1
|
Quantification of the calcium signaling deficit in muscles devoid of triadin. PLoS One 2022; 17:e0264146. [PMID: 35213584 PMCID: PMC8880904 DOI: 10.1371/journal.pone.0264146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 02/03/2022] [Indexed: 11/24/2022] Open
Abstract
Triadin, a protein of the sarcoplasmic reticulum (SR) of striated muscles, anchors the calcium-storing protein calsequestrin to calcium release RyR channels at the junction with t-tubules, and modulates these channels by conformational effects. Triadin ablation induces structural SR changes and alters the expression of other proteins. Here we quantify alterations of calcium signaling in single skeletal myofibers of constitutive triadin-null mice. We find higher resting cytosolic and lower SR-luminal [Ca2+], 40% lower calsequestrin expression, and more CaV1.1, RyR1 and SERCA1. Despite the increased CaV1.1, the mobile intramembrane charge was reduced by ~20% in Triadin-null fibers. The initial peak of calcium release flux by pulse depolarization was minimally altered in the null fibers (revealing an increase in peak calcium permeability). The “hump” phase that followed, attributable to calcium detaching from calsequestrin, was 25% lower, a smaller change than expected from the reduced calsequestrin content and calcium saturation. The exponential decay rate of calcium transients was 25% higher, consistent with the higher SERCA1 content. Recovery of calcium flux after a depleting depolarization was faster in triadin-null myofibers, consistent with the increased uptake rate and lower SR calsequestrin content. In sum, the triadin knockout determines an increased RyR1 channel openness, which depletes the SR, a substantial loss of calsequestrin and gains in other couplon proteins. Powerful functional compensations ensue: activation of SOCE that increases [Ca2+]cyto; increased SERCA1 activity, which limits the decrease in [Ca2+]SR and a restoration of SR calcium storage of unknown substrate. Together, they effectively limit the functional loss in skeletal muscles.
Collapse
|
2
|
Miranda DR, Voss AA, Bannister RA. Into the spotlight: RGK proteins in skeletal muscle. Cell Calcium 2021; 98:102439. [PMID: 34261001 DOI: 10.1016/j.ceca.2021.102439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/24/2021] [Accepted: 06/26/2021] [Indexed: 10/20/2022]
Abstract
The RGK (Rad, Rem, Rem2 and Gem/Kir) family of small GTPases are potent endogenous inhibitors of voltage-gated Ca2+ channels (VGCCs). While the impact of RGK proteins on cardiac physiology has been investigated extensively, much less is known regarding their influence on skeletal muscle biology. Thus, the purpose of this article is to establish a basis for future investigation into the role of RGK proteins in regulating the skeletal muscle excitation-contraction (EC) coupling complex via modulation of the L-type CaV1.1 VGCC. The pathological consequences of elevated muscle RGK protein expression in Type II Diabetes, Amyotrophic Lateral Sclerosis (ALS), Duchenne's Muscular Dystrophy and traumatic nerve injury are also discussed.
Collapse
Affiliation(s)
- Daniel R Miranda
- Department of Biological Sciences, College of Science and Mathematics, Wright State University, 235A Biological Sciences, 3640 Colonel Glenn Highway, Dayton, OH 45435, USA
| | - Andrew A Voss
- Department of Biological Sciences, College of Science and Mathematics, Wright State University, 235A Biological Sciences, 3640 Colonel Glenn Highway, Dayton, OH 45435, USA.
| | - Roger A Bannister
- Departments of Pathology and Biochemistry & Molecular Biology, University of Maryland School of Medicine, 108 North Greene Street, Baltimore, MD 21201, USA.
| |
Collapse
|
3
|
Expression and functional analysis of the hydrogen peroxide biosensors HyPer and HyPer2 in C2C12 myoblasts/myotubes and single skeletal muscle fibres. Sci Rep 2020; 10:871. [PMID: 31965006 PMCID: PMC6972731 DOI: 10.1038/s41598-020-57821-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 01/06/2020] [Indexed: 01/11/2023] Open
Abstract
Hydrogen peroxide (H2O2) is generated in cells and plays an important role as a signalling molecule. It has been reported that H2O2 is involved in physiological and pathological processes in skeletal muscle. However, H2O2 detection in cells with traditional techniques produces frequent artefacts. Currently, the HyPer biosensor detects intracellular H2O2 specifically in real time using fluorescence microscopy. The aim of this study was to develop and optimize approaches used to express the HyPer biosensor in different models of skeletal muscle cells, such as the C2C12 myoblast/myotube cell line and mature skeletal muscle fibres isolated from C57BL/6J mice, and to measure intracellular H2O2 in real time in these cells. The results show that the expression of the HyPer biosensor in skeletal muscle cells is possible. In addition, we demonstrate that HyPer is functional and that this biosensor detects changes and fluctuations in intracellular H2O2 in a reversible manner. The HyPer2 biosensor, which is a more advanced version of HyPer, presents improved properties in terms of sensitivity in detecting lower concentrations of H2O2 in skeletal muscle fibres. In conclusion, the expression of the HyPer biosensor in the different experimental models combined with fluorescence microscopy techniques is a powerful methodology to monitor and register intracellular H2O2 specifically in skeletal muscle. The innovation of the methodological approaches presented in this study may present new avenues for studying the role of H2O2 in skeletal muscle pathophysiology. Furthermore, the methodology may potentially be adapted to yield other specific biosensors for different reactive oxygen and nitrogen species or metabolites involved in cellular functions.
Collapse
|
4
|
Muriel JM, O'Neill A, Kerr JP, Kleinhans-Welte E, Lovering RM, Bloch RJ. Keratin 18 is an integral part of the intermediate filament network in murine skeletal muscle. Am J Physiol Cell Physiol 2020; 318:C215-C224. [PMID: 31721615 PMCID: PMC6985829 DOI: 10.1152/ajpcell.00279.2019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 11/07/2019] [Accepted: 11/08/2019] [Indexed: 01/26/2023]
Abstract
Intermediate filaments (IFs) contribute to force transmission, cellular integrity, and signaling in skeletal muscle. We previously identified keratin 19 (Krt19) as a muscle IF protein. We now report the presence of a second type I muscle keratin, Krt18. Krt18 mRNA levels are about half those for Krt19 and only 1:1,000th those for desmin; the protein was nevertheless detectable in immunoblots. Muscle function, measured by maximal isometric force in vivo, was moderately compromised in Krt18-knockout (Krt18-KO) or dominant-negative mutant mice (Krt18 DN), but structure was unaltered. Exogenous Krt18, introduced by electroporation, was localized in a reticulum around the contractile apparatus in wild-type muscle and to a lesser extent in muscle lacking Krt19 or desmin or both proteins. Exogenous Krt19, which was either reticular or aggregated in controls, became reticular more frequently in Krt19-null than in Krt18-null, desmin-null, or double-null muscles. Desmin was assembled into the reticulum normally in all genotypes. Notably, all three IF proteins appeared in overlapping reticular structures. We assessed the effect of Krt18 on susceptibility to injury in vivo by electroporating siRNA into tibialis anterior (TA) muscles of control and Krt19-KO mice and testing 2 wk later. Results showed a 33% strength deficit (reduction in maximal torque after injury) compared with siRNA-treated controls. Conversely, electroporation of siRNA to Krt19 into Krt18-null TA yielded a strength deficit of 18% after injury compared with controls. Our results suggest that Krt18 plays a complementary role to Krt19 in skeletal muscle in both assembling keratin-based filaments and transducing contractile force.
Collapse
Affiliation(s)
- Joaquin M Muriel
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Andrea O'Neill
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Jaclyn P Kerr
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Emily Kleinhans-Welte
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Richard M Lovering
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, Maryland
| | - Robert J Bloch
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
5
|
Abstract
Ryanodine-sensitive intracellular Ca2+ channels (RyRs) open upon binding Ca2+ at cytosolic-facing sites. This results in concerted, self-reinforcing opening of RyRs clustered in specialized regions on the membranes of Ca2+ storage organelles (endoplasmic reticulum and sarcoplasmic reticulum), a process that produces Ca2+-induced Ca2+ release (CICR). The process is optimized to achieve large but brief and localized increases in cytosolic Ca2+ concentration, a feature now believed to be critical for encoding the multiplicity of signals conveyed by this ion. In this paper, I trace the path of research that led to a consensus on the physiological significance of CICR in skeletal muscle, beginning with its discovery. I focus on the approaches that were developed to quantify the contribution of CICR to the Ca2+ increase that results in contraction, as opposed to the flux activated directly by membrane depolarization (depolarization-induced Ca2+ release [DICR]). Although the emerging consensus is that CICR plays an important role alongside DICR in most taxa, its contribution in most mammalian muscles appears to be limited to embryogenesis. Finally, I survey the relevance of CICR, confirmed or plausible, to pathogenesis as well as the multiple questions about activation of release channels that remain unanswered after 50 years.
Collapse
Affiliation(s)
- Eduardo Ríos
- Section of Cellular Signaling, Department of Physiology and Biophysics, Rush University School of Medicine, Chicago, IL
| |
Collapse
|
6
|
Fuster C, Perrot J, Berthier C, Jacquemond V, Charnet P, Allard B. Na leak with gating pore properties in hypokalemic periodic paralysis V876E mutant muscle Ca channel. J Gen Physiol 2017; 149:1139-1148. [PMID: 29114033 PMCID: PMC5715907 DOI: 10.1085/jgp.201711834] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 09/18/2017] [Accepted: 10/12/2017] [Indexed: 12/26/2022] Open
Abstract
Type 1 hypokalemic periodic paralysis (HypoPP1) is a poorly understood genetic neuromuscular disease characterized by episodic attacks of paralysis associated with low blood K+ The vast majority of HypoPP1 mutations involve the replacement of an arginine by a neutral residue in one of the S4 segments of the α1 subunit of the skeletal muscle voltage-gated Ca2+ channel, which is thought to generate a pathogenic gating pore current. The V876E HypoPP1 mutation has the peculiarity of being located in the S3 segment of domain III, rather than an S4 segment, raising the question of whether such a mutation induces a gating pore current. Here we successfully transfer cDNAs encoding GFP-tagged human wild-type (WT) and V876E HypoPP1 mutant α1 subunits into mouse muscles by electroporation. The expression profile of these WT and V876E channels shows a regular striated pattern, indicative of their localization in the t-tubule membrane. In addition, L-type Ca2+ current properties are the same in V876E and WT fibers. However, in the presence of an external solution containing low-Cl- and lacking Na+ and K+, V876E fibers display an elevated leak current at negative voltages that is increased by external acidification to a higher extent in V876E fibers, suggesting that the leak current is carried by H+ ions. However, in the presence of Tyrode's solution, the rate of change in intracellular pH produced by external acidification was not significantly different in V876E and WT fibers. Simultaneous measurement of intracellular Na+ and current in response to Na+ readmission in the external solution reveals a rate of Na+ influx associated with an inward current, which are both significantly larger in V876E fibers. These data suggest that the V876E mutation generates a gating pore current that carries strong resting Na+ inward currents in physiological conditions that are likely responsible for the severe HypoPP1 symptoms associated with this mutation.
