1
|
Ayub H, Clare M, Broadbent L, Simms J, Goddard AD, Rothnie AJ, Bill RM. Membrane Protein Production in the Yeast P. pastoris. Methods Mol Biol 2022; 2507:187-199. [PMID: 35773583 DOI: 10.1007/978-1-0716-2368-8_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The first crystal structures of recombinant mammalian membrane proteins were solved using high-quality protein that had been produced in yeast cells. One of these, the rat Kv1.2 voltage-gated potassium channel, was synthesized in Pichia pastoris. Since then, this yeast species has remained a consistently popular choice of host for synthesizing eukaryotic membrane proteins because it is quick, easy, and cheap to culture and is capable of posttranslational modification. Very recent structures of recombinant membrane proteins produced in P. pastoris include a series of X-ray crystallography structures of the human vitamin K epoxide reductase and a cryo-electron microscopy structure of the TMEM206 proton-activated chloride channel from pufferfish. P. pastoris has also been used to structurally and functionally characterize a range of membrane proteins including tetraspanins, aquaporins, and G protein-coupled receptors. This chapter provides an overview of the methodological approaches underpinning these successes.
Collapse
Affiliation(s)
- Hoor Ayub
- Faculty of Health and Life Sciences, Coventry University, Coventry, UK
| | - Michelle Clare
- Faculty of Health and Life Sciences, Coventry University, Coventry, UK
| | - Luke Broadbent
- College of Health and Life Sciences, Aston University, Birmingham, UK
| | - John Simms
- College of Health and Life Sciences, Aston University, Birmingham, UK
| | - Alan D Goddard
- College of Health and Life Sciences, Aston University, Birmingham, UK
| | - Alice J Rothnie
- College of Health and Life Sciences, Aston University, Birmingham, UK
| | - Roslyn M Bill
- College of Health and Life Sciences, Aston University, Birmingham, UK.
| |
Collapse
|
2
|
CD81 extracted in SMALP nanodiscs comprises two distinct protein populations within a lipid environment enriched with negatively charged headgroups. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183419. [PMID: 32735789 PMCID: PMC7456796 DOI: 10.1016/j.bbamem.2020.183419] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 06/05/2020] [Accepted: 07/07/2020] [Indexed: 12/16/2022]
Abstract
Tetraspanins exert a wide range of cellular functions of broad medical importance. Despite this, their biophysical characteristics are incompletely understood. Only two high-resolution structures of full-length tetraspanins have been solved. One is that of human CD81, which is involved in the infectivity of human pathogens including influenza, HIV, the malarial Plasmodium parasite and hepatitis C virus (HCV). The CD81 crystal structure identifies a cholesterol-binding pocket, which has been suggested to be important in the regulation of tetraspanin function. Here we investigate the use of styrene-maleic anhydride co-polymers (SMA) for the solubilisation and purification of CD81 within a lipid environment. When CD81 was expressed in the yeast Pichia pastoris, it could be solubilised and purified using SMA2000. This SMALP-encapsulated CD81 retained its native folded structure, as determined by the binding of two conformation-sensitive anti-CD81 antibodies. Analysis by size exclusion chromatography revealed two distinct populations of CD81, only one of which bound the HCV glycoprotein, E2. Optimization of expression and buffer conditions increased the proportion of E2-binding competent CD81 protein. Mass spectrometry analysis indicated that the lipid environment surrounding CD81 is enriched with negatively charged lipids. These results establish a platform to study the influence of protein-lipid interactions in tetraspanin biology. CD81 expressed in Pichia pastoris can be solubilised and purified using SMA polymer. SMALP-encapsulated CD81 retains native folded structure. Expression and buffer conditions can be optimized to improve protein quality. The lipid environment surrounding CD81 is enriched with negatively charged lipids.
Collapse
|
3
|
Munro R, de Vlugt J, Ladizhansky V, Brown LS. Improved Protocol for the Production of the Low-Expression Eukaryotic Membrane Protein Human Aquaporin 2 in Pichia pastoris for Solid-State NMR. Biomolecules 2020; 10:biom10030434. [PMID: 32168846 PMCID: PMC7175339 DOI: 10.3390/biom10030434] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/05/2020] [Accepted: 03/06/2020] [Indexed: 12/16/2022] Open
Abstract
Solid-state nuclear magnetic resonance (SSNMR) is a powerful biophysical technique for studies of membrane proteins; it requires the incorporation of isotopic labels into the sample. This is usually accomplished through over-expression of the protein of interest in a prokaryotic or eukaryotic host in minimal media, wherein all (or some) carbon and nitrogen sources are isotopically labeled. In order to obtain multi-dimensional NMR spectra with adequate signal-to-noise ratios suitable for in-depth analysis, one requires high yields of homogeneously structured protein. Some membrane proteins, such as human aquaporin 2 (hAQP2), exhibit poor expression, which can make producing a sample for SSNMR in an economic fashion extremely difficult, as growth in minimal media adds additional strain on expression hosts. We have developed an optimized growth protocol for eukaryotic membrane proteins in the methylotrophic yeast Pichia pastoris. Our new growth protocol uses the combination of sorbitol supplementation, higher cell density, and low temperature induction (LT-SEVIN), which increases the yield of full-length, isotopically labeled hAQP2 ten-fold. Combining mass spectrometry and SSNMR, we were able to determine the nature and the extent of post-translational modifications of the protein. The resultant protein can be functionally reconstituted into lipids and yields excellent resolution and spectral coverage when analyzed by two-dimensional SSNMR spectroscopy.
