1
|
Wang J, Gao Q, Wan S, Hao J, Lian X, Ma J, Zhang X, Zheng Z, Li Q. Antiasthmatic Compounds Targeting β 2-Adrenergic Receptor from Perilla frutescens Improved Lung Inflammation by Inhibiting the NF-κB Signaling Pathway. JOURNAL OF NATURAL PRODUCTS 2022; 85:2656-2666. [PMID: 36322828 DOI: 10.1021/acs.jnatprod.2c00767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Asthma is a highly prevalent and heterogeneous chronic respiratory disease and is often treated with inhaled corticosteroids or in combination with a β2-adrenergic receptor (β2-AR) agonist. However, around 5% of asthma remains uncontrolled, and more effective antiasthmatic drugs with known mechanisms are in high demand. Herein, we immobilized β2-AR on the polystyrene amino microsphere surface in a one-step fashion. The successful immobilization of β2-AR was verified by scanning electron microscopy and chromatographic analysis. We screened rosmarinic acid (RA) as the bioactive compound targeting β2-AR in Perilla frutescens (L.) Britton by mass spectroscopy. The binding constant between RA and β2-AR was determined to be 2.95 × 104 M-1 by adsorption energy distribution and frontal analysis. The antiasthmatic effect and mechanism of RA were examined on a murine model of allergic asthma induced by ovalbumin (OVA) and aluminum hydroxide. The results showed that RA significantly reduced lung inflammatory cell numbers, the production of Th2 cytokines, and the secretion of total IgE, OVA-specific IgE, and eotaxin. The decreased inflammatory cell infiltration and mucus hypersecretion were associated with the inhibition of the NF-κB signaling pathway. Moreover, the mRNA expression levels of AMCase, CCL11, CCR3, Ym2, and E-selectin in the lung tissues were effectively reduced. It is the first time that RA was proven to target β2-AR and be effective in counteracting allergic airway inflammation via the NF-κB signaling pathway. Therefore, the immobilized β2-AR preserves the potential in screening antiasthmatic compounds from herbal medicine, and RA can be developed as an effective agent for the treatment of allergic asthma.
Collapse
Affiliation(s)
- Jing Wang
- College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Qiuyu Gao
- College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Shuangru Wan
- College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Jiaxue Hao
- College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Xiaojuan Lian
- College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Jing Ma
- College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Xinlei Zhang
- College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Zhe Zheng
- College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Qian Li
- College of Life Sciences, Northwest University, Xi'an, 710069, China
| |
Collapse
|
2
|
Covalent immobilization of beta2 adrenergic receptor through trans-methylation reaction by SNAP-tag and its application in anti-asthmatic compound screening from Raphani Semen. J Pharm Biomed Anal 2022; 219:114952. [PMID: 35872415 DOI: 10.1016/j.jpba.2022.114952] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 07/15/2022] [Accepted: 07/16/2022] [Indexed: 11/20/2022]
Abstract
Beta2-adrenergic receptor (β2-AR) is believed as an attractive target for anti-asthmatic drugs. Its crystal structure and pharmacological activity have been clearly investigated. Yet the number of the approved anti-asthmatic drugs has declined in recent years. This work reports on the preparation of an immobilized β2-AR column through the specific trans-methylation reaction between SNAP tag and the benzyl-guanine derivative and application in anti-asthmatic compound screening from Raphani Semen. The characterization of the immobilized β2-AR was performed by scanning electron microscopy (SEM) and receptor-ligand interaction analysis by chromatographic methods. SEM analysis showed that the receptor has been successfully coated on the surface of PEGA amino microspheres. Binding constants of salbutamol and terbutaline calculated from frontal analysis within the temperature range of 10-30 ℃ confirmed the feasibility of the method in a thermodynamic viewpoint. Hydrogen bond was verified as the main driving force for drug-receptor interaction analysis. Sinapine was identified as the potential bioactive compound in Raphani Semen that specifically bind with β2-AR with a specific binding site of Ser 207. Taking together, the immobilized β2-AR column is promising in exploring drug-protein interaction analysis and anti-asthmatic drug screening.
Collapse
|
3
|
Liu S, Sang Z, Qin L, Gong W, Zhao L, Zhang Q, Zhao Q. Application progress of immobilized biomembrane in the discovery of active compounds of natural products. Biomed Chromatogr 2022; 36:e5447. [PMID: 35833910 DOI: 10.1002/bmc.5447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 11/08/2022]
Abstract
Natural products (NPs) are an important source of bioactive compounds. Considering their complex matrix effects, the development of suitable methodologies for the fast identification and analysis of active substances from NPs played a significant role in controlling their quality and discovering new drugs. In recent years, the technology of immobilized biomembrane has attracted increasing attention, due to its peculiarities such as multi-target efficiency, accuracy and/or time-saving compared with traditional activity-guided separation and ligand fishing methods. This article first provides a systematic review of the latest advances in screening technologies based on biomembrane in the field of NPs. It includes detailed discussions of these technologies, including cell membrane chromatography, artificial membrane chromatography, cell membrane fishing, living cell fishing methods, and their applications in screening various active molecules from NPs. Their limitations and future development prospects were further discussed.
Collapse
Affiliation(s)
- Sha Liu
- College of Pharmaceutical Sciences, Fuchun Campus, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhenqi Sang
- College of Pharmaceutical Sciences, Fuchun Campus, Zhejiang Chinese Medical University, Hangzhou, China
| | - Lupin Qin
- College of Pharmaceutical Sciences, Fuchun Campus, Zhejiang Chinese Medical University, Hangzhou, China
| | - Wan Gong
- College of Pharmaceutical Sciences, Fuchun Campus, Zhejiang Chinese Medical University, Hangzhou, China
| | - Luying Zhao
- College of Pharmaceutical Sciences, Fuchun Campus, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qiaoyan Zhang
- College of Pharmaceutical Sciences, Fuchun Campus, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qiming Zhao
- College of Pharmaceutical Sciences, Fuchun Campus, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
4
|
Ma W, Wang C, Liu R, Wang N, Lv Y, Dai B, He L. Advances in cell membrane chromatography. J Chromatogr A 2021; 1639:461916. [PMID: 33548663 DOI: 10.1016/j.chroma.2021.461916] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/11/2021] [Accepted: 01/15/2021] [Indexed: 12/14/2022]
Abstract
Cell membrane chromatography (CMC) is a biomimetic chromatographic method based on the ability of membrane receptors to selectively interact with their ligands in vivo. Using membrane receptors as a stationary phase, the CMC method helps in determining the binding characteristics between ligands and membrane receptors and in efficiently identifying specific target components in a complex sample that produce the cellular biological effects of ligands (drugs, antibodies, enzymes, cytokines, etc.). CMC is an analytical tool for revealing characteristics of ligand-receptor interactions, screening and discovering target substances, and accurately controlling the quality of drugs. Since establishment of CMC in the early 1990s, with the rapid development of cell biology, significant progress has been made in the development of high-expression receptors, engineered cell cultures, and standardized preparations, which allowed in vitro immobilization of cell membrane receptors and miniaturization of binding assays. A variety of CMC models have been established using different membrane receptors as a stationary phase, and many new methods have been developed by combining CMC with high-performance liquid chromatography (HPLC)/mass spectrometry or HPLC-IT-TOF technologies. CMC methods have been widely used to study drug-receptor interactions and to screen complex samples for effective or harmful components.
