1
|
Zhang X, Guan C, Hang Y, Liu F, Sun J, Yu H, Gan L, Zeng H, Zhu Y, Chen Z, Song H, Cheng C. An M29 Aminopeptidase from Listeria Monocytogenes Contributes to In Vitro Bacterial Growth but not to Intracellular Infection. Microorganisms 2020; 8:microorganisms8010110. [PMID: 31941013 PMCID: PMC7023490 DOI: 10.3390/microorganisms8010110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/06/2020] [Accepted: 01/10/2020] [Indexed: 12/30/2022] Open
Abstract
Aminopeptidases that catalyze the removal of N-terminal residues from polypeptides or proteins are crucial for physiological processes. Here, we explore the biological functions of an M29 family aminopeptidase II from Listeria monocytogenes (LmAmpII). We show that LmAmpII contains a conserved catalytic motif (EEHYHD) that is essential for its enzymatic activity and LmAmpII has a substrate preference for arginine and leucine. Studies on biological roles indicate that LmAmpII is required for in vitro growth in a chemically defined medium for optimal growth of L. monocytogenes but is not required for bacterial intracellular infection in epithelial cells and macrophages, as well as cell-to-cell spreading in fibroblasts. Moreover, LmAmpII is found as dispensable for bacterial pathogenicity in mice. Taken together, we conclude that LmAmpII, an M29 family aminopeptidase, can efficiently hydrolyze a wide range of substrates and is required for in vitro bacterial growth, which lays a foundation for in-depth investigations of aminopeptidases as potential targets to defend Listeria infection.
Collapse
Affiliation(s)
- Xian Zhang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Zhejiang A&F University, Lin’an 311300, China; (X.Z.); (J.S.)
| | - Chiyu Guan
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Zhejiang A&F University, Lin’an 311300, China; (X.Z.); (J.S.)
| | - Yi Hang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Zhejiang A&F University, Lin’an 311300, China; (X.Z.); (J.S.)
| | - Fengdan Liu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Zhejiang A&F University, Lin’an 311300, China; (X.Z.); (J.S.)
| | - Jing Sun
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Zhejiang A&F University, Lin’an 311300, China; (X.Z.); (J.S.)
| | - Huifei Yu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Zhejiang A&F University, Lin’an 311300, China; (X.Z.); (J.S.)
| | - Li Gan
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Zhejiang A&F University, Lin’an 311300, China; (X.Z.); (J.S.)
| | - Huan Zeng
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Zhejiang A&F University, Lin’an 311300, China; (X.Z.); (J.S.)
| | - Yiran Zhu
- Jixian Honors College of Zhejiang A&F University, Zhejiang A&F University, Lin’an 311300, China;
| | - Zhongwei Chen
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Zhejiang A&F University, Lin’an 311300, China; (X.Z.); (J.S.)
| | - Houhui Song
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Zhejiang A&F University, Lin’an 311300, China; (X.Z.); (J.S.)
- Correspondence: (H.S.); (C.C.)
| | - Changyong Cheng
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Zhejiang A&F University, Lin’an 311300, China; (X.Z.); (J.S.)
- Correspondence: (H.S.); (C.C.)
| |
Collapse
|
2
|
Huang SY, Chen K, Wang JL, Yang B, Zhu XQ. Evaluation of protective immunity induced by recombinant calcium-dependent protein kinase 1 (TgCDPK1) protein against acute toxoplasmosis in mice. Microb Pathog 2019; 133:103560. [PMID: 31145981 DOI: 10.1016/j.micpath.2019.103560] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/23/2019] [Accepted: 05/25/2019] [Indexed: 12/23/2022]
Abstract
Toxoplasma gondii is an intracellular zoonotic parasite that causes toxoplasmosis, which can cause economic losses and serious public health problems worldwide. A member of the T. gondii calcium-dependent protein kinases family, TgCDPK1 was recently identified as an essential regulator of exocytosis in T. gondii, and participated in direct parasite motility, host-cell invasion and egress. In the present study, the protective immunity of recombinant TgCDPK1 protein (rTgCDPK1) was evaluated against acute toxoplasmosis in mice. rTgCDPK1 were expressed and purified, BABL/c mice were intraperitoneally immunized with rTgCDPK1 and challenged with the highly virulent RH strain of T. gondii. The specific immune responses were analyzed by measuring the cytokine and serum antibody, and lymphocyte proliferation assays, flow cytometry of lymphocytes and the survival curve were employed to evaluate the protective efficacy. From the results we found that special humoral and cellular responses could be elicited in vaccine mice, and higher level of IgG antibody, and the significant increased levels of Th1-type cytokines IFN-γ, IL-12 (p70), IL10 and CD3+CD4+CD8- and CD3+CD8+CD4- T cells could also be detected comparing to control mice (P < 0.05). All vaccinated mice prolonged survival time (14.90 ± 2.89 days) challenge with 1000 tachyzoites of RH, while the control mice died within 8 days. These results indicated that TgCDPK1 protein was a potential vaccine candidate against acute toxoplasmosis.