Collapse
|
4
|
Hardy D, Bill RM, Jawhari A, Rothnie AJ. Functional Expression of Multidrug Resistance Protein 4 MRP4/ABCC4. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2019; 24:1000-1008. [PMID: 31381460 PMCID: PMC6873218 DOI: 10.1177/2472555219867070] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 06/26/2019] [Accepted: 07/08/2019] [Indexed: 12/18/2022]
Abstract
To study the function and structure of membrane proteins, high quantities of pure and stable protein are needed. One of the first hurdles in accomplishing this is expression of the membrane protein at high levels and in a functional state. Membrane proteins are naturally expressed at low levels, so finding a suitable host for overexpression is imperative. Multidrug resistance protein 4 (MRP4) or ATP-binding cassette subfamily C member 4 (ABCC4) is a multi-transmembrane protein that is able to transport a range of organic anionic compounds (both endogenous and xenobiotic) out of the cell. This versatile transporter has been linked with extracellular signaling pathways and cellular protection, along with conferring drug resistance in cancers. Here we report the use of MRP4 as a case study to be expressed in three different expression systems: mammalian, insect, and yeast cells, to gain the highest yield possible. Interestingly, using the baculovirus expression system with Sf9 insect cells produced the highest protein yields. Vesicular transport assays were used to confirm that MRP4 expressed in Sf9 was functional using a fluorescent cAMP analogue (fluo-cAMP) instead of the traditional radiolabeled substrates. MRP4 transported fluo-cAMP in an ATP-dependent manner. The specificity of functional expression of MRP4 was validated by the use of nonhydrolyzable ATP analogues and MRP4 inhibitor MK571. Functionally expressed MRP4 in Sf9 cells can now be used in downstream processes such as solubilization and purification in order to better understand its function and structure.
Collapse
Affiliation(s)
- David Hardy
- Life & Health Sciences, Aston
University, Birmingham, UK
- CALIXAR, Lyon, France
| | - Roslyn M. Bill
- Life & Health Sciences, Aston
University, Birmingham, UK
| | | | | |
Collapse
|
5
|
Grove J, Hu K, Farquhar MJ, Goodall M, Walker L, Jamshad M, Drummer HE, Bill RM, Balfe P, McKeating JA. A new panel of epitope mapped monoclonal antibodies recognising the prototypical tetraspanin CD81. Wellcome Open Res 2017; 2:82. [PMID: 29090272 PMCID: PMC5657224 DOI: 10.12688/wellcomeopenres.12058.1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2017] [Indexed: 12/26/2022] Open
Abstract
Background: Tetraspanins are small transmembrane proteins, found in all higher eukaryotes, that compartmentalize cellular membranes through interactions with partner proteins. CD81 is a prototypical tetraspanin and contributes to numerous physiological and pathological processes, including acting as a critical entry receptor for hepatitis C virus (HCV). Antibody engagement of tetraspanins can induce a variety of effects, including actin cytoskeletal rearrangements, activation of MAPK-ERK signaling and cell migration. However, the epitope specificity of most anti-tetraspanin antibodies is not known, limiting mechanistic interpretation of these studies. Methods: We generated a panel of monoclonal antibodies (mAbs) specific for CD81 second extracellular domain (EC2) and performed detailed epitope mapping with a panel of CD81 mutants. All mAbs were screened for their ability to inhibit HCV infection and E2-CD81 association. Nanoscale distribution of cell surface CD81 was investigated by scanning electron microscopy. Results: The antibodies were classified in two epitope groups targeting opposing sides of EC2. We observed a wide range of anti-HCV potencies that were independent of their epitope grouping, but associated with their relative affinity for cell-surface expressed CD81. Scanning electron microscopy identified at least two populations of CD81; monodisperse and higher-order assemblies, consistent with tetraspanin-enriched microdomains. Conclusions: These novel antibodies provide well-characterised tools to investigate CD81 function, including HCV entry, and have the potential to provide insights into tetraspanin biology in general.
