, and §The Howard Hughes Medical Institute, The Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | - Robert M Cicchillo
- Department of Biochemistry and Molecular Biology, ‡Department of Chemistry, and §The Howard Hughes Medical Institute, The Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | - Carsten Krebs
- Department of Biochemistry and Molecular Biology, ‡Department of Chemistry, and §The Howard Hughes Medical Institute, The Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | - Squire J Booker
- Department of Biochemistry and Molecular Biology, ‡Department of Chemistry, and §The Howard Hughes Medical Institute, The Pennsylvania State University , University Park, Pennsylvania 16802, United States
| |
Collapse
|
13
|
Abstract
Two vitamins, biotin and lipoic acid, are essential in all three domains of life. Both coenzymes function only when covalently attached to key metabolic enzymes. There they act as "swinging arms" that shuttle intermediates between two active sites (= covalent substrate channeling) of key metabolic enzymes. Although biotin was discovered over 100 years ago and lipoic acid 60 years ago, it was not known how either coenzyme is made until recently. In Escherichia coli the synthetic pathways for both coenzymes have now been worked out for the first time. The late steps of biotin synthesis, those involved in assembling the fused rings, were well described biochemically years ago, although recent progress has been made on the BioB reaction, the last step of the pathway in which the biotin sulfur moiety is inserted. In contrast, the early steps of biotin synthesis, assembly of the fatty acid-like "arm" of biotin were unknown. It has now been demonstrated that the arm is made by using disguised substrates to gain entry into the fatty acid synthesis pathway followed by removal of the disguise when the proper chain length is attained. The BioC methyltransferase is responsible for introducing the disguise, and the BioH esterase is responsible for its removal. In contrast to biotin, which is attached to its cognate proteins as a finished molecule, lipoic acid is assembled on its cognate proteins. An octanoyl moiety is transferred from the octanoyl acyl carrier protein of fatty acid synthesis to a specific lysine residue of a cognate protein by the LipB octanoyltransferase followed by sulfur insertion at carbons C-6 and C-8 by the LipA lipoyl synthetase. Assembly on the cognate proteins regulates the amount of lipoic acid synthesized, and, thus, there is no transcriptional control of the synthetic genes. In contrast, transcriptional control of the biotin synthetic genes is wielded by a remarkably sophisticated, yet simple, system, exerted through BirA, a dual-function protein that both represses biotin operon transcription and ligates biotin to its cognate proteins.
Collapse
|
14
|
Abstract
Two vitamins, biotin and lipoic acid, are essential in all three domains of life. Both coenzymes function only when covalently attached to key metabolic enzymes. There they act as "swinging arms" that shuttle intermediates between two active sites (= covalent substrate channeling) of key metabolic enzymes. Although biotin was discovered over 100 years ago and lipoic acid was discovered 60 years ago, it was not known how either coenzyme is made until recently. In Escherichia coli the synthetic pathways for both coenzymes have now been worked out for the first time. The late steps of biotin synthesis, those involved in assembling the fused rings, were well described biochemically years ago, although recent progress has been made on the BioB reaction, the last step of the pathway, in which the biotin sulfur moiety is inserted. In contrast, the early steps of biotin synthesis, assembly of the fatty acid-like "arm" of biotin, were unknown. It has now been demonstrated that the arm is made by using disguised substrates to gain entry into the fatty acid synthesis pathway followed by removal of the disguise when the proper chain length is attained. The BioC methyltransferase is responsible for introducing the disguise and the BioH esterase for its removal. In contrast to biotin, which is attached to its cognate proteins as a finished molecule, lipoic acid is assembled on its cognate proteins. An octanoyl moiety is transferred from the octanoyl-ACP of fatty acid synthesis to a specific lysine residue of a cognate protein by the LipB octanoyl transferase, followed by sulfur insertion at carbons C6 and C8 by the LipA lipoyl synthetase. Assembly on the cognate proteins regulates the amount of lipoic acid synthesized, and thus there is no transcriptional control of the synthetic genes. In contrast, transcriptional control of the biotin synthetic genes is wielded by a remarkably sophisticated, yet simple, system exerted through BirA, a dual-function protein that both represses biotin operon transcription and ligates biotin to its cognate protein.