Collapse
MESH Headings
- Animals
- Antibodies, Protozoan/blood
- Antigens, Protozoan/genetics
- Antigens, Protozoan/immunology
- Cloning, Molecular
- Cytokines/metabolism
- Female
- Genes, Protozoan/genetics
- Immunity, Cellular
- Immunity, Humoral
- Immunization
- Immunoglobulin G/blood
- Lymphocytes/immunology
- Mice
- Protein Kinases/genetics
- Protein Kinases/immunology
- Protozoan Proteins/genetics
- Protozoan Proteins/immunology
- Recombinant Proteins/genetics
- Recombinant Proteins/immunology
- Spleen/immunology
- Survival Analysis
- Toxoplasma/genetics
- Toxoplasma/immunology
- Toxoplasmosis, Animal/immunology
- Toxoplasmosis, Animal/prevention & control
- Vaccines, DNA/immunology
Collapse
Affiliation(s)
- Si-Yang Huang
- College of Veterinary Medicine, Yangzhou University, and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Jiangsu Key Laboratory of Zoonosis, Yangzhou, Jiangsu Province, 225009, PR China.
| | - Kai Chen
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, PR China
| | - Jin-Lei Wang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, PR China
| | - Bin Yang
- College of Veterinary Medicine, Yangzhou University, and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Jiangsu Key Laboratory of Zoonosis, Yangzhou, Jiangsu Province, 225009, PR China
| | - Xing-Quan Zhu
- College of Veterinary Medicine, Yangzhou University, and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Jiangsu Key Laboratory of Zoonosis, Yangzhou, Jiangsu Province, 225009, PR China; State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, PR China
| |
Collapse
|
3
|
Naeem H, Sana M, Islam S, Khan M, Riaz F, Zafar Z, Akbar H, Shehzad W, Rashid I. Induction of Th1 type-oriented humoral response through intranasal immunization of mice with SAG1-Toxoplasma gondii polymeric nanospheres. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:1025-1034. [PMID: 29873522 DOI: 10.1080/21691401.2018.1478421] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
About one-third of the world population is prone to have infection with T. gondii, which can cause toxoplasmosis in the developing fetus and in people whose immune system is compromised through disease or chemotherapy. Surface antigen-1 (SAG1) is the candidate of vaccine against toxoplasmosis. Recent advances in biotechnology and nano-pharmaceuticals have made possible to formulate nanospheres of recombinant protein, which are suitable for sub-unit vaccine delivery. In current study, the local strain was obtained from cat feces as toxoplasma oocysts. Amplified 957 bp of SAG1 was cloned into pGEM-T and further sub-cloned into pET28-SAG1. BL21 bacteria were induced at different concentrations of isopropyl β-d-1-thiogalactopyranoside for the expression of rSAG1 protein. An immunoblot was developed for the confirmation of recombinant protein expression at 35 kDa that was actually recognized by anti-HIS antibodies and sera were collected from infected mice. PLGA encapsulated nanospheres of recombinant SAG1 were characterized through scanning electron microscopy. Experimental mice were intraperitoneally immunized with rSAG1 protein and intra-nasally immunized with nanosphere. The immune response was evaluated by indirect ELISA. In results intra-nasally administered rSAG1 in nanospheres appeared to elicit elevated responses of specific IgA and IgG2a than in control. Nanospheres of rSAG1 are found to be a bio-compatible candidate for the development of vaccine against T. gondii.
Collapse
Affiliation(s)
- Huma Naeem
- a Department of Parasitology , University of Veterinary and Animal Sciences , Lahore , Pakistan
| | - Madiha Sana
- a Department of Parasitology , University of Veterinary and Animal Sciences , Lahore , Pakistan
| | - Saher Islam
- b Institute of Biochemistry and Biotechnology , University of Veterinary and Animal Sciences , Lahore , Pakistan
| | - Matiullah Khan
- a Department of Parasitology , University of Veterinary and Animal Sciences , Lahore , Pakistan
| | - Farooq Riaz
- a Department of Parasitology , University of Veterinary and Animal Sciences , Lahore , Pakistan
| | - Zunaira Zafar
- b Institute of Biochemistry and Biotechnology , University of Veterinary and Animal Sciences , Lahore , Pakistan
| | - Haroon Akbar
- a Department of Parasitology , University of Veterinary and Animal Sciences , Lahore , Pakistan
| | - Wasim Shehzad
- b Institute of Biochemistry and Biotechnology , University of Veterinary and Animal Sciences , Lahore , Pakistan
| | - Imran Rashid
- a Department of Parasitology , University of Veterinary and Animal Sciences , Lahore , Pakistan
| |
Collapse
|
4
|
Rapid detection of food-borne Salmonella contamination using IMBs-qPCR method based on pagC gene. Braz J Microbiol 2017; 49:320-328. [PMID: 29108975 PMCID: PMC5914203 DOI: 10.1016/j.bjm.2017.09.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Revised: 07/20/2017] [Accepted: 09/11/2017] [Indexed: 11/23/2022] Open
Abstract
Detection of Salmonella is very important to minimize the food safety risk. In this study, the recombinant PagC protein and PagC antibody were prepared and coupled with immunomagnetic beads (IMBs) to capture Salmonella cells from pork and milk samples. And then the SYBR Green qualitative PCR was developed to detect the pathogenic Salmonella. The results showed that the PagC polyclonal antiserum is of good specificity and the capture rate of 0.1 mg IMBs for Salmonella tended to be stable at the range of 70–74% corresponding to the concentrations between 101 and 104 CFU/mL. The method developed demonstrated high specificity for the positive Salmonella samples when compared to non-specific DNA samples, such as Escherichia coli, Staphylococcus aureus, Yersinia enterocolitica, and Yersinia pseudotuberculosis. The limit of detection of this assay was 18 CFU/mL. Detection and quantitative enumeration of Salmonella in samples of pork or milk shows good recoveries of 54.34% and 52.07%. In conclusion, the polyclonal antibody of recombinant PagC protein is effective to capture Salmonella from detected samples. The developed pagC antibody IMBs-qPCR method showed efficiency, sensitivity and specificity for 30 Salmonella detection, enabling detection within 10 h, which is a promising rapid method to detect Salmonella in emergency.
