1
|
Li J, Jia Y, Zhang D, Li Z, Zhang S, Liu X. Molecular identification of carboxylesterase genes and their potential roles in the insecticides susceptibility of Grapholita molesta. INSECT MOLECULAR BIOLOGY 2023; 32:305-315. [PMID: 36661850 DOI: 10.1111/imb.12831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 01/16/2023] [Indexed: 05/15/2023]
Abstract
Grapholita molesta is one of the most damaging pests worldwide in stone and pome fruits. Application of chemical pesticides is still the main method to control this pest, which results in resistance to several types of insecticides. Carboxylesterase (CarE) is one of the important enzymes involved in the detoxification metabolism and tolerance of xenobiotics and insecticides. However, the roles of CarEs in insecticides susceptibility of G. molesta are still unclear. In the present study, the enzyme activity of CarEs and the mRNA expression of six CarE genes were consistently elevated after treatment with three insecticides (emamectin benzoate, lambda-cyhalothrin, and chlorantraniliprole). According to spatio-temporal expression profiles, six CarE genes expressed differently in different developmental stages, and highly expressed in some detoxification metabolic organs. RNAi-mediated knockdown of these six CarE genes indicated that the susceptibility of G. molesta to all these three insecticides were obviously raised after GmCarE9, GmCarE14, GmCarE16, and GmCarE22 knockdown, respectively. Overall, these results demonstrated that GmCarE9, GmCarE14, GmCarE16, and GmCarE22 play a role in the susceptibility of G. molesta to emamectin benzoate, lambda-cyhalothrin, and chlorantraniliprole treatment. This study expands our understanding of CarEs in insects, that the same CarE gene could participate in the susceptibility to different insecticides.
Collapse
Affiliation(s)
- Jianying Li
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, People's Republic of China
| | - Yujie Jia
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, People's Republic of China
| | - Dongyue Zhang
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, People's Republic of China
| | - Zhen Li
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, People's Republic of China
| | - Songdou Zhang
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, People's Republic of China
| | - Xiaoxia Liu
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, People's Republic of China
| |
Collapse
|
2
|
Coetzee G, Smith JJ, Görgens JF. Influence of codon optimization, promoter, and strain selection on the heterologous production of a β-fructofuranosidase from Aspergillus fijiensis ATCC 20611 in Pichia pastoris. Folia Microbiol (Praha) 2022; 67:339-350. [PMID: 35133569 DOI: 10.1007/s12223-022-00947-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 01/01/2022] [Indexed: 12/21/2022]
Abstract
Fructooligosaccharides (FOS) are compounds possessing various health properties and are added to functional foods as prebiotics. The commercial production of FOS is done through the enzymatic transfructolysation of sucrose by β-fructofuranosidases which is found in various organisms of which Aureobasidium pullulans and Aspergillus niger are the most well known. This study overexpressed two differently codon-optimized variations of the Aspergillus fijiensis β-fructofuranosidase-encoding gene (fopA) under the transcriptional control of either the alcohol oxidase (AOX1) or glyceraldehyde-3-phosphate dehydrogenase (GAP) promoters. When cultivated in shake flasks, the two codon-optimized variants displayed similar volumetric enzyme activities when expressed under control of the same promoter with the GAP strains producing 11.7 U/ml and 12.7 U/ml, respectively, and the AOX1 strains 95.8 U/ml and 98.6 U/ml, respectively. However, the highest production levels were achieved for both codon-optimized genes when expressed under control of the AOX1 promoter. The AOX1 promoter was superior to the GAP promoter in bioreactor cultivations for both codon-optimized genes with 13,702 U/ml and 2718 U/ml for the AOX1 promoter for ATUM and GeneArt®, respectively, and 6057 U/ml and 1790 U/ml for the GAP promoter for ATUM and GeneArt®, respectively. The ATUM-optimized gene produced higher enzyme activities when compared to the one from GeneArt®, under the control of both promoters.
Collapse
Affiliation(s)
- Gerhardt Coetzee
- Department of Process Engineering, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa.
| | - Jacques J Smith
- Department of Process Engineering, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | - Johann F Görgens
- Department of Process Engineering, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| |
Collapse
|
3
|
Ouephanit C, Boonvitthya N, Bozonnet S, Chulalaksananukul W. High-Level Heterologous Expression of Endo-1,4-β-Xylanase from Penicillium citrinum in Pichia pastoris X-33 Directed through Codon Optimization and Optimized Expression. Molecules 2019; 24:molecules24193515. [PMID: 31569777 PMCID: PMC6804294 DOI: 10.3390/molecules24193515] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 09/20/2019] [Accepted: 09/24/2019] [Indexed: 11/28/2022] Open
Abstract
Most common industrial xylanases are produced from filamentous fungi. In this study, the codon-optimized xynA gene encoding xylanase A from the fungus Penicilium citrinum was successfully synthesized and expressed in the yeast Pichia pastoris. The levels of secreted enzyme activity under the control of glyceraldehyde-3-phosphate dehydrogenase (PGAP) and alcohol oxidase 1 (PAOX1) promoters were compared. The Pc Xyn11A was produced as a soluble protein and the total xylanase activity under the control of PGAP and PAOX1 was 34- and 193-fold, respectively, higher than that produced by the native strain of P. citrinum. The Pc Xyn11A produced under the control of the PAOX1 reached a maximum activity of 676 U/mL when induced with 1% (v/v) methanol every 24 h for 5 days. The xylanase was purified by ion exchange chromatography and then characterized. The enzyme was optimally active at 55 °C and pH 5.0 but stable over a broad pH range (3.0–9.0), retaining more than 80% of the original activity after 24 h or after pre-incubation at 40 °C for 1 h. With birchwood xylan as a substrate, Pc Xyn11A showed a Km(app) of 2.8 mg/mL, and a kcat of 243 s−1. The high level of secretion of Pc Xyn11A and its stability over a wide range of pH and moderate temperatures could make it useful for a variety of biotechnological applications.