Collapse
|
15
|
Warui DM, Pandelia ME, Rajakovich LJ, Krebs C, Bollinger JM, Booker SJ. Efficient delivery of long-chain fatty aldehydes from the Nostoc punctiforme acyl-acyl carrier protein reductase to its cognate aldehyde-deformylating oxygenase. Biochemistry 2015; 54:1006-15. [PMID: 25496470 DOI: 10.1021/bi500847u] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A two-step pathway consisting of an acyl-acyl carrier protein (ACP) reductase (AAR) and an aldehyde-deformylating oxygenase (ADO) allows various cyanobacteria to convert long-chain fatty acids into hydrocarbons. AAR catalyzes the two-electron, NADPH-dependent reduction of a fatty acid attached to ACP via a thioester linkage to the corresponding fatty aldehyde, while ADO transforms the fatty aldehyde to a Cn-1 hydrocarbon and C1-derived formate. Considering that heptadec(a/e)ne is the most prevalent hydrocarbon produced by cyanobacterial ADOs, the insolubility of its precursor, octadec(a/e)nal, poses a conundrum with respect to its acquisition by ADO. Herein, we report that AAR from the cyanobacterium Nostoc punctiforme is activated almost 20-fold by potassium and other monovalent cations of similar ionic radius, and that AAR and ADO form a tight isolable complex with a Kd of 3 ± 0.3 μM. In addition, we show that when the aldehyde substrate is supplied to ADO by AAR, efficient in vitro turnover is observed in the absence of solubilizing agents. Similarly to studies by Lin et al. with AAR from Synechococcus elongatus [Lin et al. (2013) FEBS J. 280, 4773-4781], we show that catalysis by AAR proceeds via formation of a covalent intermediate involving a cysteine residue that we have identified as Cys294. Moreover, AAR specifically transfers the pro-R hydride of NADPH to the Cys294-thioester intermediate to afford its aldehyde product. Our results suggest that the interaction between AAR and ADO facilitates either direct transfer of the aldehyde product of AAR to ADO or formation of the aldehyde product in a microenvironment allowing for its efficient uptake by ADO.
Collapse
Affiliation(s)
- Douglas M Warui
- Department of Biochemistry and Molecular Biology, and ‡Department of Chemistry, The Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | | | | | | | | | | |
Collapse
|
16
|
Lanz ND, Pandelia ME, Kakar ES, Lee KH, Krebs C, Booker SJ. Evidence for a catalytically and kinetically competent enzyme-substrate cross-linked intermediate in catalysis by lipoyl synthase. Biochemistry 2014; 53:4557-72. [PMID: 24901788 PMCID: PMC4216189 DOI: 10.1021/bi500432r] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Lipoyl synthase (LS) catalyzes the final step in lipoyl cofactor biosynthesis: the insertion of two sulfur atoms at C6 and C8 of an (N(6)-octanoyl)-lysyl residue on a lipoyl carrier protein (LCP). LS is a member of the radical SAM superfamily, enzymes that use a [4Fe-4S] cluster to effect the reductive cleavage of S-adenosyl-l-methionine (SAM) to l-methionine and a 5'-deoxyadenosyl 5'-radical (5'-dA(•)). In the LS reaction, two equivalents of 5'-dA(•) are generated sequentially to abstract hydrogen atoms from C6 and C8 of the appended octanoyl group, initiating sulfur insertion at these positions. The second [4Fe-4S] cluster on LS, termed the auxiliary cluster, is proposed to be the source of the inserted sulfur atoms. Herein, we provide evidence for the formation of a covalent cross-link between LS and an LCP or synthetic peptide substrate in reactions in which insertion of the second sulfur atom is slowed significantly by deuterium substitution at C8 or by inclusion of limiting concentrations of SAM. The observation that the proteins elute simultaneously by anion-exchange chromatography but are separated by aerobic SDS-PAGE is consistent with their linkage through the auxiliary cluster that is sacrificed during turnover. Generation of the cross-linked species with a small, unlabeled (N(6)-octanoyl)-lysyl-containing peptide substrate allowed demonstration of both its chemical and kinetic competence, providing strong evidence that it is an intermediate in the LS reaction. Mössbauer spectroscopy of the cross-linked intermediate reveals that one of the [4Fe-4S] clusters, presumably the auxiliary cluster, is partially disassembled to a 3Fe-cluster with spectroscopic properties similar to those of reduced [3Fe-4S](0) clusters.