Collapse
Affiliation(s)
- Weina Ma
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Institute of Vascular Materia Medica, Xi'an Jiaotong University, Xi'an, Shaanxi 710116, China
| | - Cheng Wang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Institute of Vascular Materia Medica, Xi'an Jiaotong University, Xi'an, Shaanxi 710116, China
| | - Rui Liu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Institute of Vascular Materia Medica, Xi'an Jiaotong University, Xi'an, Shaanxi 710116, China
| | - Nan Wang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Institute of Vascular Materia Medica, Xi'an Jiaotong University, Xi'an, Shaanxi 710116, China
| | - Yanni Lv
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Institute of Vascular Materia Medica, Xi'an Jiaotong University, Xi'an, Shaanxi 710116, China
| | - Bingling Dai
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Institute of Vascular Materia Medica, Xi'an Jiaotong University, Xi'an, Shaanxi 710116, China
| | - Langchong He
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Institute of Vascular Materia Medica, Xi'an Jiaotong University, Xi'an, Shaanxi 710116, China.
| |
Collapse
|
5
|
Lacabanne D, Fogeron ML, Wiegand T, Cadalbert R, Meier BH, Böckmann A. Protein sample preparation for solid-state NMR investigations. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2019; 110:20-33. [PMID: 30803692 DOI: 10.1016/j.pnmrs.2019.01.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/11/2019] [Accepted: 01/12/2019] [Indexed: 06/09/2023]
Abstract
Preparation of a protein sample for solid-state NMR is in many aspects similar to solution-state NMR approaches, mainly with respect to the need for stable isotope labeling. But the possibility of using solid-state NMR to investigate membrane proteins in (native) lipids adds the important requirement of adapted membrane-reconstitution schemes. Also, dynamic nuclear polarization and paramagnetic NMR in solids need specific schemes using metal ions and radicals. Sample sedimentation has enabled structural investigations of objects inaccessible to other structural techniques, but rotor filling using sedimentation has become increasingly complex with smaller and smaller rotors, as needed for higher and higher magic-angle spinning (MAS) frequencies. Furthermore, solid-state NMR can investigate very large proteins and their complexes without the concomitant increase in line widths, motivating the use of selective labeling and unlabeling strategies, as well as segmental labeling, to decongest spectra. The possibility of investigating sub-milligram amounts of protein today using advanced fast MAS techniques enables alternative protein synthesis schemes such as cell-free expression. Here we review these specific aspects of solid-state NMR sample preparation.
Collapse
Affiliation(s)
- Denis Lacabanne
- Molecular Microbiology and Structural Biochemistry, Labex Ecofect, UMR 5086 CNRS/Université de Lyon, 69367 Lyon, France; Physical Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Marie-Laure Fogeron
- Molecular Microbiology and Structural Biochemistry, Labex Ecofect, UMR 5086 CNRS/Université de Lyon, 69367 Lyon, France
| | - Thomas Wiegand
- Physical Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | | | - Beat H Meier
- Physical Chemistry, ETH Zurich, 8093 Zurich, Switzerland.
| | - Anja Böckmann
- Molecular Microbiology and Structural Biochemistry, Labex Ecofect, UMR 5086 CNRS/Université de Lyon, 69367 Lyon, France.
| |
Collapse
|
6
|
Pandey A, Shin K, Patterson RE, Liu XQ, Rainey JK. Current strategies for protein production and purification enabling membrane protein structural biology. Biochem Cell Biol 2016; 94:507-527. [PMID: 27010607 PMCID: PMC5752365 DOI: 10.1139/bcb-2015-0143] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Membrane proteins are still heavily under-represented in the protein data bank (PDB), owing to multiple bottlenecks. The typical low abundance of membrane proteins in their natural hosts makes it necessary to overexpress these proteins either in heterologous systems or through in vitro translation/cell-free expression. Heterologous expression of proteins, in turn, leads to multiple obstacles, owing to the unpredictability of compatibility of the target protein for expression in a given host. The highly hydrophobic and (or) amphipathic nature of membrane proteins also leads to challenges in producing a homogeneous, stable, and pure sample for structural studies. Circumventing these hurdles has become possible through the introduction of novel protein production protocols; efficient protein isolation and sample preparation methods; and, improvement in hardware and software for structural characterization. Combined, these advances have made the past 10-15 years very exciting and eventful for the field of membrane protein structural biology, with an exponential growth in the number of solved membrane protein structures. In this review, we focus on both the advances and diversity of protein production and purification methods that have allowed this growth in structural knowledge of membrane proteins through X-ray crystallography, nuclear magnetic resonance (NMR) spectroscopy, and cryo-electron microscopy (cryo-EM).
Collapse
Affiliation(s)
- Aditya Pandey
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Kyungsoo Shin
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Robin E. Patterson
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Xiang-Qin Liu
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Jan K. Rainey
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
- Department of Chemistry, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| |
Collapse
|
7
|
Ehrengruber MU, Lundstrom K. Recombinant Alphavirus-Mediated Expression of Ion Channels and Receptors in the Brain. NEUROMETHODS 2016. [DOI: 10.1007/978-1-4939-3064-7_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
8
|
Lundstrom K. Alphavirus vectors as tools in neuroscience and gene therapy. Virus Res 2015; 216:16-25. [PMID: 26307195 DOI: 10.1016/j.virusres.2015.08.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 08/17/2015] [Accepted: 08/19/2015] [Indexed: 11/30/2022]
Abstract
Alphavirus-based vectors have been engineered for in vitro and in vivo expression of heterelogous genes. The rapid and easy generation of replication-deficient recombinant particles and the broad range of host cell infection have made alphaviruses attractive vehicles for applications in neuroscience and gene therapy. Efficient delivery to primary neurons and hippocampal slices has allowed localization studies of gene expression and electrophysiological recordings of ion channels. Alphavirus vectors have also been applied for in vivo delivery to rodent brain. Due to the strong local transient expression provided by alphavirus vectors a number of immunization and gene therapy approaches have demonstrated both therapeutic and prophylactic efficacy in various animal models.
Collapse
|
9
|
Production of monoclonal antibodies against GPCR using cell-free synthesized GPCR antigen and biotinylated liposome-based interaction assay. Sci Rep 2015; 5:11333. [PMID: 26061673 PMCID: PMC4462149 DOI: 10.1038/srep11333] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 05/21/2015] [Indexed: 11/08/2022] Open
Abstract
G-protein-coupled receptors (GPCRs) are one of the most important drug targets, and anti-GPCR monoclonal antibody (mAb) is an essential tool for functional analysis of GPCRs. However, it is very difficult to develop GPCR-specific mAbs due to difficulties in production of recombinant GPCR antigens, and lack of efficient mAb screening method. Here we describe a novel approach for the production of mAbs against GPCR using two original methods, bilayer-dialysis method and biotinylated liposome-based interaction assay (BiLIA), both of which are developed using wheat cell-free protein synthesis system and liposome technology. Using bilayer-dialysis method, various GPCRs were successfully synthesized with quality and quantity sufficient for immunization. For selection of specific mAb, we designed BiLIA that detects interaction between antibody and membrane protein on liposome. BiLIA prevented denaturation of GPCR, and then preferably selected conformation-sensitive antibodies. Using this approach, we successfully obtained mAbs against DRD1, GHSR, PTGER1 and T1R1. With respect to DRD1 mAb, 36 mouse mAbs and 6 rabbit mAbs were obtained which specifically recognized native DRD1 with high affinity. Among them, half of the mAbs were conformation-sensitive mAb, and two mAbs recognized extracellular loop 2 of DRD1. These results indicated that this approach is useful for GPCR mAb production.
Collapse
|
10
|
Fernández-Núñez EG, de Rezende AG, Puglia ALP, Leme J, Boldorini VLL, Caricati CP, Tonso A. Transient expression of rabies virus G-glycoprotein using BHK-21 cells cultured in suspension. Biotechnol Lett 2015; 37:1153-63. [PMID: 25700821 DOI: 10.1007/s10529-015-1787-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 02/03/2015] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To assess the expression of rabies virus G-glycoprotein (RVGP) expression using Semliki Forest virus as a vector in combination with BHK-21 cells cultured in suspension. RESULTS A multilevel factorial design was used to quantify effects of temperature (33-37 °C), fresh medium addition after the viral adsorption step (100-200 % with respect to the initial cell suspension volume before infection) and harvest time (8-40 h) on RVGP production. Experimental runs were performed in 24-well cell culture plates at a multiplicity of infection (MOI) of 16. An additional experiment in spinner-flask was performed at MOI of 9, using the optimal conditions determined in cell culture plates. Values for temperature, fresh medium addition and harvest time of 33 °C, 100 % and 16 h, respectively, ensured the optimal RVGP production in culture plates. The volumetric yield (239 ng ml(-1)) in these conditions was higher than that reported previously for adherent cell culture. In spinner-flasks, the volumetric yield was improved (559 ng ml(-1)). CONCLUSION These results establish the basis for designing bioprocess to produce RVGP.