Collapse
Affiliation(s)
- Chanika Ouephanit
- Program in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
- Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
- Biofuels by Biocatalysts Research Unit, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| | | | - Sophie Bozonnet
- LISBP, Université de Toulouse, CNRS, INRA, INSA, 31077 Toulouse, France.
| | - Warawut Chulalaksananukul
- Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
- Biofuels by Biocatalysts Research Unit, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
4
|
Li H, Ali Z, Liu X, Jiang L, Tang Y, Dai J. Expression of recombinant tachyplesin I in Pichia pastoris. Protein Expr Purif 2019; 157:50-56. [PMID: 30711625 DOI: 10.1016/j.pep.2019.01.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 01/20/2019] [Accepted: 01/30/2019] [Indexed: 11/19/2022]
Abstract
The development of antibiotic-resistant bacteria has become a major public health problem, prompting the search for alternative solutions. Tachyplesin I (TP-I) is an antimicrobial peptide, which exhibits potent and broad-spectrum activities against bacteria, fungi, viruses, and tumor cells. However, limited amounts of TP-I produced in horseshoe crab restrict its large-scale use. In order to solve this problem, a eukaryotic expression system of Pichia pastoris with high TP-I expression was constructed by gene engineering. To achieve high expression of TP-I, 74 amino acid-long peptide (4TP-1) was designed containing 4 copies of TP-I, and specific cleavage sites for pancreatic elastase (-Ala↓ or -Gly↓) and carboxypeptidase A (cleaves C terminal amino acid); these cleavage sites for enzymes were located between the four copies of TP-I. The gene sequence for the designed peptide was synthesized taking into consideration codon preferences for P. pastoris, and cloned into the highly efficient expression vector pGAPZα B. Host Pichia pastoris strain GS115 cells were transfected by the constructed expression vector pGAPZα B-4tp-I by electroporation. Tricine-SDS-PAGE electrophoresis was carried out to detect the expression of target peptides in the fermentation medium. This analysis showed a protein band of 3.3 kDa, identical to that of chemically synthesized TP-I, verifying that successful synthesis and secretion of TP-I by genetically engineered P. pastoris. The concentration of TP-I in the fermentation broth was 27.24-29.53 mg/L. High-resolution mass spectrometry analysis documented that the TP-I monomer had the same molecular weight, 2262.85, as the designed 17-amino acid sequence. The recombinant TP-I peptide displayed different levels of bactericidal activity against Escherichia coli, Bacillus subtilis, Pseudomonas aeruginosa, and Staphylococcus aureus. Thus, the present study demonstrated the feasibility of achieving high levels of expression of TP-I in P. pastoris.
Collapse
Affiliation(s)
- Hanmei Li
- Shenzhen Key Laboratory of Fermentation, Purification and Analysis, Shenzhen Polytechnic, Shenzhen, 518055, China
| | - Zeeshan Ali
- Shenzhen Key Laboratory of Fermentation, Purification and Analysis, Shenzhen Polytechnic, Shenzhen, 518055, China; School of Medicine, Southeast University, Nanjing, 210009, China
| | - Xiaolong Liu
- Shenzhen Key Laboratory of Fermentation, Purification and Analysis, Shenzhen Polytechnic, Shenzhen, 518055, China
| | - Li Jiang
- School of Medicine, Southeast University, Nanjing, 210009, China
| | - Yongjun Tang
- Shenzhen Key Laboratory of Fermentation, Purification and Analysis, Shenzhen Polytechnic, Shenzhen, 518055, China.
| | - Jianguo Dai
- Shenzhen Key Laboratory of Fermentation, Purification and Analysis, Shenzhen Polytechnic, Shenzhen, 518055, China.
| |
Collapse
|
5
|
Chen Q, Zhou Y, Yu J, Liu W, Li F, Xian M, Nian R, Song H, Feng D. An efficient constitutive expression system for Anti-CEACAM5 nanobody production in the yeast Pichia pastoris. Protein Expr Purif 2018; 155:43-47. [PMID: 30414968 DOI: 10.1016/j.pep.2018.11.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 11/05/2018] [Indexed: 01/25/2023]
Abstract
Nanobodies offer multiple advantages over conventional antibodies in terms of size, stability, solubility, immunogenicity, and production costs, with improved tumor uptake and blood clearance. Additionally, the recombinant expression of nanobodies is robust in various expression systems, such as Escherichia coli, Saccharomyces cerevisiae and Pichia pastoris. P. pastoris is the most widely used microorganism for nanobody production, but all or almost all expression vectors developed for this system are based on the regulated promoter of the alcohol oxidase 1 gene (AOX1) that requires methanol for full induction. In this study, a constitutive anti-CEACAM5 nanobody expression system was constructed under the control of a glyceraldehyde-3-phosphate dehydrogenase promoter (GAP) promoter. The effects of different carbon sources and pH on nanobody expression were evaluated in shaking flask cultures. After 96 h of constitutive expression in shaking flask, a yield of 51.71 mg/L was obtained. In addition, this constitutive expression system produced nanobodies at equivalent yield and affinity to that produced by methanol-induced expression. The results of this study indicated that the use of a constitutive expression system is a promising alternative for the production of nanobodies applied for cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Quan Chen
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101, China
| | - Yuhang Zhou
- Shenzhen Innova Nanobodi Co., Ltd., No. 7018 Caitian Road, Shenzhen, 518000, China
| | - Jianli Yu
- Shenzhen Innova Nanobodi Co., Ltd., No. 7018 Caitian Road, Shenzhen, 518000, China
| | - Wenshuai Liu
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101, China
| | - Fei Li
- Shenzhen Innova Nanobodi Co., Ltd., No. 7018 Caitian Road, Shenzhen, 518000, China
| | - Mo Xian
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101, China
| | - Rui Nian
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101, China.