Collapse
Affiliation(s)
- Joe Grove
- Institute of Immunity and Transplantation, Division of Infection and Immunity, , University College London, London, NW3 2PF, UK
| | - Ke Hu
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, B15 2TT, UK
| | - Michelle J. Farquhar
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, B15 2TT, UK
| | - Margaret Goodall
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, B15 2TT, UK
| | - Lucas Walker
- Institute of Immunity and Transplantation, Division of Infection and Immunity, , University College London, London, NW3 2PF, UK
| | - Mohammed Jamshad
- Institute for Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Heidi E. Drummer
- Centre for Biomedical Resear, Burnet Institute, Melbourne, VIC, 3004, Australia
| | - Roslyn M. Bill
- School of Life and Health Sciences, Aston University, Birmingham, B4 7ET, UK
| | - Peter Balfe
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, B15 2TT, UK
| | - Jane A. McKeating
- Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK
| |
Collapse
|
6
|
Reducing isoform complexity of human tetraspanins by optimized expression in Dictyostelium discoideum enables high-throughput functional read-out. Protein Expr Purif 2017; 135:8-15. [DOI: 10.1016/j.pep.2017.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 04/18/2017] [Accepted: 04/20/2017] [Indexed: 11/21/2022]
|
7
|
Fernández FJ, López-Estepa M, Querol-García J, Vega MC. Production of Protein Complexes in Non-methylotrophic and Methylotrophic Yeasts : Nonmethylotrophic and Methylotrophic Yeasts. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 896:137-53. [PMID: 27165323 DOI: 10.1007/978-3-319-27216-0_9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Protein complexes can be produced in multimilligram quantities using nonmethylotrophic and methylotrophic yeasts such as Saccharomyces cerevisiae and Komagataella (Pichia) pastoris. Yeasts have distinct advantages as hosts for recombinant protein production owing to their cost efficiency, ease of cultivation and genetic manipulation, fast growth rates, capacity to introduce post-translational modifications, and high protein productivity (yield) of correctly folded protein products. Despite those advantages, yeasts have surprisingly lagged behind other eukaryotic hosts in their use for the production of multisubunit complexes. As our knowledge of the metabolic and genomic bottlenecks that yeast microorganisms face when overexpressing foreign proteins expands, new possibilities emerge for successfully engineering yeasts as superb expression hosts. In this chapter, we describe the current state of the art and discuss future possibilities for the development of yeast-based systems for the production of protein complexes.
Collapse
Affiliation(s)
- Francisco J Fernández
- Center for Biological Research, Spanish National Research Council (CIB-CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Miguel López-Estepa
- Center for Biological Research, Spanish National Research Council (CIB-CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Javier Querol-García
- Center for Biological Research, Spanish National Research Council (CIB-CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - M Cristina Vega
- Center for Biological Research, Spanish National Research Council (CIB-CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain.
| |
Collapse
|
8
|
Skaar K, Korza HJ, Tarry M, Sekyrova P, Högbom M. Expression and Subcellular Distribution of GFP-Tagged Human Tetraspanin Proteins in Saccharomyces cerevisiae. PLoS One 2015. [PMID: 26218426 PMCID: PMC4517926 DOI: 10.1371/journal.pone.0134041] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Tetraspanins are integral membrane proteins that function as organizers of multimolecular complexes and modulate function of associated proteins. Mammalian genomes encode approximately 30 different members of this family and remotely related eukaryotic species also contain conserved tetraspanin homologs. Tetraspanins are involved in a number of fundamental processes such as regulation of cell migration, fusion, immunity and signaling. Moreover, they are implied in numerous pathological states including mental disorders, infectious diseases or cancer. Despite the great interest in tetraspanins, the structural and biochemical basis of their activity is still largely unknown. A major bottleneck lies in the difficulty of obtaining stable and homogeneous protein samples in large quantities. Here we report expression screening of 15 members of the human tetraspanin superfamily and successful protocols for the production in S. cerevisiae of a subset of tetraspanins involved in human cancer development. We have demonstrated the subcellular localization of overexpressed tetraspanin-green fluorescent protein fusion proteins in S. cerevisiae and found that despite being mislocalized, the fusion proteins are not degraded. The recombinantly produced tetraspanins are dispersed within the endoplasmic reticulum membranes or localized in granule-like structures in yeast cells. The recombinantly produced tetraspanins can be extracted from the membrane fraction and purified with detergents or the poly (styrene-co-maleic acid) polymer technique for use in further biochemical or biophysical studies.