Collapse
Affiliation(s)
- Clarisse Fuster
- Institut NeuroMyoGene, Université Lyon 1, Université de Lyon, UMR Centre National de la Recherche Scientifique 5310, Institut National de la Santé et de la Recherche Médicale U1217, Villeurbanne, France
| | - Jimmy Perrot
- Institut NeuroMyoGene, Université Lyon 1, Université de Lyon, UMR Centre National de la Recherche Scientifique 5310, Institut National de la Santé et de la Recherche Médicale U1217, Villeurbanne, France
| | - Christine Berthier
- Institut NeuroMyoGene, Université Lyon 1, Université de Lyon, UMR Centre National de la Recherche Scientifique 5310, Institut National de la Santé et de la Recherche Médicale U1217, Villeurbanne, France
| | - Vincent Jacquemond
- Institut NeuroMyoGene, Université Lyon 1, Université de Lyon, UMR Centre National de la Recherche Scientifique 5310, Institut National de la Santé et de la Recherche Médicale U1217, Villeurbanne, France
| | - Pierre Charnet
- Institut des Biomolécules Max Mousseron, Université Montpellier 1 et 2, UMR Centre National de la Recherche Scientifique 5247, Montpellier, France
| | - Bruno Allard
- Institut NeuroMyoGene, Université Lyon 1, Université de Lyon, UMR Centre National de la Recherche Scientifique 5310, Institut National de la Santé et de la Recherche Médicale U1217, Villeurbanne, France
| |
Collapse
|
7
|
Fuster C, Perrot J, Berthier C, Jacquemond V, Allard B. Elevated resting H + current in the R1239H type 1 hypokalaemic periodic paralysis mutated Ca 2+ channel. J Physiol 2017; 595:6417-6428. [PMID: 28857175 DOI: 10.1113/jp274638] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 08/28/2017] [Indexed: 12/19/2022] Open
Abstract
KEY POINTS Missense mutations in the gene encoding the α1 subunit of the skeletal muscle voltage-gated Ca2+ channel induce type 1 hypokalaemic periodic paralysis, a poorly understood neuromuscular disease characterized by episodic attacks of paralysis associated with low serum K+ . Acute expression of human wild-type and R1239H HypoPP1 mutant α1 subunits in mature mouse muscles showed that R1239H fibres displayed Ca2+ currents of reduced amplitude and larger resting leak inward current increased by external acidification. External acidification also produced intracellular acidification at a higher rate in R1239H fibres and inhibited inward rectifier K+ currents. These data suggest that the R1239H mutation induces an elevated leak H+ current at rest flowing through a gating pore and could explain why paralytic attacks preferentially occur during the recovery period following muscle exercise. ABSTRACT Missense mutations in the gene encoding the α1 subunit of the skeletal muscle voltage-gated Ca2+ channel induce type 1 hypokalaemic periodic paralysis, a poorly understood neuromuscular disease characterized by episodic attacks of paralysis associated with low serum K+ . The present study aimed at identifying the changes in muscle fibre electrical properties induced by acute expression of the R1239H hypokalaemic periodic paralysis human mutant α1 subunit of Ca2+ channels in a mature muscle environment to better understand the pathophysiological mechanisms involved in this disorder. We transferred genes encoding wild-type and R1239H mutant human Ca2+ channels into hindlimb mouse muscle by electroporation and combined voltage-clamp and intracellular pH measurements on enzymatically dissociated single muscle fibres. As compared to fibres expressing wild-type α1 subunits, R1239H mutant-expressing fibres displayed Ca2+ currents of reduced amplitude and a higher resting leak inward current that was increased by external acidification. External acidification also produced intracellular acidification at a higher rate in R1239H fibres and inhibited inward rectifier K+ currents. These data indicate that the R1239H mutation induces an elevated leak H+ current at rest flowing through a gating pore created by the mutation and that external acidification favours onset of muscle paralysis by potentiating H+ depolarizing currents and inhibiting resting inward rectifier K+ currents. Our results could thus explain why paralytic attacks preferentially occur during the recovery period following intense muscle exercise.
Collapse
Affiliation(s)
- Clarisse Fuster
- Institut NeuroMyoGene, Université Lyon 1, Université de Lyon, UMR CNRS 5310, Inserm U1217, 43 bd du 11 Novembre 1918, 69622, Villeurbanne, France
| | - Jimmy Perrot
- Institut NeuroMyoGene, Université Lyon 1, Université de Lyon, UMR CNRS 5310, Inserm U1217, 43 bd du 11 Novembre 1918, 69622, Villeurbanne, France
| | - Christine Berthier
- Institut NeuroMyoGene, Université Lyon 1, Université de Lyon, UMR CNRS 5310, Inserm U1217, 43 bd du 11 Novembre 1918, 69622, Villeurbanne, France
| | - Vincent Jacquemond
- Institut NeuroMyoGene, Université Lyon 1, Université de Lyon, UMR CNRS 5310, Inserm U1217, 43 bd du 11 Novembre 1918, 69622, Villeurbanne, France
| | - Bruno Allard
- Institut NeuroMyoGene, Université Lyon 1, Université de Lyon, UMR CNRS 5310, Inserm U1217, 43 bd du 11 Novembre 1918, 69622, Villeurbanne, France
| |
Collapse
|
8
|
Lukyanenko V, Muriel JM, Bloch RJ. Coupling of excitation to Ca 2+ release is modulated by dysferlin. J Physiol 2017; 595:5191-5207. [PMID: 28568606 DOI: 10.1113/jp274515] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 05/16/2017] [Indexed: 12/16/2022] Open
Abstract
KEY POINTS Dysferlin, the protein missing in limb girdle muscular dystrophy 2B and Miyoshi myopathy, concentrates in transverse tubules of skeletal muscle, where it stabilizes voltage-induced Ca2+ transients against loss after osmotic shock injury (OSI). Local expression of dysferlin in dysferlin-null myofibres increases transient amplitude to control levels and protects them from loss after OSI. Inhibitors of ryanodine receptors (RyR1) and L-type Ca2+ channels protect voltage-induced Ca2+ transients from loss; thus both proteins play a role in injury in dysferlin's absence. Effects of Ca2+ -free medium and S107, which inhibits SR Ca2+ leak, suggest the SR as the primary source of Ca2+ responsible for the loss of the Ca2+ transient upon injury. Ca2+ waves were induced by OSI and suppressed by exogenous dysferlin. We conclude that dysferlin prevents injury-induced SR Ca2+ leak. ABSTRACT Dysferlin concentrates in the transverse tubules of skeletal muscle and stabilizes Ca2+ transients when muscle fibres are subjected to osmotic shock injury (OSI). We show here that voltage-induced Ca2+ transients elicited in dysferlin-null A/J myofibres were smaller than control A/WySnJ fibres. Regional expression of Venus-dysferlin chimeras in A/J fibres restored the full amplitude of the Ca2+ transients and protected against OSI. We also show that drugs that target ryanodine receptors (RyR1: dantrolene, tetracaine, S107) and L-type Ca2+ channels (LTCCs: nifedipine, verapamil, diltiazem) prevented the decrease in Ca2+ transients in A/J fibres following OSI. Diltiazem specifically increased transients by ∼20% in uninjured A/J fibres, restoring them to control values. The fact that both RyR1s and LTCCs were involved in OSI-induced damage suggests that damage is mediated by increased Ca2+ leak from the sarcoplasmic reticulum (SR) through the RyR1. Congruent with this, injured A/J fibres produced Ca2+ sparks and Ca2+ waves. S107 (a stabilizer of RyR1-FK506 binding protein coupling that reduces Ca2+ leak) or local expression of Venus-dysferlin prevented OSI-induced Ca2+ waves. Our data suggest that dysferlin modulates SR Ca2+ release in skeletal muscle, and that in its absence OSI causes increased RyR1-mediated Ca2+ leak from the SR into the cytoplasm.
Collapse
Affiliation(s)
- Valeriy Lukyanenko
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Joaquin M Muriel
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Robert J Bloch
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
9
|
Calsequestrin depolymerizes when calcium is depleted in the sarcoplasmic reticulum of working muscle. Proc Natl Acad Sci U S A 2017; 114:E638-E647. [PMID: 28069951 DOI: 10.1073/pnas.1620265114] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Calsequestrin, the only known protein with cyclical storage and supply of calcium as main role, is proposed to have other functions, which remain unproven. Voluntary movement and the heart beat require this calcium flow to be massive and fast. How does calsequestrin do it? To bind large amounts of calcium in vitro, calsequestrin must polymerize and then depolymerize to release it. Does this rule apply inside the sarcoplasmic reticulum (SR) of a working cell? We answered using fluorescently tagged calsequestrin expressed in muscles of mice. By FRAP and imaging we monitored mobility of calsequestrin as [Ca2+] in the SR--measured with a calsequestrin-fused biosensor--was lowered. We found that calsequestrin is polymerized within the SR at rest and that it depolymerized as [Ca2+] went down: fully when calcium depletion was maximal (a condition achieved with an SR calcium channel opening drug) and partially when depletion was limited (a condition imposed by fatiguing stimulation, long-lasting depolarization, or low drug concentrations). With fluorescence and electron microscopic imaging we demonstrated massive movements of calsequestrin accompanied by drastic morphological SR changes in fully depleted cells. When cells were partially depleted no remodeling was found. The present results support the proposed role of calsequestrin in termination of calcium release by conformationally inducing closure of SR channels. A channel closing switch operated by calsequestrin depolymerization will limit depletion, thereby preventing full disassembly of the polymeric calsequestrin network and catastrophic structural changes in the SR.
Collapse
|
10
|
Zhang T, Taylor J, Jiang Y, Pereyra AS, Messi ML, Wang ZM, Hereñú C, Delbono O. Troponin T3 regulates nuclear localization of the calcium channel Cavβ1a subunit in skeletal muscle. Exp Cell Res 2015; 336:276-86. [PMID: 25981458 DOI: 10.1016/j.yexcr.2015.05.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 05/06/2015] [Indexed: 11/24/2022]
Abstract
The voltage-gated calcium channel (Cav) β1a subunit (Cavβ1a) plays an important role in excitation-contraction coupling (ECC), a process in the myoplasm that leads to muscle-force generation. Recently, we discovered that the Cavβ1a subunit travels to the nucleus of skeletal muscle cells where it helps to regulate gene transcription. To determine how it travels to the nucleus, we performed a yeast two-hybrid screening of the mouse fast skeletal muscle cDNA library and identified an interaction with troponin T3 (TnT3), which we subsequently confirmed by co-immunoprecipitation and co-localization assays in mouse skeletal muscle in vivo and in cultured C2C12 muscle cells. Interacting domains were mapped to the leucine zipper domain in TnT3 COOH-terminus (160-244 aa) and Cavβ1a NH2-terminus (1-99 aa), respectively. The double fluorescence assay in C2C12 cells co-expressing TnT3/DsRed and Cavβ1a/YFP shows that TnT3 facilitates Cavβ1a nuclear recruitment, suggesting that the two proteins play a heretofore unknown role during early muscle differentiation in addition to their classical role in ECC regulation.
