1
|
Kihara M, Okuda R, Okada A, Ojima-Kato T, Nakano H. Evaluation of antibody variants using a ribosome display and Brevibacillus choshinensis secretion system. J Biosci Bioeng 2025; 139:457-464. [PMID: 40121162 DOI: 10.1016/j.jbiosc.2025.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/19/2025] [Accepted: 02/19/2025] [Indexed: 03/25/2025]
Abstract
In antibody engineering, the development of rapid and efficient strategies for improving affinity is highly necessary. In this study, we aimed to establish a method to efficiently enrich and analyze high-affinity antibody variants by combining protein synthesis using recombinant elements (PURE) ribosome display with next-generation sequencing (NGS) and Brevibacillus choshinensis secretion system using the NZ-1 antibody, which targets the PA tag peptide (GVAMPGAEDDVV) as a model antibody. From the mutated scFab library designed based on the structure, we performed a single-round of PURE ribosome display selection and analyzed the data by NGS to obtain high-affinity scFab candidates with high enrichment factor and high read counts. Subsequently, the most promising candidate was produced as a Fab in the B. choshinensis secretion system, and the purified Fab had an affinity (KD = 1.6 × 10-9 M) similar to the wild type. Overall, this study highlights the potential of the integrated PURE ribosome display with NGS analysis and the B. choshinensis secretion system for the rapid identification and analysis of high-affinity antibody variants.
Collapse
Affiliation(s)
- Monami Kihara
- Laboratory of Molecular Biotechnology, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Rio Okuda
- Laboratory of Molecular Biotechnology, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan; Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
| | - Anri Okada
- Laboratory of Molecular Biotechnology, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Teruyo Ojima-Kato
- Laboratory of Molecular Biotechnology, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Hideo Nakano
- Laboratory of Molecular Biotechnology, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan.
| |
Collapse
|
2
|
Petersson M, Zingl FG, Rodriguez-Rodriguez E, Rendsvig JKH, Heinsøe H, Wenzel Arendrup E, Mojica N, Segura Peña D, Sekulić N, Krengel U, Fernández-Quintero ML, Jenkins TP, Gram L, Waldor MK, Laustsen AH, Thrane SW. Orally delivered toxin-binding protein protects against diarrhoea in a murine cholera model. Nat Commun 2025; 16:2722. [PMID: 40108169 PMCID: PMC11923127 DOI: 10.1038/s41467-025-57945-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 03/05/2025] [Indexed: 03/22/2025] Open
Abstract
The ongoing seventh cholera pandemic, which began in 1961, poses an escalating threat to public health. There is a need for new cholera control measures, particularly ones that can be produced at low cost, for the one billion people living in cholera-endemic regions. Orally delivered VHHs, functioning as target-binding proteins, have been proposed as a potential approach to control gastrointestinal pathogens. Here, we describe the development of an orally deliverable bivalent VHH construct that binds to the B-pentamer of cholera toxin, showing that it inhibits toxin activity in a murine challenge model. Infant mice given the bivalent VHH prior to V. cholerae infection exhibit a significant reduction in cholera toxin-associated intestinal fluid secretion and diarrhoea. In addition, the bivalent VHH reduces V. cholerae colonization levels in the small intestine by a factor of 10. This cholera toxin-binding protein holds promise for protecting against severe diarrhoea associated with cholera.
Collapse
Affiliation(s)
- Marcus Petersson
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
- Bactolife A/S, Copenhagen, Denmark
| | - Franz G Zingl
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, MA, Boston, USA
| | | | | | | | | | - Natalia Mojica
- Department of Chemistry, University of Oslo, Oslo, Norway
| | - Dario Segura Peña
- Centre for Molecular Medicine Norway, University of Oslo, Oslo, Norway
| | - Nikolina Sekulić
- Centre for Molecular Medicine Norway, University of Oslo, Oslo, Norway
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Ute Krengel
- Department of Chemistry, University of Oslo, Oslo, Norway
| | | | - Timothy P Jenkins
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Lone Gram
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Matthew K Waldor
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, MA, Boston, USA
- Howard Hughes Medical Institute, MD, Bethesda, USA
| | - Andreas H Laustsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark.
- Bactolife A/S, Copenhagen, Denmark.
| | | |
Collapse
|
3
|
Ito S, Matsunaga R, Nakakido M, Komura D, Katoh H, Ishikawa S, Tsumoto K. High-throughput system for the thermostability analysis of proteins. Protein Sci 2024; 33:e5029. [PMID: 38801228 PMCID: PMC11129621 DOI: 10.1002/pro.5029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/30/2024] [Accepted: 05/06/2024] [Indexed: 05/29/2024]
Abstract
Thermal stability of proteins is a primary metric for evaluating their physical properties. Although researchers attempted to predict it using machine learning frameworks, their performance has been dependent on the quality and quantity of published data. This is due to the technical limitation that thermodynamic characterization of protein denaturation by fluorescence or calorimetry in a high-throughput manner has been challenging. Obtaining a melting curve that derives solely from the target protein requires laborious purification, making it far from practical to prepare a hundred or more samples in a single workflow. Here, we aimed to overcome this throughput limitation by leveraging the high protein secretion efficacy of Brevibacillus and consecutive treatment with plate-scale purification methodologies. By handling the entire process of expression, purification, and analysis on a per-plate basis, we enabled the direct observation of protein denaturation in 384 samples within 4 days. To demonstrate a practical application of the system, we conducted a comprehensive analysis of 186 single mutants of a single-chain variable fragment of nivolumab, harvesting the melting temperature (Tm) ranging from -9.3 up to +10.8°C compared to the wild-type sequence. Our findings will allow for data-driven stabilization in protein design and streamlining the rational approaches.
Collapse
Affiliation(s)
- Sae Ito
- Department of Bioengineering, School of EngineeringThe University of TokyoTokyoJapan
| | - Ryo Matsunaga
- Department of Bioengineering, School of EngineeringThe University of TokyoTokyoJapan
- Department of Chemistry and Biotechnology, School of EngineeringThe University of TokyoTokyoJapan
| | - Makoto Nakakido
- Department of Bioengineering, School of EngineeringThe University of TokyoTokyoJapan
- Department of Chemistry and Biotechnology, School of EngineeringThe University of TokyoTokyoJapan
| | - Daisuke Komura
- Department of Preventive Medicine, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Hiroto Katoh
- Department of Preventive Medicine, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Shumpei Ishikawa
- Department of Preventive Medicine, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Kouhei Tsumoto
- Department of Bioengineering, School of EngineeringThe University of TokyoTokyoJapan
- Department of Chemistry and Biotechnology, School of EngineeringThe University of TokyoTokyoJapan
- The Institute of Medical ScienceThe University of TokyoTokyoJapan
| |
Collapse
|
4
|
Kurashiki R, Koyama K, Sakaguchi Y, Okumura Y, Ohshiro T, Suzuki H. Development of a thermophilic host-vector system for the production of recombinant proteins at elevated temperatures. Appl Microbiol Biotechnol 2023; 107:7475-7488. [PMID: 37755510 DOI: 10.1007/s00253-023-12805-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/08/2023] [Accepted: 09/18/2023] [Indexed: 09/28/2023]
Abstract
Geobacillus spp. are moderate thermophiles that can efficiently produce recombinant proteins. Considering the protein production exhibited by these species, we searched for robust promoters in Geobacillus kaustophilus HTA426. Transcriptome data revealed that several genes were highly expressed during the proliferative phase; their promoters were characterized using reporter assays with Venus fluorescent protein (VFP). The results suggested that the cspD promoter (PcspD) directed robust vfp expression at 60°C in G. kaustophilus. Although cspD potentially encodes a cold-shock protein, PcspD functioned at elevated temperatures. The promoter strongly functioned even in Escherichia coli; this prevented the cloning of some genes (e.g., vfp) downstream of it on a plasmid vector via E. coli-based genetic manipulation. Consequently, we generated a mutated PcspD that functioned inefficiently in E. coli and constructed the pGKE124 plasmid using the mutant promoter. The plasmid could carry vfp in E. coli and afford the production of VFP in G. kaustophilus at a yield of 390 mg/L. pGKE124 directed a similar production in other thermophilic species; the highest yield was observed in Geobacillus thermodenitrificans K1041. Several proteins could be produced using a system involving G. thermodenitrificans K1041 and pGKE124. Notably, the extracellular production of xylanase at a yield of 1 g/L was achieved using this system. Although the leaky production of nonsecretory proteins was observed, we developed a simple process to collectively purify recombinant proteins from the intracellular and extracellular fractions. The findings presented there propose an effective host-vector system for the production of recombinant proteins at elevated temperatures. KEY POINTS: • A thermophilic system to produce recombinant proteins was constructed. • The system produced diverse proteins using inexpensive media at elevated temperatures. • The system produced an extracellular protein at a yield of 1 g/L of culture.