Collapse
Affiliation(s)
- Nicholas D Lanz
- Department of Biochemistry and Molecular Biology and ‡Department of Chemistry, The Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | | | | | | | | | | |
Collapse
|
17
|
Chen C, Han X, Zou X, Li Y, Yang L, Cao K, Xu J, Long J, Liu J, Feng Z. 4-methylene-2-octyl-5-oxotetrahydrofuran-3-carboxylic acid (C75), an inhibitor of fatty-acid synthase, suppresses the mitochondrial fatty acid synthesis pathway and impairs mitochondrial function. J Biol Chem 2014; 289:17184-94. [PMID: 24784139 DOI: 10.1074/jbc.m114.550806] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
4-Methylene-2-octyl-5-oxotetrahydrofuran-3-carboxylic acid (C75) is a synthetic fatty-acid synthase (FASN) inhibitor with potential therapeutic effects in several cancer models. Human mitochondrial β-ketoacyl-acyl carrier protein synthase (HsmtKAS) is a key enzyme in the newly discovered mitochondrial fatty acid synthesis pathway that can produce the substrate for lipoic acid (LA) synthesis. HsmtKAS shares conserved catalytic domains with FASN, which are responsible for binding to C75. In our study, we explored the possible effect of C75 on HsmtKAS and mitochondrial function. C75 treatment decreased LA content, impaired mitochondrial function, increased reactive oxygen species content, and reduced cell viability. HsmtKAS but not FASN knockdown had an effect that was similar to C75 treatment. In addition, an LA supplement efficiently inhibited C75-induced mitochondrial dysfunction and oxidative stress. Overexpression of HsmtKAS showed cellular protection against low dose C75 addition, whereas there was no protective effect upon high dose C75 addition. In summary, the mitochondrial fatty acid synthesis pathway has a vital role in mitochondrial function. Besides FASN, C75 might also inhibit HsmtKAS, thereby reducing LA production, impairing mitochondrial function, and potentially having toxic effects. LA supplements sufficiently ameliorated the toxicity of C75, showing that a combination of C75 and LA may be a reliable cancer treatment.
Collapse
Affiliation(s)
- Cong Chen
- From the Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology (FIST), Xi'an Jiaotong University, Xi'an 710049, China
| | - Xiao Han
- From the Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology (FIST), Xi'an Jiaotong University, Xi'an 710049, China
| | - Xuan Zou
- From the Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology (FIST), Xi'an Jiaotong University, Xi'an 710049, China
| | - Yuan Li
- From the Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology (FIST), Xi'an Jiaotong University, Xi'an 710049, China
| | - Liang Yang
- From the Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology (FIST), Xi'an Jiaotong University, Xi'an 710049, China
| | - Ke Cao
- From the Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology (FIST), Xi'an Jiaotong University, Xi'an 710049, China
| | - Jie Xu
- From the Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology (FIST), Xi'an Jiaotong University, Xi'an 710049, China
| | - Jiangang Long
- From the Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology (FIST), Xi'an Jiaotong University, Xi'an 710049, China
| | - Jiankang Liu
- From the Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology (FIST), Xi'an Jiaotong University, Xi'an 710049, China
| | - Zhihui Feng
- From the Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology (FIST), Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
18
|