Collapse
Affiliation(s)
- Karin Skaar
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Henryk J. Korza
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Michael Tarry
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Petra Sekyrova
- Department of Pharmacology and Physiology, Karolinska Institutet, Stockholm, Sweden
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Martin Högbom
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
9
|
Yang W, Zhang M, Chi X, Liu X, Qin B, Cui S. An intramolecular bond at cluster of differentiation 81 ectodomain is important for hepatitis C virus entry. FASEB J 2015; 29:4214-26. [DOI: 10.1096/fj.15-272880] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 06/15/2015] [Indexed: 11/11/2022]
Affiliation(s)
- Wei Yang
- Ministry of Health Key Laboratory of Systems Biology of PathogensInstitute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Meng Zhang
- Ministry of Health Key Laboratory of Systems Biology of PathogensInstitute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Xiaojing Chi
- Ministry of Health Key Laboratory of Systems Biology of PathogensInstitute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Xiuying Liu
- Ministry of Health Key Laboratory of Systems Biology of PathogensInstitute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Bo Qin
- Ministry of Health Key Laboratory of Systems Biology of PathogensInstitute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Sheng Cui
- Ministry of Health Key Laboratory of Systems Biology of PathogensInstitute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| |
Collapse
|
10
|
Cha GH, Luo SW, Qi ZH, Liu Y, Wang WN. Optimal conditions for expressing a complement component 3b functional fragment (α2-macroglobulin receptor) gene from Epinephelus coioides in Pichia pastoris. Protein Expr Purif 2015; 109:23-8. [DOI: 10.1016/j.pep.2015.01.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 01/15/2015] [Accepted: 01/21/2015] [Indexed: 10/24/2022]
|
11
|
G-protein coupled receptor solubilization and purification for biophysical analysis and functional studies, in the total absence of detergent. Biosci Rep 2015; 35:BSR20140171. [PMID: 25720391 PMCID: PMC4400634 DOI: 10.1042/bsr20140171] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
G-protein coupled receptors (GPCRs) constitute the largest class of membrane proteins and are a major drug target. A serious obstacle to studying GPCR structure/function characteristics is the requirement to extract the receptors from their native environment in the plasma membrane, coupled with the inherent instability of GPCRs in the detergents required for their solubilization. In the present study, we report the first solubilization and purification of a functional GPCR [human adenosine A2A receptor (A2AR)], in the total absence of detergent at any stage, by exploiting spontaneous encapsulation by styrene maleic acid (SMA) co-polymer direct from the membrane into a nanoscale SMA lipid particle (SMALP). Furthermore, the A2AR–SMALP, generated from yeast (Pichia pastoris) or mammalian cells, exhibited increased thermostability (∼5°C) compared with detergent [DDM (n-dodecyl-β-D-maltopyranoside)]-solubilized A2AR controls. The A2AR–SMALP was also stable when stored for prolonged periods at 4°C and was resistant to multiple freeze-thaw cycles, in marked contrast with the detergent-solubilized receptor. These properties establish the potential for using GPCR–SMALP in receptor-based drug discovery assays. Moreover, in contrast with nanodiscs stabilized by scaffold proteins, the non-proteinaceous nature of the SMA polymer allowed unobscured biophysical characterization of the embedded receptor. Consequently, CD spectroscopy was used to relate changes in secondary structure to loss of ligand binding ([3H]ZM241385) capability. SMALP-solubilization of GPCRs, retaining the annular lipid environment, will enable a wide range of therapeutic targets to be prepared in native-like state to aid drug discovery and understanding of GPCR molecular mechanisms. It is universally acknowledged that exposing cell-surface receptors to detergent is detrimental. We have used a polymer to extract the receptor and surrounding lipid as a nanoparticle that provides a novel solution compatible with purification and receptor-based drug discovery assays.
Collapse
|
12
|
Brimacombe CL, Wilson GK, Hübscher SG, McKeating JA, Farquhar MJ. A role for CD81 and hepatitis C virus in hepatoma mobility. Viruses 2014; 6:1454-72. [PMID: 24662676 PMCID: PMC3970161 DOI: 10.3390/v6031454] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 01/27/2014] [Accepted: 03/05/2014] [Indexed: 12/21/2022] Open
Abstract
Tetraspanins are a family of small proteins that interact with themselves, host transmembrane and cytosolic proteins to form tetraspanin enriched microdomains (TEMs) that regulate important cellular functions. Several tetraspanin family members are linked to tumorigenesis. Hepatocellular carcinoma (HCC) is an increasing global health burden, in part due to the increasing prevalence of hepatitis C virus (HCV) associated HCC. The tetraspanin CD81 is an essential receptor for HCV, however, its role in hepatoma biology is uncertain. We demonstrate that antibody engagement of CD81 promotes hepatoma spread, which is limited by HCV infection, in an actin-dependent manner and identify an essential role for the C-terminal interaction with Ezrin-Radixin-Moesin (ERM) proteins in this process. We show enhanced hepatoma migration and invasion following expression of CD81 and a reduction in invasive potential upon CD81 silencing. In addition, we reveal poorly differentiated HCC express significantly higher levels of CD81 compared to adjacent non-tumor tissue. In summary, these data support a role for CD81 in regulating hepatoma mobility and propose CD81 as a tumour promoter.