Collapse
Affiliation(s)
- Ryota Kurashiki
- Department of Engineering, Graduate School of Sustainability Science, Tottori University, 4-101 Koyama-Minami, Tottori, 680-8552, Japan
| | - Kosuke Koyama
- Department of Engineering, Graduate School of Sustainability Science, Tottori University, 4-101 Koyama-Minami, Tottori, 680-8552, Japan
| | - Yukina Sakaguchi
- Faculty of Engineering, Tottori University, 4-101 Koyama-Minami, Tottori, 680-8552, Japan
| | - Yuta Okumura
- Department of Engineering, Graduate School of Sustainability Science, Tottori University, 4-101 Koyama-Minami, Tottori, 680-8552, Japan
| | - Takashi Ohshiro
- Faculty of Engineering, Tottori University, 4-101 Koyama-Minami, Tottori, 680-8552, Japan
- Center for Research on Green Sustainable Chemistry, Tottori University, 4-101 Koyama-Minami, Tottori, 680-8552, Japan
| | - Hirokazu Suzuki
- Faculty of Engineering, Tottori University, 4-101 Koyama-Minami, Tottori, 680-8552, Japan.
- Center for Research on Green Sustainable Chemistry, Tottori University, 4-101 Koyama-Minami, Tottori, 680-8552, Japan.
| |
Collapse
|
5
|
Matsunaga R, Ujiie K, Inagaki M, Fernández Pérez J, Yasuda Y, Mimasu S, Soga S, Tsumoto K. High-throughput analysis system of interaction kinetics for data-driven antibody design. Sci Rep 2023; 13:19417. [PMID: 37990030 PMCID: PMC10663500 DOI: 10.1038/s41598-023-46756-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/04/2023] [Indexed: 11/23/2023] Open
Abstract
Surface plasmon resonance (SPR) is widely used for antigen-antibody interaction kinetics analysis. However, it has not been used in the screening phase because of the low throughput of measurement and analysis. Herein, we proposed a high-throughput SPR analysis system named "BreviA" using the Brevibacillus expression system. Brevibacillus was transformed using a plasmid library containing various antibody sequences, and single colonies were cultured in 96-well plates. Sequence analysis was performed using bacterial cells, and recombinant antibodies secreted in the supernatant were immobilized on a sensor chip to analyze their interactions with antigens using high-throughput SPR. Using this system, the process from the transformation to 384 interaction analyses can be performed within a week. This system utility was tested using an interspecies specificity design of an anti-human programmed cell death protein 1 (PD-1) antibody. A plasmid library containing alanine and tyrosine mutants of all complementarity-determining region residues was generated. A high-throughput SPR analysis was performed against human and mouse PD-1, showing that the mutation in the specific region enhanced the affinity for mouse PD-1. Furthermore, deep mutational scanning of the region revealed two mutants with > 100-fold increased affinity for mouse PD-1, demonstrating the potential efficacy of antibody design using data-driven approach.
Collapse
Affiliation(s)
- Ryo Matsunaga
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, 113-8656, Japan
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo, 113-8656, Japan
| | - Kan Ujiie
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, 113-8656, Japan
| | - Mayuko Inagaki
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, 113-8656, Japan
| | - Jorge Fernández Pérez
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, 113-8656, Japan
| | - Yoshiki Yasuda
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo, 113-8656, Japan
| | - Shinya Mimasu
- Biologics Engineering, Discovery Intelligence, Astellas Pharma Inc., 21, Miyukigaoka, Tsukuba-shi, Ibaraki, 305-8585, Japan
| | - Shinji Soga
- Biologics Engineering, Discovery Intelligence, Astellas Pharma Inc., 21, Miyukigaoka, Tsukuba-shi, Ibaraki, 305-8585, Japan
| | - Kouhei Tsumoto
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, 113-8656, Japan.
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo, 113-8656, Japan.
- The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan.
| |
Collapse
|
6
|
Sugihara D, Ono F, Sugino M, Suzuki H, Endo N, Shimada A, Ebihara A. Production of recombinant His-tagged triple-FLAG peptide in Brevibacillus choshinensis and its utilization as an easy-to-remove affinity peptide. Biosci Biotechnol Biochem 2023; 87:1029-1035. [PMID: 37328425 DOI: 10.1093/bbb/zbad079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 06/12/2023] [Indexed: 06/18/2023]
Abstract
Triple-FLAG (3 × FLAG)-tagged proteins can be affinity purified through binding to an anti-FLAG antibody and competitive elution with excess free 3 × FLAG peptide. To expand the availability of the 3 × FLAG purification system, we produced a recombinant His-tagged 3 × FLAG peptide in Brevibacillus choshinensis. The screening of connecting linkers between His-tag and the 3 × FLAG peptide, culture containers, and culture media showed that the His-tagged 3 × FLAG peptide with an LA linker was most expressed in 2SY medium using a baffled shake flask. The peptide was affinity-purified to give a yield of about 25 mg/L of culture. The peptide was effective for eluting 3 × FLAG-tagged α-amylase from anti-FLAG magnetic beads. Finally, the peptide remaining in the amylase fraction was removed by His-tag affinity purification. These results show that the recombinant His-tagged 3 × FLAG peptide can function as an easy-to-remove affinity peptide in the 3 × FLAG purification system.