Hassan BH, Cronan JE. Protein-protein interactions in assembly of lipoic acid on the 2-oxoacid dehydrogenases of aerobic metabolism. J Biol Chem 2011; 286:8263-8276. [PMID: 21209092 DOI: 10.1074/jbc.m110.194191] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Lipoic acid is a covalently attached cofactor essential for the activity of 2-oxoacid dehydrogenases and the glycine cleavage system. In the absence of lipoic acid modification, the dehydrogenases are inactive, and aerobic metabolism is blocked. In Escherichia coli, two pathways for the attachment of lipoic acid exist, a de novo biosynthetic pathway dependent on the activities of the LipB and LipA proteins and a lipoic acid scavenging pathway catalyzed by the LplA protein. LipB is responsible for octanoylation of the E2 components of 2-oxoacid dehydrogenases to provide the substrates of LipA, an S-adenosyl-L-methionine radical enzyme that inserts two sulfur atoms into the octanoyl moiety to give the active lipoylated dehydrogenase complexes. We report that the intact pyruvate and 2-oxoglutarate dehydrogenase complexes specifically copurify with both LipB and LipA. Proteomic, genetic, and dehydrogenase activity data indicate that all of the 2-oxoacid dehydrogenase components are present. In contrast, LplA, the lipoate protein ligase enzyme of lipoate salvage, shows no interaction with the 2-oxoacid dehydrogenases. The interaction is specific to the dehydrogenases in that the third lipoic acid-requiring enzyme of Escherichia coli, the glycine cleavage system H protein, does not copurify with either LipA or LipB. Studies of LipB interaction with engineered variants of the E2 subunit of 2-oxoglutarate dehydrogenase indicate that binding sites for LipB reside both in the lipoyl domain and catalytic core sequences. We also report that LipB forms a very tight, albeit noncovalent, complex with acyl carrier protein. These results indicate that lipoic acid is not only assembled on the dehydrogenase lipoyl domains but that the enzymes that catalyze the assembly are also present "on site."
Collapse
Affiliation(s)
| | - John E Cronan
- From the Departments of Biochemistry and; Microbiology, University of Illinois, Urbana, Illinois 61801.
| |
Collapse
|
19
|
Christensen QH, Cronan JE. Lipoic acid synthesis: a new family of octanoyltransferases generally annotated as lipoate protein ligases. Biochemistry 2010; 49:10024-36. [PMID: 20882995 DOI: 10.1021/bi101215f] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Bacillus subtilis lacks a recognizable homologue of the LipB octanoyltransferase, an enzyme essential for lipoic acid synthesis in Escherichia coli. LipB transfers the octanoyl moiety from octanoyl-acyl carrier protein to the lipoyl domains of the 2-oxoacid dehydrogenases via a thioester-linked octanoyl-LipB intermediate. The octanoylated dehydrogenase is then converted to the enzymatically active lipoylated species by insertion of two sulfur atoms into the octanoyl moiety by the S-adenosyl-l-methionine radical enzyme, LipA (lipoate synthase). B. subtilis synthesizes lipoic acid and contains a LipA homologue that is fully functional in E. coli. Therefore, the lack of a LipB homologue presented the puzzle of how B. subtilis synthesizes the LipA substrate. We report that B. subtilis encodes an octanoyltransferase that has virtually no sequence resemblance to E. coli LipB but instead has a sequence that resembles that of the E. coli lipoate ligase, LplA. On the basis of this resemblance, these genes have generally been annotated as encoding a lipoate ligase, an enzyme that in E. coli scavenges lipoic acid from the environment but plays no role in de novo synthesis. We have named the B. subtilis octanoyltransferase LipM and find that, like LipB, the LipM reaction proceeds through a thioester-linked acyl enzyme intermediate. The LipM active site nucleophile was identified as C150 by the finding that this thiol becomes modified when LipM is expressed in E. coli. The level of the octanoyl-LipM intermediate can be significantly decreased by blocking fatty acid synthesis during LipM expression, and C150 was confirmed as an essential active site residue by site-directed mutagenesis. LipM homologues seem the sole type of octanoyltransferase present in the firmicutes and are also present in the cyanobacteria. LipM type octanoyltransferases represent a new clade of the PF03099 protein family, suggesting that octanoyl transfer activity has evolved at least twice within this superfamily.