Collapse
Affiliation(s)
- Claire L Brimacombe
- Viral Hepatitis Research Group, Institute for Biomedical Research, University of Birmingham, Birmingham B15 2TT, UK.
| | - Garrick K Wilson
- Viral Hepatitis Research Group, Institute for Biomedical Research, University of Birmingham, Birmingham B15 2TT, UK.
| | - Stefan G Hübscher
- Centre for Liver Research and NIHR Birmingham Liver Biomedical Research Unit, Institute for Biomedical Research, University of Birmingham, Birmingham B15 2TT, UK.
| | - Jane A McKeating
- Viral Hepatitis Research Group, Institute for Biomedical Research, University of Birmingham, Birmingham B15 2TT, UK.
| | - Michelle J Farquhar
- Viral Hepatitis Research Group, Institute for Biomedical Research, University of Birmingham, Birmingham B15 2TT, UK.
| |
Collapse
|
13
|
Bonander N, Jamshad M, Oberthür D, Clare M, Barwell J, Hu K, Farquhar MJ, Stamataki Z, Harris HJ, Dierks K, Dafforn TR, Betzel C, McKeating JA, Bill RM. Production, purification and characterization of recombinant, full-length human claudin-1. PLoS One 2013; 8:e64517. [PMID: 23704991 PMCID: PMC3660353 DOI: 10.1371/journal.pone.0064517] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 04/16/2013] [Indexed: 01/20/2023] Open
Abstract
The transmembrane domain proteins of the claudin superfamily are the major structural components of cellular tight junctions. One family member, claudin-1, also associates with tetraspanin CD81 as part of a receptor complex that is essential for hepatitis C virus (HCV) infection of the liver. To understand the molecular basis of claudin-1/CD81 association we previously produced and purified milligram quantities of functional, full-length CD81, which binds a soluble form of HCV E2 glycoprotein (sE2). Here we report the production, purification and characterization of claudin-1. Both yeast membrane-bound and detergent-extracted, purified claudin-1 were antigenic and recognized by specific antibodies. Analytical ultracentrifugation demonstrated that extraction with n-octyl-β-d-glucopyranoside yielded monodispersed, dimeric pools of claudin-1 while extraction with profoldin-8 or n-decylphosphocholine yielded a dynamic mixture of claudin-1 oligomers. Neither form bound sE2 in line with literature expectations, while further functional analysis was hampered by the finding that incorporation of claudin-1 into proteoliposomes rendered them intractable to study. Dynamic light scattering demonstrated that claudin-1 oligomers associate with CD81 in vitro in a defined molar ratio of 1∶2 and that complex formation was enhanced by the presence of cholesteryl hemisuccinate. Attempts to assay the complex biologically were limited by our finding that claudin-1 affects the properties of proteoliposomes. We conclude that recombinant, correctly-folded, full-length claudin-1 can be produced in yeast membranes, that it can be extracted in different oligomeric forms that do not bind sE2 and that a dynamic preparation can form a specific complex with CD81 in vitro in the absence of any other cellular components. These findings pave the way for the structural characterization of claudin-1 alone and in complex with CD81.
Collapse
Affiliation(s)
- Nicklas Bonander
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Davis C, Harris HJ, Hu K, Drummer HE, McKeating JA, Mullins JGL, Balfe P. In silico directed mutagenesis identifies the CD81/claudin-1 hepatitis C virus receptor interface. Cell Microbiol 2012; 14:1892-903. [PMID: 22897233 PMCID: PMC3549482 DOI: 10.1111/cmi.12008] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Revised: 07/19/2012] [Accepted: 08/06/2012] [Indexed: 12/12/2022]
Abstract
Hepatitis C virus (HCV) entry is dependent on host cell molecules tetraspanin CD81, scavenger receptor BI and tight junction proteins claudin-1 and occludin. We previously reported a role for CD81/claudin-1 receptor complexes in HCV entry; however, the molecular mechanism(s) driving association between the receptors is unknown. We explored the molecular interface between CD81 and claudin-1 using a combination of bioinformatic sequence-based modelling, site-directed mutagenesis and Fluorescent Resonance Energy Transfer (FRET) imaging methodologies. Structural modelling predicts the first extracellular loop of claudin-1 to have a flexible beta conformation and identifies a motif between amino acids 62-66 that interacts with CD81 residues T149, E152 and T153. FRET studies confirm a role for these CD81 residues in claudin-1 association and HCV infection. Importantly, mutation of these CD81 residues has minimal impact on protein conformation or HCV glycoprotein binding, highlighting a new functional domain of CD81 that is essential for virus entry.