Collapse
Affiliation(s)
- Daiki Sugihara
- United Graduate School of Agricultural Science, Gifu University, Tokai National Higher Education and Research System, Gifu, Japan
| | - Fuka Ono
- Graduate School of Natural Science and Technology, Gifu University, Tokai National Higher Education and Research System, Gifu, Japan
| | - Motoki Sugino
- Graduate School of Natural Science and Technology, Gifu University, Tokai National Higher Education and Research System, Gifu, Japan
| | - Hiromi Suzuki
- Graduate School of Natural Science and Technology, Gifu University, Tokai National Higher Education and Research System, Gifu, Japan
| | - Noriko Endo
- Faculty of Applied Biological Sciences, Gifu University, Tokai National Higher Education and Research System, Gifu, Japan
| | - Atsuhiro Shimada
- Faculty of Applied Biological Sciences, Gifu University, Tokai National Higher Education and Research System, Gifu, Japan
| | - Akio Ebihara
- Faculty of Applied Biological Sciences, Gifu University, Tokai National Higher Education and Research System, Gifu, Japan
- Preemptive Food Research Center (PFRC), Gifu University Institute for Advanced Study, Gifu, Japan
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| |
Collapse
|
7
|
Petersson M, Thrane SW, Gram L, Muyldermans S, Laustsen AH. Orally delivered single-domain antibodies against gastrointestinal pathogens. Trends Biotechnol 2023; 41:875-886. [PMID: 36774206 DOI: 10.1016/j.tibtech.2023.01.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 01/13/2023] [Accepted: 01/20/2023] [Indexed: 02/11/2023]
Abstract
Single-domain antibodies (sdAbs) are exceptionally stable fragments derived from the antigen-binding domains of immunoglobulins. They can withstand extreme pH, high temperature, and proteolysis, making them suitable for controlling gastrointestinal (GI) infections in humans and animals. sdAbs may function in their native soluble form, although different derived protein formats and the use of delivery vehicles can be useful for improved oral delivery. We discuss selected examples of the use of orally delivered sdAbs for protecting humans and animals against GI infections caused by pathogenic bacteria, viruses, and parasites. We finally provide perspectives on how sdAbs may be applied industrially and what challenges should be overcome for orally delivered sdAbs to reach the market.
Collapse
Affiliation(s)
- Marcus Petersson
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark; Bactolife A/S, Copenhagen East, Denmark
| | | | - Lone Gram
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Serge Muyldermans
- Department of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Andreas H Laustsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark; Bactolife A/S, Copenhagen East, Denmark.
| |
Collapse
|
8
|
Homma T, Terui S, Yokoyama F, Okino S, Ohta S, Kato C, Haraguchi N, Fujisawa I, Itsuno S, Ang LZP. Simple production of resilin-like protein hydrogels using the Brevibacillus secretory expression system and column-free purification. Biotechnol Bioeng 2023; 120:194-202. [PMID: 36253915 DOI: 10.1002/bit.28267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/28/2022] [Accepted: 10/11/2022] [Indexed: 11/11/2022]
Abstract
Resilin, an insect structural protein, has excellent flexibility, photocrosslinking properties, and temperature responsiveness. Recombinant resilin-like proteins (RLPs) can be fabricated into three-dimensional (3D) structures for use as cell culture substrates and highly elastic materials. A simplified, high-yielding production process for RLPs is required for their widespread application. This study proposes a simple production process combining extracellular expression using Brevibacillus choshinensis (B. choshinensis) and rapid column-free purification. Extracellular production was tested using four representative signal peptides; B. choshinensis was found to efficiently secrete Rec1, an RLP derived from Drosophila melanogaster, regardless of the type of signal peptide. However, it was suggested that Rec1 is altered by an increase in the pH of the culture medium associated with prolonged incubation. Production in a jar fermentor with controllable pH yielded 530 mg Rec1 per liter of culture medium, which is superior to productivity using other hosts. The secreted Rec1 was purified from the culture supernatant via (NH4 )2 SO4 and ethanol precipitations, and the purified Rec1 was applied to ring-shaped 3D hydrogels. These results indicate that the combination of secretory production using B. choshinensis and column-free purification can accelerate the further application of RLPs.
Collapse
Affiliation(s)
- Toshimasa Homma
- Division of Chemical Engineering and Biotechnology, National Institute of Technology, Ichinoseki College, Ichinoseki Iwate, Japan
| | - Shu Terui
- Division of Chemical Engineering and Biotechnology, National Institute of Technology, Ichinoseki College, Ichinoseki Iwate, Japan
| | - Fuki Yokoyama
- Division of Chemical Engineering and Biotechnology, National Institute of Technology, Ichinoseki College, Ichinoseki Iwate, Japan
| | - Saki Okino
- Division of Chemical Engineering and Biotechnology, National Institute of Technology, Ichinoseki College, Ichinoseki Iwate, Japan
| | - Sora Ohta
- Division of Chemical Engineering and Biotechnology, National Institute of Technology, Ichinoseki College, Ichinoseki Iwate, Japan
| | - Chihiro Kato
- Division of Chemical Engineering and Biotechnology, National Institute of Technology, Ichinoseki College, Ichinoseki Iwate, Japan
| | - Naoki Haraguchi
- Department of Applied Chemistry & Life Science, Toyohashi University of Technology, Toyohashi, Aichi, Japan
| | - Ikuhide Fujisawa
- Department of Applied Chemistry & Life Science, Toyohashi University of Technology, Toyohashi, Aichi, Japan
| | - Shinichi Itsuno
- Department of Applied Chemistry & Life Science, Toyohashi University of Technology, Toyohashi, Aichi, Japan.,National Institute of Technology, Gifu College, Motosu, Gifu, Japan
| | - Lily Zuin Ping Ang
- Division of Chemical Engineering and Biotechnology, National Institute of Technology, Ichinoseki College, Ichinoseki Iwate, Japan
| |
Collapse
|
9
|
Kumada Y, Rakotondravao HM, Hasegawa Y, Iwashita Y, Okura H, Uchimura S, Horiuchi JI. Strategies for selection and identification of rabbit single-chain Fv antibodies as ligand in affinity chromatography. J Biosci Bioeng 2022; 134:233-239. [DOI: 10.1016/j.jbiosc.2022.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 10/17/2022]
|
10
|
Chen S, Xiong W, Zhao X, Luo W, Yan X, Lu Y, Chen C, Ling X. Study on the mechanism of efficient extracellular expression of toxic streptomyces phospholipase D in Brevibacillus choshinensis under Mg2+ stress. Microb Cell Fact 2022; 21:41. [PMID: 35305639 PMCID: PMC8933894 DOI: 10.1186/s12934-022-01770-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 03/05/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Phospholipase D (PLD) has significant advantages in the food and medicine industries due to its unique transphosphatidylation. However, the high heterologous expression of PLD is limited by its cytotoxicity. The present study sought to develop an efficient and extracellular expression system of PLD in the non-pathogenic Brevibacillus choshinensis (B. choshinensis).
Results
The extracellular PLD was effectively expressed by the strong promoter (P2) under Mg2+ stress, with the highest activity of 10 U/mL. The inductively coupled plasma–mass spectrometry (ICP-MS) results elucidated that the over-expression of PLD by P2 promoter without Mg2+ stress induced the ionic homeostasis perturbation caused by the highly enhanced Ca2+ influx, leading to cell injury or death. Under Mg2+ stress, Ca2+ influx was significantly inhibited, and the strengths of P2 promoter and HWP gene expression were weakened. The study results revealed that the mechanism of Mg2+ induced cell growth protection and PLD expression might be related to the lowered strength of PLD expression by P2 promoter repression to meet with the secretion efficiency of B. choshinensis, and the redistribution of intracellular ions accompanied by decreased Ca2+ influx.