Collapse
Affiliation(s)
- Tan Zhang
- Department of Internal Medicine-Gerontology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Jackson Taylor
- Department of Internal Medicine-Gerontology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Yang Jiang
- Department of Internal Medicine-Gerontology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Andrea S Pereyra
- Department of Histology, National University of La Plata, 1900 La Plata, Argentina
| | - Maria Laura Messi
- Department of Internal Medicine-Gerontology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Zhong-Min Wang
- Department of Internal Medicine-Gerontology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Claudia Hereñú
- Department of Histology, National University of La Plata, 1900 La Plata, Argentina
| | - Osvaldo Delbono
- Department of Internal Medicine-Gerontology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; Neuroscience Program, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.
| |
Collapse
|
11
|
Llanos P, Contreras-Ferrat A, Georgiev T, Osorio-Fuentealba C, Espinosa A, Hidalgo J, Hidalgo C, Jaimovich E. The cholesterol-lowering agent methyl-β-cyclodextrin promotes glucose uptake via GLUT4 in adult muscle fibers and reduces insulin resistance in obese mice. Am J Physiol Endocrinol Metab 2015; 308:E294-305. [PMID: 25491723 DOI: 10.1152/ajpendo.00189.2014] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Insulin stimulates glucose uptake in adult skeletal muscle by promoting the translocation of GLUT4 glucose transporters to the transverse tubule (T-tubule) membranes, which have particularly high cholesterol levels. We investigated whether T-tubule cholesterol content affects insulin-induced glucose transport. Feeding mice a high-fat diet (HFD) for 8 wk increased by 30% the T-tubule cholesterol content of triad-enriched vesicular fractions from muscle tissue compared with triads from control mice. Additionally, isolated muscle fibers (flexor digitorum brevis) from HFD-fed mice showed a 40% decrease in insulin-stimulated glucose uptake rates compared with fibers from control mice. In HFD-fed mice, four subcutaneous injections of MβCD, an agent reported to extract membrane cholesterol, improved their defective glucose tolerance test and normalized their high fasting glucose levels. The preincubation of isolated muscle fibers with relatively low concentrations of MβCD increased both basal and insulin-induced glucose uptake in fibers from controls or HFD-fed mice and decreased Akt phosphorylation without altering AMPK-mediated signaling. In fibers from HFD-fed mice, MβCD improved insulin sensitivity even after Akt or CaMK II inhibition and increased membrane GLUT4 content. Indinavir, a GLUT4 antagonist, prevented the stimulatory effects of MβCD on glucose uptake. Addition of MβCD elicited ryanodine receptor-mediated calcium signals in isolated fibers, which were essential for glucose uptake. Our findings suggest that T-tubule cholesterol content exerts a critical regulatory role on insulin-stimulated GLUT4 translocation and glucose transport and that partial cholesterol removal from muscle fibers may represent a useful strategy to counteract insulin resistance.
Collapse
Affiliation(s)
- Paola Llanos
- Center for Molecular Studies of the Cell, Facultad de Medicina, Universidad de Chile, Santiago, Chile; Institute for Research in Dental Sciences, Facultad de Odontología, Universidad de Chile, Santiago, Chile;
| | - Ariel Contreras-Ferrat
- Center for Molecular Studies of the Cell, Facultad de Medicina, Universidad de Chile, Santiago, Chile; Institute for Research in Dental Sciences, Facultad de Odontología, Universidad de Chile, Santiago, Chile
| | - Tihomir Georgiev
- Medical Biophysics, Institute of Physiology und Pathophysiology, Ruprecht Karls Universität, Heidelberg, Germany
| | | | - Alejandra Espinosa
- Center for Molecular Studies of the Cell, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Jorge Hidalgo
- Center for Molecular Studies of the Cell, Facultad de Medicina, Universidad de Chile, Santiago, Chile; Physiology and Biophysics Program, Institute of Biomedical Sciences (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Cecilia Hidalgo
- Center for Molecular Studies of the Cell, Facultad de Medicina, Universidad de Chile, Santiago, Chile; Physiology and Biophysics Program, Institute of Biomedical Sciences (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile; Biomedical Neuroscience Institute, Facultad de Medicina, Universidad de Chile, Santiago, Chile; and
| | - Enrique Jaimovich
- Center for Molecular Studies of the Cell, Facultad de Medicina, Universidad de Chile, Santiago, Chile; Cell and Molecular Biology Program, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| |
Collapse
|
12
|
DiFranco M, Yu C, Quiñonez M, Vergara JL. Inward rectifier potassium currents in mammalian skeletal muscle fibres. J Physiol 2015; 593:1213-38. [PMID: 25545278 DOI: 10.1113/jphysiol.2014.283648] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 12/19/2014] [Indexed: 11/08/2022] Open
Abstract
Inward rectifying potassium (Kir) channels play a central role in maintaining the resting membrane potential of skeletal muscle fibres. Nevertheless their role has been poorly studied in mammalian muscles. Immunohistochemical and transgenic expression were used to assess the molecular identity and subcellular localization of Kir channel isoforms. We found that Kir2.1 and Kir2.2 channels were targeted to both the surface and the transverse tubular system membrane (TTS) compartments and that both isoforms can be overexpressed up to 3-fold 2 weeks after transfection. Inward rectifying currents (IKir) had the canonical features of quasi-instantaneous activation, strong inward rectification, depended on the external [K(+)], and could be blocked by Ba(2+) or Rb(+). In addition, IKir records show notable decays during large 100 ms hyperpolarizing pulses. Most of these properties were recapitulated by model simulations of the electrical properties of the muscle fibre as long as Kir channels were assumed to be present in the TTS. The model also simultaneously predicted the characteristics of membrane potential changes of the TTS, as reported optically by a fluorescent potentiometric dye. The activation of IKir by large hyperpolarizations resulted in significant attenuation of the optical signals with respect to the expectation for equal magnitude depolarizations; blocking IKir with Ba(2+) (or Rb(+)) eliminated this attenuation. The experimental data, including the kinetic properties of IKir and TTS voltage records, and the voltage dependence of peak IKir, while measured at widely dissimilar bulk [K(+)] (96 and 24 mm), were closely predicted by assuming Kir permeability (PKir) values of ∼5.5 × 10(-6 ) cm s(-1) and equal distribution of Kir channels at the surface and TTS membranes. The decay of IKir records and the simultaneous increase in TTS voltage changes were mostly explained by K(+) depletion from the TTS lumen. Most importantly, aside from allowing an accurate estimation of most of the properties of IKir in skeletal muscle fibres, the model demonstrates that a substantial proportion of IKir (>70%) arises from the TTS. Overall, our work emphasizes that measured intrinsic properties (inward rectification and external [K] dependence) and localization of Kir channels in the TTS membranes are ideally suited for re-capturing potassium ions from the TTS lumen during, and immediately after, repetitive stimulation under physiological conditions.
Collapse
Affiliation(s)
- Marino DiFranco
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | | | | | | |
Collapse
|
13
|
Calderón JC, Bolaños P, Caputo C. The excitation-contraction coupling mechanism in skeletal muscle. Biophys Rev 2014; 6:133-160. [PMID: 28509964 PMCID: PMC5425715 DOI: 10.1007/s12551-013-0135-x] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 12/06/2013] [Indexed: 12/27/2022] Open
Abstract
First coined by Alexander Sandow in 1952, the term excitation-contraction coupling (ECC) describes the rapid communication between electrical events occurring in the plasma membrane of skeletal muscle fibres and Ca2+ release from the SR, which leads to contraction. The sequence of events in twitch skeletal muscle involves: (1) initiation and propagation of an action potential along the plasma membrane, (2) spread of the potential throughout the transverse tubule system (T-tubule system), (3) dihydropyridine receptors (DHPR)-mediated detection of changes in membrane potential, (4) allosteric interaction between DHPR and sarcoplasmic reticulum (SR) ryanodine receptors (RyR), (5) release of Ca2+ from the SR and transient increase of Ca2+ concentration in the myoplasm, (6) activation of the myoplasmic Ca2+ buffering system and the contractile apparatus, followed by (7) Ca2+ disappearance from the myoplasm mediated mainly by its reuptake by the SR through the SR Ca2+ adenosine triphosphatase (SERCA), and under several conditions movement to the mitochondria and extrusion by the Na+/Ca2+ exchanger (NCX). In this text, we review the basics of ECC in skeletal muscle and the techniques used to study it. Moreover, we highlight some recent advances and point out gaps in knowledge on particular issues related to ECC such as (1) DHPR-RyR molecular interaction, (2) differences regarding fibre types, (3) its alteration during muscle fatigue, (4) the role of mitochondria and store-operated Ca2+ entry in the general ECC sequence, (5) contractile potentiators, and (6) Ca2+ sparks.
Collapse
Affiliation(s)
- Juan C Calderón
- Physiology and Biochemistry Research Group-Physis, Department of Physiology and Biochemistry, Faculty of Medicine, University of Antioquia UdeA, Calle 70 No 52-21, Medellín, Colombia.
- Laboratory of Cellular Physiology, Centre of Biophysics and Biochemistry, Venezuelan Institute for Scientific Research (IVIC), Caracas, Venezuela.
- Departamento de Fisiología y Bioquímica, Grupo de Investigación en Fisiología y Bioquímica-Physis, Facultad de Medicina, Universidad de Antioquia, Calle 70 No 52-21, Medellín, Colombia.
| | - Pura Bolaños
- Laboratory of Cellular Physiology, Centre of Biophysics and Biochemistry, Venezuelan Institute for Scientific Research (IVIC), Caracas, Venezuela
| | - Carlo Caputo
- Laboratory of Cellular Physiology, Centre of Biophysics and Biochemistry, Venezuelan Institute for Scientific Research (IVIC), Caracas, Venezuela
| |
Collapse
|
14
|
Moloughney JG, Weisleder N. Poloxamer 188 (p188) as a membrane resealing reagent in biomedical applications. Recent Pat Biotechnol 2013; 6:200-11. [PMID: 23092436 DOI: 10.2174/1872208311206030200] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 07/30/2012] [Accepted: 08/04/2012] [Indexed: 11/22/2022]
Abstract
Maintenance of the integrity of the plasma membrane is essential for maintenance of cellular function and prevention of cell death. Since the plasma membrane is frequently exposed to a variety of mechanical and chemical insults the cell has evolved active processes to defend against these injuries by resealing disruptions in the plasma membrane. Cell membrane repair is a conserved process observed in nearly every cell type where intracellular vesicles are recruited to sites of membrane disruption where they can fuse with themselves or the plasma membrane to create a repair patch. When disruptions are extensive or there is an underlying pathology that reduces the membrane repair capacity of a cell this defense mechanism may prove insufficient and the cell could die due to breakdown of the plasma membrane. Extensive loss of cells can compromise the integrity and function of tissues and leading to disease. Thus, methods to increase membrane resealing capacity could have broad utility in a number of disease states. Efforts to find reagents that can modulate plasma membrane reseal found that specific tri-block copolymers, such as poloxamer 188 (P188, or Pluronic F68), can increase the structural stability and resealing of the plasma membrane. Here we review several current patents and patent applications that present inventions making use of P188 and other copolymers to treat specific disease states such as muscular dystrophy, heart failure, neurodegenerative disorders and electrical injuries, or to facilitate biomedical applications such as transplantation. There appears to be promise for the application of poloxamers in the treatment of various diseases, however there are potential concerns with toxicity with long term application and bioavailability in some cases.