Collapse
|
5
|
Nabi H, Rashid I, Ahmad N, Durrani A, Akbar H, Islam S, Bajwa AA, Shehzad W, Ashraf K, Imran N. Induction of specific humoral immune response in mice immunized with ROP18 nanospheres from Toxoplasma gondii. Parasitol Res 2017; 116:359-370. [PMID: 27785602 DOI: 10.1007/s00436-016-5298-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 10/13/2016] [Indexed: 01/05/2023]
Abstract
Toxoplasmosis is one of the most common zoonotic protozoal diseases. Recent advances in biotechnology have produced recombinant protein, which are immunogenic, and progress in nano-pharmaceutics has generated encapsulated protein in nanospheres, which are suitable for vaccine delivery. DNA was extracted from Toxoplasma gondii oocysts and was confirmed through nested PCR and sequencing. The 1665 bp of ROP18 was cloned into the easy vector system: pGEM-T by the T-A cloning method. DH5α bacteria were transfected with pGEM-ROP18. ROP18 was subcloned from pGEM-ROP18 into pET28-ROP18. BL21 bacteria were transfected with pET28-ROP18. Thus, rROP18 protein was expressed in BL21 bacteria by induction at different concentrations of isopropyl β-D-1-thiogalactopyranoside. Protein expression was confirmed through SDS-PAGE and Western blotting. The immunoblot of rROP18 was recognized by anti-HIS antibodies and sera from infected mice at 67 kDa. Recombinant ROP18 protein was encapsulated in nanoparticles with PLGA and was characterized through scanning electron microscopy. Intraperitoneal immunizations with rROP18 protein and intranasal immunization of nanospheres were carried out in mice, and the immune response was detected by ELISA. Results showed that rROP18 in nanospheres administered intra-nasally elicited elevated responses of specific IgA and IgG2a as compared to groups inoculated intra-nasally with rROP18 alone, or injected subcutaneously with rROP18 in montanide adjuvant. It was concluded that nanospheres of ROP18 would be a non-invasive approach to develop vaccination against T. gondii. Further experiments are needed to determine the cellular response to these nanospheres in a mouse model for chronic toxoplasmosis.
Collapse
Affiliation(s)
- Habibun Nabi
- Department of Parasitology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Imran Rashid
- Department of Parasitology, University of Veterinary and Animal Sciences, Lahore, Pakistan.
| | - Nisar Ahmad
- Department of Parasitology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Aneela Durrani
- Department of Clinical Medicine and Surgery, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Haroon Akbar
- Department of Parasitology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Saher Islam
- Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Amna Arshad Bajwa
- Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Wasim Shehzad
- Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Kamran Ashraf
- Department of Parasitology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Nyla Imran
- Government Degree College for Women, Ferozewala, Sheikhupura, Pakistan
| |
Collapse
|
6
|
Chauhan IS, Shukla R, Krishna S, Sekhri S, Kaushik U, Baby S, Pal C, Siddiqi MI, Sundar S, Singh N. Recombinant Leishmania Rab6 (rLdRab6) is recognized by sera from visceral leishmaniasis patients. Exp Parasitol 2016; 170:135-147. [PMID: 27666959 DOI: 10.1016/j.exppara.2016.09.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 08/24/2016] [Accepted: 09/21/2016] [Indexed: 10/21/2022]
Abstract
Rab proteins form the largest branch of the Ras superfamily. Rab proteins are key regulators of intracellular vesicular transport and membrane trafficking. Although RabGTPases are well-recognized targets in human diseases but are under-explored therapeutically in the Leishmania parasite. Using a quantitative cytofluorimetric assay, we analyzed the composition and organization of Rab6GTPase protein which was found to be primarily localized on the parasite subpellicular membrane and flagellum due to its association with kinesin motor proteins in the cytoskeletal microtubules. Our aim was to also assess the diagnostic role of recombinant Rab6 protein from Leishmania donovani (rLdRab6) using sera/plasma of Indian visceral leishmaniasis (VL) patients. Receiver-operating characteristic (ROC) curve analysis indicated 100% sensitivity and 100% specificity for rLdRab6-based ELISA which was almost similar in comparison to recombinant K39-based ELISA (95.83% sensitivity and 100% specificity). Sera of patients from another intracellular pathogenic infection, Mycobacterium tuberculosis, did not contain any significant levels of anti-rLdRab6 antibody. Thus rLdRab6 accuracy in visceral leishmaniasis diagnosis makes it a promising antigen for clinical use.
