1
|
Asadi M, Taghizadeh S, Kaviani E, Vakili O, Taheri-Anganeh M, Tahamtan M, Savardashtaki A. Caspase-3: Structure, function, and biotechnological aspects. Biotechnol Appl Biochem 2021; 69:1633-1645. [PMID: 34342377 DOI: 10.1002/bab.2233] [Citation(s) in RCA: 235] [Impact Index Per Article: 58.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 08/01/2021] [Indexed: 12/16/2022]
Abstract
Caspase-3, a cysteine-aspartic acid protease, has recently attracted much attention because of its incredible roles in tissue differentiation, regeneration, and neural development. This enzyme is a key zymogen in cell apoptosis and is not activated until it is cleaved by initiator caspases during apoptotic flux. Since caspase-3 has represented valuable capabilities in the field of medical research, biotechnological aspects of this enzyme, including the production of recombinant type, protein engineering, and designing delivery systems, have been considered as emerging therapeutic strategies in treating the apoptosis-related disorders. To date, several advances have been made in the therapeutic use of caspase-3 in the management of some diseases such as cancers, heart failure, and neurodegenerative disorders. In the current review, we intend to discuss the caspase-3's structure, functions, therapeutic applications, as well as its molecular cloning, protein engineering, and relevant delivery systems.
Collapse
Affiliation(s)
- Marzieh Asadi
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saeed Taghizadeh
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Elina Kaviani
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Omid Vakili
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mortaza Taheri-Anganeh
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahshid Tahamtan
- Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Savardashtaki
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
2
|
Gennari A, Simon R, de Andrade BC, Saraiva Macedo Timmers LF, Milani Martins VL, Renard G, Chies JM, Volpato G, Volken de Souza CF. Production of beta-galactosidase fused to a cellulose-binding domain for application in sustainable industrial processes. BIORESOURCE TECHNOLOGY 2021; 326:124747. [PMID: 33517047 DOI: 10.1016/j.biortech.2021.124747] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 06/12/2023]
Abstract
This study aimed to produce and characterize a recombinant Kluyveromyces sp. β-galactosidase fused to a cellulose-binding domain (CBD) for industrial application. In expression assays, the highest enzymatic activities occurred after 48 h induction on Escherichia coli C41(DE3) strain at 20 °C in Terrific Broth (TB) culture medium, using isopropyl β-d-1-thiogalactopyranoside (IPTG) 0.5 mM (108.77 U/mL) or lactose 5 g/L (93.10 U/mL) as inducers. Cultures at bioreactor scale indicated that higher product yield values in relation to biomass (2000 U/g) and productivity (0.72 U/mL.h) were obtained in culture media containing higher protein concentration. The recombinant enzyme showed high binding affinity to nanocellulose, reaching both immobilization yield and efficiency values of approximately 70% at pH 7.0 after 10 min reaction. The results of the present study pointed out a strategy for recombinant β-galactosidase-CBD production and immobilization, aiming toward the application in sustainable industrial processes using low-cost inputs.
Collapse
Affiliation(s)
- Adriano Gennari
- Laboratório de Biotecnologia de Alimentos, Universidade do Vale do Taquari - Univates, Lajeado, RS, Brazil; Programa de Pós-Graduação em Biotecnologia, Universidade do Vale do Taquari - Univates, Lajeado, RS, Brazil
| | - Renate Simon
- Laboratório de Biotecnologia de Alimentos, Universidade do Vale do Taquari - Univates, Lajeado, RS, Brazil
| | - Bruna Coelho de Andrade
- Laboratório de Biotecnologia de Alimentos, Universidade do Vale do Taquari - Univates, Lajeado, RS, Brazil; Programa de Pós-Graduação em Biotecnologia, Universidade do Vale do Taquari - Univates, Lajeado, RS, Brazil
| | | | - Vera Lúcia Milani Martins
- Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Sul - IFRS, Campus Porto Alegre, Porto Alegre, RS, Brazil
| | - Gaby Renard
- Centro de Pesquisa em Biologia Molecular e Funcional, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | - Giandra Volpato
- Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Sul - IFRS, Campus Porto Alegre, Porto Alegre, RS, Brazil
| | - Claucia Fernanda Volken de Souza
- Laboratório de Biotecnologia de Alimentos, Universidade do Vale do Taquari - Univates, Lajeado, RS, Brazil; Programa de Pós-Graduação em Biotecnologia, Universidade do Vale do Taquari - Univates, Lajeado, RS, Brazil.
| |
Collapse
|
3
|
Tahara N, Tachibana I, Takeo K, Yamashita S, Shimada A, Hashimoto M, Ohno S, Yokogawa T, Nakagawa T, Suzuki F, Ebihara A. Boosting Auto-Induction of Recombinant Proteins in Escherichia coli with Glucose and Lactose Additives. Protein Pept Lett 2021; 28:1180-1190. [PMID: 34353248 PMCID: PMC8811614 DOI: 10.2174/0929866528666210805120715] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 05/25/2021] [Accepted: 05/27/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Auto-induction is a convenient way to produce recombinant proteins without inducer addition using lac operon-controlled Escherichia coli expression systems. Auto-induction can occur unintentionally using a complex culture medium prepared by mixing culture substrates. The differences in culture substrates sometimes lead to variations in the induction level. OBJECTIVES In this study, we investigated the feasibility of using glucose and lactose as boosters of auto-induction with a complex culture medium. METHODS First, auto-induction levels were assessed by quantifying recombinant GFPuv expression under the control of the T7 lac promoter. Effectiveness of the additive-containing medium was examined using ovine angiotensinogen (tac promoter-based expression) and Thermus thermophilus manganese-catalase (T7 lac promoter-based expression). RESULTS Auto-induced GFPuv expression was observed with the enzymatic protein digest Polypepton, but not with another digest tryptone. Regardless of the type of protein digest, supplementing Terrific Broth medium with glucose (at a final concentration of 2.9 g/L) and lactose (at a final concentration of 7.6 g/L) was successful in obtaining an induction level similar to that achieved with a commercially available auto-induction medium. The two recombinant proteins were produced in milligram quantity of purified protein per liter of culture. CONCLUSION The medium composition shown in this study would be practically useful for attaining reliable auto-induction for E. coli-based recombinant protein production.