Collapse
Affiliation(s)
- Joseph G Moloughney
- Department of Neuroscience and Cell Biology, UMDNJ- Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | | |
Collapse
|
15
|
Zhang T, Birbrair A, Wang ZM, Taylor J, Messi ML, Delbono O. Troponin T nuclear localization and its role in aging skeletal muscle. AGE (DORDRECHT, NETHERLANDS) 2013; 35:353-370. [PMID: 22189912 PMCID: PMC3592954 DOI: 10.1007/s11357-011-9368-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Accepted: 12/08/2011] [Indexed: 05/31/2023]
Abstract
Troponin T (TnT) is known to mediate the interaction between Tn complex and tropomyosin (Tm), which is essential for calcium-activated striated muscle contraction. This regulatory function takes place in the myoplasm, where TnT binds Tm. However, recent findings of troponin I and Tm nuclear translocation in Drosophila and mammalian cells imply other roles for the Tn-Tm complex. We hypothesized that TnT plays a nonclassical role through nuclear translocation. Immunoblotting with different antibodies targeting the NH2- or COOH-terminal region uncovered a pool of fast skeletal muscle TnT3 localized in the nuclear fraction of mouse skeletal muscle as either an intact or fragmented protein. Construction of TnT3-DsRed fusion proteins led to the further observation that TnT3 fragments are closely related to nucleolus and RNA polymerase activity, suggesting a role for TnT3 in regulating transcription. Functionally, overexpression of TnT3 fragments produced significant defects in nuclear shape and caused high levels of apoptosis. Interestingly, nuclear TnT3 and its fragments were highly regulated by aging, thus creating a possible link between the deleterious effects of TnT3 and sarcopenia. We propose that changes in nuclear TnT3 and its fragments cause the number of myonuclei to decrease with age, contributing to muscle damage and wasting.
Collapse
Affiliation(s)
- Tan Zhang
- />Department of Internal Medicine-Gerontology and Geriatric Medicine, Wake Forest School of Medicine, 1 Medical Center Blvd., Winston-Salem, NC 27157 USA
| | - Alexander Birbrair
- />Department of Internal Medicine-Gerontology and Geriatric Medicine, Wake Forest School of Medicine, 1 Medical Center Blvd., Winston-Salem, NC 27157 USA
- />Neuroscience Program, Wake Forest School of Medicine, 1 Medical Center Blvd., Winston-Salem, NC 27157 USA
| | - Zhong-Min Wang
- />Department of Internal Medicine-Gerontology and Geriatric Medicine, Wake Forest School of Medicine, 1 Medical Center Blvd., Winston-Salem, NC 27157 USA
| | - Jackson Taylor
- />Department of Internal Medicine-Gerontology and Geriatric Medicine, Wake Forest School of Medicine, 1 Medical Center Blvd., Winston-Salem, NC 27157 USA
- />Neuroscience Program, Wake Forest School of Medicine, 1 Medical Center Blvd., Winston-Salem, NC 27157 USA
| | - María Laura Messi
- />Department of Internal Medicine-Gerontology and Geriatric Medicine, Wake Forest School of Medicine, 1 Medical Center Blvd., Winston-Salem, NC 27157 USA
| | - Osvaldo Delbono
- />Department of Internal Medicine-Gerontology and Geriatric Medicine, Wake Forest School of Medicine, 1 Medical Center Blvd., Winston-Salem, NC 27157 USA
- />Neuroscience Program, Wake Forest School of Medicine, 1 Medical Center Blvd., Winston-Salem, NC 27157 USA
| |
Collapse
|
16
|
Manno C, Sztretye M, Figueroa L, Allen PD, Ríos E. Dynamic measurement of the calcium buffering properties of the sarcoplasmic reticulum in mouse skeletal muscle. J Physiol 2013; 591:423-42. [PMID: 23148320 PMCID: PMC3577525 DOI: 10.1113/jphysiol.2012.243444] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Accepted: 11/06/2012] [Indexed: 12/25/2022] Open
Abstract
The buffering power, B, of the sarcoplasmic reticulum (SR), ratio of the changes in total and free [Ca(2+)], was determined in fast-twitch mouse muscle cells subjected to depleting membrane depolarization. Changes in total SR [Ca(2+)] were measured integrating Ca(2+) release flux, determined with a cytosolic [Ca(2+)] monitor. Free [Ca(2+)](SR) was measured using the cameleon D4cpv-Casq1. In 34 wild-type (WT) cells average B during the depolarization (ON phase) was 157 (SEM 26), implying that of 157 ions released, 156 were bound inside the SR. B was significantly greater when BAPTA, which increases release flux, was present in the cytosol. B was greater early in the pulse - when flux was greatest - than at its end, and greater in the ON than in the OFF. In 29 Casq1-null cells, B was 40 (3.6). The difference suggests that 75% of the releasable calcium is normally bound to calsequestrin. In the nulls the difference in B between ON and OFF was less than in the WT but still significant. This difference and the associated decay in B during the ON were not artifacts of a slow SR monitor, as they were also found in the WT when [Ca(2+)](SR) was tracked with the fast dye fluo-5N. The calcium buffering power, binding capacity and non-linear binding properties of the SR measured here could be accounted for by calsequestrin at the concentration present in mammalian muscle, provided that its properties were substantially different from those found in solution. Its affinity should be higher, or K(D) lower than the conventionally accepted 1 mm; its cooperativity (n in a Hill fit) should be higher and the stoichiometry of binding should be at the higher end of the values derived in solution. The reduction in B during release might reflect changes in calsequestrin conformation upon calcium loss.
Collapse
Affiliation(s)
- Carlo Manno
- Section of Cellular Signaling Department of Molecular Biophysics and Physiology, Rush University School of Medicine, 1750 W. Harrison St, Chicago, IL 60612, USA
| | | | | | | | | |
Collapse
|
17
|
Allele-specific gene silencing in two mouse models of autosomal dominant skeletal myopathy. PLoS One 2012; 7:e49757. [PMID: 23152933 PMCID: PMC3495761 DOI: 10.1371/journal.pone.0049757] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 10/17/2012] [Indexed: 12/16/2022] Open
Abstract
We explored the potential of mutant allele-specific gene silencing (ASGS) in providing therapeutic benefit in two established mouse models of the autosomal dominantly-inherited muscle disorders, Malignant Hyperthermia (MH) and Central Core Disease (CCD). Candidate ASGS siRNAs were designed and validated for efficacy and specificity on ryanodine receptor (RyR1) cDNA mini-constructs expressed in HEK293 cells using RT-PCR- and confocal microscopy-based assays. In vivo delivery of the most efficacious identified siRNAs into flexor digitorum brevis (FDB) muscles was achieved by injection/electroporation of footpads of 4–6 month old heterozygous Ryr1Y524S/+ (YS/+) and Ryr1I4895T/+ (IT/+) knock-in mice, established mouse models of MH with cores and CCD, respectively. Treatment of IT/+ mice resulted in a modest rescue of deficits in the maximum rate (∼38% rescue) and magnitude (∼78%) of ligand-induced Ca2+ release that occurred in the absence of a change in the magnitude of electrically-evoked Ca2+ release. Compared to the difference between the caffeine sensitivity of Ca2+ release in FDB fibers from YS/+ and WT mice treated with SCR siRNA (EC50: 1.1 mM versus 4.4 mM, respectively), caffeine sensitivity was normalized in FDB fibers from YS/+ mice following 2 (EC50: 2.8 mM) and 4 week (EC50: 6.6 mM) treatment with YS allele-specific siRNA. Moreover, the temperature-dependent increase in resting Ca2+ observed in FDB fibers from YS/+ mice was normalized to WT levels after 2 weeks of treatment with YS allele-specific siRNA. As determined by quantitative real time PCR, the degree of functional rescue in YS/+ and IT/+ mice correlated well with the relative increase in fractional WT allele expression.
Collapse
|
18
|
Yasuda T, Delbono O, Wang ZM, Messi ML, Girard T, Urwyler A, Treves S, Zorzato F. JP-45/JSRP1 variants affect skeletal muscle excitation-contraction coupling by decreasing the sensitivity of the dihydropyridine receptor. Hum Mutat 2012; 34:184-90. [PMID: 22927026 DOI: 10.1002/humu.22209] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 08/14/2012] [Indexed: 11/12/2022]
Abstract
JP-45 (also JP45; encoded by JSRP1) is an integral protein constituent of the skeletal muscle sarcoplasmic reticulum junctional face membrane interacting with Ca(v) 1.1 (the α.1 subunit of the voltage-sensing dihydropyridine receptor, DHPR) and the luminal calcium-binding protein calsequestrin. Two JSRP1 variants have been found in the human population: c.323C>T (p.P108L) in exon 5 and c.449G>C (p.G150A) in exon 6, but nothing is known concerning the incidence of these polymorphisms in the general population or in patients with neuromuscular diseases nor the impact of the polymorphisms on excitation-contraction (EC) coupling. In the present report, we investigated the frequencies of these two JSRP1 polymorphisms in the Swiss malignant hyperthermia population and studied the functional impact of the variants on EC coupling. Our results show that the polymorphisms are equally distributed among malignant hyperthermia negative, malignant hyperthermia equivocal, and malignant hyperthermia susceptible individuals. Interestingly, however, the presence of either one of these JP-45 variants decreased the sensitivity of the DHPR to activation. The presence of a JSRP1 variant may explain the variable phenotype seen in patients with malignant hyperthermia carrying the same mutation and, more importantly, may counteract the hypersensitivity of EC coupling caused by mutations in the RYR1 gene.