Collapse
Affiliation(s)
- Indira Singh Chauhan
- Biochemistry Division, CSIR-Central Drug Research Institute, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Rantidev Shukla
- Biochemistry Division, CSIR-Central Drug Research Institute, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Shagun Krishna
- Molecular and Structural Biology Division, CSIR Central Drug Research Institute, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Savita Sekhri
- Oscar Medicare Pvt. Ltd, Okhla Industrial Area, Phase-II, New Delhi, 110020, India
| | - Umesh Kaushik
- Oscar Medicare Pvt. Ltd, Okhla Industrial Area, Phase-II, New Delhi, 110020, India
| | - Sabitha Baby
- Department of Microbiology, Karuna Medical College, Vilayodi, Chittur, Palakkad, Kerala, 678103, India
| | - Chiranjib Pal
- Department of Zoology, West Bengal State University, Barasat, Parganas (N), Berunanpukuria, Malikapur, West Bengal, 700126, India
| | - Mohammad Imran Siddiqi
- Molecular and Structural Biology Division, CSIR Central Drug Research Institute, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Shyam Sundar
- Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Neeloo Singh
- Biochemistry Division, CSIR-Central Drug Research Institute, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India.
| |
Collapse
|
7
|
Zhu C, Yang X, Lv R, Li Z, Ding X, Tyler BM, Zhang X. Phytophthora capsici homologue of the cell cycle regulator SDA1 is required for sporangial morphology, mycelial growth and plant infection. MOLECULAR PLANT PATHOLOGY 2016; 17:369-87. [PMID: 26095317 PMCID: PMC6638425 DOI: 10.1111/mpp.12285] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
SDA1 encodes a highly conserved protein that is widely distributed in eukaryotic organisms. SDA1 is essential for cell cycle progression and organization of the actin cytoskeleton in yeasts and humans. In this study, we identified a Phytophthora capsici orthologue of yeast SDA1, named PcSDA1. In P. capsici, PcSDA1 is strongly expressed in three asexual developmental states (mycelium, sporangia and germinating cysts), as well as late in infection. Silencing or overexpression of PcSDA1 in P. capsici transformants affected the growth of hyphae and sporangiophores, sporangial development, cyst germination and zoospore release. Phalloidin staining confirmed that PcSDA1 is required for organization of the actin cytoskeleton. Moreover, 4',6-diamidino-2-phenylindole (DAPI) staining and PcSDA1-green fluorescent protein (GFP) fusions revealed that PcSDA1 is involved in the regulation of nuclear distribution in hyphae and sporangia. Both silenced and overexpression transformants showed severely diminished virulence. Thus, our results suggest that PcSDA1 plays a similar role in the regulation of the actin cytoskeleton and nuclear division in this filamentous organism as in non-filamentous yeasts and human cells.