| | - Haipeng Song
- Shenzhen Innova Nanobodi Co., Ltd., No. 7018 Caitian Road, Shenzhen, 518000, China.
| | - Dongxiao Feng
- School of Pharmaceutical Sciences, Binzhou Medical University, No. 346 Guanhai Road, Yantai, 264003, China.
| |
Collapse
|
6
|
Faridi S, Satyanarayana T. Thermo-alkali-stable α-carbonic anhydrase of Bacillus halodurans: heterologous expression in Pichia pastoris and applicability in carbon sequestration. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:6838-6849. [PMID: 29264861 DOI: 10.1007/s11356-017-0820-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 11/21/2017] [Indexed: 06/07/2023]
Abstract
Recombinant α-carbonic anhydrase of the polyextremophilic bacterium Bacillus halodurans TSLV1 (rBhCA) has been produced extracellularly in active form in Pichia pastoris under methanol inducible (AOX1) as well as constitutive (GAP) promoters. A marked improvement in rBhCA production was achieved by developing a P. pastoris recombinant that produces rBhCA constitutively as compared to that under inducible promoter. The purified rBhCA from P. pastoris is a glycosylated protein that displays a higher molecular mass (79.5 kDa) than that produced from E. coli recombinant (75 kDa); the former has a Tm of 75 °C, which is slightly higher than that of the latter (72 °C). The former rBhCA exhibits higher thermostability than the latter. The former sequestered CO2 efficiently similar to that of the native BhCA and the latter. This is the first report on the production of recombinant carbonic anhydrase extracellularly in P. pastoris.
Collapse
Affiliation(s)
- Shazia Faridi
- Department of Microbiology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Tulasi Satyanarayana
- Department of Microbiology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India.
- Division of Biological Sciences and Engineering, Netaji Subhas Institute of Technology (University of Delhi), Azad Hind Fauz Marg, Sector 3 Dwarka, New Delhi, 110078, India.
| |
Collapse
|
7
|
Yang S, Lv X, Wang X, Wang J, Wang R, Wang T. Cell-Surface Displayed Expression of Trehalose Synthase from Pseudomonas putida ATCC 47054 in Pichia Pastoris Using Pir1p as an Anchor Protein. Front Microbiol 2017; 8:2583. [PMID: 29312257 PMCID: PMC5742630 DOI: 10.3389/fmicb.2017.02583] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 12/11/2017] [Indexed: 01/29/2023] Open
Abstract
Yeast cell-surface display technologies have been widely applied in the fields of food, medicine, and feed enzyme production, including lipase, α-amylase, and endoglucanase. In this study, a treS gene was fused with the yeast cell-surface anchor protein gene Pir1p by overlap PCR, the Pir1p-treS fusion gene was ligated into pPICZαA and pGAPZαA and transformed into P. pastoris GS115 to obtain recombinant yeast strains that displays trehalose synthase(TreS) on its cell surface as an efficient and recyclable whole-cell biocatalyst. Firstly, the enhanced green fluorescence protein gene (egfp) was used as the reporter protein to fusion the Pir1p gene and treS gene to construct the recombinant plasmids containing treS-egfg-Pir1p fusion gene, and electrotransformed into P. pastoris GS115 to analyze the surface display characteristics of fusion gene by Western blot, fluorescence microscopy and flow cytometry. The analysis shown that the treS-egfg-Pir1p fusion protein can be successfully displayed on the surface of yeast cell, and the expression level increased with the extension of fermentation time. These results implied that the Pir1p-treS fusion gene can be well displayed on the cell surface. Secondly, in order to obtain surface active cells with high enzyme activity, the enzymatic properties of TreS displayed on the cell surface was analyzed, and the fermentation process of recombinant P. patoris GS115 containing pPICZαA-Pir1p-treS and pGAPZαA-Pir1p-treS was studied respectively. The cell surface display TreS was stable over a broad range of temperatures (10-45°C) and pH (6.0-8.5). The activity of TreS displayed on cell surface respectively reached 1,108 Ug-1 under PAOX1 control for 150 h, and 1,109 Ug-1 under PGAP control for 75h in a 5 L fermenter, respectively. Lastly, the cell-surface displayed TreS was used to product trehalose using high maltose syrup as substrate at pH 8.0 and 15°C. The surface display TreS cells can be recycled for three times and the weight conversion rate of trehalose was more than 60%. This paper revealed that the TreS can display on the P. pastoris cell surface and still had a higher catalytic activity after recycled three times, which was suitable for industrial application, especially the preparation of pharmaceutical grade trehalose products.