Collapse
Affiliation(s)
- Christopher Davis
- School of Immunity and Infection, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | | | | | | | | | | | | |
Collapse
|
15
|
Structural basis of ligand interactions of the large extracellular domain of tetraspanin CD81. J Virol 2012; 86:9606-16. [PMID: 22740401 DOI: 10.1128/jvi.00559-12] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Hepatitis C virus (HCV) causes chronic liver disease, cirrhosis, and primary liver cancer. Despite 130 million people being at risk worldwide, no vaccine exists, and effective therapy is limited by drug resistance, toxicity, and high costs. The tetraspanin CD81 is an essential entry-level receptor required for HCV infection of hepatocytes and represents a critical target for intervention. In this study, we report the first structural characterization of the large extracellular loop of CD81, expressed in mammalian cells and studied in physiological solutions. The HCV E2 glycoprotein recognizes CD81 through a dynamic loop on the helical bundle, which was shown by nuclear magnetic resonance (NMR) spectroscopy to adopt a conformation distinct from that seen in crystals. A novel membrane binding interface was revealed adjacent to the exposed HCV interaction site in the extracellular loop of CD81. The binding pockets for two proposed inhibitors of the CD81-HCV interaction, namely, benzyl salicylate and fexofenadine, were shown to overlap the HCV and membrane interaction sites. Although the dynamic loop region targeted by these compounds presents challenges for structure-based design, the NMR assignments enable realistic screening and validation of ligands. Together, these data provide an improved avenue for developing potent agents that specifically block CD81-HCV interaction and also pave a way for elucidating the recognition mechanisms of diverse tetraspanins.
Collapse
|
16
|
Abstract
Hepatitis C virus (HCV) leads to progressive liver disease and hepatocellular carcinoma. Current treatments are only partially effective, and new therapies targeting viral and host pathways are required. Virus entry into a host cell provides a conserved target for therapeutic intervention. Tetraspanin CD81, scavenger receptor class B member I, and the tight-junction proteins claudin-1 and occludin have been identified as essential entry receptors. Limited information is available on the role of receptor trafficking in HCV entry. We demonstrate here that anti-CD81 antibodies inhibit HCV infection at late times after virus internalization, suggesting a role for intracellular CD81 in HCV infection. Several tetraspanins have been reported to internalize via motifs in their C-terminal cytoplasmic domains; however, CD81 lacks such motifs, leading several laboratories to suggest a limited role for CD81 endocytosis in HCV entry. We demonstrate CD81 internalization via a clathrin- and dynamin-dependent process, independent of its cytoplasmic domain, suggesting a role for associated partner proteins in regulating CD81 trafficking. Live cell imaging demonstrates CD81 and claudin-1 coendocytosis and fusion with Rab5 expressing endosomes, supporting a role for this receptor complex in HCV internalization. Receptor-specific antibodies and HCV particles increase CD81 and claudin-1 endocytosis, supporting a model wherein HCV stimulates receptor trafficking to promote particle internalization.
Collapse
|
17
|
Darby RAJ, Cartwright SP, Dilworth MV, Bill RM. Which yeast species shall I choose? Saccharomyces cerevisiae versus Pichia pastoris (review). Methods Mol Biol 2012; 866:11-23. [PMID: 22454110 DOI: 10.1007/978-1-61779-770-5_2] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Having decided on yeast as a production host, the choice of species is often the first question any researcher new to the field will ask. With over 500 known species of yeast to date, this could pose a significant challenge. However, in reality, only very few species of yeast have been employed as host organisms for the production of recombinant proteins. The two most widely used, Saccharomyces cerevisiae and Pichia pastoris, are compared and contrasted here.
Collapse
Affiliation(s)
- Richard A J Darby
- Nuffield Department of Clinical Laboratory Sciences, John Radcliffe Hospital, University of Oxford, Oxford, UK.
| | | | | | | |
Collapse
|
18
|
Abstract
Yeast is a proven host for the production of recombinant proteins, which may be incorporated in cellular membranes or localized in subcellular compartments. In order to gain access to these proteins, cellular disruption is required to permit extraction, purification, and downstream analysis. Disruption can significantly impact the yield and quality of the biomaterial. We highlight several disruption techniques that are applicable to yeast cells ranging from mechanical to nonmechanical approaches. In all cases fast, efficient cellular disruption is desirable, that does not alter the protein chemically or physically and that generates material for downstream purification and analysis.