Collapse
Affiliation(s)
- Chunyuan Zhu
- Department of Plant Pathology, Shandong Agricultural University, 61, Daizong Street, Tai'an, Shandong, 271018, China
| | - Xiaoyan Yang
- Department of Plant Pathology, Shandong Agricultural University, 61, Daizong Street, Tai'an, Shandong, 271018, China
| | - Rongfei Lv
- Department of Plant Pathology, Shandong Agricultural University, 61, Daizong Street, Tai'an, Shandong, 271018, China
| | - Zhuang Li
- Department of Plant Pathology, Shandong Agricultural University, 61, Daizong Street, Tai'an, Shandong, 271018, China
| | - Xiaomeng Ding
- Department of Plant Pathology, Shandong Agricultural University, 61, Daizong Street, Tai'an, Shandong, 271018, China
| | - Brett M Tyler
- Center for Genome Research and Biocomputing, Oregon State University, Corvallis, OR, 97331, USA
| | - Xiuguo Zhang
- Department of Plant Pathology, Shandong Agricultural University, 61, Daizong Street, Tai'an, Shandong, 271018, China
| |
Collapse
|
8
|
Cheng C, Wang X, Dong Z, Shao C, Yang Y, Fang W, Fang C, Wang H, Yang M, Jiang L, Zhou X, Song H. Aminopeptidase T of M29 Family Acts as A Novel Intracellular Virulence Factor for Listeria monocytogenes Infection. Sci Rep 2015; 5:17370. [PMID: 26610705 PMCID: PMC4661694 DOI: 10.1038/srep17370] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 10/29/2015] [Indexed: 01/18/2023] Open
Abstract
The foodborne pathogen Listeria monocytogenes employs a number of virulence determinants including metalloproteases to infect hosts. Here for the first time, we identified an M29 family aminopeptidase T (encoded by lmo1603) from L. monocytogenes that possesses a typical feature to catalyze the cleavage of amino acids from peptide substrates, with a preference for arginine. The purified recombinant Lmo1603 was activated by Fe3+, Zn2+ and Mn2+, but strongly stimulated by Co2+, indicating that Lmo1603 is a cobalt-dependent aminopeptidase. Single mutation at any of the Glu216, Glu281, His308, Tyr315, His327, and Asp329 completely abolished the enzymatic activity of Lmo1603. More importantly, we showed that Lmo1603 was mainly involved in Listeria infection, but not required for growth in rich laboratory medium and minimal defined medium. Disruption of Lmo1603 resulted in almost complete attenuation of Listeria virulence in a mouse infection model. In addition, we demonstrated that Lmo1603 was mainly localized in the bacterial cytosol and required for invasion and survival inside human epithelial cells and murine macrophages. We conclude that Lmo1603 encodes a functional aminopeptidase T of M29 family, which acts as a novel intracellular virulence factor essential in the successful establishment of L. monocytogenes infections in a mouse model.
Collapse
Affiliation(s)
- Changyong Cheng
- College of Animal Science and Technology, Zhejiang A&F University, 88 Huanchengbei Road, Lin'an, Zhejiang 311300, P. R. China
| | - Xiaowen Wang
- College of Animal Science and Technology, Zhejiang A&F University, 88 Huanchengbei Road, Lin'an, Zhejiang 311300, P. R. China
| | - Zhimei Dong
- College of Animal Science and Technology, Zhejiang A&F University, 88 Huanchengbei Road, Lin'an, Zhejiang 311300, P. R. China
| | - Chunyan Shao
- College of Animal Science and Technology, Zhejiang A&F University, 88 Huanchengbei Road, Lin'an, Zhejiang 311300, P. R. China
| | - Yongchun Yang
- College of Animal Science and Technology, Zhejiang A&F University, 88 Huanchengbei Road, Lin'an, Zhejiang 311300, P. R. China
| | - Weihuan Fang
- College of Animal Science and Technology, Zhejiang A&F University, 88 Huanchengbei Road, Lin'an, Zhejiang 311300, P. R. China.,Zhejiang University Institute of Preventive Veterinary Medicine, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China
| | - Chun Fang
- Zhejiang University Institute of Preventive Veterinary Medicine, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China
| | - Hang Wang
- College of Animal Science and Technology, Zhejiang A&F University, 88 Huanchengbei Road, Lin'an, Zhejiang 311300, P. R. China
| | - Menghua Yang
- College of Animal Science and Technology, Zhejiang A&F University, 88 Huanchengbei Road, Lin'an, Zhejiang 311300, P. R. China
| | - Lingli Jiang
- Zhoushan Entry-Exit Inspection and Quarantine Bureau, 555 Haijing Road, Zhoushan, Zhejiang 316000, P. R. China
| | - Xiangyang Zhou
- Zhoushan Entry-Exit Inspection and Quarantine Bureau, 555 Haijing Road, Zhoushan, Zhejiang 316000, P. R. China
| | - Houhui Song
- College of Animal Science and Technology, Zhejiang A&F University, 88 Huanchengbei Road, Lin'an, Zhejiang 311300, P. R. China
| |
Collapse
|
9
|
Hu Z, Chen Z, Huang N, Teng X, Zhang J, Wang Z, Wei X, Qin K, Liu X, Wu X, Tang H, Zhu X, Cui K, Li J. Expression, purification of IL-38 in Escherichia coli and production of polyclonal antibodies. Protein Expr Purif 2015; 107:76-82. [DOI: 10.1016/j.pep.2014.10.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 10/28/2014] [Accepted: 10/30/2014] [Indexed: 12/31/2022]
|
10
|
Chen L, Li J, ThanhThuy TT, Zhou L, Huang C, Yuan L, Cai Q. A wireless and sensitive detection of octachlorostyrene using modified AuNPs as signal-amplifying tags. Biosens Bioelectron 2013; 52:427-32. [PMID: 24135481 DOI: 10.1016/j.bios.2013.08.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 08/15/2013] [Accepted: 08/16/2013] [Indexed: 11/15/2022]
Abstract
A wireless, remote query octachlorostyrene (OCS) biosensor was fabricated by coating a mass-sensitive magnetoelastic ribbon with anti-OCS antibody. In response to a time-varying magnetic field, the magnetoelastic sensor mechanically vibrates at a characteristic resonance frequency which inversely depends on the sensor mass loading. As the magnetoelastic film is magnetostrictive itself, the vibrations launch magnetic flux that can be remotely detected using a pickup coil. Au nanoparticles (NPs) were used to amplify the mass loading. In a sample solution containing OCS target and OCS-modified AuNPs (OCS-AuNPs), both OCS and OCS-AuNPs react with the anti-OCS antibody immobilized on the sensor surface in a competition mode. The bound OCS-AuNPs amount is inversely proportional to the OCS target concentration. The reduction of bound OCS-AuNPs induced by free OCS results in significant change in mass loading, which amplifies the responses. The biosensor demonstrates a linear shift in resonance frequency with OCS concentration between 7.4 μM and 9 nM, with a detection limit of 2.8 nM.