Collapse
Affiliation(s)
- Shaojie Yang
- Key Laboratory of Shandong Microbial Engineering, Qilu University of Technology (ShanDong Academy of Sciences), Jinan, China
| | - Xin Lv
- Key Laboratory of Shandong Microbial Engineering, Qilu University of Technology (ShanDong Academy of Sciences), Jinan, China
| | - Xihui Wang
- Key Laboratory of Shandong Microbial Engineering, Qilu University of Technology (ShanDong Academy of Sciences), Jinan, China
| | - Junqing Wang
- Key Laboratory of Shandong Microbial Engineering, Qilu University of Technology (ShanDong Academy of Sciences), Jinan, China
| | - Ruiming Wang
- Key Laboratory of Shandong Microbial Engineering, Qilu University of Technology (ShanDong Academy of Sciences), Jinan, China
| | - Tengfei Wang
- Key Laboratory of Shandong Microbial Engineering, Qilu University of Technology (ShanDong Academy of Sciences), Jinan, China
| |
Collapse
|
8
|
Ranjan B, Satyanarayana T. Recombinant HAP Phytase of the Thermophilic Mold Sporotrichum thermophile: Expression of the Codon-Optimized Phytase Gene in Pichia pastoris and Applications. Mol Biotechnol 2016; 58:137-47. [PMID: 26758064 DOI: 10.1007/s12033-015-9909-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The codon-optimized phytase gene of the thermophilic mold Sporotrichum thermophile (St-Phy) was expressed in Pichia pastoris. The recombinant P. pastoris harboring the phytase gene (rSt-Phy) yielded a high titer of extracellular phytase (480 ± 23 U/mL) on induction with methanol. The recombinant phytase production was ~40-fold higher than that of the native fungal strain. The purified recombinant phytase (rSt-Phy) has the molecular mass of 70 kDa on SDS-PAGE, with K m and V max (calcium phytate), k cat and k cat/K m values of 0.147 mM and 183 nmol/mg s, 1.3 × 10(3)/s and 8.84 × 10(6)/M s, respectively. Mg(2+) and Ba(2+) display a slight stimulatory effect, while other cations tested exert inhibitory action on phytase. The enzyme is inhibited by chaotropic agents (guanidinium hydrochloride, potassium iodide, and urea), Woodward's reagent K and 2,3-bunatedione, but resistant to both pepsin and trypsin. The rSt-Phy is useful in the dephytinization of broiler feeds efficiently in simulated gut conditions of chick leading to the liberation of soluble inorganic phosphate with concomitant mitigation in antinutrient effects of phytates. The addition of vanadate makes it a potential candidate for generating haloperoxidase, which has several applications.
Collapse
Affiliation(s)
- Bibhuti Ranjan
- Department of Microbiology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - T Satyanarayana
- Department of Microbiology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India.
| |
Collapse
|
9
|
Characteristics and applications of recombinant thermostable amylopullulanase of Geobacillus thermoleovorans secreted by Pichia pastoris. Appl Microbiol Biotechnol 2016; 101:2357-2369. [DOI: 10.1007/s00253-016-8025-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 11/20/2016] [Accepted: 11/23/2016] [Indexed: 12/24/2022]
|
10
|
Melicherová K, Krahulec J, Šafránek M, Lišková V, Hopková D, Széliová D, Turňa J. Optimization of the fermentation and downstream processes for human enterokinase production in Pichia pastoris. Appl Microbiol Biotechnol 2016; 101:1927-1934. [PMID: 27826720 DOI: 10.1007/s00253-016-7960-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 10/17/2016] [Accepted: 10/21/2016] [Indexed: 12/16/2022]
Abstract
Enterokinase is one of the most frequently used enzymes for the removal of affinity tags from target recombinant proteins. In this study, several fermentation strategies were assayed for the production of human enterokinase in Pichia pastoris under constitutive GAP promoter. Two of them with controlled specific growth rate during whole cultivation showed a very low enterokinase activity, under 1 U/ml, of the fermentation medium. On the contrary, the combined fermentation with a maximum specific growth rate at the initial phase of the fermentation and stationary-like phase during the rest of the fermentation showed a significant accumulation of the enterokinase in the medium, which counted up to 1400 U/ml. Lower cultivation temperature had a negative impact on the enzyme accumulation during this fermentation strategy. Downstream processes were focused on buffer environment optimization directly after cultivation, as at this time, the most amount of the activity is eliminated by endogenous proteases. Slightly positive effect on enzyme activity in the medium had an addition of liquid storage solution of EDTA and KOH to adjust pH to 8 and molarity of the EDTA to 50 mM. During the purification process, a significant amount of the enzyme was detected to be lost, which counted up to 90%. The purified enzyme, enterokinase, kept quality standard of the published enzymes.
Collapse
Affiliation(s)
- Kristína Melicherová
- Faculty of Natural Sciences, Department of Molecular Biology, Comenius University in Bratislava, Mlynská dolina, Ilkovičova 6, 842 15, Bratislava 4, Slovak Republic
| | - Ján Krahulec
- Faculty of Natural Sciences, Department of Molecular Biology, Comenius University in Bratislava, Mlynská dolina, Ilkovičova 6, 842 15, Bratislava 4, Slovak Republic.
| | - Martin Šafránek
- Faculty of Natural Sciences, Department of Molecular Biology, Comenius University in Bratislava, Mlynská dolina, Ilkovičova 6, 842 15, Bratislava 4, Slovak Republic
| | - Veronika Lišková
- Faculty of Natural Sciences, Department of Molecular Biology, Comenius University in Bratislava, Mlynská dolina, Ilkovičova 6, 842 15, Bratislava 4, Slovak Republic
| | - Diana Hopková
- Faculty of Natural Sciences, Department of Molecular Biology, Comenius University in Bratislava, Mlynská dolina, Ilkovičova 6, 842 15, Bratislava 4, Slovak Republic
| | - Diana Széliová
- Faculty of Natural Sciences, Department of Molecular Biology, Comenius University in Bratislava, Mlynská dolina, Ilkovičova 6, 842 15, Bratislava 4, Slovak Republic
| | - Ján Turňa
- Faculty of Natural Sciences, Department of Molecular Biology, Comenius University in Bratislava, Mlynská dolina, Ilkovičova 6, 842 15, Bratislava 4, Slovak Republic
| |
Collapse
|
11
|
Faraji H, Ramezani M, Sadeghnia HR, Abnous K, Soltani F, Mashkani B. High-level expression of a biologically active staphylokinase in Pichia pastoris. Prep Biochem Biotechnol 2016; 47:379-387. [PMID: 27813714 DOI: 10.1080/10826068.2016.1252924] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Staphylokinase (SAK) as the third generation thrombolytic molecule is a promising agent for the treatment of thrombosis. SAK variant of SAKфC was expressed in Pichia pastoris strains KM71H and GS115. The codon adaptation index of SAK was improved from 0.75 to 0.89. The expression of recombinant SAK (rSAK) reached to its maximum (310 mg/L of the culture medium) after 48-hr stimulation with 3% methanol and remained steady until day 5. The maximum activity of the enzyme was at pH 8.6 and 37°C. It was highly active at temperatures 20-37°C and pH ranges of 6.8-9 (relative residual activity more than 80%). It was determined that rSAK was 73.8% of the total proteins secreted by P. pastoris KM71H into the culture media. The specific activities of rSAK were measured as 9,002 and 21,042 U/mg for the nonpurified and purified proteins, respectively. The quantity of the purified protein (>99% purity) was 720 µg/mL with a purification factor of 2.34. Western blot analysis showed two bands of nearly 22 and 18.6 kDa. It was concluded that P. pastoris is a proper host for expression of biologically active and endotoxin-free rSAK due to its high expression and low protein impurity in culture supernatant.