Conclusions
The PLD production was highly improved under Mg2+ stress. By ICP-MS and qPCR analysis combined with other results, the mechanism of the efficient extracellular PLD expression under Mg2+ stress was demonstrated. The relatively low-speed PLD expression during cell growth alleviated cell growth inhibition and profoundly improved PLD production. These results provided a potential approach for the large-scale production of extracellular PLD and novel insights into PLD function.
Collapse
|
11
|
Ji F, Ren J, Vincke C, Jia L, Muyldermans S. Nanobodies: From Serendipitous Discovery of Heavy Chain-Only Antibodies in Camelids to a Wide Range of Useful Applications. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2446:3-17. [PMID: 35157266 DOI: 10.1007/978-1-0716-2075-5_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The presence of unique heavy chain-only antibodies (HCAbs) in camelids was discovered at Vrije Universiteit Brussel (VUB, Brussels, Belgium) at a time when many researchers were exploring the cloning and expression of smaller antigen-binding fragments (Fv and Fab) from hybridoma-derived antibodies. The potential importance of this discovery was anticipated, and efforts were immediately undertaken to understand the emergence and ontogeny of these HCAbs as well as to investigate the applications of the single-domain antigen-binding variable domains of HCAbs (nanobodies). Nanobodies were demonstrated to possess multiple biochemical and biophysical advantages over other antigen-binding antibody fragments and alternative scaffolds. Today, nanobodies have a significant and growing impact on research, biotechnology, and medicine.
Collapse
Affiliation(s)
- Fangling Ji
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, China
| | - Jun Ren
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, China
| | - Cécile Vincke
- Cellular and Molecular Immunology Laboratory, Vrije Universiteit Brussel, Brussels, Belgium.,Myeloid Cell Immunology Laboratory, VIB Center for Inflammation Research, Brussels, Belgium
| | - Lingyun Jia
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, China
| | - Serge Muyldermans
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, China. .,Cellular and Molecular Immunology Laboratory, Vrije Universiteit Brussel, Brussels, Belgium.
| |
Collapse
|
12
|
Matsunaga R, Tsumoto K. Addition of arginine hydrochloride and proline to the culture medium enhances recombinant protein expression in Brevibacillus choshinensis: The case of RBD of SARS-CoV-2 spike protein and its antibody. Protein Expr Purif 2022; 194:106075. [PMID: 35231586 PMCID: PMC8881763 DOI: 10.1016/j.pep.2022.106075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 02/07/2023]
Affiliation(s)
- Ryo Matsunaga
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, 113-8656, Japan
| | - Kouhei Tsumoto
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, 113-8656, Japan; Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo, 113-8656, Japan; The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan.
| |
Collapse
|
13
|
Ishibashi M, Tanaka R, Yamasaki S, Tokunaga H, Arakawa T, Tokunaga M. Salt Mediated Modulation of Autolysis of Thermolysin-Like Proteinase, Salilysin, Isolated from a Moderate Halophile, Chromohalobacter salexigens DSM3043. Protein J 2021; 40:223-233. [PMID: 33502674 DOI: 10.1007/s10930-021-09964-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2021] [Indexed: 11/25/2022]
Abstract
Halophilic salilysin is first synthesized as a pro-form, which has been shown autolysis activity to process pro-region (55 amino acids long) three times to form intermediate 1 (I1), intermediate 2 (I2) and final mature (M) salilysin. The autolysis of I1- to M-form salilysin in vitro was significantly accelerated with increasing NaCl concentration up to 4 M. Strong salting-out salts, (NH4)2SO4, Na2SO4 and MgSO4, were more effective, suggesting that autolysis is enhanced by inter-molecular association or structure compaction or both. However, MgCl2, a salting-in salt, was also effective, suggesting that other mechanisms, such as charge shielding and ionic binding to this halophilic protein, operated. Autolytic cleavage at site 3 resulted in mixed formation of correctly and incorrectly processed mature forms in the absence of salt, indicating that salt affected the accuracy of autolytic cleavage reaction. Far UV circular dichroism (CD) measurements indicated that E167A pro-salilysin showed an identical CD spectrum to the wild-type mature salilysin, suggesting pro-form has a proper fold for proteolytic activity. Thermal scanning indicated that E167A pro-salilysin was more heat-stable by ~ 10 °C than mature form. The CD spectra, thermal stability and modeling structure of salilysin clearly suggested that pro-salilysin is folded to the same structure as native form and is functional for autolysis.
Collapse
Affiliation(s)
- Matsujiro Ishibashi
- Applied and Molecular Microbiology, Faculty of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0065, Japan
| | - Ryoichi Tanaka
- Applied and Molecular Microbiology, Faculty of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0065, Japan
| | - Shunsuke Yamasaki
- Applied and Molecular Microbiology, Faculty of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0065, Japan
| | - Hiroko Tokunaga
- Applied and Molecular Microbiology, Faculty of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0065, Japan
| | - Tsutomu Arakawa
- Alliance Protein Laboratories, 13380 Pantera Rd, San Diego, CA, 92130, USA
| | - Masao Tokunaga
- Applied and Molecular Microbiology, Faculty of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0065, Japan.
| |
Collapse
|
14
|
Current pivotal strategies leading a difficult target protein to a sample suitable for crystallographic analysis. Biochem Soc Trans 2020; 48:1661-1673. [PMID: 32677661 DOI: 10.1042/bst20200106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 06/26/2020] [Accepted: 06/30/2020] [Indexed: 12/15/2022]
Abstract
Crystallographic structural analysis is an essential method for the determination of protein structure. However, crystallization of a protein of interest is the most difficult process in the analysis. The process is often hampered during the sample preparation, including expression and purification. Even after a sample has been purified, not all candidate proteins crystallize. In this mini-review, the current methodologies used to overcome obstacles encountered during protein crystallization are sorted. Specifically, the strategy for an effective crystallization is compared with a pipeline where various expression hosts and constructs, purification and crystallization conditions, and crystallization chaperones as target-specific binder proteins are assessed by a precrystallization screening. These methodologies are also developed continuously to improve the process. The described methods are useful for sample preparation in crystallographic analysis and other structure determination techniques, such as cryo-electron microscopy.
Collapse
|
15
|
Yao D, Zhang K, Wu J. Available strategies for improved expression of recombinant proteins in Brevibacillus expression system: a review. Crit Rev Biotechnol 2020; 40:1044-1058. [PMID: 32781847 DOI: 10.1080/07388551.2020.1805404] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Brevibacillus offers great potential as a recombinant protein expression host because of its exceptional abilities to synthesize and excrete proteins and its low extracellular protease activity. Despite these strengths, effective recombinant expression strategies are still the key to achieving high-level expression of recombinant proteins in Brevibacillus due to individual differences among strains and target proteins. Many strategies have been developed to improve recombinant protein expression in Brevibacillus. This review begins by introducing the processes used to establish and apply the Brevibacillus expression system, and then critically discusses the strategies available for improving recombinant protein expression in Brevibacillus, including optimization of the host and the expression vector, co-expression of a fusion partner or foldase, and optimization of the fermentation process. Finally, the prospects for further improvement of recombinant protein expression based on Brevibacillus are also discussed. This review is intended to provide a strategic reference for scientists wanting to improve the expression of a specific recombinant protein in Brevibacillus or other expression systems.