Collapse
Affiliation(s)
- Toshimichi Yasuda
- Department of Anesthesiology and Critical Care, Hiroshima University, Manami-ku, Hiroshima, Japan
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Wang ZM, Tang S, Messi ML, Yang JJ, Delbono O. Residual sarcoplasmic reticulum Ca2+ concentration after Ca2+ release in skeletal myofibers from young adult and old mice. Pflugers Arch 2012; 463:615-24. [PMID: 22249494 DOI: 10.1007/s00424-012-1073-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Revised: 12/31/2011] [Accepted: 01/02/2012] [Indexed: 10/14/2022]
Abstract
Contrasting information suggests either almost complete depletion of sarcoplasmic reticulum (SR) Ca(2+) or significant residual Ca(2+) concentration after prolonged depolarization of the skeletal muscle fiber. The primary obstacle to resolving this controversy is the lack of genetically encoded Ca(2+) indicators targeted to the SR that exhibit low-Ca(2+) affinity, a fast biosensor: Ca(2+) off-rate reaction, and can be expressed in myofibers from adult and older adult mammalian species. This work used the recently designed low-affinity Ca(2+) sensor (Kd = 1.66 mM in the myofiber) CatchER (calcium sensor for detecting high concentrations in the ER) targeted to the SR, to investigate whether prolonged skeletal muscle fiber depolarization significantly alters residual SR Ca(2+) with aging. We found CatchER a proper tool to investigate SR Ca(2+) depletion in young adult and older adult mice, consistently tracking SR luminal Ca(2+) release in response to brief and repetitive stimulation. We evoked SR Ca(2+) release in whole-cell voltage-clamped flexor digitorum brevis muscle fibers from young and old FVB mice and tested the maximal SR Ca(2+) release by directly activating the ryanodine receptor (RyR1) with 4-chloro-m-cresol in the same myofibers. Here, we report for the first time that the Ca(2+) remaining in the SR after prolonged depolarization (2 s) in myofibers from aging (~220 μM) was larger than young (~132 μM) mice. These experiments indicate that SR Ca(2+) is far from fully depleted under physiological conditions throughout life, and support the concept of excitation-contraction uncoupling in functional senescent myofibers.
Collapse
Affiliation(s)
- Zhong-Min Wang
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, 1 Medical Center Boulevard, Winston-Salem, NC, 27157, USA
| | | | | | | | | |
Collapse
|
20
|
Tomasi M, Canato M, Paolini C, Dainese M, Reggiani C, Volpe P, Protasi F, Nori A. Calsequestrin (CASQ1) rescues function and structure of calcium release units in skeletal muscles of CASQ1-null mice. Am J Physiol Cell Physiol 2011; 302:C575-86. [PMID: 22049211 DOI: 10.1152/ajpcell.00119.2011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Amplitude of Ca(2+) transients, ultrastructure of Ca(2+) release units, and molecular composition of sarcoplasmic reticulum (SR) are altered in fast-twitch skeletal muscles of calsequestrin-1 (CASQ1)-null mice. To determine whether such changes are directly caused by CASQ1 ablation or are instead the result of adaptive mechanisms, here we assessed ability of CASQ1 in rescuing the null phenotype. In vivo reintroduction of CASQ1 was carried out by cDNA electro transfer in flexor digitorum brevis muscle of the mouse. Exogenous CASQ1 was found to be correctly targeted to the junctional SR (jSR), as judged by immunofluorescence and confocal microscopy; terminal cisternae (TC) lumen was filled with electron dense material and its width was significantly increased, as judged by electron microscopy; peak amplitude of Ca(2+) transients was significantly increased compared with null muscle fibers transfected only with green fluorescent protein (control); and finally, transfected fibers were able to sustain cytosolic Ca(2+) concentration during prolonged tetanic stimulation. Only the expression of TC proteins, such as calsequestrin 2, sarcalumenin, and triadin, was not rescued as judged by Western blot. Thus our results support the view that CASQ1 plays a key role in both Ca(2+) homeostasis and TC structure.
Collapse
Affiliation(s)
- Mirta Tomasi
- Dept. of Experimental Biomedical Sciences, Univ. of Padova, Italy
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Ackermann MA, Ziman AP, Strong J, Zhang Y, Hartford AK, Ward CW, Randall WR, Kontrogianni-Konstantopoulos A, Bloch RJ. Integrity of the network sarcoplasmic reticulum in skeletal muscle requires small ankyrin 1. J Cell Sci 2011; 124:3619-30. [PMID: 22045734 PMCID: PMC3215573 DOI: 10.1242/jcs.085159] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/06/2011] [Indexed: 01/16/2023] Open
Abstract
Small ankyrin 1 (sAnk1; Ank1.5) is a ~20 kDa protein of striated muscle that concentrates in the network compartment of the sarcoplasmic reticulum (nSR). We used siRNA targeted to sAnk1 to assess its role in organizing the sarcoplasmic reticulum (SR) of skeletal myofibers in vitro. siRNA reduced sAnk1 mRNA and protein levels and disrupted the organization of the remaining sAnk1. Sarcomeric proteins were unchanged, but two other proteins of the nSR, SERCA and sarcolipin, decreased significantly in amount and segregated into distinct structures containing sarcolipin and sAnk1, and SERCA, respectively. Exogenous sAnk1 restored SERCA to its normal distribution. Ryanodine receptors and calsequestrin in the junctional SR, and L-type Ca(2+) channels in the transverse tubules were not reduced, although their striated organization was mildly altered. Consistent with the loss of SERCA, uptake and release of Ca(2+) were significantly inhibited. Our results show that sAnk1 stabilizes the nSR and that its absence causes the nSR to fragment into distinct membrane compartments.
Collapse
Affiliation(s)
- Maegen A. Ackermann
- Department of Biochemistry and Molecular Biology, Therapeutics University of Maryland, Baltimore, MD 21201, USA
| | - Andrew P. Ziman
- Department of Physiology, Therapeutics University of Maryland, Baltimore, MD 21201, USA
| | - John Strong
- Department of Physiology, Therapeutics University of Maryland, Baltimore, MD 21201, USA
| | - Yinghua Zhang
- Department of Physiology, Therapeutics University of Maryland, Baltimore, MD 21201, USA
| | - April K. Hartford
- Department of Physiology, Therapeutics University of Maryland, Baltimore, MD 21201, USA
| | - Christopher W. Ward
- School of Medicine and School of Nursing Therapeutics University of Maryland, Baltimore, MD 21201, USA
| | - William R. Randall
- Department of Pharmacology and Experimental Therapeutics University of Maryland, Baltimore, MD 21201, USA
| | | | - Robert J. Bloch
- Department of Physiology, Therapeutics University of Maryland, Baltimore, MD 21201, USA
| |
Collapse
|
22
|
Wei L, Salahura G, Boncompagni S, Kasischke KA, Protasi F, Sheu SS, Dirksen RT. Mitochondrial superoxide flashes: metabolic biomarkers of skeletal muscle activity and disease. FASEB J 2011; 25:3068-78. [PMID: 21646399 PMCID: PMC3157685 DOI: 10.1096/fj.11-187252] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Accepted: 05/19/2011] [Indexed: 11/11/2022]
Abstract
Mitochondrial superoxide flashes (mSOFs) are stochastic events of quantal mitochondrial superoxide generation. Here, we used flexor digitorum brevis muscle fibers from transgenic mice with muscle-specific expression of a novel mitochondrial-targeted superoxide biosensor (mt-cpYFP) to characterize mSOF activity in skeletal muscle at rest, following intense activity, and under pathological conditions. Results demonstrate that mSOF activity in muscle depended on electron transport chain and adenine nucleotide translocase functionality, but it was independent of cyclophilin-D-mediated mitochondrial permeability transition pore activity. The diverse spatial dimensions of individual mSOF events were found to reflect a complex underlying morphology of the mitochondrial network, as examined by electron microscopy. Muscle activity regulated mSOF activity in a biphasic manner. Specifically, mSOF frequency was significantly increased following brief tetanic stimulation (18.1 ± 1.6 to 22.3 ± 2.0 flashes/1000 μm²·100 s before and after 5 tetani) and markedly decreased (to 7.7 ± 1.6 flashes/1000 μm²·100 s) following prolonged tetanic stimulation (40 tetani). A significant temperature-dependent increase in mSOF frequency (11.9 ± 0.8 and 19.8 ± 2.6 flashes/1000 μm²·100 s at 23°C and 37°C) was observed in fibers from RYR1(Y522S/WT) mice, a mouse model of malignant hyperthermia and heat-induced hypermetabolism. Together, these results demonstrate that mSOF activity is a highly sensitive biomarker of mitochondrial respiration and the cellular metabolic state of muscle during physiological activity and pathological oxidative stress
Collapse
Affiliation(s)
- Lan Wei
- Department of Pharmacology and Physiology and
| | - Gheorghe Salahura
- Center for Neural Development and Disease, University of Rochester Medical Center, Rochester, New York, USA; and
| | - Simona Boncompagni
- Center for Research on Aging and
- Department of Neuroscience and Imaging, University Gabriele d'Annunzio, Chieti, Italy
| | - Karl A. Kasischke
- Center for Neural Development and Disease, University of Rochester Medical Center, Rochester, New York, USA; and
| | - Feliciano Protasi
- Center for Research on Aging and
- Department of Neuroscience and Imaging, University Gabriele d'Annunzio, Chieti, Italy
| | | | | |
Collapse
|
23
|
Rossi AE, Boncompagni S, Wei L, Protasi F, Dirksen RT. Differential impact of mitochondrial positioning on mitochondrial Ca(2+) uptake and Ca(2+) spark suppression in skeletal muscle. Am J Physiol Cell Physiol 2011; 301:C1128-39. [PMID: 21849670 DOI: 10.1152/ajpcell.00194.2011] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Muscle contraction requires ATP and Ca(2+) and, thus, is under direct control of mitochondria and the sarcoplasmic reticulum. During postnatal skeletal muscle maturation, the mitochondrial network exhibits a shift from a longitudinal ("longitudinal mitochondria") to a mostly transversal orientation as a result of a progressive increase in mitochondrial association with Ca(2+) release units (CRUs) or triads ("triadic mitochondria"). To determine the physiological implications of this shift in mitochondrial disposition, we used confocal microscopy to monitor activity-dependent changes in myoplasmic (fluo 4) and mitochondrial (rhod 2) Ca(2+) in single flexor digitorum brevis (FDB) fibers from 1- to 4-mo-old mice. A robust and sustained Ca(2+) accumulation in triadic mitochondria was triggered by repetitive tetanic stimulation (500 ms, 100 Hz, every 2.5 s) in FDB fibers from 4-mo-old mice. Specifically, mitochondrial rhod 2 fluorescence increased 272 ± 39% after a single tetanus and 412 ± 45% after five tetani and decayed slowly over 10 min following the final tetanus. Similar results were observed in fibers expressing mitochondrial pericam, a mitochondrial-targeted ratiometric Ca(2+) indicator. Interestingly, sustained mitochondrial Ca(2+) uptake following repetitive tetanic stimulation was similar for triadic and longitudinal mitochondria in FDB fibers from 1-mo-old mice, and both mitochondrial populations were found by electron microscopy to be continuous and structurally tethered to the sarcoplasmic reticulum. Conversely, the frequency of osmotic shock-induced Ca(2+) sparks per CRU density decreased threefold (from 3.6 ± 0.2 to 1.2 ± 0.1 events·CRU(-1)·min(-1)·100 μm(-2)) during postnatal development in direct linear correspondence (r(2) = 0.95) to an increase in mitochondrion-CRU pairing. Together, these results indicate that mitochondrion-CRU association promotes Ca(2+) spark suppression but does not significantly impact mitochondrial Ca(2+) uptake.