Collapse
Affiliation(s)
- Habibollah Faraji
- a Department of Medical Biotechnology, Faculty of Medicine , Mashhad University of Medical Sciences , Mashhad , Iran
| | - Mohammad Ramezani
- b Pharmaceutical Research Center, School of Pharmacy , Mashhad University of Medical Sciences , Mashhad , Iran
| | - Hamid Reza Sadeghnia
- c Neurocognitive Research Center, Faculty of Medicine , Mashhad University of Medical Sciences , Mashhad , Iran.,d Department of New Sciences and Technology, Faculty of Medicine , Mashhad University of Medical Sciences , Mashhad , Iran
| | - Khalil Abnous
- e Pharmaceutical Research Center , Mashhad University of Medical Sciences , Mashhad , Iran.,f Department of Medicinal Chemistry , Mashhad University of Medical Sciences , Mashhad , Iran
| | - Fatemeh Soltani
- g Biotechnology Research Center , Mashhad University of Medical Sciences , Mashhad , Iran
| | - Baratali Mashkani
- h Department of Medical Biochemistry, Faculty of Medicine , Mashhad University of Medical Sciences , Mashhad , Iran
| |
Collapse
|
12
|
Maurya AK, Parashar D, Satyanarayana T. Bioprocess for the production of recombinant HAP phytase of the thermophilic mold Sporotrichum thermophile and its structural and biochemical characteristics. Int J Biol Macromol 2016; 94:36-44. [PMID: 27697488 DOI: 10.1016/j.ijbiomac.2016.09.102] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Revised: 09/10/2016] [Accepted: 09/29/2016] [Indexed: 10/20/2022]
Abstract
Thermophilc mold Sporotrichum thermophile secretes an acidstable and thermostable phytase, which finds application as a food and feed additive because of its adequate thermostability, acid stability, protease insensitivity and broad substrate spectrum. Low extracellular phytase production by the mold is a major bottleneck for its application on a commercial scale. We have successfully overcome this problem by constitutive secretary expression of codon optimized rStPhy under glyceraldehyde phosphate dehydrogenase (GAP) promoter in Pichia pastoris. A ∼41-fold improvement in rStPhy production has been achieved. Circular Dichroism (CD) spectra revealed that rStPhy is composed of 26.65% α-helices, 5.26% β-sheets and 68.09% random coils at pH 5.0 and 60°C, the optima for the enzyme activity. The melting temperature (Tm) of the enzyme is ∼73°C. The 3D structure of rStPhy displayed characteristic signature sequences (RHGXRXP and HD) of HAP phytase. The catalytically important amino acids (Arg74, His75, Arg78, His368 and Asp369) were identified by docking and site directed mutagenesis. Fluorescence quenching by N-bromosuccinimide (NBS) and CsCl exposed tryptophan residues surrounded by negative charges, which play a key role in maintaining structural integrity of rStPhy.
Collapse
Affiliation(s)
- Anay Kumar Maurya
- Department of Microbiology, University of Delhi South Campus, New Delhi 110021, India
| | - Deepak Parashar
- Department of Microbiology, University of Delhi South Campus, New Delhi 110021, India
| | - T Satyanarayana
- Department of Microbiology, University of Delhi South Campus, New Delhi 110021, India.
| |
Collapse
|
13
|
High Cell Density Process for Constitutive Production of a Recombinant Phytase in Thermotolerant Methylotrophic Yeast Ogataea thermomethanolica Using Table Sugar as Carbon Source. Appl Biochem Biotechnol 2016; 180:1618-1634. [DOI: 10.1007/s12010-016-2191-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 07/11/2016] [Indexed: 10/21/2022]
|
14
|
Spohner SC, Müller H, Quitmann H, Czermak P. Expression of enzymes for the usage in food and feed industry with Pichia pastoris. J Biotechnol 2015; 202:118-34. [DOI: 10.1016/j.jbiotec.2015.01.027] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 12/28/2014] [Accepted: 01/07/2015] [Indexed: 12/29/2022]
|
15
|
Use of the glyceraldehyde-3-phosphate dehydrogenase promoter from a thermotolerant yeast, Pichia thermomethanolica, for heterologous gene expression, especially at elevated temperature. ANN MICROBIOL 2013. [DOI: 10.1007/s13213-013-0765-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
16
|
Yu P, Yan Y, Gu Q, Wang X. Codon optimisation improves the expression of Trichoderma viride sp. endochitinase in Pichia pastoris. Sci Rep 2013; 3:3043. [PMID: 24154717 PMCID: PMC3807108 DOI: 10.1038/srep03043] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 09/24/2013] [Indexed: 11/25/2022] Open
Abstract
The mature cDNA of endochitinase from Trichoderma viride sp. was optimised based on the codon bias of Pichia pastoris GS115 and synthesised by successive PCR; the sequence was then transformed into P. pastoris GS115 via electroporation. The transformant with the fastest growth rate on YPD plates containing 4 mg/mL G418 was screened and identified. This transformant produced 23.09 U/mL of the recombinant endochitinase, a 35% increase compared to the original strain bearing the wild-type endochitinase cDNA. The recombinant endochitinase was sequentially purified by ammonia sulphate precipitation, DE-52 anion-exchange chromatography and Sephadex G-100 size-exclusion chromatography. Thin-layer chromatography indicated that the purified endochitinase could hydrolyse chito-oligomers or colloidal chitin to generate diacetyl-chitobiose (GlcNAc)₂ as the main product. This study demonstrates (1) a means for high expression of Trichoderma viride sp. endochitinase in P. pastoris using codon optimisation and (2) the preparation of chito-oligomers using endochitinase.