Collapse
Affiliation(s)
- Quin H Christensen
- Department of Microbiology, University of Illinois, Urbana, Illinois 61801, United States
| | | |
Collapse
|
20
|
Hiltunen JK, Autio KJ, Schonauer MS, Kursu VAS, Dieckmann CL, Kastaniotis AJ. Mitochondrial fatty acid synthesis and respiration. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:1195-202. [PMID: 20226757 DOI: 10.1016/j.bbabio.2010.03.006] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Revised: 02/24/2010] [Accepted: 03/03/2010] [Indexed: 10/19/2022]
Abstract
Recent studies have revealed that mitochondria are able to synthesize fatty acids in a malonyl-CoA/acyl carrier protein (ACP)-dependent manner. This pathway resembles bacterial fatty acid synthesis (FAS) type II, which uses discrete, nuclearly encoded proteins. Experimental evidence, obtained mainly through using yeast as a model system, indicates that this pathway is essential for mitochondrial respiratory function. Curiously, the deficiency in mitochondrial FAS cannot be complemented by inclusion of fatty acids in the culture medium or by products of the cytosolic FAS complex. Defects in mitochondrial FAS in yeast result in the inability to grow on nonfermentable carbon sources, the loss of mitochondrial cytochromes a/a3 and b, mitochondrial RNA processing defects, and loss of cellular lipoic acid. Eukaryotic FAS II generates octanoyl-ACP, a substrate for mitochondrial lipoic acid synthase. Endogenous lipoic acid synthesis challenges the hypothesis that lipoic acid can be provided as an exogenously supplied vitamin. Purified eukaryotic FAS II enzymes are catalytically active in vitro using substrates with an acyl chain length of up to 16 carbon atoms. However, with the exception of 3-hydroxymyristoyl-ACP, a component of respiratory complex I in higher eukaryotes, the fate of long-chain fatty acids synthesized by the mitochondrial FAS pathway remains an enigma. The linkage of FAS II genes to published animal models for human disease supports the hypothesis that mitochondrial FAS dysfunction leads to the development of disorders in mammals.
Collapse
Affiliation(s)
- J Kalervo Hiltunen
- Department of Biochemistry and Biocenter Oulu, University of Oulu, PO Box 3000, FI-90014 Oulu, Finland.
| | | | | | | | | | | |
Collapse
|
21
|
Schonauer MS, Kastaniotis AJ, Kursu VAS, Hiltunen JK, Dieckmann CL. Lipoic acid synthesis and attachment in yeast mitochondria. J Biol Chem 2009; 284:23234-42. [PMID: 19570983 DOI: 10.1074/jbc.m109.015594] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Lipoic acid is a sulfur-containing cofactor required for the function of several multienzyme complexes involved in the oxidative decarboxylation of alpha-keto acids and glycine. Mechanistic details of lipoic acid metabolism are unclear in eukaryotes, despite two well defined pathways for synthesis and covalent attachment of lipoic acid in prokaryotes. We report here the involvement of four genes in the synthesis and attachment of lipoic acid in Saccharomyces cerevisiae. LIP2 and LIP5 are required for lipoylation of all three mitochondrial target proteins: Lat1 and Kgd2, the respective E2 subunits of pyruvate dehydrogenase and alpha-ketoglutarate dehydrogenase, and Gcv3, the H protein of the glycine cleavage enzyme. LIP3, which encodes a lipoate-protein ligase homolog, is necessary for lipoylation of Lat1 and Kgd2, and the enzymatic activity of Lip3 is essential for this function. Finally, GCV3, encoding the H protein target of lipoylation, is itself absolutely required for lipoylation of Lat1 and Kgd2. We show that lipoylated Gcv3, and not glycine cleavage activity per se, is responsible for this function. Demonstration that a target of lipoylation is required for lipoylation is a novel result. Through analysis of the role of these genes in protein lipoylation, we conclude that only one pathway for de novo synthesis and attachment of lipoic acid exists in yeast. We propose a model for protein lipoylation in which Lip2, Lip3, Lip5, and Gcv3 function in a complex, which may be regulated by the availability of acetyl-CoA, and which in turn may regulate mitochondrial gene expression.