Collapse
Affiliation(s)
- Eutimio Gustavo Fernández-Núñez
- Laboratório de Células Animais, Departamento de Engenharia Química, Escola Politécnica, Universidade de São Paulo, Av. Prof. Luciano Gualberto, trav. 3, 380, São Paulo, SP, 05508-900, Brazil,
| | | | | | | | | | | | | |
Collapse
|
11
|
Logez C, Berger S, Legros C, Banères JL, Cohen W, Delagrange P, Nosjean O, Boutin JA, Ferry G, Simonin F, Wagner R. Recombinant human melatonin receptor MT1 isolated in mixed detergents shows pharmacology similar to that in mammalian cell membranes. PLoS One 2014; 9:e100616. [PMID: 24959712 PMCID: PMC4069108 DOI: 10.1371/journal.pone.0100616] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 05/27/2014] [Indexed: 01/08/2023] Open
Abstract
The human melatonin MT1 receptor—belonging to the large family of G protein-coupled receptors (GPCRs)—plays a key role in circadian rhythm regulation and is notably involved in sleep disorders and depression. Structural and functional information at the molecular level are highly desired for fine characterization of this receptor; however, adequate techniques for isolating soluble MT1 material suitable for biochemical and biophysical studies remain lacking. Here we describe the evaluation of a panel of constructs and host systems for the production of recombinant human MT1 receptors, and the screening of different conditions for their solubilization and purification. Our findings resulted in the establishment of an original strategy using a mixture of Fos14 and CHAPS detergents to extract and purify a recombinant human MT1 from Pichia pastoris membranes. This procedure enabled the recovery of relatively pure, monomeric and ligand-binding active MT1 receptor in the near-milligram range. A comparative study based on extensive ligand-binding characterization highlighted a very close correlation between the pharmacological profiles of MT1 purified from yeast and the same receptor present in mammalian cell membranes. The high quality of the purified MT1 was further confirmed by its ability to activate its cognate Gαi protein partner when reconstituted in lipid discs, thus opening novel paths to investigate this receptor by biochemical and biophysical approaches.
Collapse
Affiliation(s)
- Christel Logez
- CNRS UMR7242/Laboratoire d'excellence MEDALIS, Institut de Recherche de l'ESBS, Biotechnologie et Signalisation Cellulaire, Université de Strasbourg, Illkirch, France
- Biotechnologie, Pharmacologie Moléculaire et Cellulaire, Institut de Recherches Servier, Croissy-sur-Seine, France
| | - Sylvie Berger
- Biotechnologie, Pharmacologie Moléculaire et Cellulaire, Institut de Recherches Servier, Croissy-sur-Seine, France
| | - Céline Legros
- Biotechnologie, Pharmacologie Moléculaire et Cellulaire, Institut de Recherches Servier, Croissy-sur-Seine, France
| | - Jean-Louis Banères
- CNRS UMR 5247, Institut des Biomolécules Max Mousseron (IBMM), Université de Montpellier 1 and Montpellier 2, Faculté de Pharmacie, Montpellier, France
| | - William Cohen
- Biotechnologie, Pharmacologie Moléculaire et Cellulaire, Institut de Recherches Servier, Croissy-sur-Seine, France
| | - Philippe Delagrange
- Unité de Recherches et Découvertes en Neurosciences, Institut de Recherche Servier, Croissy-sur-Seine, France
| | - Olivier Nosjean
- Biotechnologie, Pharmacologie Moléculaire et Cellulaire, Institut de Recherches Servier, Croissy-sur-Seine, France
| | - Jean A. Boutin
- Biotechnologie, Pharmacologie Moléculaire et Cellulaire, Institut de Recherches Servier, Croissy-sur-Seine, France
- * E-mail:
| | - Gilles Ferry
- Biotechnologie, Pharmacologie Moléculaire et Cellulaire, Institut de Recherches Servier, Croissy-sur-Seine, France
| | - Frédéric Simonin
- CNRS UMR7242/Laboratoire d'excellence MEDALIS, Institut de Recherche de l'ESBS, Biotechnologie et Signalisation Cellulaire, Université de Strasbourg, Illkirch, France
| | - Renaud Wagner
- CNRS UMR7242/Laboratoire d'excellence MEDALIS, Institut de Recherche de l'ESBS, Biotechnologie et Signalisation Cellulaire, Université de Strasbourg, Illkirch, France
| |
Collapse
|
12
|
Cohen LS, Fracchiolla KE, Becker J, Naider F. Invited review GPCR structural characterization: Using fragments as building blocks to determine a complete structure. Biopolymers 2014; 102:223-43. [DOI: 10.1002/bip.22490] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 03/24/2014] [Accepted: 03/27/2014] [Indexed: 12/30/2022]
Affiliation(s)
- Leah S. Cohen
- Department of Chemistry; The College of Staten Island, City University of New York (CUNY); Staten Island NY 10314
| | - Katrina E. Fracchiolla
- Department of Chemistry; The College of Staten Island, City University of New York (CUNY); Staten Island NY 10314
| | - Jeff Becker
- Department of Microbiology; University of Tennessee; Knoxville TN 37996
| | - Fred Naider
- Department of Chemistry; The College of Staten Island, City University of New York (CUNY); Staten Island NY 10314
- Department of Biochemistry; The Graduate Center; CUNY NY 10016-4309
| |
Collapse
|
13
|
Kimura T, Vukoti K, Lynch DL, Hurst DP, Grossfield A, Pitman MC, Reggio PH, Yeliseev AA, Gawrisch K. Global fold of human cannabinoid type 2 receptor probed by solid-state 13C-, 15N-MAS NMR and molecular dynamics simulations. Proteins 2013; 82:452-65. [PMID: 23999926 DOI: 10.1002/prot.24411] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 08/12/2013] [Accepted: 08/21/2013] [Indexed: 12/12/2022]
Abstract
The global fold of human cannabinoid type 2 (CB2 ) receptor in the agonist-bound active state in lipid bilayers was investigated by solid-state (13)C- and (15)N magic-angle spinning (MAS) NMR, in combination with chemical-shift prediction from a structural model of the receptor obtained by microsecond-long molecular dynamics (MD) simulations. Uniformly (13)C- and (15)N-labeled CB2 receptor was expressed in milligram quantities by bacterial fermentation, purified, and functionally reconstituted into liposomes. (13)C MAS NMR spectra were recorded without sensitivity enhancement for direct comparison of Cα, Cβ, and C=O bands of superimposed resonances with predictions from protein structures generated by MD. The experimental NMR spectra matched the calculated spectra reasonably well indicating agreement of the global fold of the protein between experiment and simulations. In particular, the (13) C chemical shift distribution of Cα resonances was shown to be very sensitive to both the primary amino acid sequence and the secondary structure of CB2. Thus the shape of the Cα band can be used as an indicator of CB2 global fold. The prediction from MD simulations indicated that upon receptor activation a rather limited number of amino acid residues, mainly located in the extracellular Loop 2 and the second half of intracellular Loop 3, change their chemical shifts significantly (≥ 1.5 ppm for carbons and ≥ 5.0 ppm for nitrogens). Simulated two-dimensional (13) Cα(i)-(13)C=O(i) and (13)C=O(i)-(15)NH(i + 1) dipolar-interaction correlation spectra provide guidance for selective amino acid labeling and signal assignment schemes to study the molecular mechanism of activation of CB2 by solid-state MAS NMR.
Collapse
Affiliation(s)
- Tomohiro Kimura
- Laboratory of Membrane Biochemistry and Biophysics, NIAAA, NIH, Bethesda, Maryland, 20892
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Present and future approaches to screening of G-protein-coupled receptors. Future Med Chem 2013; 5:523-38. [PMID: 23573971 DOI: 10.4155/fmc.13.9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
As G-protein-coupled receptors (GPCRs) mediate a multitude of cellular signal transduction events, affecting more or less all human disease areas, it is, therefore, no surprise that they comprise the largest family of current drug targets. Screening of compounds interacting with GPCRs has developed during the past decade from receptor binding assays, to various functional determination of coupling to G-proteins, and, more recently, G-protein-independent signal transduction events. Additional opportunities have been presented in drug discovery through novel pharmacological properties obtained for receptor dimers and by identification of ligands for orphan GPCRs. Furthermore, high-throughput formats and automation has substantially facilitated and accelerated the screening process providing powerful tools in improving modern drug discovery.