Collapse
Affiliation(s)
- Lan Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Department of Chemistry, Hunan University, Changsha 410082, People's Republic of China; Changsha Municipal Drainage Co.,Ltd., Changsha 410003, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
11
|
Wang X, Zhu X, Tooley P, Zhang X. Cloning and functional analysis of three genes encoding polygalacturonase-inhibiting proteins from Capsicum annuum and transgenic CaPGIP1 in tobacco in relation to increased resistance to two fungal pathogens. PLANT MOLECULAR BIOLOGY 2013; 81:379-400. [PMID: 23334855 DOI: 10.1007/s11103-013-0007-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Accepted: 01/01/2013] [Indexed: 05/10/2023]
Abstract
Polygalacturonase-inhibiting proteins (PGIPs) are plant cell wall glycoproteins that can inhibit fungal endopolygalacturonases (PGs). The PGIPs directly reduce the aggressive potential of PGs. Here, we isolated and functionally characterized three members of the pepper (Capsicum annuum) PGIP gene family. Each was up-regulated at a different time following stimulation of the pepper leaves by Phytophthora capcisi and abiotic stresses including salicylic acid, methyl jasmonate, abscisic acid, wounding and cold treatment. Purified recombinant proteins individually inhibited activity of PGs produced by Alternaria alternata and Colletotrichum nicotianae, respectively, and virus-induced gene silencing in pepper conferred enhanced susceptibility to P. capsici. Because three PGIP genes acted similarily in conferring resistance to infection by P. capsici, and because individually purified proteins showed consistent inhibition against PG activity of both pathogens, CaPGIP1 was selected for manipulating transgenic tobacco. The crude proteins from transgenic tobacco exhibited distinct enhanced resistance to PG activity of both fungi. Moreover, the transgenic tobacco showed effective resistance to infection and a significant reduction in the number of infection sites, number of lesions and average size of lesions in the leaves. All results suggest that CaPGIPs may be involved in plant defense response and play an important role in a plant's resistance to disease.
Collapse
Affiliation(s)
- Xiuju Wang
- Department of Plant Pathology, Shandong Agricultural University, No. 61, Daizong street, Tai'an, 271018, Shandong, China
| | | | | | | |
Collapse
|
12
|
Wang H, Fu L, Zhang X. Comparison of expression, purification and characterization of a new pectate lyase from Phytophthora capsici using two different methods. BMC Biotechnol 2011; 11:32. [PMID: 21470403 PMCID: PMC3079630 DOI: 10.1186/1472-6750-11-32] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2010] [Accepted: 04/06/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Pectate lyases (PELs) play an important role in the infection process of plant pathogens and also have a commercial significance in industrial applications. Most of the PELs were expressed as soluble recombinant proteins, while a few recombinant proteins were insoluble. The production of a large-scale soluble recombinant PEL would allow not only a more detailed structural and functional characterization of this enzyme but also may have important applications in the food industry. RESULTS We cloned a new pectate lyase gene (Pcpel2) from Phytophthora capsici. Pcpel2 was constructed by pET system and pMAL system, and both constructs were used to express the PCPEL2 in Escherichia coli BL21 (DE3) pLysS. The expressed products were purified using affinity chromatography and gel filtration chromatography. The purity, specific activity and pathogenicity of the purified PCPEL2 expressed by the pMAL system were higher than the purified PCPEL2 expressed by the pET system. In addition, some other characteristics of the purified PCPEL2 differed from the two systems, such as crystallographic features. Purified PCPEL2 expressed by the pMAL system was crystallized by the hanging-drop vapour-diffusion method at 289 K, and initial crystals were grown. CONCLUSION The two different methods and comparison presented here would be highly valuable in obtaining an ideal enzyme for the downstream experiments, and supply an useful alternative to purify some insoluble recombinant proteins.