Collapse
Affiliation(s)
- Dongbang Yao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, Wuxi, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Kang Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, Wuxi, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Jing Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, Wuxi, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| |
Collapse
|
16
|
Li HP, Xu CM, Wen BY, Li AQ, Zha GM, Jin XY, Zhao YZ, Feng LP, Cao YD, Yang GY, Wang YY, Zhong K. Extracellular production of recombinant sus scrofa trefoil factor 3 by Brevibacillus choshinensis. Exp Ther Med 2020; 19:2149-2154. [PMID: 32104278 PMCID: PMC7027283 DOI: 10.3892/etm.2020.8477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 12/12/2019] [Indexed: 11/06/2022] Open
Abstract
Trefoil factor 3 (TFF3) is involved in cell adhesion, motility and apoptosis, regulates mucosal immunity and maintains the functional integrity of intestinal epithelia. The upregulation of TFF3 expression in the weaning rat intestine attracted our interest. The present study hypothesized that TFF3 may serve a role in preventing diarrhea in weaning piglets, which is an important consideration in the pig farming industry. Previous recombinant TFF3 protein expression yields obtained from Escherichia coli were too low and the bioactivity of the protein was poor. Hence, this expression system was unsuitable for industrial applications. The present study explored the production of recombinant sus scrofa TFF3 in a Brevibacillus choshinensis (B. choshinensis) expression system, aiming to enhance the expression level of bioactive protein. To achieve this, the sus scrofa TFF3-encoding gene fragment was fused into an E. coli-Brevibacillus shuttle vector pNCMO2. High levels of TFF3 (30 mg/l) were produced and secreted into the B. choshinensis culture medium in soluble form with a molecular mass of 13.6 kDa and high immunoreactivity in western blotting. Thus, Brevibacillus may be used to produce useful mucosal factors for biochemical analyses and mucosal protection, and in industrial applications to produce novel inhibitors of diarrhea.
Collapse
Affiliation(s)
- He-Ping Li
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, Henan 450002, P.R. China
| | - Chun-Mei Xu
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, Henan 450002, P.R. China
| | - Bing-Yan Wen
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, Henan 450002, P.R. China
| | - An-Qi Li
- Kansas International College, Zhengzhou Sias University, Xinzheng, Henan 451100, P.R. China
| | - Guang-Ming Zha
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, Henan 450002, P.R. China
| | - Xiang-Yang Jin
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, Henan 450002, P.R. China
| | - Yun-Ze Zhao
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, Henan 450002, P.R. China
| | - Lu-Ping Feng
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, Henan 450002, P.R. China
| | - Ye-Dong Cao
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, Henan 450002, P.R. China
| | - Guo-Yu Yang
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, Henan 450002, P.R. China
| | - Yue-Ying Wang
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, Henan 450002, P.R. China
| | - Kai Zhong
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, Henan 450002, P.R. China
| |
Collapse
|
17
|
Lessard PA, Parker M, Bougri O, Shen B, Samoylov V, Broomhead J, Li X, Raab RM. Improved performance of Eimeria-infected chickens fed corn expressing a single-domain antibody against interleukin-10. NATURE FOOD 2020; 1:119-126. [PMID: 37127989 DOI: 10.1038/s43016-020-0029-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 01/08/2020] [Indexed: 05/03/2023]
Abstract
Antimicrobial resistance is a significant challenge for human and animal health, and developing effective antibiotic-free treatments is a strategy to help mitigate microbial resistance. The global poultry industry faces growing challenges from Eimeria-induced coccidiosis, a serious enteric disease of chickens that currently requires treatment using ionophore antibiotics. Eimeria stimulates interleukin-10 (IL-10) expression in the small intestine and caecum of infected chickens, suppressing their immune response and facilitating disease progression. Single-domain antibodies raised from llamas immunized with chicken IL-10 (cIL-10) were developed that bind cIL-10 in vitro, block cIL-10 receptor binding and induce interferon gamma (IFN-γ) secretion from cIL-10-repressed primary chicken splenocytes. Single-domain antibodies expressed in transgenic corn demonstrated significant accumulation in phenotypically normal plants. When fed to Eimeria-challenged chickens, the transgenic corn significantly improved body weight gain (equal to that of salinomycin-treated animals), normalized the feed conversion ratio (to the same level as uninfected control animals), lowered E. tenella lesion scores to those of salinomycin-treated control animals, and reduced oocyst counts below those of infected untreated control animals. Here, we propose that transgenic corn may have a role in reducing the use of antibiotics in poultry production and maintaining animal health and productivity, and may contribute to efforts against global antimicrobial resistance.
Collapse
Affiliation(s)
| | | | | | - Binzhang Shen
- Agrivida, Inc., Woburn, MA, USA
- Unum Therapeutics, Cambridge, MA, USA
| | | | - Jon Broomhead
- Agrivida, Inc., Woburn, MA, USA
- Perstop US, St Louis, MO, USA
| | | | | |
Collapse
|
18
|
Expression, Folding, and Activation of Halophilic Alkaline Phosphatase in Non-Halophilic Brevibacillus choshinensis. Protein J 2019; 39:46-53. [DOI: 10.1007/s10930-019-09874-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
19
|
Xu Y, Mao W, Gao W, Chi Z, Chi Z, Liu G. Efficient production of a recombinant ι-carrageenase in Brevibacillus choshinensis using a new integrative vector for the preparation of ι-carrageenan oligosaccharides. Process Biochem 2019. [DOI: 10.1016/j.procbio.2018.09.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
20
|
Mizukami M, Onishi H, Hanagata H, Miyauchi A, Ito Y, Tokunaga H, Ishibashi M, Arakawa T, Tokunaga M. Efficient production of Trastuzumab Fab antibody fragments in Brevibacillus choshinensis expression system. Protein Expr Purif 2018; 150:109-118. [DOI: 10.1016/j.pep.2018.05.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 05/26/2018] [Accepted: 05/27/2018] [Indexed: 10/16/2022]
|
21
|
Suzuki T, Mochizuki Y, Kimura S, Akazawa-Ogawa Y, Hagihara Y, Nemoto N. Anti-survivin single-domain antibodies derived from an artificial library including three synthetic random regions by in vitro selection using cDNA display. Biochem Biophys Res Commun 2018; 503:2054-2060. [DOI: 10.1016/j.bbrc.2018.07.158] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 07/31/2018] [Indexed: 12/21/2022]
|
22
|
Nakamura M, Yasukawa Y, Furusawa A, Fuchiwaki T, Honda T, Okamura Y, Fujita K, Iwai H. Functional characterization of unique enzymes in Xanthomonas euvesicatoria related to degradation of arabinofurano-oligosaccharides on hydroxyproline-rich glycoproteins. PLoS One 2018; 13:e0201982. [PMID: 30092047 PMCID: PMC6085000 DOI: 10.1371/journal.pone.0201982] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 07/25/2018] [Indexed: 11/18/2022] Open
Abstract
In this study, we clarified the functions of three uncharacterized enzymes, XCV2724, XCV2728, and XCV2729, in Xanthomonas euvesicatoria, the causal agent of bacterial spot of tomato and pepper. The genes corresponding to the three enzymes are homologs of hypBA1, hypBA2, and hypAA from Bifidobacterium longum and are unique to Xanthomonas spp. among plant pathogenic bacteria. Functional characterization of the recombinant enzymes expressed using microbial systems revealed that they degrade the arabinofurano-oligosaccharides present on hydroxyproline (Hyp)-rich glycoproteins (HRGPs) such as extensin and solanaceous lectins in plant cell walls. These enzymes work coordinately to degrade the oligosaccharides. First, XeHypAA (XCV2728), belonging to the glycoside hydrolase (GH) 43 family, releases L-arabinose from L-arabinofuranose (Araf)-α1,3-Araf-ß1,2-Araf-ß1,2-Araf-ß-Hyp (Ara4-Hyp), cleaving its α1,3 bond; second, XeHypBA2 (XCV2729), belonging to the GH121 family, releases the disaccharide Araf-ß1,2-Araf from Araf-ß1,2-Araf-ß1,2-Araf-ß-Hyp (Ara3-Hyp); finally, XeHypBA1 (XCV2724), belonging to GH family 127, releases L-arabinose from Araf-ß-Hyp (Ara-Hyp). In summary, the main oligosaccharide structure of Ara4-Hyp on the HRGPs is degraded to Ara3-Hyp, then to Ara-Hyp, and finally to Ara monosaccharides by the action of these three enzymes. HRGPs containing oligosaccharide substrates have been reported to contribute to plant defense, and interestingly, the promoter region of the operon (xehypBA2 and xehypAA) contains the plant-inducible promoter box for binding the regulator protein HrpX involved in pathogenicity. We then analyzed the expression level of the operon gene in hrp-inducing medium and in plants and constructed gene-deletion mutants. However, although the operon was evidently upregulated by HrpX, three single-gene deletion mutants (ΔxehypBA1, ΔxehypBA2, ΔxehypAA) and even a triple-gene deletion mutant (ΔxehypBA1-BA2-AA) remained pathogenic, and had no effect on nonhost resistance, either, indicating that these three enzymes are not involved in either pathogenicity or nonhost resistance reactions. This is the first report of enzymes in plant pathogenic bacteria that catalyze the degradation of Hyp-linked-L-arabinofuranosides in plant cell walls.