Collapse
Affiliation(s)
- Ping Yu
- College of Food Science and Biotechnology, Zhejiang Gongshang University, 149 Jiaogong Road, Hangzhou 310035, Zhejiang Province, People's Republic of China
| | - Yuan Yan
- College of Food Science and Biotechnology, Zhejiang Gongshang University, 149 Jiaogong Road, Hangzhou 310035, Zhejiang Province, People's Republic of China
| | - Qing Gu
- College of Food Science and Biotechnology, Zhejiang Gongshang University, 149 Jiaogong Road, Hangzhou 310035, Zhejiang Province, People's Republic of China
| | - Xiangyang Wang
- College of Food Science and Biotechnology, Zhejiang Gongshang University, 149 Jiaogong Road, Hangzhou 310035, Zhejiang Province, People's Republic of China
| |
Collapse
|
17
|
Fed-batch operational strategies for recombinant Fab production with Pichia pastoris using the constitutive GAP promoter. Biochem Eng J 2013. [DOI: 10.1016/j.bej.2013.07.013] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
18
|
Gao M, Tong Y, Gao X, Yao W. PEGylation-aided refolding of globular adiponectin. World J Microbiol Biotechnol 2013; 29:1525-30. [PMID: 23512209 DOI: 10.1007/s11274-013-1312-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 03/07/2013] [Indexed: 11/25/2022]
Abstract
Globular adiponectin (GAD) as the active domain of adiponectin is a promising candidate for anti-diabetic drug development. The recombinant production of GAD in Escherichia coli, however, is difficult because it is mainly expressed as inclusion bodies which need to be refolded to regain function. In this study we developed a novel method for refolding of GAD with a high efficiency by using polyethylene glycol (PEG) conjugation. An artificially designed DNA sequence encoding for GAD was synthesized and inserted into the pET28a vector to construct an expression plasmid which was thereafter transformed into E. coli BL21 (DE3) host cells for heterologous expression. After bacterial cell culture employing auto-induction medium, the inclusion bodies were collected, washed and dissolved in guanidine hydrochloride before PEG conjugation. Then the PEG-conjugated GAD was refolded by dialysis and purified by two steps of chromatography. The refolded conjugate showed a marked glucose-lowering activity in mice, demonstrating that it had been successfully refolded. As a convenient method, PEGylation-aided refolding could also be tested on other proteins to explore its suitability.
Collapse
Affiliation(s)
- Mingming Gao
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Tongjiaxiang 24, Nanjing 210009, China
| | | | | | | |
Collapse
|
19
|
RETRACTED ARTICLE: Simultaneous expression of antibody light and heavy chains in Pichia pastoris: improving retransformation outcome by linearizing vector at a different site. Appl Microbiol Biotechnol 2012; 96:1381. [DOI: 10.1007/s00253-012-4347-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 07/26/2012] [Accepted: 07/30/2012] [Indexed: 10/28/2022]
|
20
|
Application of adaptive DO-stat feeding control to Pichia pastoris X33 cultures expressing a single chain antibody fragment (scFv). Bioprocess Biosyst Eng 2012; 35:1603-14. [DOI: 10.1007/s00449-012-0751-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Accepted: 05/01/2012] [Indexed: 10/28/2022]
|
21
|
Potvin G, Ahmad A, Zhang Z. Bioprocess engineering aspects of heterologous protein production in Pichia pastoris: A review. Biochem Eng J 2012. [DOI: 10.1016/j.bej.2010.07.017] [Citation(s) in RCA: 172] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
Wang X, Sun Y, Ke F, Zhao H, Liu T, Xu L, Liu Y, Yan Y. Constitutive Expression of Yarrowia lipolytica Lipase LIP2 in Pichia pastoris Using GAP as Promoter. Appl Biochem Biotechnol 2012; 166:1355-67. [DOI: 10.1007/s12010-011-9524-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Accepted: 12/26/2011] [Indexed: 12/01/2022]
|
23
|
Abstract
When planning any heterologous expression experiment, the very first critical step is related to the design of the overall strategy, hence to the selection of the most adapted expression vector. The very flexible Pichia pastoris system offers a broad range of possibilities for the production of secreted, endogenous or membrane proteins thanks to a combination of various plasmid backbones, selection markers, promoters and fusion sequences introduced into dedicated host strains. The present chapter provides some guidelines on the choice of expression vectors and expression strategies. It also brings the reader a complete toolbox from which plasmids and fusion sequences can be picked and assembled to set up appropriate expression vectors. Finally, it provides standard starting protocols for the preparation of the selected plasmids and their use for host strain transformation.