Collapse
Affiliation(s)
- Mohammed Jamshad
- School of Biosciences, University of Birmingham, Birmingham, West Midlands, UK
| | | |
Collapse
|
19
|
Abstract
Scale-up from shake flasks to bioreactors allows for the more reproducible, high-yielding production of recombinant proteins in yeast. The ability to control growth conditions through real-time monitoring facilitates further optimization of the process. The setup of a 3-L stirred-tank bioreactor for such an application is described.
Collapse
Affiliation(s)
- Sarah J Routledge
- School of Life and Health Sciences, Aston University, Birmingham, UK.
| | | |
Collapse
|
20
|
Structural characterization of CD81-Claudin-1 hepatitis C virus receptor complexes. Biochem Soc Trans 2011; 39:537-40. [PMID: 21428935 DOI: 10.1042/bst0390537] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Tetraspanins are thought to exert their biological function(s) by co-ordinating the lateral movement and trafficking of associated molecules into tetraspanin-enriched microdomains. A second four-TM (transmembrane) domain protein family, the Claudin superfamily, is the major structural component of cellular TJs (tight junctions). Although the Claudin family displays low sequence homology and appears to be evolutionarily distinct from the tetraspanins, CD81 and Claudin-1 are critical molecules defining HCV (hepatitis C virus) entry; we recently demonstrated that CD81-Claudin-1 complexes have an essential role in this process. To understand the molecular basis of CD81-Claudin-1 complex formation, we produced and purified milligram quantities of full-length CD81 and Claudin-1, alone and in complex, in both detergent and lipid contexts. Structural characterization of these purified proteins will allow us to define the mechanism(s) underlying virus-cell interactions and aid the design of therapeutic agents targeting early steps in the viral life cycle.
Collapse
|
21
|
Lemon SM, McKeating JA, Pietschmann T, Frick DN, Glenn JS, Tellinghuisen TL, Symons J, Furman PA. Development of novel therapies for hepatitis C. Antiviral Res 2010; 86:79-92. [PMID: 20417376 DOI: 10.1016/j.antiviral.2010.02.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2010] [Revised: 01/30/2010] [Accepted: 02/01/2010] [Indexed: 10/19/2022]
Abstract
The current standard of care for the treatment of hepatitis C virus (HCV) infection is a combination of pegylated IFN and ribavirin (Peg-IFN/RBV). Because of the adverse effects associated with both IFN and ribavirin and because Peg-IFN/RBV provides only about a 45-50% sustained virological response (SVR, undetectable HCV RNA for greater than 24 weeks after cessation of therapy) in genotype 1-infected individuals, there is a need for more potent anti-HCV compounds with fewer adverse effects. The twenty-first International Conference on Antiviral Research held in May 2009 in Miami Beach, Florida, featured a special session focused on novel targets for HCV therapy. The session included presentations by world-renowned experts in HCV virology and covered a diverse array of potential targets for the development of new classes of HCV therapies. This review contains concise summaries of discussed topics that included the innate immune response, virus entry, the NS2 protease, the NS3 helicase, NS4B, and NS5A. Each presenter discussed the current knowledge of these targets and provided examples of recent scientific breakthroughs that are enhancing our understanding of these targets. As our understanding of the role of these novel anti-HCV targets increases so will our ability to discover new, more safe and effective anti-HCV therapies.
Collapse
Affiliation(s)
- Stanley M Lemon
- Center for Hepatitis Research, Institute for Human Infections and Immunity, University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Expression and structural characterization of peripherin/RDS, a membrane protein implicated in photoreceptor outer segment morphology. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2009; 39:679-88. [DOI: 10.1007/s00249-009-0553-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Revised: 10/01/2009] [Accepted: 10/09/2009] [Indexed: 10/20/2022]
|
23
|
Cao SS, Hu ZQ. A new method for gene synthesis and its high-level expression. J Microbiol Methods 2009; 79:106-10. [PMID: 19733600 DOI: 10.1016/j.mimet.2009.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2009] [Revised: 08/27/2009] [Accepted: 08/27/2009] [Indexed: 11/18/2022]
Abstract
An optimized Citrobacter braakii phytase gene, appA-c, was chemically synthesized by oligonucleotides synthesis and over-lap PCR method. The appA-c gene encoding 423 amino acids was cloned into expression vector pPIC9 and transformed into methylotropic yeast Pichia pastoris. From about 2000 transformants, 400 transformants exhibiting phytase activity were obtained. One transformant showing the strongest phytase activity was selected for detailed analyses in 5 L bioreactor. Under control of the highly-inducible alcohol oxidase gene (AOX1) promoter, the transformant was able to secrete 3.85 mg/ml protein to the culture supernatant in about 110 h methanol induction, which comprises of 12,116 U ml(-1) phytase activity. Further characterization of the recombinant phytase was conducted. The optimal pH and temperature for this recombinant phytase was about 4.0 and 50 degrees C, respectively. Fe3+, Zn2+ and Cu2+ could significantly inhibit the recombinant phytase enzyme activity. The specific activity of this recombinant enzyme was 3147 U mg(-1). The K(m) and V(max) values for sodium phytate were determined to be 0.5 mM and 3085 U/mg, respectively. To our knowledge, this is the first report of a chemically synthesized C. braakii appA gene heterologous expression with the highest expression level and highest phytase activity achieved. The novel gene optimization and synthesis method can be applied to other related researches.