Collapse
Affiliation(s)
- Ann E Rossi
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | | | | | | | | |
Collapse
|
24
|
Sztretye M, Yi J, Figueroa L, Zhou J, Royer L, Ríos E. D4cpv-calsequestrin: a sensitive ratiometric biosensor accurately targeted to the calcium store of skeletal muscle. J Gen Physiol 2011; 138:211-29. [PMID: 21788610 PMCID: PMC3149433 DOI: 10.1085/jgp.201010591] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Accepted: 06/28/2011] [Indexed: 01/28/2023] Open
Abstract
Current fluorescent monitors of free [Ca(2+)] in the sarcoplasmic reticulum (SR) of skeletal muscle cells are of limited quantitative value. They provide either a nonratio signal that is difficult to calibrate and is not specific or, in the case of Forster resonant energy transfer (FRET) biosensors, a signal of small dynamic range, which may be degraded further by imperfect targeting and interference from endogenous ligands of calsequestrin. We describe a novel tool that uses the cameleon D4cpv, which has a greater dynamic range and lower susceptibility to endogenous ligands than earlier cameleons. D4cpv was targeted to the SR by fusion with the cDNA of calsequestrin 1 or a variant that binds less Ca(2+). "D4cpv-Casq1," expressed in adult mouse at concentrations up to 22 µmole/liter of muscle cell, displayed the accurate targeting of calsequestrin and stayed inside cells after permeabilization of surface and t system membranes, which confirmed its strict targeting. FRET ratio changes of D4cpv-Casq1 were calibrated inside cells, with an effective K(D) of 222 µM and a dynamic range [(R(max) - R(min))/R(min)] of 2.5, which are improvements over comparable sensors. Both the maximal ratio, R(max), and its resting value were slightly lower in areas of high expression, a variation that was inversely correlated to distance from the sites of protein synthesis. The average [Ca(2+)](SR) in 74 viable cells at rest was 416 µM. The distribution of individual ratio values was Gaussian, but that of the calculated [Ca(2+)](SR) was skewed, with a tail of very large values, up to 6 mM. Model calculations reproduce this skewness as the consequence of quantifiably small variations in biosensor performance. Local variability, a perceived weakness of biosensors, thus becomes quantifiable. It is demonstrably small in D4cpv. D4cpv-Casq1 therefore provides substantial improvements in sensitivity, specificity, and reproducibility over existing monitors of SR free Ca(2+) concentration.
Collapse
Affiliation(s)
- Monika Sztretye
- Section of Cellular Signaling, Department of Molecular Biophysics and Physiology, Rush University, Chicago, IL 60612, USA
| | | | | | | | | | | |
Collapse
|
25
|
Ermolova N, Kudryashova E, DiFranco M, Vergara J, Kramerova I, Spencer MJ. Pathogenity of some limb girdle muscular dystrophy mutations can result from reduced anchorage to myofibrils and altered stability of calpain 3. Hum Mol Genet 2011; 20:3331-45. [PMID: 21624972 DOI: 10.1093/hmg/ddr239] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Calpain 3 (CAPN3) is a muscle-specific, calcium-dependent proteinase that is mutated in Limb Girdle Muscle Dystrophy type 2A. Most pathogenic missense mutations in LGMD2A affect CAPN3's proteolytic activity; however, two mutations, D705G and R448H, retain activity but nevertheless cause muscular dystrophy. Previously, we showed that D705G and R448H mutations reduce CAPN3s ability to bind to titin in vitro. In this investigation, we tested the consequence of loss of titin binding in vivo and examined whether this loss can be an underlying pathogenic mechanism in LGMD2A. To address this question, we created transgenic mice that express R448H or D705G in muscles, on wild-type (WT) CAPN3 or knock-out background. Both mutants were readily expressed in insect cells, but when D705G was expressed in skeletal muscle, it was not stable enough to study. Moreover, the D705G mutation had a dominant negative effect on endogenous CAPN3 when expressed on a WT background. The R448H protein was stably expressed in muscles; however, it was more rapidly degraded in muscle extracts compared with WT CAPN3. Increased degradation of R448H was due to non-cysteine, cellular proteases acting on the autolytic sites of CAPN3, rather than autolysis. Fractionation experiments revealed a significant decrease of R448H from the myofibrillar fraction, likely due to the mutant's inability to bind titin. Our data suggest that R448H and D705G mutations affect both CAPN3s anchorage to titin and its stability. These studies reveal a novel mechanism by which mutations that spare enzymatic activity can still lead to calpainopathy.
Collapse
Affiliation(s)
- Natalia Ermolova
- Department of Neurology, David Geffen School of Medicine at University of California, Los Angeles, CA 90095, USA
| | | | | | | | | | | |
Collapse
|
26
|
DiFranco M, Tran P, Quiñonez M, Vergara JL. Functional expression of transgenic 1sDHPR channels in adult mammalian skeletal muscle fibres. J Physiol 2011; 589:1421-42. [PMID: 21262876 DOI: 10.1113/jphysiol.2010.202804] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We investigated the effects of the overexpression of two enhanced green fluorescent protein (EGFP)-tagged α1sDHPR variants on Ca2+ currents (ICa), charge movements (Q) and SR Ca2+ release of muscle fibres isolated from adult mice. Flexor digitorum brevis (FDB)muscles were transfected by in vivo electroporation with plasmids encoding for EGFP-α1sDHPR-wt and EGFP-α1sDHPR-T935Y (an isradipine-insensitive mutant). Two-photon laser scanning microscopy (TPLSM) was used to study the subcellular localization of transgenic proteins, while ICa, Q and Ca2+ release were studied electrophysiologically and optically under voltage-clamp conditions. TPLSM images demonstrated that most of the transgenic α1sDHPR was correctly targeted to the transverse tubular system (TTS). Immunoblotting analysis of crude extracts of transfected fibres demonstrated the synthesis of bona fide transgenic EGFP-α1sDHPR-wt in quantities comparable to that of native α1sDHPR. Though expression of both transgenic variants of the alpha subunit of the dihydropyridine receptor (α1sDHPR) resulted in ∼50% increase in Q, they surprisingly had no effect on the maximal Ca2+ conductance (gCa) nor the SR Ca2+ release. Nonetheless, fibres expressing EGFP-α1sDHPR-T935Y exhibited up to 70% isradipine-insensitive ICa (ICa-ins) with a right-shifted voltage dependence compared to that in control fibres. Interestingly, Qand SRCa2+ release also displayed right-shifted voltage dependence in fibres expressing EGFP-α1sDHPR-T935Y. In contrast, the midpoints of the voltage dependence of gCa, Q and Ca2+ release were not different from those in control fibres and in fibres expressing EGFP-α1sDHPR-wt. Overall, our results suggest that transgenic α1sDHPRs are correctly trafficked and inserted in the TTS membrane, and that a substantial fraction of the mworks as conductive Ca2+ channels capable of physiologically controlling the release of Ca2+ from the SR. A plausible corollary of this work is that the expression of transgenic variants of the α1sDHPR leads to the replacement of native channels interacting with the ryanodine receptor 1 (RyR1), thus demonstrating the feasibility of molecular remodelling of the triads in adult skeletal muscle fibres.
Collapse
Affiliation(s)
- Marino DiFranco
- Department of Physiology, David Geffen School of Medicine, UCLA, 10833 Le Conte Avenue, Los Angeles, CA 90095-1751, USA
| | | | | | | |
Collapse
|
27
|
Michaelson LP, Shi G, Ward CW, Rodney GG. Mitochondrial redox potential during contraction in single intact muscle fibers. Muscle Nerve 2010; 42:522-9. [PMID: 20730875 DOI: 10.1002/mus.21724] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Although the production of reactive oxygen species (ROS) during muscle contractile activity has been linked to both positive and negative adaptive responses, the sites for ROS generation within working muscle are not clearly defined. We assessed cytosolic ROS production and mitochondrial redox potential with a targeted redox-sensitive green fluorescent protein during repetitive field stimulation of single mature myofibers. Cytosolic ROS production increased by 94%, an effect that was abolished by pretreatment with the reducing agent dithiothreitol. Mitochondrial redox potential was not altered during muscle contraction. In contrast, activity-dependent ROS production was ablated by an inhibitor of NADPH oxidase. We provide the first report on dynamic ROS production from mitochondria in single living myofibers and suggest that the mitochondria are not the major source of ROS during skeletal muscle contraction. Alternatively, our data support a role for NADPH oxidase-derived ROS during contractile activity.
Collapse
Affiliation(s)
- Luke P Michaelson
- Organizational Systems and Adult Health, University of Maryland School of Nursing, 655 West Lombard Street, Baltimore, Maryland 21201, USA
| | | | | | | |
Collapse
|
28
|
Pouvreau S. Superoxide flashes in mouse skeletal muscle are produced by discrete arrays of active mitochondria operating coherently. PLoS One 2010; 5. [PMID: 20927399 PMCID: PMC2946926 DOI: 10.1371/journal.pone.0013035] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Accepted: 08/17/2010] [Indexed: 11/19/2022] Open
Abstract
Reactive Oxygen Species (ROS) constitute important intracellular signaling molecules. Mitochondria are admitted sources of ROS, especially of superoxide anions through the electron transport chain. Here the mitochondria-targeted ratiometric pericam (RPmt) was used as a superoxide biosensor, by appropriate choice of the excitation wavelength. RPmt was transfected in vivo into mouse muscles. Confocal imaging of isolated muscle fibers reveals spontaneous flashes of RPmt fluorescence. Flashes correspond to increases in superoxide production, as shown by simultaneous recordings of the fluorescence from MitoSox, a mitochondrial superoxide probe. Flashes occur in all subcellular populations of mitochondria. Spatial analysis of the flashes pattern over time revealed that arrays of mitochondria work as well-defined superoxide-production-units. Increase of superoxide production at the muscle fiber level involves recruitment of supplemental units with no increase in per-unit production. Altogether, these results demonstrate that superoxide flashes in muscle fibers correspond to physiological signals linked to mitochondrial metabolism. They also suggest that superoxide, or one of its derivatives, modulates its own production at the mitochondrial level.