Collapse
Affiliation(s)
- Masayuki Nakamura
- Faculty of Agriculture, Kagoshima University, Kagoshima, Japan
- * E-mail:
| | - Yuino Yasukawa
- Faculty of Agriculture, Kagoshima University, Kagoshima, Japan
| | - Akira Furusawa
- Faculty of Agriculture, Kagoshima University, Kagoshima, Japan
| | - Tamao Fuchiwaki
- Faculty of Agriculture, Kagoshima University, Kagoshima, Japan
| | - Takashi Honda
- Faculty of Agriculture, Kagoshima University, Kagoshima, Japan
| | - Yuta Okamura
- Faculty of Agriculture, Kagoshima University, Kagoshima, Japan
| | - Kiyotaka Fujita
- Faculty of Agriculture, Kagoshima University, Kagoshima, Japan
| | - Hisashi Iwai
- Faculty of Agriculture, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
23
|
Asano R, Kuroki Y, Honma S, Akabane M, Watanabe S, Mayuzumi S, Hiyamuta S, Kumagai I, Sode K. Comprehensive study of domain rearrangements of single-chain bispecific antibodies to determine the best combination of configurations and microbial host cells. MAbs 2018; 10:854-863. [PMID: 29985753 DOI: 10.1080/19420862.2018.1476815] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Small bispecific antibodies (bsAbs) are important therapeutic molecules and represent the first bsAb format approved by the United States Food and Drug Administration. Diabody (Db), a small bsAb format, has four possible domain orders; we previously reported the differences in the expression levels and cancer growth inhibition effects upon rearranging the domain order of this format. However, there have been no comprehensive reports on domain rearrangements of bispecific single-chain Db (scDb) and tandem single-chain Fv (taFv), which are widely used bsAb formats. In this study, we designed all possible domain orders for scDb and taFv (each with eight variants) with identical Fv pairs and individually expressed all 16 variants using Escherichia coli, Pichia pastoris, and Brevibacillus choshinensis. Comprehensive investigations showed that the intrinsic functions of the variants were similar to each other, regardless of the expression host system, but expression levels varied depending on the format as well as on the host cell. Among the 16 variants, we found a promising candidate that exhibited high activity and productivity. Furthermore, we determined that B. choshinensis is an attractive expression host because of its secretory production of recombinant proteins.
Collapse
Affiliation(s)
- Ryutaro Asano
- a Department of Biotechnology and Life Science, Graduate School of Engineering , Tokyo University of Agriculture and Technology , Tokyo , Japan
| | - Yuri Kuroki
- a Department of Biotechnology and Life Science, Graduate School of Engineering , Tokyo University of Agriculture and Technology , Tokyo , Japan
| | - Sachiko Honma
- b R&D Department of ProteinExpress Co., Ltd ., Chiba , Japan
| | - Mihoko Akabane
- b R&D Department of ProteinExpress Co., Ltd ., Chiba , Japan
| | | | - Shinzo Mayuzumi
- c Advanced Technology Research Laboratories , Idemitsu Kosan Co., Ltd ., Chiba , Japan
| | - Shuichi Hiyamuta
- c Advanced Technology Research Laboratories , Idemitsu Kosan Co., Ltd ., Chiba , Japan
| | - Izumi Kumagai
- a Department of Biotechnology and Life Science, Graduate School of Engineering , Tokyo University of Agriculture and Technology , Tokyo , Japan
| | - Koji Sode
- a Department of Biotechnology and Life Science, Graduate School of Engineering , Tokyo University of Agriculture and Technology , Tokyo , Japan.,d Joint Department of Biomedical Engineering , University of North Carolina at Chapel Hill and North Carolina State University , Chapel Hill , NC , USA
| |
Collapse
|
24
|
Zhao Y, Chi Z, Xu Y, Shi N, Chi Z, Liu G. High-level extracellular expression of κ-carrageenase in Brevibacillus choshinensis for the production of a series of κ-carrageenan oligosaccharides. Process Biochem 2018. [DOI: 10.1016/j.procbio.2017.09.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
25
|
Liu Y, Huang H. Expression of single-domain antibody in different systems. Appl Microbiol Biotechnol 2017; 102:539-551. [DOI: 10.1007/s00253-017-8644-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 11/09/2017] [Accepted: 11/12/2017] [Indexed: 10/18/2022]
|
26
|
Efficient Expression of Maltohexaose-Forming α-Amylase from Bacillus stearothermophilus in Brevibacillus choshinensis SP3 and Its Use in Maltose Production. BIOMED RESEARCH INTERNATIONAL 2017; 2017:5479762. [PMID: 29250543 PMCID: PMC5700550 DOI: 10.1155/2017/5479762] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 08/23/2017] [Accepted: 10/10/2017] [Indexed: 11/17/2022]
Abstract
The maltohexaose-forming, Ca2+-independent α-amylase gene from Bacillus stearothermophilus (AmyMH) was efficiently expressed in Brevibacillus choshinensis SP3. To improve the production of AmyMH in B. choshinensis SP3, the temperature and initial pH of culture medium were optimized. In addition, single-factor and response surface methodologies were pursued to optimize culture medium. Addition of proline to the culture medium significantly improved the production of recombinant α-amylase in B. choshinensis SP3. This improvement may result from improved cellular integrity of recombinant B. choshinensis SP3 in existence of proline. Culture medium optimization resulted in an 8-fold improvement in α-amylase yield, which reached 1.72 × 104 U·mL−1. The recombinant α-amylase was applied to the production of maltose on a laboratory scale. A maltose content of 90.72%, which could be classified as an extremely high maltose syrup, could be achieved using 15% (m/v) corn starch as the substrate. This study demonstrated that the B. choshinensis SP3 expression system was able to produce substantial quantities of recombinant α-amylase that has potential application in the starch industry.