Collapse
Affiliation(s)
- Christel Logez
- Département Récepteurs et Protéines Membranaires, Centre National de la Recherche Scientifique, Ecole Supérieure de Biotechnologie de Strasbourg, Illkirch, France
| | | | | | | |
Collapse
|
24
|
Birijlall N, Manimaran A, Kumar KS, Permaul K, Singh S. High level expression of a recombinant xylanase by Pichia pastoris NC38 in a 5 L fermenter and its efficiency in biobleaching of bagasse pulp. BIORESOURCE TECHNOLOGY 2011; 102:9723-9729. [PMID: 21852117 DOI: 10.1016/j.biortech.2011.07.059] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Revised: 07/15/2011] [Accepted: 07/16/2011] [Indexed: 05/31/2023]
Abstract
A genetically modified XynA gene from Thermomyces lanuginosus was expressed in Pichia pastoris under the control of GAP promoter. P. pastoris expressed greater levels of xylanase (160 IU ml(-1)) on BMGY medium without zeocin after 56 h. The xylanase production by recombinant P. pastoris was scaled up in a 5L fermenter containing 1% glycerol and the highest xylanase production of 139 IU ml(-1) was observed after 72 h. Further studies carried out in fermenter under controlled pH (5.5) yielded a maximum xylanase production of 177 IU ml(-1) after 72 h. The biobleaching efficacy of crude xylanase was also evaluated on bagasse pulp and a brightness of 47.4% was observed with 50 IU of crude xylanase used per gram of pulp, which was 2.1 points higher in brightness than the untreated samples. Reducing sugars (24.8 mg g(-1)) and UV absorbing lignin-derived compounds values were considerably higher with xylanase treated samples.
Collapse
Affiliation(s)
- Natasha Birijlall
- Department of Biotechnology and Food Technology, Faculty of Applied Sciences, Durban University of Technology, P.O. Box 1334, Durban 4000, South Africa
| | | | | | | | | |
Collapse
|
25
|
Ramón A, Marín M. Advances in the production of membrane proteins in Pichia pastoris. Biotechnol J 2011; 6:700-6. [DOI: 10.1002/biot.201100146] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Revised: 03/24/2011] [Accepted: 03/31/2011] [Indexed: 11/07/2022]
|
26
|
Heterologous Expression and Characterization of The Carboxylesterase From Geobacillus stearothermophilus. PROG BIOCHEM BIOPHYS 2010. [DOI: 10.3724/sp.j.1206.2010.00134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
27
|
Chi YH, Koo YD, Dai SY, Ahn JE, Yun DJ, Lee SY, Zhu-Salzman K. N-glycosylation at non-canonical Asn-X-Cys sequence of an insect recombinant cathepsin B-like counter-defense protein. Comp Biochem Physiol B Biochem Mol Biol 2010; 156:40-7. [PMID: 20139027 DOI: 10.1016/j.cbpb.2010.01.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2009] [Revised: 01/29/2010] [Accepted: 01/30/2010] [Indexed: 10/19/2022]
Abstract
CmCatB, a cowpea bruchid cathepsin B-like cysteine protease, facilitates insects coping with dietary protease inhibitor challenge. Expression of recombinant CmCatB using a Pichia pastoris system yielded an enzymatically active protein that was heterogeneously glycosylated, migrating as a smear of > or =50kDa on SDS-PAGE. Treatment with peptide:N-glycosidase F indicated that N-glycosylation was predominant. CmCatB contains three N-glycosylation Asn-X-Ser/Thr consensus sequences. Simultaneously replacing all three Asn residues with Gln via site-directed mutagenesis did not result in completely unglycosylated protein, suggesting the existence of additional atypical glycosylation sites. We subsequently investigated potential N-glycosylation at the two Asn-X-Cys sites (Asn(100) and Asn(236)) in CmCatB. Asn to Gln substitution at Asn(100)-X-Cys on the background of the double mutation at the canonical sites (m1m2, Asn(97)-->Gln and Asn(207)-->Gln) resulted in a single discrete band on the gel, namely m1m2c1 (Asn(97)-->Gln, Asn(207)-->Gln and Asn(100)-->Gln). However, another triple mutant protein m1m2c2 (Asn(97)-->Gln, Asn(207)-->Gln and Asn(236)-->Gln) and quadruple mutant protein m1m2c1c2 were unable to be expressed in Pichia cells. Thus Asn(236) appears necessary for protein expression while Asn(100) is responsible for non-canonical glycosylation. Removal of carbohydrate moieties, particularly at Asn(100), substantially enhanced proteolytic activity but compromised protein stability. Thus, glycosylation could significantly impact biochemical properties of CmCatB.
Collapse
Affiliation(s)
- Yong Hun Chi
- Department of Entomology, Texas A&M University, College Station, 77843, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Zhang AL, Zhang TY, Luo JX, Fu CY, Qu Z, Yi GH, Su DX, Tu FZ, Pan YW. Inducible expression of human angiostatin by AOXI promoter in P. pastoris using high-density cell culture. Mol Biol Rep 2009; 36:2265-70. [DOI: 10.1007/s11033-008-9443-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2008] [Accepted: 12/19/2008] [Indexed: 10/21/2022]
|
29
|
Recent advances on the GAP promoter derived expression system of Pichia pastoris. Mol Biol Rep 2008; 36:1611-9. [PMID: 18781398 DOI: 10.1007/s11033-008-9359-4] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2008] [Accepted: 08/28/2008] [Indexed: 10/21/2022]
Abstract
Pichia pastoris is an efficient host for the expression and secretion of heterologous proteins and the most important feature of P. pastoris is the existence of a strong and tightly regulated promoter from the alcohol oxidase I (AOX1) gene. The AOX1 promoter (pAOX1) has been used to express foreign genes and to produce a variety of recombinant proteins in P. pastoris. However, some efforts have been made to develop new alternative promoters to pAOX1 to avoid the use of methanol. The glyceraldehyde-3-phosphate dehydrogenase promoter (pGAP) has been used for constitutive expression of many heterologous proteins. The pGAP-based expression system is more suitable for large-scale production because the hazard and cost associated with the storage and delivery of large volume of methanol are eliminated. Some important developments and features of this expression system will be summarized in this review.