Collapse
|
15
|
Puglia ALP, Rezende AG, Jorge SAC, Wagner R, Pereira CA, Astray RM. Quantitative RT-PCR for titration of replication-defective recombinant Semliki Forest virus. J Virol Methods 2013; 193:647-52. [PMID: 23933080 DOI: 10.1016/j.jviromet.2013.07.058] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 07/17/2013] [Accepted: 07/22/2013] [Indexed: 11/24/2022]
Abstract
Virus titration may constitute a drawback in the development and use of replication-defective viral vectors like Semliki Forest virus (SFV). The standardization and validation of a reverse transcription quantitative PCR (qRT-PCR) method for SFV titration is presented here. The qRT-PCR target is located within the nsp1 gene of the non-structural polyprotein SFV region (SFV RNA), which allows the strategy to be used for several different recombinant SFV constructs. Titer determinations were carried out by performing virus titration and infection assays with SFVs containing an RNA coding region for the rabies virus glycoprotein (RVGP) or green fluorescent protein (GFP). Results showed that the standardized qRT-PCR is applicable for different SFV constructs, and showed good reproducibility. To evaluate the correlation between the amount of functional SFV RNA in a virus lot and its infectivity in BHK-21 cell cultures, a temperature mediated titer decrease was performed and successfully quantitated by qRT-PCR. When used for cell infection at the same multiplicity of infection (MOI), the temperature treated SFV-RVGP samples induced the same levels of RVGP expression. Similarly, when different SFV-GFP lots with different virus titers, as accessed by qRT-PCR, were used for cell infection at the same MOI, the cultures showed comparable amounts of fluorescent cells. The data demonstrate a good correlation between the amount of virus used for infection, as measured by its SFV RNA, and the protein synthesis in the cells. In conclusion, the qRT-PCR method developed here is accurate and enables the titration of replication-defective SFV vectors, an essential aid for viral vector development as well as for establishment of production bioprocesses.
Collapse
Affiliation(s)
- Ana L P Puglia
- Laboratório de Imunologia Viral, Instituto Butantan, Av. Vital Brasil 1500, CP 05503-900 São Paulo, Brazil.
| | | | | | | | | | | |
Collapse
|
16
|
Expression and purification of functional human mu opioid receptor from E.coli. PLoS One 2013; 8:e56500. [PMID: 23437147 PMCID: PMC3578875 DOI: 10.1371/journal.pone.0056500] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2012] [Accepted: 01/10/2013] [Indexed: 12/17/2022] Open
Abstract
N-terminally his-tagged human mu opioid receptor, a G protein-coupled receptor was produced in E.coli employing synthetic codon-usage optimized constructs. The receptor was expressed in inclusion bodies and membrane-inserted in different E.coli strains. By optimizing the expression conditions the expression level for the membrane-integrated receptor was raised to 0.3–0.5 mg per liter of culture. Milligram quantities of receptor could be enriched by affinity chromatography from IPTG induced cultures grown at 18°C. By size exclusion chromatography the protein fraction with the fraction of alpha-helical secondary structure expected for a 7-TM receptor was isolated, by CD-spectroscopy an alpha-helical content of ca. 45% was found for protein solubilised in the detergent Fos-12. Receptor in Fos-12 micelles was shown to bind endomorphin-1 with a KD of 61 nM. A final yield of 0.17 mg functional protein per liter of culture was obtained.
Collapse
|
17
|
Banères JL, Mouillac B. [Handling G-protein-coupled receptors: expression, purification and in vitro stabilization]. Med Sci (Paris) 2012; 28:837-44. [PMID: 23067414 DOI: 10.1051/medsci/20122810011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Among the different classes of integral membrane proteins, G protein-coupled receptors (GPCR) constitute the largest family. They are involved in most essential physiological functions and particularly play a key role in cell-to-cell communication and sensory signal transduction. They represent targets for approximately 30% of currently marketed drugs. In order to better understand their functioning, define their tridimensional structure and develop novel selective and efficient therapeutic compounds, it is crucial to purify these proteins for a full characterization. However, this biochemical step is not trivial since GPCR are present in membranes at very low levels and they require detergents to be extracted from their natural lipid environment and be handled as functional proteins. No universal strategy for GPCR production, purification and stabilization is currently available; each single GPCR possesses a unique set of physicochemical characteristics, preference for some detergents upon solubilization and specific conditions for purification. During the last decade, major breakthroughs regarding overexpression, purification and above all GPCR stabilization, thanks to amphipols and nanodiscs, opened very exciting perspectives for structural and dynamic investigations of these membrane proteins. The aim of this chapter is to provide an overview of the different aspects of GPCR handling.
Collapse
Affiliation(s)
- Jean-Louis Banères
- Institut des biomolécules Max Mousseron, faculté de pharmacie, Montpellier, France
| | | |
Collapse
|
18
|
Abstract
The number of structures of integral membrane proteins from higher eukaryotes is steadily increasing due to a number of innovative protein engineering and crystallization strategies devised over the last few years. However, it is sobering to reflect that these structures represent only a tiny proportion of the total number of membrane proteins encoded by a mammalian genome. In addition, the structures determined to date are of the most tractable membrane proteins, i.e., those that are expressed functionally and to high levels in yeast or in insect cells using the baculovirus expression system. However, some membrane proteins that are expressed inefficiently in these systems can be produced at sufficiently high levels in mammalian cells to allow structure determination. Mammalian expression systems are an under-used resource in structural biology and represent an effective way to produce fully functional membrane proteins for structural studies. This review will discuss examples of vertebrate membrane protein overexpression in mammalian cells using a variety of viral, constitutive or inducible expression systems.
Collapse
Affiliation(s)
- Juni Andréll
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | | |
Collapse
|
19
|
Tapaneeyakorn S, Goddard AD, Oates J, Willis CL, Watts A. Solution- and solid-state NMR studies of GPCRs and their ligands. BIOCHIMICA ET BIOPHYSICA ACTA 2011; 1808:1462-75. [PMID: 20951674 DOI: 10.1016/j.bbamem.2010.10.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2010] [Revised: 10/02/2010] [Accepted: 10/05/2010] [Indexed: 12/29/2022]
Abstract
G protein-coupled receptors (GPCRs) represent one of the major targets of new drugs on the market given their roles as key membrane receptors in many cellular signalling pathways. Structure-based drug design has potential to be the most reliable method for novel drug discovery. Unfortunately, GPCR-ligand crystallisation for X-ray diffraction studies is very difficult to achieve. However, solution- and solid-state NMR approaches have been developed and have provided new insights, particularly focussing on the study of protein-ligand interactions which are vital for drug discovery. This review provides an introduction for new investigators of GPCRs/ligand interactions using NMR spectroscopy. The guidelines for choosing a system for efficient isotope labelling of GPCRs and their ligands for NMR studies will be presented, along with an overview of the different sample environments suitable for generation of high resolution structural information from NMR spectra.
Collapse
Affiliation(s)
- Satita Tapaneeyakorn
- Biomembrane Structure Unit, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | | | | | | | | |
Collapse
|
20
|
Romero-Fernandez W, Garriga P, Borroto-Escuela DO. Overproduction of human M₃ muscarinic acetylcholine receptor: an approach toward structural studies. Biotechnol Prog 2011; 27:838-45. [PMID: 21548142 DOI: 10.1002/btpr.615] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Revised: 11/18/2010] [Indexed: 11/10/2022]
Abstract
Human M(3) muscarinic acetylcholine receptor (M3R), present in both the central and the peripheral nervous system, is involved in several neurodegenerative and autoimmune diseases. Recently, M3R overexpression has been suggested to play a role in certain forms of cancer, showing promise as a new potential pharmacological target. However, the lack of structural information hampered to develop a new potent selective and potent antagonist. We describe here different strategies for overexpressing functional M3R on the perspective of future biophysical studies. To achieve this goal, four tagged M3R genes were engineered and codon optimized. Different heterologous expression systems, including mammalian cells and viral transfection, were employed to overexpress M3R. Although codon optimization resulted in only twofold to threefold increase of M3R expression, we found that epitope tagging of the synthetic M3R, especially with hemagglutinin and Flag epitope tags, could improve M3R expression levels. On the other hand, viral transfection led to a yield of 27 pmol/mg protein that is the highest level reported so far for this receptor subtype in mammalian cells. Taking together several of the strategies used can help increasing M3R expression, not only to start purification efforts but also for secondary structural analysis trial and functional analyses.