Collapse
Affiliation(s)
- Shi-shu Cao
- Department of Plant Pathology and Microbiology, University of California, Riverside, CA 92521, USA.
| | | |
Collapse
|
24
|
Labonté P, Begley S, Guévin C, Asselin MC, Nassoury N, Mayer G, Prat A, Seidah NG. PCSK9 impedes hepatitis C virus infection in vitro and modulates liver CD81 expression. Hepatology 2009; 50:17-24. [PMID: 19489072 DOI: 10.1002/hep.22911] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
UNLABELLED Human PCSK9 is known to enhance the degradation of membrane-bound receptors such as the hepatocyte low-density lipoprotein receptor (LDLR), ApoER2, and very low-density lipoprotein receptor. Because the LDLR is suspected to be involved in hepatitis C virus (HCV) entry, we also tested whether PCSK9 can affect the levels of CD81, a major HCV receptor. Interestingly, stable expression of PCSK9 or a more active membrane-bound form of the protein (PCSK9-ACE2) resulted in a marked reduction in CD81 and LDLR expression. Therefore, we analyzed the antiviral effect of PCSK9 in vitro using the HCV genotype 2a (JFH1) virus. The results clearly demonstrated that cells expressing PCSK9 or PCSK9-ACE2, but not the ACE2 control protein, were resistant to HCV infection. Furthermore, addition of purified soluble PCSK9 to cell culture supernatant impeded HCV infection in a dose-dependent manner. As expected, HuH7 cells expressing PCSK9-ACE2 were also resistant to infection by HCV pseudoparticles. In addition, we showed that CD81 cell surface expression is modulated by PCSK9 in an LDLR-independent manner. Finally, in the liver of single Pcsk9 and double (Pcsk9 + Ldlr) knockout mice, both LDLR and/or CD81 protein expression levels were significantly reduced, but not those of transferrin and scavenger receptor class B type 1. CONCLUSION Our results demonstrate an antiviral effect of the circulating liver PCSK9 on HCV in cells and show that PCSK9 down-regulates the level of mouse liver CD81 expression in vivo. Therefore, we propose that the plasma level and/or activity of PCSK9 may modulate HCV infectivity in humans.
Collapse
Affiliation(s)
- Patrick Labonté
- Institut Armand-Frappier, Institut National de Recherche Scientifique, Laval, Québec, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Chan KLA, Govada L, Bill RM, Chayen NE, Kazarian SG. Attenuated Total Reflection-FT-IR Spectroscopic Imaging of Protein Crystallization. Anal Chem 2009; 81:3769-75. [DOI: 10.1021/ac900455y] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- K. L. Andrew Chan
- Department of Chemical Engineering, Faculty of Engineering and Department of Bio-Molecular Medicine, SORA Division, Faculty of Medicine, Imperial College London, SW7 2AZ, United Kingdom, and School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, United Kingdom
| | - Lata Govada
- Department of Chemical Engineering, Faculty of Engineering and Department of Bio-Molecular Medicine, SORA Division, Faculty of Medicine, Imperial College London, SW7 2AZ, United Kingdom, and School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, United Kingdom
| | - Roslyn M. Bill
- Department of Chemical Engineering, Faculty of Engineering and Department of Bio-Molecular Medicine, SORA Division, Faculty of Medicine, Imperial College London, SW7 2AZ, United Kingdom, and School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, United Kingdom
| | - Naomi E. Chayen
- Department of Chemical Engineering, Faculty of Engineering and Department of Bio-Molecular Medicine, SORA Division, Faculty of Medicine, Imperial College London, SW7 2AZ, United Kingdom, and School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, United Kingdom
| | - Sergei G. Kazarian
- Department of Chemical Engineering, Faculty of Engineering and Department of Bio-Molecular Medicine, SORA Division, Faculty of Medicine, Imperial College London, SW7 2AZ, United Kingdom, and School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, United Kingdom
| |
Collapse
|