Collapse
|
30
|
Optimized expression of an acid xylanase from Aspergillus usamii in Pichia pastoris and its biochemical characterization. World J Microbiol Biotechnol 2007. [DOI: 10.1007/s11274-007-9622-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
31
|
Denis-Quanquin S, Lamouroux L, Lougarre A, Mahéo S, Saves I, Paquereau L, Demange P, Fournier D. Protein expression from synthetic genes: Selection of clones using GFP. J Biotechnol 2007; 131:223-30. [PMID: 17720272 DOI: 10.1016/j.jbiotec.2007.07.725] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2007] [Revised: 06/25/2007] [Accepted: 07/13/2007] [Indexed: 11/18/2022]
Abstract
Construction of synthetic genes is today the most elegant way to optimize the heterologous expression of a recombinant protein. However, the selection of positive clones that incorporate the correct synthetic DNA fragments is a bottleneck as current methods of gene synthesis introduce 3.5 nucleotide deletions per kb. Furthermore, even when all predictable optimizations for protein production have been introduced into the synthetic gene, production of the protein is often disappointing: protein is produced in too low amounts or end up in inclusion bodies. We propose a strategy to overcome these two problems simultaneously by cloning the synthetic gene upstream of a reporter gene. This permits the selection of clones devoid of frame-shift mutations. In addition, beside nucleotide deletion, an average of three non-neutral mutations per kb are introduced during gene synthesis. Using a reporter protein downstream of the synthetic gene, allows the selection of clones with random mutations improving the expression or the folding of the protein of interest. The problem of errors found in synthetic genes is then turned into an advantage since it provides polymorphism useful for molecular evolution. The use of synthetic genes appears as an alternative to the error-prone PCR strategy to generate the variations necessary in protein engineering experiments.
Collapse
|
32
|
Teng D, Fan Y, Yang YL, Tian ZG, Luo J, Wang JH. Codon optimization of Bacillus licheniformis beta-1,3-1,4-glucanase gene and its expression in Pichia pastoris. Appl Microbiol Biotechnol 2007; 74:1074-83. [PMID: 17216453 DOI: 10.1007/s00253-006-0765-z] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2006] [Revised: 11/13/2006] [Accepted: 11/14/2006] [Indexed: 10/23/2022]
Abstract
Beta-1,3-1,4-glucanase (EC3.2.1.73) as an important industrial enzyme has been widely used in the brewing and animal feed additive industry. To improve expression efficiency of recombinant beta-1,3-1,4-glucanase from Bacillus licheniformis EGW039(CGMCC 0635) in methylotrophic yeast Pichia pastoris GS115, the DNA sequence encoding beta-1,3-1,4-glucanase was designed and synthesized based on the codon bias of P. pastoris, the codons encoding 96 amino acids were optimized, in which a total of 102 nucleotides were changed, the G+C ratio was simultaneously increased from 43.6 to 45.5%. At shaking flask level, beta-1,3-1,4-glucanase activity is 67.9 and 52.3 U ml(-1) with barley beta-glucan and lichenan as substrate, respectively. At laboratory fermentor level, the secreted protein concentration is approximately 250 mg l(-1). The beta-1,3-1,4-glucanase activity is 333.7 and 256.7 U ml(-1) with barley beta-glucan and lichenan as substrate, respectively; however, no activity of this enzyme on cellulose is observed. Compared to the nonoptimized control, expression level of the optimized beta-1,3-1,4-glucanase based on preferred codons in P. pastoris shown a 10-fold higher level. The codon-optimized enzyme was approximately 53.8% of the total secreted protein. The optimal acidity and temperature of this recombinant enzyme were pH 6.0 and 45 degrees C, respectively.
Collapse
Affiliation(s)
- Da Teng
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China
| | | | | | | | | | | |
Collapse
|
33
|
Cos O, Ramón R, Montesinos JL, Valero F. Operational strategies, monitoring and control of heterologous protein production in the methylotrophic yeast Pichia pastoris under different promoters: a review. Microb Cell Fact 2006; 5:17. [PMID: 16600031 PMCID: PMC1564409 DOI: 10.1186/1475-2859-5-17] [Citation(s) in RCA: 227] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2005] [Accepted: 04/06/2006] [Indexed: 01/05/2023] Open
Abstract
The methylotrophic yeast Pichia pastoris has been widely reported as a suitable expression system for heterologous protein production. The use of different phenotypes under PAOX promoter, other alternative promoters, culture medium, and operational strategies with the objective to maximize either yield or productivity of the heterologous protein, but also to obtain a repetitive product batch to batch to get a robust process for the final industrial application have been reported. Medium composition, kinetics growth, fermentation operational strategies from fed-batch to continuous cultures using different phenotypes with the most common PAOX promoter and other novel promoters (GAP, FLD, ICL), the use of mixed substrates, on-line monitoring of the key fermentation parameters (methanol) and control algorithms applied to the bioprocess are reviewed and discussed in detail.
Collapse
Affiliation(s)
- Oriol Cos
- Departament d'Enginyeria Química, Escola Tècnica Superior d'Enginyeria, Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona), Spain.
| | | | | | | |
Collapse
|