Collapse
Affiliation(s)
- Wilber Romero-Fernandez
- Centre de Biotecnologia Molecular, Dept. d'Enginyeria Química, Universitat Politècnica de Catalunya, Terrassa 08222, Spain
| | | | | |
Collapse
|
21
|
Asada H, Uemura T, Yurugi-Kobayashi T, Shiroishi M, Shimamura T, Tsujimoto H, Ito K, Sugawara T, Nakane T, Nomura N, Murata T, Haga T, Iwata S, Kobayashi T. Evaluation of the Pichia pastoris expression system for the production of GPCRs for structural analysis. Microb Cell Fact 2011; 10:24. [PMID: 21513509 PMCID: PMC3094209 DOI: 10.1186/1475-2859-10-24] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Accepted: 04/22/2011] [Indexed: 11/18/2022] Open
Abstract
Background Various protein expression systems, such as Escherichia coli (E. coli), Saccharomyces cerevisiae (S. cerevisiae), Pichia pastoris (P. pastoris), insect cells and mammalian cell lines, have been developed for the synthesis of G protein-coupled receptors (GPCRs) for structural studies. Recently, the crystal structures of four recombinant human GPCRs, namely β2 adrenergic receptor, adenosine A2a receptor, CXCR4 and dopamine D3 receptor, were successfully determined using an insect cell expression system. GPCRs expressed in insect cells are believed to undergo mammalian-like posttranscriptional modifications and have similar functional properties than in mammals. Crystal structures of GPCRs have not yet been solved using yeast expression systems. In the present study, P. pastoris and insect cell expression systems for the human muscarinic acetylcholine receptor M2 subtype (CHRM2) were developed and the quantity and quality of CHRM2 synthesized by both expression systems were compared for the application in structural studies. Results The ideal conditions for the expression of CHRM2 in P. pastoris were 60 hr at 20°C in a buffer of pH 7.0. The specific activity of the expressed CHRM2 was 28.9 pmol/mg of membrane protein as determined by binding assays using [3H]-quinuclidinyl benzilate (QNB). Although the specific activity of the protein produced by P. pastoris was lower than that of Sf9 insect cells, CHRM2 yield in P. pastoris was 2-fold higher than in Sf9 insect cells because P. pastoris was cultured at high cell density. The dissociation constant (Kd) for QNB in P. pastoris was 101.14 ± 15.07 pM, which was similar to that in Sf9 insect cells (86.23 ± 8.57 pM). There were no differences in the binding affinity of CHRM2 for QNB between P. pastoris and Sf9 insect cells. Conclusion Compared to insect cells, P. pastoris is easier to handle, can be grown at lower cost, and can be expressed quicker at a large scale. Yeast, P. pastoris, and insect cells are all effective expression systems for GPCRs. The results of the present study strongly suggested that protein expression in P. pastoris can be applied to the structural and biochemical studies of GPCRs.
Collapse
Affiliation(s)
- Hidetsugu Asada
- Iwata Human Receptor Crystallography project, ERATO, JST, Konoe-cho, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Berger C, Montag C, Berndt S, Huster D. Optimization of Escherichia coli cultivation methods for high yield neuropeptide Y receptor type 2 production. Protein Expr Purif 2011; 76:25-35. [DOI: 10.1016/j.pep.2010.10.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Revised: 10/20/2010] [Accepted: 10/27/2010] [Indexed: 12/11/2022]
|
23
|
Schucht R, Lydford S, Andzinski L, Zauers J, Cooper J, Hauser H, Wirth D, May T. Rapid establishment of G-protein-coupled receptor-expressing cell lines by site-specific integration. ACTA ACUST UNITED AC 2011; 16:323-31. [PMID: 21335600 DOI: 10.1177/1087057110396371] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The establishment of mammalian cell lines reliably expressing G-protein-coupled receptors (GPCRs) can be a tedious and often time-consuming process. A strategy has been developed to allow the rapid production of such cell lines. The first step of this approach was the generation of a specialized master cell line, characterized by optimized stable expression of a membrane-bound reporter protein. In the second step, this reporter gene was exchanged for that of the GPCR of interest by a DNA recombinase "cut-and-paste" engineering step. It has been demonstrated that the resulting GPCR cell lines inherit the advantages of the master cell line, expressing the GPCR in a homogeneous and stable manner. The case studies presented demonstrate the functionality of the established GPCR cell lines, and most important, because of the highly efficient integration event, these recombinant GPCR-expressing cell lines were generated within a timeframe of 2 to 4 weeks. The advantages of this cut-and-paste approach versus other strategies such as Flp-In or Jump-In are compared.
Collapse
Affiliation(s)
- Roland Schucht
- Department of Gene Regulation and Differentiation, HZI-Helmholtz Centre for Infection Research, Braunschweig, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Berger C, Ho JTC, Kimura T, Hess S, Gawrisch K, Yeliseev A. Preparation of stable isotope-labeled peripheral cannabinoid receptor CB2 by bacterial fermentation. Protein Expr Purif 2010; 70:236-47. [PMID: 20044006 DOI: 10.1016/j.pep.2009.12.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Revised: 12/18/2009] [Accepted: 12/23/2009] [Indexed: 12/23/2022]
Abstract
We developed a bacterial fermentation protocol for production of a stable isotope-labeled cannabinoid receptor CB2 for subsequent structural studies of this protein by nuclear magnetic resonance spectroscopy. The human peripheral cannabinoid receptor was expressed in Escherichia coli as a fusion with maltose binding protein and two affinity tags. The fermentation was performed in defined media comprised of mineral salts, glucose and (15)N(2)-L-tryptophan to afford incorporation of the labeled amino acid into the protein. Medium, growth and expression conditions were optimized so that the fermentation process produced about 2mg of purified, labeled CB2/L of culture medium. By performing a mass spectroscopic characterization of the purified CB2, we determined that one of the two (15)N atoms in tryptophan was incorporated into the recombinant protein. NMR analysis of (15)N chemical shifts strongly suggests that the (15)N atoms are located in Trp-indole rings. Importantly, analysis of the peptides derived from the CNBr cleavage of the purified protein confirmed a minimum of 95% incorporation of the labeled tryptophan into the CB2 sequence. The labeled CB2, purified and reconstituted into liposomes at a protein-to-lipid molar ratio of 1:500, was functional as confirmed by activation of cognate G proteins in an in vitro coupled assay. To our knowledge, this is the first reported production of a biologically active, stable isotope-labeled G protein-coupled receptor by bacterial fermentation.
Collapse
Affiliation(s)
- Christian Berger
- Institute for Biochemistry and Biotechnology, Martin-Luther University, Halle-Wittenberg, Kurt-Mothes-Str., 3, 06120 Halle, Germany
| | | | | | | | | | | |
Collapse
|
25
|
Abstract
Membrane proteins (MPs) are responsible for the interface between the exterior and the interior of the cell. These proteins are involved in numerous diseases, like cancer, cystic fibrosis, epilepsy, hyperinsulinism, heart failure, hypertension and Alzheimer disease. However, studies of these disorders are hampered by a lack of structural information about the proteins involved. Structural analysis requires large quantities of pure and active proteins. The majority of medically and pharmaceutically relevant MPs are present in tissues at low concentration, which makes heterologous expression in large-scale production-adapted cells a prerequisite for structural studies. Obtaining mammalian MP structural data depends on the development of methods that allow the production of large quantities of MPs. This review focuses on the heterologous expression systems now available to produce large amounts of MPs for structural proteomics, and describes the strategies that allowed the determination of the structure of the first heterologously expressed mammalian MPs.
Collapse
Affiliation(s)
- Isabelle Mus-Veteau
- Institut of Developmental Biology and Cancer, UMR CNRS, Université de Nice-Sophia Antipolis, Nice, France.
| |
Collapse
|
26
|
Lundstrom K. Expression of mammalian membrane proteins in mammalian cells using Semliki Forest virus vectors. Methods Mol Biol 2010; 601:149-163. [PMID: 20099145 DOI: 10.1007/978-1-60761-344-2_10] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
One of the major bottlenecks in drug screening and structural biology on membrane proteins has for a long time been the expression of recombinant protein in sufficient quality and quantity. The expression has been evaluated in all existing expression systems, from cell-free translation and bacterial systems to expression in animal cells. In contrast to soluble proteins, the expression levels have been relatively low due to the following reasons: The topology of membrane proteins requires special, posttranslational processing, folding, and insertion into membranes, which often are mammalian cell specific. Despite these strict demands, functional membrane proteins (G protein-coupled receptors, ion channels, and transporters) have been successfully expressed in bacterial, yeast, and insect cells. A general drawback observed in prokaryotic cells is that accumulation of foreign protein in membranes is toxic and results in growth arrest and therefore low yields of recombinant protein.In this chapter, the focus is on expression of recombinant mammalian membrane proteins in mammalian host cells, particularly applying Semliki Forest virus (SFV) vectors. Replication-deficient SFV vectors are rapidly generated at high titers in BHK-21 (Baby Hamster Kidney) cells, which then are applied for a broad range of mammalian and nonmammalian cells. The SFV system has provided high expression levels of topologically different proteins, especially for membrane proteins. Robust ligand-binding assays and functional coupling to G proteins and electrophysiological recordings have made the SFV system an attractive tool in drug discovery. Furthermore, the high susceptibility of SFV vectors to primary neurons has allowed various applications in neuroscience. Establishment of large-scale production in mammalian adherent and suspension cultures has allowed production of hundreds of milligrams of membrane proteins that has allowed their submission to serious structural biology approaches. In this context, a structural genomics program for SFV-based overexpression of 100 GPCRs was established.