Collapse
Affiliation(s)
- Sandrine Pouvreau
- Physiologie Intégrative, Cellulaire et Moléculaire, Université Lyon 1, UMR CNRS 5123, Villeurbanne, France.
| |
Collapse
|
29
|
DNA binding sites target nuclear NFATc1 to heterochromatin regions in adult skeletal muscle fibers. Histochem Cell Biol 2010; 134:387-402. [PMID: 20865272 DOI: 10.1007/s00418-010-0744-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2010] [Indexed: 10/19/2022]
Abstract
We have previously demonstrated that Ca²+/calcineurin-dependent dephosphorylation of the transcription factor nuclear factor of activated T cells subtype 1 (NFATc1) during repetitive skeletal muscle activity causes NFAT nuclear translocation and concentration in subnuclear NFAT foci. We now show that NFAT nuclear foci colocalize with heterochromatin regions of intense staining by DAPI or TO-PRO-3 that are present in the nucleus prior to NFATc1 nuclear entry. Nuclear NFATc1 also colocalizes with the heterochromatin markers trimethyl-histone H3 (Lys9) and heterochromatin protein 1α. Mutation of the NFATc1 DNA binding sites prevents entry and localization of NFATc1 in heterochromatin regions. However, fluorescence in situ hybridization shows that the NFAT-regulated genes for slow and fast myosin heavy chains are not localized within the heterochromatin regions. Fluorescence recovery after photobleaching shows that within a given nucleus, NFATc1 redistributes relatively rapidly (t(¹/₂) < 1 min) between NFAT foci. Nuclear export of an NFATc1 mutant not concentrated in NFAT foci is accelerated following nuclear entry during fiber activity, indicating buffering of free nuclear NFATc1 by NFATc1 within the NFAT foci. Taken together, our results suggest that NFAT foci serve as nuclear storage sites for NFATc1, allowing it to rapidly mobilize to other nuclear regions as required.
Collapse
|
30
|
Jiménez-Moreno R, Wang ZM, Messi ML, Delbono O. Sarcoplasmic reticulum Ca2+ depletion in adult skeletal muscle fibres measured with the biosensor D1ER. Pflugers Arch 2010; 459:725-35. [PMID: 20069312 PMCID: PMC2864504 DOI: 10.1007/s00424-009-0778-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2009] [Accepted: 12/16/2009] [Indexed: 01/21/2023]
Abstract
The endoplasmic/sarcoplasmic reticulum (ER/SR) plays a crucial role in cytoplasmic signalling in a variety of cells. It is particularly relevant to skeletal muscle fibres, where this organelle constitutes the main Ca2+ store for essential functions, such as contraction. In this work, we expressed the cameleon biosensor D1ER by in vivo electroporation in the mouse flexor digitorum brevis (FDB) muscle to directly assess SR Ca2+ depletion in response to electrical and pharmacological stimulation. The main conclusions are: (1) D1ER is expressed in the SR of FDB fibres according to both di-8-(amino naphthyl ethenyl pyridinium) staining experiments and reductions in the Förster resonance energy transfer signal consequent to SR Ca2+ release; (2) the amplitude of D1ER citrine/cyan fluorescent protein (CFP) ratio evoked by either 4-chloro-m-cresol (4-CmC) or electrical stimulation is directly proportional to the basal citrine/CFP ratio, which indicates that SR Ca2+ modulates ryanodine-receptor-isoform-1-mediated SR Ca2+ release in the intact muscle fibre; (3) SR Ca2+ release, measured as D1ER citrine/CFP signal, is voltage-dependent and follows a Boltzmann function; and (4) average SR Ca2+ depletion is 20% in response to 4-CmC and 6.4% in response to prolonged sarcolemmal depolarization. These results indicate that significantly depleting SR Ca2+ content under physiological conditions is difficult.
Collapse
Affiliation(s)
- Ramón Jiménez-Moreno
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | | | | | | |
Collapse
|
31
|
DiFranco M, Quinonez M, Capote J, Vergara J. DNA transfection of mammalian skeletal muscles using in vivo electroporation. J Vis Exp 2009:1520. [PMID: 19841615 DOI: 10.3791/1520] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
A growing interest in cell biology is to express transgenically modified forms of essential proteins (e.g. fluorescently tagged constructs and/or mutant variants) in order to investigate their endogenous distribution and functional relevance. An interesting approach that has been implemented to fulfill this objective in fully differentiated cells is the in vivo transfection of plasmids by various methods into specific tissues such as liver, skeletal muscle, and even the brain. We present here a detailed description of the steps that must be followed in order to efficiently transfect genetic material into fibers of the flexor digitorum brevis (FDB) and interosseus (IO) muscles of adult mice using an in vivo electroporation approach. The experimental parameters have been optimized so as to maximize the number of muscle fibers transfected while minimizing tissue damages that may impair the quality and quantity of the proteins expressed in individual fibers. We have verified that the implementation of the methodology described in this paper results in a high yield of soluble proteins, i.e. EGFP and ECFP, calpain, FKBP12, beta2a-DHPR, etc. ; structural proteins, i.e. minidystrophin and alpha-actinin; and membrane proteins, i.e. alpha1s-DHPR, RyR1, cardiac Na/Ca(2+) exchanger , NaV1.4 Na channel, SERCA1, etc., when applied to FDB, IO and other muscles of mice and rats. The efficient expression of some of these proteins has been verified with biochemical and functional evidence. However, by far the most common confirmatory approach used by us are standard fluorescent microscopy and 2-photon laser scanning microscopy (TPLSM), which permit to identify not only the overall expression, but also the detailed intracellular localization, of fluorescently tagged protein constructs. The method could be equally used to transfect plasmids encoding for the expression of proteins of physiological relevance (as shown here), or for interference RNA (siRNA) aiming to suppress the expression of normally expressed proteins (not tested by us yet). It should be noted that the transfection of FDB and IO muscle fibers is particularly relevant for the investigation of mammalian muscle physiology since fibers enzymatically dissociated from these muscles are currently one of the most suitable models to investigate basic mechanisms of excitability and excitation-contraction coupling under current or voltage clamp conditions.
Collapse
Affiliation(s)
- Marino DiFranco
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, USA
| | | | | | | |
Collapse
|
32
|
Taylor JR, Zheng Z, Wang ZM, Payne AM, Messi ML, Delbono O. Increased CaVbeta1A expression with aging contributes to skeletal muscle weakness. Aging Cell 2009; 8:584-94. [PMID: 19663902 PMCID: PMC2765867 DOI: 10.1111/j.1474-9726.2009.00507.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Ca2+ release from the sarcoplasmic reticulum (SR) into the cytosol is a crucial part of excitation-contraction (E-C) coupling. Excitation-contraction uncoupling, a deficit in Ca2+ release from the SR, is thought to be responsible for at least some of the loss in specific force observed in aging skeletal muscle. Excitation-contraction uncoupling may be caused by alterations in expression of the voltage-dependent calcium channel alpha1s (CaV1.1) and beta1a (CaVbeta1a) subunits, both of which are necessary for E-C coupling to occur. While previous studies have found CaV1.1 expression declines in old rodents, CaVbeta1a expression has not been previously examined in aging models. Western blot analysis shows a substantial increase of CaVbeta1a expression over the full lifespan of Friend Virus B (FVB) mice. To examine the specific effects of CaVbeta1a overexpression, a CaVbeta1a-YFP plasmid was electroporated in vivo into young animals. The resulting increase in expression of CaVbeta1a corresponded to decline of CaV1.1 over the same time period. YFP fluorescence, used as a measure of CaVbeta1a-YFP expression in individual fibers, also showed an inverse relationship with charge movement, measured using the whole-cell patch-clamp technique. Specific force was significantly reduced in young CaVbeta1a-YFP electroporated muscle fibers compared with sham-electroporated, age-matched controls. siRNA interference of CaVbeta1a in young muscles reduced charge movement, while charge movement in old was restored to young control levels. These studies imply CaVbeta1a serves as both a positive and negative regulator CaV1.1 expression, and that endogenous overexpression of CaVbeta1a during old age may play a role in the loss of specific force.
Collapse
Affiliation(s)
- Jackson R. Taylor
- Department of Internal Medicine-Gerontology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, 1 Medical Center Blvd. Winston Salem, North Carolina 27157
- Neuroscience Program, Wake Forest University School of Medicine, Winston-Salem, North Carolina, 1 Medical Center Blvd. Winston Salem, North Carolina 27157
| | - Zhenlin Zheng
- Department of Internal Medicine-Gerontology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, 1 Medical Center Blvd. Winston Salem, North Carolina 27157
| | - Zhong-Min Wang
- Department of Internal Medicine-Gerontology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, 1 Medical Center Blvd. Winston Salem, North Carolina 27157
| | - Anthony M. Payne
- Department of Internal Medicine-Gerontology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, 1 Medical Center Blvd. Winston Salem, North Carolina 27157
| | - María L. Messi
- Department of Internal Medicine-Gerontology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, 1 Medical Center Blvd. Winston Salem, North Carolina 27157
| | - Osvaldo Delbono
- Department of Internal Medicine-Gerontology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, 1 Medical Center Blvd. Winston Salem, North Carolina 27157
- Neuroscience Program, Wake Forest University School of Medicine, Winston-Salem, North Carolina, 1 Medical Center Blvd. Winston Salem, North Carolina 27157
| |
Collapse
|
33
|
Bannwarth M, Corrêa IR, Fellay C, Aebischer A, Sztretye M, Pouvreau S, Royer L, Ríos E, Johnsson K. Indo-1 derivatives for local calcium sensing. ACS Chem Biol 2009; 4:179-190. [PMID: 19193035 PMCID: PMC3652559 DOI: 10.1021/cb800258g] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The role of calcium in signal transduction relies on the precise spatial and temporal control of its concentration. The existing means to detect fluctuations in Ca2+ concentrations with adequate temporal and spatial resolution are limited. We introduce here a method to measure Ca2+ concentrations in defined locations in living cells that is based on linking the Ca2+-sensitive dye Indo-1 to SNAP-tag fusion proteins. Fluorescence spectroscopy of SNAP-Indo-1 conjugates in vitro showed that the conjugates retained the Ca2+-sensing ability of Indo-1. In a proof-of-principle experiment, local Ca2+ sensing was demonstrated in single cells dissociated from muscle of adult mice expressing a nucleus-localized SNAP-tag fusion. Ca2+ concentrations inside nuclei of resting cells were measured by shifted excitation and emission ratioing of confocal microscopic images of fluorescence. After permeabilizing the plasma membrane, changes in the bathing solution induced corresponding changes in nuclear [Ca2+] that were readily detected and used for a preliminary calibration of the technique. This work thus demonstrates the synthesis and application of SNAP-tag-based Ca2+ indicators that combine the spatial specificity of genetically encoded calcium indicators with the advantageous spectroscopic properties of synthetic indicators.
