1
|
Rashid MHU, Yi EKJ, Amin NDM, Ismail MN. An Empirical Analysis of Sacha Inchi (Plantae: Plukenetia volubilis L.) Seed Proteins and Their Applications in the Food and Biopharmaceutical Industries. Appl Biochem Biotechnol 2024; 196:4823-4836. [PMID: 37979081 DOI: 10.1007/s12010-023-04783-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2023] [Indexed: 11/19/2023]
Abstract
Sacha Inchi (Plukenetia volubilis L.) is a plant native in the Amazon rainforest in South America known for its edible seeds, which are rich in lipids, proteins, vitamin E, polyphenols, minerals, and amino acids. Rural communities in developing nations have been using this plant for its health benefits, including as a topical cream for rejuvenating and revitalising skin and as a treatment for muscle pain and rheumatism. Although Sacha Inchi oil has been applied topically to soften skin, treat skin diseases, and heal wounds, its protein-rich seeds have not yet received proper attention for extensive investigation. Proteins in Sacha Inchi seeds are generally known to have antioxidant and antifungal activities and are extensively used nowadays in making protein-rich food alternatives worldwide. Notably, large-scale use of seed proteins has begun in nanoparticle and biofusion technologies related to the human health-benefitting sector. To extract and identify their proteins, the current study examined Sacha Inchi seeds collected from the Malaysian state of Kedah. Our analysis revealed a protein concentration of 73.8 ± 0.002 mg/g of freeze-dried seed flour. Employing liquid chromatography-tandem mass spectrometry (LC-MS/MS) and PEAKS studio analysis, we identified 217 proteins in the seed extract, including 152 with known proteins and 65 unknown proteins. This study marks a significant step towards comprehensively investigating the protein composition of Sacha Inchi seeds and elucidating their potential applications in the food and biopharmaceutical sectors. Our discoveries not only enhance our knowledge of Sacha Inchi's nutritional characteristics but also pave the way for prospective research and innovative advancements in the realms of functional food and health-related domains.
Collapse
Affiliation(s)
- Mohammad Harun Ur Rashid
- Analytical Biochemistry Research Centre, Universiti Sains Malaysia (USM), 11900, Penang, Malaysia
| | - Erica Kok Jia Yi
- International Medical University Malaysia, Kuala Lumpur, Malaysia
| | - Nor Datiakma Mat Amin
- Analytical Biochemistry Research Centre, Universiti Sains Malaysia (USM), 11900, Penang, Malaysia
- Natural Products Division, Forest Research Institute of Malaysia (FRIM), 52109, Kepong, Selangor, Malaysia
| | - Mohd Nazri Ismail
- Analytical Biochemistry Research Centre, Universiti Sains Malaysia (USM), 11900, Penang, Malaysia.
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia (USM), 11800, Penang, Malaysia.
| |
Collapse
|
2
|
Liu C, Wang Y, Du Y, Kang Z, Guo J, Guo J. Glycine-serine-rich effector PstGSRE4 in Puccinia striiformis f. sp. tritici targets and stabilizes TaGAPDH2 that promotes stripe rust disease. PLANT, CELL & ENVIRONMENT 2024; 47:947-960. [PMID: 38105492 DOI: 10.1111/pce.14786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 12/19/2023]
Abstract
Puccinia striiformis f. sp. tritici (Pst) secretes effector proteins that enter plant cells and manipulate host processes. In a previous study, we identified a glycine-serine-rich effector PstGSRE4, which was proven to regulate the reactive oxygen species (ROS) pathway by interacting with TaCZSOD2. In this study, we further demonstrated that PstGSRE4 interacts with wheat glyceraldehyde-3-phosphate dehydrogenase TaGAPDH2, which is related to ROS signalling. In wheat, silencing of TaGAPDH2 by virus-induced gene silencing increased the accumulation of ROS induced by the Pst virulent race CYR31. Overexpression of TaGAPDH2 decreased the accumulation of ROS induced by the avirulent Pst race CYR23. In addition, TaGAPDH2 suppressed Pst candidate elicitor Pst322-triggered cell death by decreasing ROS accumulation in Nicotiana benthamiana. Knocking down TaGAPDH2 expression attenuated Pst infection, whereas overexpression of TaGAPDH2 promoted Pst infection, indicating that TaGAPDH2 is a negative regulator of plant defence. In N. benthamiana, PstGSRE4 stabilized TaGAPDH2 through inhibition of the 26S proteasome-mediated destabilization. Overall, these results suggest that TaGAPDH2 is hijacked by the Pst effector as a negative regulator of plant immunity to promote Pst infection in wheat.
Collapse
Affiliation(s)
- Cong Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Yanfeng Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Yuanyuan Du
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Jia Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Jun Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
3
|
Cheng X, Li X, Liao B, Xu J, Hu L. Improved performance of proteomic characterization for Panax ginseng by strong cation exchange extraction and liquid chromatography-mass spectrometry analysis. J Chromatogr A 2023; 1688:463692. [PMID: 36549145 DOI: 10.1016/j.chroma.2022.463692] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 11/20/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022]
Abstract
Panax ginseng is a precious and ancient medicinal plant. The completion of its genome sequencing has laid the foundation for the study of proteome and peptidome. However, the high abundance of secondary metabolites in ginseng reduces the identification efficiency of proteins and peptides in mass spectrometry. In this report, strong cation exchange pretreatment was carried out to eliminate the interference of impurities. Based on the charge separation of proteolytic peptides and metabolites, the sensitivity of mass spectrometry detection was greatly improved. After pretreatment, 2322 and 2685 proteins were identified from the root and stem leaf extract. Further, the ginseng peptidome was analyzed based on this optimized strategy, where 970 and 653 endogenous peptides were identified from root and stem leaf extract, respectively. Functional analysis of proteins and endogenous peptides provided valuable information on the biological activities, metabolic processes, and ginsenoside biosynthesis pathways of ginseng.