Collapse
|
27
|
Koth CMM, Payandeh J. Strategies for the cloning and expression of membrane proteins. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2009; 76:43-86. [PMID: 20663478 DOI: 10.1016/s1876-1623(08)76002-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Despite the determination of thousands of high-resolution structures of soluble proteins, many features of integral membrane proteins render them difficult targets for the structural biologist. Among these, the most important challenge is in expressing sufficient quantities of active protein to support downstream purification and structure determination efforts. Over 190 unique membrane protein structures have now been solved, and noticeable trends in successful expression strategies are beginning to emerge. A number of groups have also explored high-throughput (HTP) methods for membrane protein expression, with varying degrees of success. Here we review the current state of expressing membrane proteins for functional and structural studies. We first survey successful methods that have already yielded levels of membrane protein expression sufficient for structure determination. HTP methods are also examined since these aim to explore large numbers of targets and can predict reasonable starting points for many membrane proteins. Since HTP techniques may fail, particularly for certain classes of eukaryotic targets, detailed strategies for the expression of two prominent classes of eukaryotic protein families, G-protein-coupled receptors and ion channels, are also summarized.
Collapse
Affiliation(s)
- Christopher M M Koth
- Department of Structural Biology, Genentech, South San Francisco, California 94080, USA
| | | |
Collapse
|
28
|
Mammalian G-protein-coupled receptor expression in Escherichia coli: I. High-throughput large-scale production as inclusion bodies. Anal Biochem 2009; 386:147-55. [DOI: 10.1016/j.ab.2008.12.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2008] [Revised: 11/27/2008] [Accepted: 12/13/2008] [Indexed: 11/20/2022]
|
29
|
High-level expression of rabies virus glycoprotein with the RNA-based Semliki Forest Virus expression vector. J Biotechnol 2009; 139:283-90. [DOI: 10.1016/j.jbiotec.2008.12.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Revised: 12/04/2008] [Accepted: 12/12/2008] [Indexed: 11/22/2022]
|
30
|
Leifert WR. An overview on GPCRs and drug discovery: structure-based drug design and structural biology on GPCRs. Methods Mol Biol 2009; 552:51-66. [PMID: 19513641 PMCID: PMC7122359 DOI: 10.1007/978-1-60327-317-6_4] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
G protein-coupled receptors (GPCRs) represent 50-60% of the current drug targets. There is no doubt that this family of membrane proteins plays a crucial role in drug discovery today. Classically, a number of drugs based on GPCRs have been developed for such different indications as cardiovascular, metabolic, neurodegenerative, psychiatric, and oncologic diseases. Owing to the restricted structural information on GPCRs, only limited exploration of structure-based drug design has been possible. Much effort has been dedicated to structural biology on GPCRs and very recently an X-ray structure of the beta2-adrenergic receptor was obtained. This breakthrough will certainly increase the efforts in structural biology on GPCRs and furthermore speed up and facilitate the drug discovery process.
Collapse
|
31
|
Abstract
Structural and functional analysis of most G-protein-coupled receptors (GPCRs) requires their expression and purification in functional form. The produced amount of recombinant membrane-inserted receptors depends on the optimal combination of a particular GPCR and production host; optimization of expression is still a matter of trial-and-error. Prior to purification, receptors must be extracted from the membranes by use of detergent(s). The choice of an appropriate detergent for solubilization and purification is crucial to maintain receptors in their functional state. The initial enrichment can be carried out by affinity chromatography using a general affinity tag (e.g., poly-histidine tag). If the first purification step does not yield pure receptor protein, purification to homogeneity can often be achieved by use of a subsequent receptor-specific ligand column. If suitable immobilized ligands are not available, size exclusion chromatography or other techniques need to be applied. Many GPCRs become unstable upon detergent extraction from lipid membranes, and measures for stabilization are discussed. As an example, the purification of a functional neurotensin receptor to homogeneity in milligram quantities is given below.
Collapse
Affiliation(s)
- Reinhard Grisshammer
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Department of Health and Human Services, Rockville, MD 20852, USA, telephone +1 301-594-9223, fax +1 301-480-3934,
| |
Collapse
|
32
|
Singh S, Gras A, Fiez-Vandal C, Ruprecht J, Rana R, Martinez M, Strange PG, Wagner R, Byrne B. Large-scale functional expression of WT and truncated human adenosine A2A receptor in Pichia pastoris bioreactor cultures. Microb Cell Fact 2008; 7:28. [PMID: 18847468 PMCID: PMC2570359 DOI: 10.1186/1475-2859-7-28] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2008] [Accepted: 10/10/2008] [Indexed: 11/16/2022] Open
Abstract
Background The large-scale production of G-protein coupled receptors (GPCRs) for functional and structural studies remains a challenge. Recent successes have been made in the expression of a range of GPCRs using Pichia pastoris as an expression host. P. pastoris has a number of advantages over other expression systems including ability to post-translationally modify expressed proteins, relative low cost for production and ability to grow to very high cell densities. Several previous studies have described the expression of GPCRs in P. pastoris using shaker flasks, which allow culturing of small volumes (500 ml) with moderate cell densities (OD600 ~15). The use of bioreactors, which allow straightforward culturing of large volumes, together with optimal control of growth parameters including pH and dissolved oxygen to maximise cell densities and expression of the target receptors, are an attractive alternative. The aim of this study was to compare the levels of expression of the human Adenosine 2A receptor (A2AR) in P. pastoris under control of a methanol-inducible promoter in both flask and bioreactor cultures. Results Bioreactor cultures yielded an approximately five times increase in cell density (OD600 ~75) compared to flask cultures prior to induction and a doubling in functional expression level per mg of membrane protein, representing a significant optimisation. Furthermore, analysis of a C-terminally truncated A2AR, terminating at residue V334 yielded the highest levels (200 pmol/mg) so far reported for expression of this receptor in P. pastoris. This truncated form of the receptor was also revealed to be resistant to C-terminal degradation in contrast to the WT A2AR, and therefore more suitable for further functional and structural studies. Conclusion Large-scale expression of the A2AR in P. pastoris bioreactor cultures results in significant increases in functional expression compared to traditional flask cultures.
Collapse
Affiliation(s)
- Shweta Singh
- Membrane Protein Crystallography Group, Division of Molecular Biosciences, Imperial College London, South Kensington, London, SW7 2AZ, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Coutard B, Gorbalenya AE, Snijder EJ, Leontovich AM, Poupon A, De Lamballerie X, Charrel R, Gould EA, Gunther S, Norder H, Klempa B, Bourhy H, Rohayem J, L'hermite E, Nordlund P, Stuart DI, Owens RJ, Grimes JM, Tucker PA, Bolognesi M, Mattevi A, Coll M, Jones TA, Aqvist J, Unge T, Hilgenfeld R, Bricogne G, Neyts J, La Colla P, Puerstinger G, Gonzalez JP, Leroy E, Cambillau C, Romette JL, Canard B. The VIZIER project: preparedness against pathogenic RNA viruses. Antiviral Res 2008; 78:37-46. [PMID: 18083241 PMCID: PMC7114271 DOI: 10.1016/j.antiviral.2007.10.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2007] [Revised: 10/15/2007] [Accepted: 10/16/2007] [Indexed: 01/07/2023]
Abstract
Life-threatening RNA viruses emerge regularly, and often in an unpredictable manner. Yet, the very few drugs available against known RNA viruses have sometimes required decades of research for development. Can we generate preparedness for outbreaks of the, as yet, unknown viruses? The VIZIER (VIral enZymes InvolvEd in Replication) (http://www.vizier-europe.org/) project has been set-up to develop the scientific foundations for countering this challenge to society. VIZIER studies the most conserved viral enzymes (that of the replication machinery, or replicases) that constitute attractive targets for drug-design. The aim of VIZIER is to determine as many replicase crystal structures as possible from a carefully selected list of viruses in order to comprehensively cover the diversity of the RNA virus universe, and generate critical knowledge that could be efficiently utilized to jump-start research on any emerging RNA virus. VIZIER is a multidisciplinary project involving (i) bioinformatics to define functional domains, (ii) viral genomics to increase the number of characterized viral genomes and prepare defined targets, (iii) proteomics to express, purify, and characterize targets, (iv) structural biology to solve their crystal structures, and (v) pre-lead discovery to propose active scaffolds of antiviral molecules.