Collapse
Affiliation(s)
- Melissa S Schonauer
- Department of Biochemistry, University of Arizona, Tucson, Arizona 85721, USA
| | | | | | | | | |
Collapse
|
22
|
Christensen QH, Cronan JE. The Thermoplasma acidophilum LplA-LplB complex defines a new class of bipartite lipoate-protein ligases. J Biol Chem 2009; 284:21317-26. [PMID: 19520844 DOI: 10.1074/jbc.m109.015016] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Lipoic acid is a covalently bound cofactor found throughout the domains of life that is required for aerobic metabolism of 2-oxoacids and for C(1) metabolism. Utilization of exogenous lipoate is catalyzed by a ligation reaction that proceeds via a lipoyl-adenylate intermediate to attach the cofactor to the epsilon-amino group of a conserved lysine residue of protein lipoyl domains. The lipoyl ligases of demonstrated function have a large N-terminal catalytic domain and a small C-terminal accessory domain. Half of the members of the LplA family detected in silico have only the large catalytic domain. Two x-ray structures of the Thermoplasma acidophilum LplA structure have been reported, although the protein was reported to lack ligase activity. McManus et al. (McManus, E., Luisi, B. F., and Perham, R. N. (2006) J. Mol. Biol. 356, 625-637) hypothesized that the product of an adjacent gene was also required for ligase activity. We have shown this to be the case and have named the second protein, LplB. We found that complementation of Escherichia coli strains lacking lipoate ligase with T. acidophilum LplA was possible only when LplB was also present. LplA had no detectable ligase activity in vitro in the absence of LplB. Moreover LplA and LplB were shown to interact and were purified as a heterodimer. LplB was required for lipoyl-adenylate formation but was not required for transfer of the lipoyl moiety of lipoyl-adenylate to acceptor proteins. Surveys of sequenced genomes show that most lipoyl ligases of the kingdom Archaea are heterodimeric. We propose that the presence of an accessory domain provides a diagnostic to distinguish lipoyl ligase homologues from other members of the lipoate/biotin attachment enzyme family.
Collapse
|
23
|
Rafi S, Novichenok P, Kolappan S, Stratton CF, Rawat R, Kisker C, Simmerling C, Tonge PJ. Structure of acyl carrier protein bound to FabI, the FASII enoyl reductase from Escherichia coli. J Biol Chem 2006; 281:39285-39293. [PMID: 17012233 PMCID: PMC4819000 DOI: 10.1074/jbc.m608758200] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Acyl carrier proteins play a central role in metabolism by transporting substrates in a wide variety of pathways including the biosynthesis of fatty acids and polyketides. However, despite their importance, there is a paucity of direct structural information concerning the interaction of ACPs with enzymes in these pathways. Here we report the structure of an acyl-ACP substrate bound to the Escherichia coli fatty acid biosynthesis enoyl reductase enzyme (FabI), based on a combination of x-ray crystallography and molecular dynamics simulation. The structural data are in agreement with kinetic studies on wild-type and mutant FabIs, and reveal that the complex is primarily stabilized by interactions between acidic residues in the ACP helix alpha2 and a patch of basic residues adjacent to the FabI substrate-binding loop. Unexpectedly, the acyl-pantetheine thioester carbonyl is not hydrogen-bonded to Tyr(156), a conserved component of the short chain alcohol dehydrogenase/reductase superfamily active site triad. FabI is a proven target for drug discovery and the present structure provides insight into the molecular determinants that regulate the interaction of ACPs with target proteins.