Collapse
Affiliation(s)
- Nariyasu Tahara
- Graduate School of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Itaru Tachibana
- Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Kazuyo Takeo
- Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Shinji Yamashita
- United Graduate School of Agricultural Science, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Atsuhiro Shimada
- Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Misuzu Hashimoto
- Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Satoshi Ohno
- Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Takashi Yokogawa
- Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Tsutomu Nakagawa
- Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Fumiaki Suzuki
- Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Akio Ebihara
- Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| |
Collapse
|
4
|
Kim KR, Kang SJ, Lee AY, Hwang D, Park M, Park H, Kim S, Hur K, Chung HS, Mao C, Ahn DR. Highly tumor-specific DNA nanostructures discovered by in vivo screening of a nucleic acid cage library and their applications in tumor-targeted drug delivery. Biomaterials 2019; 195:1-12. [DOI: 10.1016/j.biomaterials.2018.12.026] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 12/12/2018] [Accepted: 12/22/2018] [Indexed: 02/02/2023]
|
5
|
Panneer Selvam S, Roth BM, Nganga R, Kim J, Cooley MA, Helke K, Smith CD, Ogretmen B. Balance between senescence and apoptosis is regulated by telomere damage-induced association between p16 and caspase-3. J Biol Chem 2018; 293:9784-9800. [PMID: 29748384 DOI: 10.1074/jbc.ra118.003506] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 05/03/2018] [Indexed: 12/21/2022] Open
Abstract
Telomerase activation protects cells from telomere damage by delaying senescence and inducing cell immortalization, whereas telomerase inhibition mediates rapid senescence or apoptosis. However, the cellular mechanisms that determine telomere damage-dependent senescence versus apoptosis induction are largely unknown. Here, we demonstrate that telomerase instability mediated by silencing of sphingosine kinase 2 (SPHK2) and sphingosine 1-phosphate (S1P), which binds and stabilizes telomerase, induces telomere damage-dependent caspase-3 activation and apoptosis, but not senescence, in p16-deficient lung cancer cells or tumors. These outcomes were prevented by knockdown of a tumor-suppressor protein, transcription factor 21 (TCF21), or by ectopic expression of WT human telomerase reverse transcriptase (hTERT) but not mutant hTERT with altered S1P binding. Interestingly, SphK2-deficient mice exhibited accelerated aging and telomerase instability that increased telomere damage and senescence via p16 activation especially in testes tissues, but not in apoptosis. Moreover, p16 silencing in SphK2-/- mouse embryonic fibroblasts activated caspase-3 and apoptosis without inducing senescence. Furthermore, ectopic WT p16 expression in p16-deficient A549 lung cancer cells prevented TCF21 and caspase-3 activation and resulted in senescence in response to SphK2/S1P inhibition and telomere damage. Mechanistically, a p16 mutant with impaired caspase-3 association did not prevent telomere damage-induced apoptosis, indicating that an association between p16 and caspase-3 proteins forces senescence induction by inhibiting caspase-3 activation and apoptosis. These results suggest that p16 plays a direct role in telomere damage-dependent senescence by limiting apoptosis via binding to caspase-3, revealing a direct link between telomere damage-dependent senescence and apoptosis with regards to aging and cancer.
Collapse
Affiliation(s)
| | - Braden M Roth
- From the Department of Biochemistry and Molecular Biology.,Hollings Cancer Center, and
| | - Rose Nganga
- From the Department of Biochemistry and Molecular Biology.,Hollings Cancer Center, and
| | - Jisun Kim
- From the Department of Biochemistry and Molecular Biology.,Hollings Cancer Center, and
| | | | - Kristi Helke
- Comparative Medicine, Medical University of South Carolina, Charleston, South Carolina 30912 and
| | - Charles D Smith
- the Department of Pharmacology, Pennsylvania State University, Hershey, Pennsylvania 17033
| | - Besim Ogretmen
- From the Department of Biochemistry and Molecular Biology, .,Hollings Cancer Center, and
| |
Collapse
|
6
|
You Z, Zhang S, Liu X, Wang Y. Enhancement of prodigiosin synthetase (PigC) production from recombinant Escherichia coli through optimization of induction strategy and media. Prep Biochem Biotechnol 2018; 48:226-233. [DOI: 10.1080/10826068.2017.1421965] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Zhongyu You
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, Zhejiang, People’s Republic of China
| | - Suping Zhang
- Nanhu College, Jiaxing University, Jiaxing, Zhejiang, People’s Republic of China
| | - Xiaoxia Liu
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, Zhejiang, People’s Republic of China
| | - Yujie Wang
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, Zhejiang, People’s Republic of China
| |
Collapse
|