Collapse
Affiliation(s)
- B Coutard
- Architecture et Fonction des Macromolécules Biologiques, CNRS, and Universités d'Aix-Marseille I et II, UMR 6098, ESIL Case 925, 13288 Marseille Cedex 09, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Brillet K, Perret BG, Klein V, Pattus F, Wagner R. Using EGFP fusions to monitor the functional expression of GPCRs in the Drosophila Schneider 2 cells. Cytotechnology 2008; 57:101-9. [PMID: 19003178 DOI: 10.1007/s10616-008-9125-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2007] [Accepted: 01/09/2008] [Indexed: 11/30/2022] Open
Abstract
In combining fluorescence measurements with ligand binding assays, the versatility of the EGFP C-terminally fused to the human mu opioid receptor (EGFP-hMOR) has been exploited to notably improve the expression level of functional G protein-coupled receptors in Drosophila S2 cells. A selected array of efficient optimization approaches is presented herein, ranging from a cell-sorting method, allowing for a substantial enrichment in EGFP-hMOR expressing cells, to the addition of chemical and pharmacological chaperones, significantly enhancing the yield and the activity of the expressed receptors. Consistent with previous studies, significant discrepancies were observed between the total amounts of fluorescent receptors over a limited subpopulation capable of ligand binding, even after expression optimization. Subsequently, membrane isopycnic centrifugation experiments allowed to separate the ligand binding active from the non-active membrane fraction, the latter most probably containing misfolded receptors. Taken together, these results illustrate a coherent set of advantageous productive and preparative methods for the production of GPCRs in the highly valuable Drosophila S2 expression system.
Collapse
Affiliation(s)
- Karl Brillet
- Département des Récepteurs et des Protéines Membranaires, Ecole Supérieure de Biotechnologie de Strasbourg, Université de Strasbourg - CNRS, UMR7175, BP 10413, 67 412, Illkirch, France
| | | | | | | | | |
Collapse
|
35
|
Abstract
Structure determination has already proven useful for lead optimization and direct drug design. The number of high-resolution structures available in public databases today exceeds 30,000 and will definitely aid in structure-based drug design. Structural genomics approaches covering whole genomes, topologically similar proteins or gene families are great assets for further progress in the development of new drugs. However, membrane proteins representing 70% of current drug targets are poorly characterized structurally. The problems have been related to difficulties in obtaining large amount of recombinant membrane proteins as well as their purification and structure determination. Structural genomics has proven successful in developing new methods in areas from expression to structure determination by studying a large number of target proteins in parallel.
Collapse
Affiliation(s)
- K Lundstrom
- Flamel Technologies, 33 Avenue du Dr. Georges Lévy, 69693 Vénissieux, France.
| |
Collapse
|
36
|
McCusker EC, Bane SE, O'Malley MA, Robinson AS. Heterologous GPCR expression: a bottleneck to obtaining crystal structures. Biotechnol Prog 2007; 23:540-7. [PMID: 17397185 DOI: 10.1021/bp060349b] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
G protein-coupled receptors (GPCRs) are an important, medically relevant class of integral membrane proteins. Laboratories throughout all disciplines of science devote time and energy into developing practical methods for the discovery, isolation, and characterization of these proteins. Since the crystal structure of rhodopsin was solved 6 years ago, the race to determine high-resolution structures of more GPCRs has gained momentum. Since certain GPCRs are currently produced at sufficient levels for X-ray crystallography trials, it is speculated that heterologous expression of GPCRs may no longer be a bottleneck in obtaining crystal structures. This Review focuses on the current approaches in heterologous expression of GPCRs and explores the problems associated with obtaining crystal structures from GPCRs expressed in different systems. Although milligram amounts of certain GPCRs are attainable, the majority of GPCRs are still either produced at very low levels or not at all. Developing reliable expression techniques for GPCRs is still a major priority for the structural characterization of GPCRs.
Collapse
Affiliation(s)
- Emily C McCusker
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19711, USA
| | | | | | | |
Collapse
|
37
|
Forstner M, Leder L, Mayr LM. Optimization of protein expression systems for modern drug discovery. Expert Rev Proteomics 2007; 4:67-78. [PMID: 17288516 DOI: 10.1586/14789450.4.1.67] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The expression of high levels of stable and functional proteins remains a bottleneck in many scientific endeavors, including the determination of structures in a high-throughput fashion or the screening for novel active compounds in modern drug discovery. Recently, numerous developments have been made to improve the production of soluble and active proteins in heterologous expression systems. These include modifications to the expression constructs, the introduction of new and/or improved pro- and eukaryotic expression systems, and the development of improved cell-free protein synthesis systems. The introduction of robotics has enabled a massive parallelization of expression experiments, thereby vastly increasing the throughput and, hopefully, the output of such experiments. In addition, the big challenges of recombinant overexpression of membrane and secreted proteins are tackled, and some new methods are reviewed.
Collapse
Affiliation(s)
- Michael Forstner
- Protein Expression & Purification Novartis Institutes of BioMedical Research, Discovery Technologies/Lead Discovery Center CH-4002 Basel, Switzerland.
| | | | | |
Collapse
|
38
|
Lundstrom K. Structural genomics: the ultimate approach for rational drug design. Mol Biotechnol 2007; 34:205-12. [PMID: 17172666 DOI: 10.1385/mb:34:2:205] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 11/11/2022]
Abstract
Structural genomics can be defined as structural biology on a large number of target proteins in parallel. This approach plays an important role in modern structure-based drug design. Although a number of structural genomics initiatives have been initiated, relatively few are associated with integral membrane proteins. This indicates the difficulties in expression, purification, and crystallization of membrane proteins, which has also been confirmed by the existence of some 100 high-resolution structures of membrane proteins among the more than 30,000 entries in public databases. Paradoxically, membrane proteins represent 60-70% of current drug targets and structural knowledge could both improve and speed up the drug discovery process. In order to improve the success rate for structure resolution of membrane proteins structural genomics networks have been established.
Collapse
Affiliation(s)
- Kenneth Lundstrom
- Flamel Technologies, 33, Avenue du Georges Levy, 69693 Venisseux, France.
| |
Collapse
|
39
|
Baldi L, Hacker DL, Adam M, Wurm FM. Recombinant protein production by large-scale transient gene expression in mammalian cells: state of the art and future perspectives. Biotechnol Lett 2007; 29:677-84. [PMID: 17235486 DOI: 10.1007/s10529-006-9297-y] [Citation(s) in RCA: 198] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2006] [Revised: 12/19/2006] [Accepted: 12/21/2006] [Indexed: 11/29/2022]
Abstract
The expansion of the biologics pipeline depends on the identification of candidate proteins for clinical trials. Speed is one of the critical issues, and the rapid production of high quality, research-grade material for preclinical studies by transient gene expression (TGE) is addressing this factor in an impressive way: following DNA transfection, the production phase for TGE is usually 2-10 days. Recombinant proteins (r-proteins) produced by TGE can therefore enter the drug development and screening process in a very short time--weeks. With "classical" approaches to protein expression from mammalian cells, it takes months to establish a productive host cell line. This article summarizes efforts in industry and academia to use TGE to produce tens to hundreds of milligrams of r-proteins for either fundamental research or preclinical studies.