Collapse
|
27
|
Matsushita T, Arai H, Koyama T, Hatano K, Nemoto N, Matsuoka K. Iodoacetyl-functionalized pullulan: A supplemental enhancer for single-domain antibody-polyclonal antibody sandwich enzyme-linked immunosorbent assay for detection of survivin. Bioorg Med Chem Lett 2017; 27:4844-4848. [PMID: 28974337 DOI: 10.1016/j.bmcl.2017.09.045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 09/20/2017] [Accepted: 09/22/2017] [Indexed: 11/19/2022]
Abstract
Survivin, an inhibitor of the apoptosis protein family, is a potent tumor marker for diagnosis and prognosis. The enzyme-linked immunosorbent assay (ELISA) is one of the methods that has been used for detection of survivin. However, ELISA has several disadvantages caused by the use of conventional antibodies, and we have therefore been trying to develop a novel ELISA system using camelid single-domain antibodies (VHHs) as advantageous replacements. Here we report a supplemental approach to improve the VHH-polyclonal antibody sandwich ELISA for survivin detection. Iodoacetyl-functionalized pullulan was synthesized, and its thiol reactivity was characterized by a model reaction with l-cysteine. The thiophilic pullulan was applied to an immunoassay asan additive upon coating of standard assay plates with an anti-survivin VHH fusion protein with C-terminal cysteine. The results showed that the mole ratio of the additive to VHH had a significant effect on the consequent response. Mole ratios of 0.07, 0.7, and 7 led to 90% lower, 15% higher, and 69% lower responses, respectively, than the response of a positive control in which no additive was used. The background levels observed in any additive conditions were as low as that of a negative control lacking both VHH and the additive. These results indicate the applicability of the thiol-reactive pullulan as a response enhancer to VHH-based ELISA.
Collapse
Affiliation(s)
- Takahiko Matsushita
- Area for Molecular Function, Division of Material Science, Graduate School of Science and Engineering, Saitama University, Sakura, Saitama 338-8570, Japan; Medical Innovation Research Unit (MiU), Advanced Institute of Innovative Technology (AIIT), Saitama University, Sakura, Saitama 338-8570, Japan
| | - Hidenao Arai
- Epsilon Molecular Engineering (EME) Inc., Saitama University Comprehensive Open Innovation Center #303, Sakura, Saitama 338-8570, Japan
| | - Tetsuo Koyama
- Area for Molecular Function, Division of Material Science, Graduate School of Science and Engineering, Saitama University, Sakura, Saitama 338-8570, Japan
| | - Ken Hatano
- Area for Molecular Function, Division of Material Science, Graduate School of Science and Engineering, Saitama University, Sakura, Saitama 338-8570, Japan; Medical Innovation Research Unit (MiU), Advanced Institute of Innovative Technology (AIIT), Saitama University, Sakura, Saitama 338-8570, Japan
| | - Naoto Nemoto
- Area for Molecular Function, Division of Material Science, Graduate School of Science and Engineering, Saitama University, Sakura, Saitama 338-8570, Japan; Medical Innovation Research Unit (MiU), Advanced Institute of Innovative Technology (AIIT), Saitama University, Sakura, Saitama 338-8570, Japan; Epsilon Molecular Engineering (EME) Inc., Saitama University Comprehensive Open Innovation Center #303, Sakura, Saitama 338-8570, Japan
| | - Koji Matsuoka
- Area for Molecular Function, Division of Material Science, Graduate School of Science and Engineering, Saitama University, Sakura, Saitama 338-8570, Japan; Medical Innovation Research Unit (MiU), Advanced Institute of Innovative Technology (AIIT), Saitama University, Sakura, Saitama 338-8570, Japan.
| |
Collapse
|
28
|
Angart PA, Carlson RJ, Thorwall S, Patrick Walton S. Use of Brevibacillus choshinensis for the production of biologically active brain-derived neurotrophic factor (BDNF). Appl Microbiol Biotechnol 2017; 101:5645-5652. [DOI: 10.1007/s00253-017-8273-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 03/09/2017] [Accepted: 03/23/2017] [Indexed: 01/08/2023]
|
29
|
Xue X, Fan X, Qu Q, Wu G. Bioscreening and expression of a camel anti-CTGF VHH nanobody and its renaturation by a novel dialysis-dilution method. AMB Express 2016; 6:72. [PMID: 27620736 PMCID: PMC5019992 DOI: 10.1186/s13568-016-0249-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 09/07/2016] [Indexed: 11/25/2022] Open
Abstract
The variable regions of the camel heavy chain antibody, also known as nanobody is the smallest antibody with antigen-binding efficiency. CTGF is considered important during extracellular matrix deposition which was involved in the pathogenesis of fibrosis related diseases. There are several anti-CTGF-C nanobody drugs under developing in pharmacy. In this study, we described the screening of a novel anti-CTGF-C nanobody from the peripheral blood of immunized camel by phage display. The screened nanobody was further expressed and purified from E. coli cells. A sophisticated dialysis–dilution method was designed for the in vitro refolding of the nanobody. The results showed that the expressed nanobody was consisted of 135 amino acid and mainly expressed as inclusion body in E. coli cells. The dialysis–dilution method was very effective and the recovery rate of the renaturation was more than 80 %. The ELISA result suggested the nanobody had been well refolded showing a superior CTGF binding activity to the commercial mouse anti-CTGF-C mAb. In conclusion, the anti-CTGF-C nonobody had been successfully screened by phage display. The dialysis–dilution refolding method was very effective and the recovery rate reached over 80 %.
Collapse
|
30
|
Liu X, Tang Z, Duan Z, He Z, Shu M, Wang X, Gee SJ, Hammock BD, Xu Y. Nanobody-based enzyme immunoassay for ochratoxin A in cereal with high resistance to matrix interference. Talanta 2016; 164:154-158. [PMID: 28107910 DOI: 10.1016/j.talanta.2016.11.039] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Revised: 11/14/2016] [Accepted: 11/18/2016] [Indexed: 10/20/2022]
Abstract
A sensitive indirect competitive nanobody-based enzyme linked immunosorbent assay (Nb-ELISA) for ochratoxin A (OTA) with high resistance to cereal matrix interference was developed. Nanobodies against OTA (Nb15, Nb28, Nb32, Nb36) were expressed in E. coli cells and their thermal stabilities were compared with that of an OTA-specific monoclonal antibody 6H8. All nanobodies could still retain their antigen-binding activity after exposure to temperature 95°C for 5min or to 90°C for 75min. Nb28 that exhibited the highest sensitivity in ELISA was selected for further research. An indirect competitive ELISA based on Nb28 was developed for OTA, with an IC50 of 0.64ng/mL and a linear range (IC20-IC80) of 0.27-1.47ng/mL. Cereal samples were analyzed following a 2.5 fold dilution of sample extracts, showing the good resistance to matrix interference of the Nb-ELSIA. The recovery of spiked cereal samples (rice, oats, barley) ranged from 80% to 105% and the Nb-ELISA results of OTA content in naturally contamined samples were in good agreement with those determined by a commercial ELISA kit. The results indicated the reliablity of nanobody as a promising immunoassay reagent for detection of mycotoxins in food matrix and its potential in biosensor development.