Collapse
Affiliation(s)
- Michael Bannwarth
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Ivan R. Corrêa
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Cindy Fellay
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Annina Aebischer
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Monika Sztretye
- Section of Cellular Signaling, Department of Molecular Biophysics and Physiology, Rush University, 1750 West Harrison Street, Suite 1279JS, Chicago, IL 60612, USA
| | - Sandrine Pouvreau
- Section of Cellular Signaling, Department of Molecular Biophysics and Physiology, Rush University, 1750 West Harrison Street, Suite 1279JS, Chicago, IL 60612, USA
| | - Leandro Royer
- Section of Cellular Signaling, Department of Molecular Biophysics and Physiology, Rush University, 1750 West Harrison Street, Suite 1279JS, Chicago, IL 60612, USA
| | - Eduardo Ríos
- Section of Cellular Signaling, Department of Molecular Biophysics and Physiology, Rush University, 1750 West Harrison Street, Suite 1279JS, Chicago, IL 60612, USA
| | - Kai Johnsson
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| |
Collapse
|
34
|
Boncompagni S, Rossi AE, Micaroni M, Beznoussenko GV, Polishchuk RS, Dirksen RT, Protasi F. Mitochondria are linked to calcium stores in striated muscle by developmentally regulated tethering structures. Mol Biol Cell 2009; 20:1058-67. [PMID: 19037102 PMCID: PMC2633377 DOI: 10.1091/mbc.e08-07-0783] [Citation(s) in RCA: 221] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2008] [Revised: 10/24/2008] [Accepted: 11/17/2008] [Indexed: 11/11/2022] Open
Abstract
Bi-directional calcium (Ca(2+)) signaling between mitochondria and intracellular stores (endoplasmic/sarcoplasmic reticulum) underlies important cellular functions, including oxidative ATP production. In striated muscle, this coupling is achieved by mitochondria being located adjacent to Ca(2+) stores (sarcoplasmic reticulum [SR]) and in proximity of release sites (Ca(2+) release units [CRUs]). However, limited information is available with regard to the mechanisms of mitochondrial-SR coupling. Using electron microscopy and electron tomography, we identified small bridges, or tethers, that link the outer mitochondrial membrane to the intracellular Ca(2+) stores of muscle. This association is sufficiently strong that treatment with hypotonic solution results in stretching of the SR membrane in correspondence of tethers. We also show that the association of mitochondria to the SR is 1) developmentally regulated, 2) involves a progressive shift from a longitudinal clustering at birth to a specific CRU-coupled transversal orientation in adult, and 3) results in a change in the mitochondrial polarization state, as shown by confocal imaging after JC1 staining. Our results suggest that tethers 1) establish and maintain SR-mitochondrial association during postnatal maturation and in adult muscle and 2) likely provide a structural framework for bi-directional signaling between the two organelles in striated muscle.
Collapse
Affiliation(s)
- Simona Boncompagni
- *Interuniversitary Institute of Myology, Department of Basic and Applied Medical Sciences, CeSI-, Università degli Studi G. d'Annunzio, I-66013 Chieti, Italy
| | - Ann E. Rossi
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY 14642; and
| | - Massimo Micaroni
- Telethon Electron Microscopy Core Facility, Department of Cell Biology and Oncology, Consorzio Mario Negri Sud, I-66030 Santa Maria Imbaro, Chieti, Italy
| | - Galina V. Beznoussenko
- Telethon Electron Microscopy Core Facility, Department of Cell Biology and Oncology, Consorzio Mario Negri Sud, I-66030 Santa Maria Imbaro, Chieti, Italy
| | - Roman S. Polishchuk
- Telethon Electron Microscopy Core Facility, Department of Cell Biology and Oncology, Consorzio Mario Negri Sud, I-66030 Santa Maria Imbaro, Chieti, Italy
| | - Robert T. Dirksen
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY 14642; and
| | - Feliciano Protasi
- *Interuniversitary Institute of Myology, Department of Basic and Applied Medical Sciences, CeSI-, Università degli Studi G. d'Annunzio, I-66013 Chieti, Italy
| |
Collapse
|
35
|
DiFranco M, Capote J, Quiñonez M, Vergara JL. Voltage-dependent dynamic FRET signals from the transverse tubules in mammalian skeletal muscle fibers. ACTA ACUST UNITED AC 2008; 130:581-600. [PMID: 18040060 PMCID: PMC2151662 DOI: 10.1085/jgp.200709831] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Two hybrid voltage-sensing systems based on fluorescence resonance energy transfer (FRET) were used to record membrane potential changes in the transverse tubular system (TTS) and surface membranes of adult mice skeletal muscle fibers. Farnesylated EGFP or ECFP (EGFP-F and ECFP-F) were used as immobile FRET donors, and either non-fluorescent (dipicrylamine [DPA]) or fluorescent (oxonol dye DiBAC(4)(5)) lipophilic anions were used as mobile energy acceptors. Flexor digitorum brevis (FDB) muscles were transfected by in vivo electroporation with pEGFP-F and pECFP-F. Farnesylated fluorescent proteins were efficiently expressed in the TTS and surface membranes. Voltage-dependent optical signals resulting from resonance energy transfer from fluorescent proteins to DPA were named QRET transients, to distinguish them from FRET transients recorded using DiBAC(4)(5). The peak DeltaF/F of QRET transients elicited by action potential stimulation is twice larger in fibers expressing ECFP-F as those with EGFP-F (7.1% vs. 3.6%). These data provide a unique experimental demonstration of the importance of the spectral overlap in FRET. The voltage sensitivity of QRET and FRET signals was demonstrated to correspond to the voltage-dependent translocation of the charged acceptors, which manifest as nonlinear components in current records. For DPA, both electrical and QRET data were predicted by radial cable model simulations in which the maximal time constant of charge translocation was 0.6 ms. FRET signals recorded in response to action potentials in fibers stained with DiBAC(4)(5) exhibit DeltaF/F amplitudes as large as 28%, but their rising phase was slower than those of QRET signals. Model simulations require a time constant for charge translocation of 1.6 ms in order to predict current and FRET data. Our results provide the basis for the potential use of lipophilic ions as tools to test for fast voltage-dependent conformational changes of membrane proteins in the TTS.
Collapse
Affiliation(s)
- Marino DiFranco
- Department of Physiology, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA 90095, USA
| | | | | | | |
Collapse
|
36
|
Wheeler TM, Lueck JD, Swanson MS, Dirksen RT, Thornton CA. Correction of ClC-1 splicing eliminates chloride channelopathy and myotonia in mouse models of myotonic dystrophy. J Clin Invest 2008; 117:3952-7. [PMID: 18008009 DOI: 10.1172/jci33355] [Citation(s) in RCA: 142] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2007] [Accepted: 09/12/2007] [Indexed: 01/19/2023] Open
Abstract
In myotonic dystrophy (dystrophia myotonica [DM]), an increase in the excitability of skeletal muscle leads to repetitive action potentials, stiffness, and delayed relaxation. This constellation of features, collectively known as myotonia, is associated with abnormal alternative splicing of the muscle-specific chloride channel (ClC-1) and reduced conductance of chloride ions in the sarcolemma. However, the mechanistic basis of the chloride channelopathy and its relationship to the development of myotonia are uncertain. Here we show that a morpholino antisense oligonucleotide (AON) targeting the 3' splice site of ClC-1 exon 7a reversed the defect of ClC-1 alternative splicing in 2 mouse models of DM. By repressing the inclusion of this exon, the AON restored the full-length reading frame in ClC-1 mRNA, upregulated the level of ClC-1 mRNA, increased the expression of ClC-1 protein in the surface membrane, normalized muscle ClC-1 current density and deactivation kinetics, and eliminated myotonic discharges. These observations indicate that the myotonia and chloride channelopathy observed in DM both result from abnormal alternative splicing of ClC-1 and that antisense-induced exon skipping offers a powerful method for correcting alternative splicing defects in DM.
Collapse
Affiliation(s)
- Thurman M Wheeler
- Department of Neurology, University of Rochester, Rochester, New York 14618, USA
| | | | | | | | | |
Collapse
|
37
|
Pouvreau S, Royer L, Yi J, Brum G, Meissner G, Ríos E, Zhou J. Ca(2+) sparks operated by membrane depolarization require isoform 3 ryanodine receptor channels in skeletal muscle. Proc Natl Acad Sci U S A 2007; 104:5235-40. [PMID: 17360329 PMCID: PMC1829292 DOI: 10.1073/pnas.0700748104] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Stimuli are translated to intracellular calcium signals via opening of inositol trisphosphate receptor and ryanodine receptor (RyR) channels of the sarcoplasmic reticulum or endoplasmic reticulum. In cardiac and skeletal muscle of amphibians the stimulus is depolarization of the transverse tubular membrane, transduced by voltage sensors at tubular-sarcoplasmic reticulum junctions, and the unit signal is the Ca(2+) spark, caused by concerted opening of multiple RyR channels. Mammalian muscles instead lose postnatally the ability to produce sparks, and they also lose RyR3, an isoform abundant in spark-producing skeletal muscles. What does it take for cells to respond to membrane depolarization with Ca(2+) sparks? To answer this question we made skeletal muscles of adult mice expressing exogenous RyR3, demonstrated as immunoreactivity at triad junctions. These muscles showed abundant sparks upon depolarization. Sparks produced thusly were found to amplify the response to depolarization in a manner characteristic of Ca(2+)-induced Ca(2+) release processes. The amplification was particularly effective in responses to brief depolarizations, as in action potentials. We also induced expression of exogenous RyR1 or yellow fluorescent protein-tagged RyR1 in muscles of adult mice. In these, tag fluorescence was present at triad junctions. RyR1-transfected muscle lacked voltage-operated sparks. Therefore, the voltage-operated sparks phenotype is specific to the RyR3 isoform. Because RyR3 does not contact voltage sensors, their opening was probably activated by Ca(2+), secondarily to Ca(2+) release through junctional RyR1. Physiologically voltage-controlled Ca(2+) sparks thus require a voltage sensor, a master junctional RyR1 channel that provides trigger Ca(2+), and a slave parajunctional RyR3 cohort.
Collapse
Affiliation(s)
- Sandrine Pouvreau
- *Section of Cellular Signaling, Department of Molecular Biophysics and Physiology, Rush University, 1750 West Harrison Street, Suite 1279JS, Chicago, IL 60612
| | - Leandro Royer
- *Section of Cellular Signaling, Department of Molecular Biophysics and Physiology, Rush University, 1750 West Harrison Street, Suite 1279JS, Chicago, IL 60612
| | - Jianxun Yi
- *Section of Cellular Signaling, Department of Molecular Biophysics and Physiology, Rush University, 1750 West Harrison Street, Suite 1279JS, Chicago, IL 60612
| | - Gustavo Brum
- Departamento de Biofísica, Facultad de Medicina, Universidad de la República, Avenida General Flores 2125, Montevideo, Uruguay; and
| | - Gerhard Meissner
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599-7260
| | - Eduardo Ríos
- *Section of Cellular Signaling, Department of Molecular Biophysics and Physiology, Rush University, 1750 West Harrison Street, Suite 1279JS, Chicago, IL 60612
- To whom correspondence may be addressed. E-mail: or
| | - Jingsong Zhou
- *Section of Cellular Signaling, Department of Molecular Biophysics and Physiology, Rush University, 1750 West Harrison Street, Suite 1279JS, Chicago, IL 60612
- To whom correspondence may be addressed. E-mail: or
| |
Collapse
|