Collapse
Affiliation(s)
- Lucia Baldi
- Laboratory of Cellular Biotechnology, Ecole Polytechnique Fédérale de Lausanne, Station 6, 1015, Lausanne, Switzerland.
| | | | | | | |
Collapse
|
40
|
Structural Genomics. CELL ENGINEERING 2007. [PMCID: PMC7122701 DOI: 10.1007/1-4020-5252-9_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Drug discovery based on structural knowledge has proven useful as several structure-based medicines are already on the market. Structural genomics aims at studying a large number of gene products including whole genomes, topologically similar proteins, protein families and protein subtypes in parallel. Particularly, therapeutically relevant targets have been selected for structural genomics initiatives. In this context, integral membrane proteins, which represent 60–70% of the current drug targets, have been of major interest. Paradoxically, membrane proteins present the last frontier to conquer in structural biology as some 100 high resolution structures among the 30,000 entries in public structural databases are available. The modest success rate on membrane proteins relates to the difficulties in their expression, purification and crystallography. To facilitate technology development large networks providing expertise in molecular biology, protein biochemistry and structural biology have been established. The privately funded MePNet program has studied 100 G protein-coupled receptors, which resulted in high level expression of a large number of receptors at structural biology compatible levels. Currently, selected GPCRs have been purified and subjected to crystallization attempts
Collapse
|
41
|
Lundstrom K, Wagner R, Reinhart C, Desmyter A, Cherouati N, Magnin T, Zeder-Lutz G, Courtot M, Prual C, André N, Hassaine G, Michel H, Cambillau C, Pattus F. Structural genomics on membrane proteins: comparison of more than 100 GPCRs in 3 expression systems. ACTA ACUST UNITED AC 2006; 7:77-91. [PMID: 17120110 DOI: 10.1007/s10969-006-9011-2] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2006] [Accepted: 08/17/2006] [Indexed: 10/23/2022]
Abstract
Production of recombinant receptors has been one of the major bottlenecks in structural biology on G protein-coupled receptors (GPCRs). The MePNet (Membrane Protein Network) was established to overexpress a large number of GPCRs in three major expression systems, based on Escherichia coli, Pichia pastoris and Semliki Forest virus (SFV) vectors. Evaluation by immunodetection demonstrated that 50% of a total of 103 GPCRs were expressed in bacterial inclusion bodies, 94% in yeast cell membranes and 95% in SFV-infected mammalian cells. The expression levels varied from low to high and the various GPCR families and subtypes were analyzed for their expressability in each expression system. More than 60% of the GPCRs were expressed at milligram levels or higher in one or several systems, compatible to structural biology applications. Functional activity was determined by binding assays in yeast and mammalian cells and the correlation between immunodetection and binding activity was analyzed.
Collapse
|
42
|
Shukla AK, Reinhart C, Michel H. Comparative analysis of the human angiotensin II type 1a receptor heterologously produced in insect cells and mammalian cells. Biochem Biophys Res Commun 2006; 349:6-14. [PMID: 16963356 DOI: 10.1016/j.bbrc.2006.07.210] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2006] [Accepted: 07/28/2006] [Indexed: 12/01/2022]
Abstract
Angiotensin II type 1a receptor (AT1aR) is a member of GPCR superfamily and it plays crucial roles in the regulation of blood pressure, hormone secretion and renal functions. Here, we report functional overexpression and characterization of the human AT1aR in insect cells using the baculovirus system and in mammalian cells using the Semliki Forest virus system. The recombinant receptor was expressed at a level of 29-32 pmol/mg and it binds to angiontensin II with high affinity (Kd=0.98-1.1 nM). Angiotensin II stimulated accumulation of inositol phosphate and phosphorylation of MAP kinase was also observed, which indicated that the recombinant AT1aR could couple to endogenous Galphaq protein. Confocal laser scanning microscopy revealed that the recombinant receptor was predominantly localized in the plasma membrane and agonist induced internalization of the recombinant AT1aR was also observed. The recombinant AT1aR was expressed in glycosylated form and in vivo inhibition of glycosylation suppressed its surface expression.
Collapse
Affiliation(s)
- Arun Kumar Shukla
- Department of Molecular Membrane Biology, Max Planck Institute of Biophysics, Max-von-Laue Str. 3, 60438 Frankfurt am Main, Germany.
| | | | | |
Collapse
|
43
|
Grisshammer R. Understanding recombinant expression of membrane proteins. Curr Opin Biotechnol 2006; 17:337-40. [PMID: 16777403 DOI: 10.1016/j.copbio.2006.06.001] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2006] [Revised: 05/01/2006] [Accepted: 06/02/2006] [Indexed: 11/25/2022]
Abstract
Over the past 15 years, numerous reports have been published on the recombinant expression of integral membrane proteins. Some proteins accumulate in the membrane to high levels, whereas other often closely related proteins are barely detected. Understanding the underlying reasons for this variation has proven difficult. Recent studies in this area have provided new insight into the response of host cells to membrane protein expression and into the mechanism of membrane insertion. The successful overproduction of some membrane proteins was shown to be linked to the avoidance of stress responses in the host cell. Furthermore, the cell response to membrane protein production has been quantified and several genes that are either upregulated or downregulated when yields of a membrane-inserted protein are poor were identified. Progress has also been made in understanding how the translocon, which is the site of protein translocation and membrane insertion, decides whether a protein segment is integrated into the membrane or not. Building upon such experiments will lead to targeted approaches for recombinant membrane protein expression.
Collapse
Affiliation(s)
- Reinhard Grisshammer
- Laboratory of Molecular Biology of the National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, USA.
| |
Collapse
|
44
|
Shukla AK, Reinhart C, Michel H. Dimethylsulphoxide as a tool to increase functional expression of heterologously produced GPCRs in mammalian cells. FEBS Lett 2006; 580:4261-5. [PMID: 16831432 DOI: 10.1016/j.febslet.2006.05.064] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2006] [Accepted: 05/30/2006] [Indexed: 10/24/2022]
Abstract
High-level overexpression of G protein-coupled receptors GPCRs in mammalian cells remains a difficult task inspite of newly developed virus based expression systems. Here, we show that the functional expression level of the recombinant bradykinin receptor (B(2)R) in mammalian cells can be increased up to sixfold just by the addition of dimethylsulphoxide in the culture medium. Total expression level, cellular localization and binding affinity of the recombinant receptor for its endogenous ligand remains unaltered. The strategy presented here, with recombinant B(2)R as a case example, is applicable to other GPCRs and provides a generic tool to improve the functional expression level of recombinant GPCRs in mammalian cells.
Collapse
Affiliation(s)
- Arun Kumar Shukla
- Department of Molecular Membrane Biology, Max Planck Institute of Biophysics, Max-von-Laue Strasse 3, 60438 Frankfurt am Main, Germany.
| | | | | |
Collapse
|
45
|
Shukla AK, Haase W, Reinhart C, Michel H. Biochemical and pharmacological characterization of the human bradykinin subtype 2 receptor produced in mammalian cells using the Semliki Forest virus system. Biol Chem 2006; 387:569-76. [PMID: 16740128 DOI: 10.1515/bc.2006.073] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Bradykinin, a vasoactive peptide, plays a crucial role in many cardiovascular processes via activation of the bradykinin subtype 2 receptor (B2R). B2R, a member of the G protein-coupled receptor (GPCR) superfamily, is a potential drug target in the treatment of cardiovascular disorders, pain and inflammation. In this study, human B2R was expressed at high levels in baby hamster kidney (BHK) cells using Semliki Forest virus-based vectors. The recombinant receptor was produced as a fusion protein with affinity tags and an expression level of 11 pmol/mg (i.e., approx. 0.2 mg of active receptor per liter of culture) was obtained. Radioligand binding analysis revealed that the recombinant receptor binds to its endogenous ligand bradykinin with high affinity (Kd = 0.12 nM) and its pharmacological profile was similar to that of B2R in native tissues. Bradykinin-stimulated accumulation of inositol phosphate was observed in BHK cells expressing the recombinant receptor, which indicated the activation of endogenous G alpha(q) protein by the recombinant B2R. Confocal laser scanning microscopy and immunogold staining revealed that the recombinant receptor was predominantly localized intracellularly. To the best of our knowledge, this is the first report of an affinity-tagged recombinant B2R been expressed at high levels in BHK cells and extensively characterized.
Collapse
Affiliation(s)
- Arun Kumar Shukla
- Department of Molecular Membrane Biology, Max Planck Institute of Biophysics, Max-von-Laue Str. 3, D-60438 Frankfurt/Main, Germany
| | | | | | | |
Collapse
|