Collapse
Affiliation(s)
- Salma Rafi
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794
- Biochemistry and Structural Biology Graduate Program, Stony Brook University, Stony Brook, NY 11794
| | - Polina Novichenok
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794
| | - Subramaniapillai Kolappan
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794
- Center for Structural Biology, Stony Brook University, Stony Brook, NY 11794
| | | | - Richa Rawat
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794
| | - Caroline Kisker
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794
- Center for Structural Biology, Stony Brook University, Stony Brook, NY 11794
- Biochemistry and Structural Biology Graduate Program, Stony Brook University, Stony Brook, NY 11794
| | - Carlos Simmerling
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794
- Center for Structural Biology, Stony Brook University, Stony Brook, NY 11794
- Biochemistry and Structural Biology Graduate Program, Stony Brook University, Stony Brook, NY 11794
| | - Peter J. Tonge
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794
- Biochemistry and Structural Biology Graduate Program, Stony Brook University, Stony Brook, NY 11794
| |
Collapse
|
24
|
Douglas P, Kriek M, Bryant P, Roach PL. Lipoyl Synthase Inserts Sulfur Atoms into an Octanoyl Substrate in a Stepwise Manner. Angew Chem Int Ed Engl 2006; 45:5197-9. [PMID: 16835858 DOI: 10.1002/anie.200601910] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Paul Douglas
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, UK
| | | | | | | |
Collapse
|
25
|
Douglas P, Kriek M, Bryant P, Roach PL. Lipoyl Synthase Inserts Sulfur Atoms into an Octanoyl Substrate in a Stepwise Manner. Angew Chem Int Ed Engl 2006. [DOI: 10.1002/ange.200601910] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
26
|
Ma Q, Zhao X, Eddine AN, Geerlof A, Li X, Cronan JE, Kaufmann SHE, Wilmanns M. The Mycobacterium tuberculosis LipB enzyme functions as a cysteine/lysine dyad acyltransferase. Proc Natl Acad Sci U S A 2006; 103:8662-7. [PMID: 16735476 PMCID: PMC1472244 DOI: 10.1073/pnas.0510436103] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Lipoic acid is essential for the activation of a number of protein complexes involved in key metabolic processes. Growth of Mycobacterium tuberculosis relies on a pathway in which the lipoate attachment group is synthesized from an endogenously produced octanoic acid moiety. In patients with multiple-drug-resistant M. tuberculosis, expression of one gene from this pathway, lipB, encoding for octanoyl-[acyl carrier protein]-protein acyltransferase is considerably up-regulated, thus making it a potential target in the search for novel antiinfectives against tuberculosis. Here we present the crystal structure of the M. tuberculosis LipB protein at atomic resolution, showing an unexpected thioether-linked active-site complex with decanoic acid. We provide evidence that the transferase functions as a cysteine/lysine dyad acyltransferase, in which two invariant residues (Lys-142 and Cys-176) are likely to function as acid/base catalysts. Analysis by MS reveals that the LipB catalytic reaction proceeds by means of an internal thioesteracyl intermediate. Structural comparison of LipB with lipoate protein ligase A indicates that, despite conserved structural and sequence active-site features in the two enzymes, 4'-phosphopantetheine-bound octanoic acid recognition is a specific property of LipB.
Collapse
Affiliation(s)
- Qingjun Ma
- *EMBL–Hamburg Unit, European Molecular Biology Laboratory, Notkestrasse 85, 22603 Hamburg, Germany
| | - Xin Zhao
- Departments of Microbiology and Biochemistry, University of Illinois, Urbana, IL 61801
| | - Ali Nasser Eddine
- Department of Immunology, Max Planck Institute for Infection Biology, Schumannstrasse 21/22, 10117 Berlin, Germany; and
| | - Arie Geerlof
- *EMBL–Hamburg Unit, European Molecular Biology Laboratory, Notkestrasse 85, 22603 Hamburg, Germany
| | - Xinping Li
- Proteomics Core Facility, European Molecular Biology Laboratory, Meyerhofstrasse 1, D-69117 Heidelberg, Germany
| | - John E. Cronan
- Departments of Microbiology and Biochemistry, University of Illinois, Urbana, IL 61801
| | - Stefan H. E. Kaufmann
- Department of Immunology, Max Planck Institute for Infection Biology, Schumannstrasse 21/22, 10117 Berlin, Germany; and
| | - Matthias Wilmanns
- *EMBL–Hamburg Unit, European Molecular Biology Laboratory, Notkestrasse 85, 22603 Hamburg, Germany
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
27
|
Abstract
A series of genetic, biochemical, and physiological studies in Escherichia coli have elucidated the unusual pathway whereby lipoic acid is synthesized. Here we describe the results of these investigations as well as the functions of enzyme proteins that are modified by covalent attachment of lipoic acid and the enzymes that catalyze the modification reactions. Some aspects of the synthesis and attachment mechanisms have strong parallels in the pathways used in synthesis and attachment of biotin and these are compared and contrasted. Homologues of the lipoic acid metabolism proteins are found in all branches of life, save the Archea, and thus these findings seem to have wide biological relevance.
Collapse
Affiliation(s)
- John E Cronan
- Department of Microbiology, University of Illinois, Urbana, IL 61801, USA
| | | | | |
Collapse
|