Collapse
Affiliation(s)
- Huizheng Wang
- Department of Plant Pathology, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | | | | |
Collapse
|
13
|
Molecular cloning and characterization of twist gene in Bombyx mori. Mol Cell Biochem 2010; 348:69-76. [DOI: 10.1007/s11010-010-0639-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Accepted: 10/28/2010] [Indexed: 10/18/2022]
|
14
|
Feng B, Li P, Wang H, Zhang X. Functional analysis of pcpme6 from oomycete plant pathogen Phytophthora capsici. Microb Pathog 2010; 49:23-31. [PMID: 20227480 DOI: 10.1016/j.micpath.2010.03.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Revised: 02/28/2010] [Accepted: 03/04/2010] [Indexed: 11/25/2022]
Abstract
The Phytophthora capsici inflicts damage on numerous crop plants by secreting a series of pectinase including pectin methylesterase (PME). We identified a PME gene (pcpme6) from a genomic library of a highly virulent P. capsici strain SD33 which had an encoded a polypeptide of 348 amino acid residues with a predicted molecular mass of 38.18 kDa. We also confirmed that pcpme6 was increasingly expressed during symptom development following P. capsici infection of pepper leaves. The wild-type protein (PCPME6) ca. 50 kDa was obtained from pcpme6 expression, and PME activity trend in PCPME6-treated pepper leaves increased with symptom development. PCPME6 degraded leaf cell walls, resulting in the production of necrotic lesions. Mutation of Asp residues in active sites within pcpme6 affected PCPME6 activity and its virulence on pepper leaves. Results show that pcpme6 is a gene within the pme gene family that is important for pathogenesis of P. capsici on pepper.
Collapse
Affiliation(s)
- Baozhen Feng
- Department of Plant Pathology, Shandong Agricultural University, No. 61 Daizong street, Tai'an 271018, PR China
| | | | | | | |
Collapse
|
15
|
Sun WX, Jia YJ, Feng BZ, O'Neill NR, Zhu XP, Xie BY, Zhang XG. Functional analysis of Pcipg2 from the straminopilous plant pathogen Phytophthora capsici. Genesis 2009; 47:535-44. [PMID: 19422018 DOI: 10.1002/dvg.20530] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Phytophthora capsici causes serious diseases in numerous crop plants. Polygalacturonases (PGs) are cell wall-degrading enzymes that play an important role in pathogenesis in straminopilous pathogens. To understand PGs as they relate to the virulence of P. capsici, Pcipg2 was identified from a genomic library of a highly virulent P. capsici strain. Pcipg2 was strongly expressed during symptom development after the inoculation of pepper leaves with P. capsici. The wild protein (PCIPGII) was obtained from the expression of pcipg2 and found that increasing activity of PGs in PCIPGII-treated pepper leaves was consistent with increasing symptom development. Asp residues in active sites within pcipg2 affected PCIPGII activity or its virulence on pepper leaves. Results show that pcipg2 is an important gene among pcipg genes, and illustrate the benefit of analyzing mechanisms of pathogenicity during the period of host/parasite interaction.
Collapse
Affiliation(s)
- Wen Xiu Sun
- Department of Plant Pathology, Shandong Agricultural University, Tai'an 271018, China
| | | | | | | | | | | | | |
Collapse
|
16
|
Characterization of the gene BmEm4, a homologue of Drosophila E(spl)m4, from the silkworm, Bombyx mori. Comp Funct Genomics 2009:947490. [PMID: 19830255 PMCID: PMC2760746 DOI: 10.1155/2009/947490] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2009] [Revised: 07/18/2009] [Accepted: 07/22/2009] [Indexed: 11/18/2022] Open
Abstract
The Drosophila E(spl)m4 gene contains some highly conserved motifs (such as the Brd box, GY box, K box, and CAAC motif) in its 3′ untranslated region (3′ UTR). It was shown to be a microRNA target gene in Drosophila and to play an important role in the regulation of neurogenesis. We identified a homologue of the E(spl)m4 gene from Bombyx mori called BmEm4 and examined the expression patterns of BmEm4 mRNA and protein. There was a lack of correlation in the expression of the mRNA and protein between the different developmental stages, which raises the possibility of posttranscriptional regulation of the BmEm4 mRNA. Consistent with this idea is the finding that the 3′ UTR contains two putative binding sites for microRNAs. Moreover, given that the expression is the highest in the larval head, as confirmed by immunohistochemistry, we propose that BmEm4 may also be involved in the regulation of neurogenesis. Immunostaining indicated that BmEm4 is located primarily in the cytoplasm.
Collapse
|
17
|
Liang S, Gong F, Zhao X, Wang X, Shen G, Xu Y, Yang H, Ruan X, Wei Y. Prokaryotic expression, purification of a new tumor-relative protein FAM92A1-289 and its characterization in renal cell carcinoma. Cancer Lett 2008; 276:81-7. [PMID: 19059705 DOI: 10.1016/j.canlet.2008.10.043] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2008] [Revised: 10/24/2008] [Accepted: 10/27/2008] [Indexed: 02/05/2023]
Abstract
In order to study the characterization of a new tumor-relative FAM92A1-289 protein, we first constructed plasmid FAM92A1-pQE30 for fusion expression in Escherichia coli. The recombinant protein FAM92A1-289 was affinity-purified by Ni2+-charged resin and separated by HPLC chromatography with high purity, and it was further identified by electrospray ionization-mass spectrometry. Furthermore, the expression and cell localization of FAM92A1-289 by immunohistochemistry using our self-prepared polyclonal antibody showed it was expressed in cytoplasm of renal carcinoma. FAM92A1-289 mRNA was expressed in 2 of 10 kidney tissues and in 6 of 12 primary renal tumors. FAM92A1-289 can promote cell growth in vitro and in vivo by colony formation and mouse xenograft assay. Our present data indicated FAM92A1-289 is a new tumor-related gene with oncogenic potentials to probably play roles in renal carcinogenesis.