Collapse
Affiliation(s)
- Xing Liu
- College of Food Science and Technology, Hainan University, 58 Renmin Avenue, Haikou 570228, China; Institute of Food Research, Hezhou University, Hezhou 542899, China.
| | - Zongwen Tang
- College of Food Science and Technology, Hainan University, 58 Renmin Avenue, Haikou 570228, China
| | - Zhenhua Duan
- Institute of Food Research, Hezhou University, Hezhou 542899, China
| | - Zhenyun He
- Food Science and Technology Program, Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore.
| | - Mei Shu
- State Key Laboratory of Food Science and Technology, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Xianxian Wang
- State Key Laboratory of Food Science and Technology, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Shirley J Gee
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California, Davis, CA 95616, United States
| | - Bruce D Hammock
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California, Davis, CA 95616, United States
| | - Yang Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| |
Collapse
|
31
|
Ogishi M, Yotsuyanagi H, Moriya K, Koike K. Delineation of autoantibody repertoire through differential proteogenomics in hepatitis C virus-induced cryoglobulinemia. Sci Rep 2016; 6:29532. [PMID: 27403724 PMCID: PMC4941579 DOI: 10.1038/srep29532] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 06/17/2016] [Indexed: 12/21/2022] Open
Abstract
Antibodies cross-reactive to pathogens and autoantigens are considered pivotal in both infection control and accompanying autoimmunity. However, the pathogenic roles of autoantibodies largely remain elusive without a priori knowledge of disease-specific autoantigens. Here, through a novel quantitative proteogenomics approach, we demonstrated a successful identification of immunoglobulin variable heavy chain (VH) sequences highly enriched in pathological immune complex from clinical specimens obtained from a patient with hepatitis C virus-induced cryoglobulinemia (HCV-CG). Reconstructed single-domain antibodies were reactive to both HCV antigens and potentially liver-derived human proteins. Moreover, over the course of antiviral therapy, a substantial "de-evolution" of a distinct sub-repertoire was discovered, to which proteomically identified cryoprecipitation-prone autoantibodies belonged. This sub-repertoire was characterized by IGHJ6*03-derived, long, hydrophobic complementarity determining region (CDR-H3). This study provides a proof-of-concept of de novo mining of autoantibodies and corresponding autoantigen candidates in a disease-specific context in human, thus facilitating future reverse-translational research for the discovery of novel biomarkers and the development of antigen-specific immunotherapy against various autoantibody-related disorders.
Collapse
Affiliation(s)
- Masato Ogishi
- Department of Infectious Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroshi Yotsuyanagi
- Department of Infectious Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kyoji Moriya
- Department of Infectious Control and Prevention, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kazuhiko Koike
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
32
|
Zou C, Duan X, Wu J. Efficient extracellular expression of Bacillus deramificans pullulanase in Brevibacillus choshinensis. ACTA ACUST UNITED AC 2016; 43:495-504. [DOI: 10.1007/s10295-015-1719-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 12/08/2015] [Indexed: 02/02/2023]
Abstract
Abstract
In this study, the pullulanase gene from Bacillus deramificans was efficiently expressed in Brevibacillus choshinensis. The optimal medium for protein expression was determined through a combination of single-factor experiments and response surface methodology. The initial pH of the medium and the culture temperature were optimized. The pullulanase yield increased 10.8-fold through medium and condition optimization at the shake-flask level. From the results of these experiments, the dissolved oxygen level was optimized in a 3-L fermentor. Under these optimized conditions, the pullulanase activity and the specific pullulanase productivity reached 1005.8 U/mL and 110.5 × 103 U/g dry cell weight, respectively, with negligible intracellular expression. The Brevibacillus choshinensis expression system has proven to be valuable for the extracellular production of pullulanase.
Collapse
Affiliation(s)
- Chun Zou
- grid.258151.a 0000000107081323 State Key Laboratory of Food Science and Technology Jiangnan University 1800 Lihu Avenue 214122 Wuxi China
- grid.258151.a 0000000107081323 School of Biotechnology, Key Laboratory of Industrial Biotechnology, Ministry of Education Jiangnan University 1800 Lihu Avenue 214122 Wuxi China
| | - Xuguo Duan
- grid.258151.a 0000000107081323 State Key Laboratory of Food Science and Technology Jiangnan University 1800 Lihu Avenue 214122 Wuxi China
- grid.258151.a 0000000107081323 School of Biotechnology, Key Laboratory of Industrial Biotechnology, Ministry of Education Jiangnan University 1800 Lihu Avenue 214122 Wuxi China
| | - Jing Wu
- grid.258151.a 0000000107081323 State Key Laboratory of Food Science and Technology Jiangnan University 1800 Lihu Avenue 214122 Wuxi China
- grid.258151.a 0000000107081323 School of Biotechnology, Key Laboratory of Industrial Biotechnology, Ministry of Education Jiangnan University 1800 Lihu Avenue 214122 Wuxi China
| |
Collapse
|
33
|
Zou C, Duan X, Wu J. Magnesium ions increase the activity of Bacillus deramificans pullulanase expressed by Brevibacillus choshinensis. Appl Microbiol Biotechnol 2016; 100:7115-23. [DOI: 10.1007/s00253-016-7386-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 02/02/2016] [Accepted: 02/07/2016] [Indexed: 12/22/2022]
|
34
|
de Marco A. Recombinant antibody production evolves into multiple options aimed at yielding reagents suitable for application-specific needs. Microb Cell Fact 2015; 14:125. [PMID: 26330219 PMCID: PMC4557595 DOI: 10.1186/s12934-015-0320-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Accepted: 08/20/2015] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Antibodies have been a pillar of basic research, while their relevance in clinical diagnostics and therapy is constantly growing. Consequently, the production of both conventional and fragment antibodies constantly faces more demanding challenges for the improvement of their quantity and quality. The answer to such an increasing need has been the development of a wide array of formats and alternative production platforms. This review offers a critical comparison and evaluation of the different options to help the researchers interested in expressing recombinant antibodies in their choice. RESULTS Rather than the compilation of an exhaustive list of the recent publications in the field, this review intendeds to analyze the development of the most innovative or fast-growing strategies. These have been illustrated with some significant examples and, when possible, compared with the existing alternatives. Space has also been given to those solutions that might represent interesting opportunities or that investigate critical aspects of the production optimization but for which the available data as yet do not allow for a definitive judgment. CONCLUSIONS The take-home message is that there is a clear process of progressive diversification concerning the antibody expression platforms and an effort to yield directly application-adapted immune-reagents rather than generic naked antibodies that need further in vitro modification steps before becoming usable.
Collapse
Affiliation(s)
- Ario de Marco
- Department of Biomedical Sciences and Engineering, University of Nova Gorica, Glavni Trg 9, 5261, Vipava, Slovenia.
| |
Collapse
|
35
|
Hayashi K, Tomozoe Y, Nagai K, Hiraishi Y, Kamiya N. Development of a Peroxidase-Fused Protein Reagent by Brevibacillus choshinensis Heterologous Expression System. KAGAKU KOGAKU RONBUN 2015. [DOI: 10.1252/kakoronbunshu.41.157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Kounosuke Hayashi
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University
- Hitachi Aloka Medical, Ltd
| | | | | | | | - Noriho Kamiya
- Center for Future Chemistry, Kyushu University
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University
| |
Collapse
|