Collapse
Affiliation(s)
- Shufang Liang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, People's Republic of China.
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Kumari S, Kumar A, Samant M, Sundar S, Singh N, Dube A. Proteomic approaches for discovery of new targets for vaccine and therapeutics against visceral leishmaniasis. Proteomics Clin Appl 2008; 2:372-86. [PMID: 21136840 DOI: 10.1002/prca.200780017] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2007] [Indexed: 11/06/2022]
Abstract
Visceral leishmaniasis (VL) is the most devastating type caused by Leishmania donovani, Leishmania infantum, and Leishmania chagasi. The therapeutic mainstay is still based on the antiquated pentavalent antimonial against which resistance is now increasing. Unfortunately, due to the digenetic life cycle of parasite, there is significant antigenic diversity. There is an urgent need to develop novel drug/vaccine targets against VL for which the primary goal should be to identify and characterize the structural and functional proteins. Proteomics, being widely employed in the study of Leishmania seems to be a suitable strategy as the availability of annotated sequenced genome of Leishmania major has opened the door for dissection of both protein expression/regulation and function. Advances in clinical proteomic technologies have enable to enhance our mechanistic understanding of virulence/pathogenicity/host-pathogen interactions, drug resistance thereby defining novel therapeutic/vaccine targets. Expression proteomics exploits the differential expression of leishmanial proteins as biomarkers for application towards early diagnosis. Further using immunoproteomics efforts were also focused on evaluating responses to define parasite T-cell epitopes as vaccine/diagnostic targets. This review has highlighted some of the relevant developments in the rapidly emerging field of leishmanial proteomics and focus on its future applications in drug and vaccine discovery against VL.
Collapse
Affiliation(s)
- Shraddha Kumari
- Division of Parasitology, Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | | | | | | | | | | |
Collapse
|
19
|
Yang J, Guo SY, Pan FY, Geng HX, Gong Y, Lou D, Shu YQ, Li CJ. Prokaryotic expression and polyclonal antibody preparation of a novel Rab-like protein mRabL5. Protein Expr Purif 2007; 53:1-8. [PMID: 17251037 DOI: 10.1016/j.pep.2006.10.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2006] [Revised: 09/23/2006] [Accepted: 10/02/2006] [Indexed: 11/26/2022]
Abstract
Rab GTPases, which belong to the Ras superfamily, represent a group of small molecular weight GTP binding proteins that are involved in various steps along the exocytic and endocytic pathways. We first identified mRabL5 (GenBank Accession No. NP_080349), a novel Mus musculus Rab-like protein, present as a Golgi-associated protein. Here we presented the results of the cloning, prokaryotic expression, purification, and polyclonal antibody production of the novel Rab-like protein. In order to obtain a specific antibody against mRabL5, we prepared two GST fusion proteins, full-length mRabL5 GST fusion protein and mRabL5 C terminus GST fusion protein, to immunize rabbits. Western blot analysis showed that both antibodies prepared against full length of mRabL5 and its C terminus, respectively, can recognize mRabL5 protein. Immunofluorescence of mRabL5 in NIH3T3 cells using the two antibodies showed its perinuclear clustering distribution pattern. The polyclonal antibodies preparation against mRabL5 provided a good tool for us to study the functional involvement of mRabL5.
Collapse
Affiliation(s)
- Jie Yang
- Jiangsu Key Laboratory for Molecular & Medical Biotechnology, Life Science College, Nanjing Normal University, Nanjing 210097, China
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Kothari H, Kumar P, Sundar S, Singh N. Possibility of membrane modification as a mechanism of antimony resistance in Leishmania donovani. Parasitol Int 2006; 56:77-80. [PMID: 17169604 DOI: 10.1016/j.parint.2006.10.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2006] [Revised: 10/04/2006] [Accepted: 10/28/2006] [Indexed: 11/19/2022]
Abstract
Resistance to antimonials has become a clinical threat in the treatment of visceral leishmaniasis (VL). Unravelling the resistance mechanism needs attention to circumvent the problem of drug resistance. In one of the resistant isolates, we earlier identified a gene (PG1) implicated in antimony resistance whose localization in the present study was confirmed on the pellicular plasma membrane of the parasite thereby indicating towards membrane modification as a mechanism of resistance in this resistant isolate.
Collapse
Affiliation(s)
- Hema Kothari
- Drug Target Discovery and Development Division, Central Drug Research Institute, Lucknow, India
| | | | | | | |
Collapse
|