Collapse
Affiliation(s)
- Xianhui Cheng
- Center for Supramolecular Chemical Biology, School of Life Sciences, Jilin University, Changchun, China
| | - Xiaoying Li
- Center for Supramolecular Chemical Biology, School of Life Sciences, Jilin University, Changchun, China
| | - Baosheng Liao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiang Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Lianghai Hu
- Center for Supramolecular Chemical Biology, School of Life Sciences, Jilin University, Changchun, China.
| |
Collapse
|
4
|
Li Y, Peng L, Wang X, Zhang L. Reduction in chloroplastic ribulose-5-phosphate-3-epimerase decreases photosynthetic capacity in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2022; 13:813241. [PMID: 36311138 PMCID: PMC9614318 DOI: 10.3389/fpls.2022.813241] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
Chloroplast ribulose-5-phosphate-3-epimerase (RPE) is a critical enzyme involved in the Calvin-Benson cycle and oxidative pentose phosphate pathways in higher plants. Three Arabidopsis rpe mutants with reduced level of RPE were identified through their high NPQ (nonphotochemical quenching) phenotype upon illumination, and no significant difference of plant size was found between these rpe mutants and WT (wild type) plants under growth chamber conditions. A decrease in RPE expression to a certain extent leads to a decrease in CO2 fixation, V cmax and J max. Photosynthetic linear electron transport was partially inhibited and activity of ATP synthase was also decreased in the rpe mutants, but the levels of thylakoid protein complexes and other Calvin-Benson cycle enzymes in rpe mutants were not affected. These results demonstrate that some degree of reduction in RPE expression decreases carbon fixation in chloroplasts, which in turn feedback inhibits photosynthetic electron transport and ATP synthase activity due to the photosynthetic control. Taken together, this work provides evidence that RPE plays an important role in the Calvin-Benson cycle and influences the photosynthetic capacity of chloroplasts.
Collapse
Affiliation(s)
- Yonghong Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, China
- School of Biology and Brewing Engineering, TaiShan University, Taian, China
| | - Lianwei Peng
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Xiaoqin Wang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, China
| | - Lin Zhang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| |
Collapse
|
5
|
Quantitative proteomics reveals the mechanism of slightly acidic electrolyzed water-induced buckwheat sprouts growth and flavonoids enrichment. Food Res Int 2021; 148:110634. [PMID: 34507777 DOI: 10.1016/j.foodres.2021.110634] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 07/21/2021] [Accepted: 07/27/2021] [Indexed: 12/21/2022]
Abstract
Previous work has demonstrated that slightly acidic electrolyzed water (SAEW) can promote growth and nutrient enrichment of buckwheat sprouts. In this study, iTRAQ-based quantitative proteomic analysis of SAEW-induced buckwheat sprouts was conducted to explore its mechanism of action. The results showed that 11, 10 and 14 differentially expressed proteins (DEPs) related to energy metabolism, oxidative stress and flavonoid biosynthesis accumulated upwards and downwards, respectively, in SAEW-treated buckwheat. Bioinformatics analysis revealed 118 GO categories were in relation to molecular function. In the SAEW group, a total of 9 DEPs (5 up-regulated) were mapped to 10 significantly enriched KEGG pathways. SAEW induced flavonoid enrichment by modulating zymoproteins (e.g. phenylalanine ammonialyase and flavonol synthase) in phenylpropanoid biosynthesis pathway. qRT-PCR results had consistency with abundance levels of their corresponding proteins. These findings are likely to reveal the molecular mechanisms underlying the biochemical enrichment of buckwheat sprouts by SAEW.
Collapse
|
6
|
Jiang D, Li H, Sun S. Verification of a novel glyceraldehyde-3-phosphate dehydrogenase capable of histamine degradation and its preliminary application in wine production. Food Sci Biotechnol 2020; 29:1719-1726. [PMID: 33282438 DOI: 10.1007/s10068-020-00838-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 09/22/2020] [Accepted: 10/12/2020] [Indexed: 11/30/2022] Open
Abstract
The search for enzymes with histamine-degrading activity is of great interest, since it has great potential in the way of solving the problem of high histamine levels in food. In this study, the gene of a novel histamine-degrading enzyme, i.e., glyceraldehyde-3-phosphate dehydrogenase (GAPDH) from Lactobacillus plantarum was cloned and successfully expressed in Escherichia coli DH5α, with the recombinant host determined as histamine-degrading active. The recombinant GAPDH was then purified to homogeneity by ammonium sulfate fraction and gel filtration. The optimum pH and temperature were 5.5 and 40 °C and it was strongly resistant to SO2 and ethanol. Afterwards, the histamine degradative activity of partially purified GAPDH in actual wine environments (grape and cherry wines) was examined by incubating the enzymes in the middle, near the end and completion of malolactic fermentation, and histamine in the corresponding contaminated wines was decreased by 36.8-52.4%, 59.6-66.9% and 83.1-85.5%, respectively.
Collapse
Affiliation(s)
- Dongqi Jiang
- School of Food Engineering, Ludong University, Yantai, 264025 Shandong People's Republic of China.,Institute of Food Science and Engineering, Yantai University, Yantai, 264005 Shandong People's Republic of China
| | - Huamin Li
- School of Food Engineering, Ludong University, Yantai, 264025 Shandong People's Republic of China.,Institute of Bionanotechnology, Ludong University, Yantai, 264025 Shandong People's Republic of China
| | - Shuyang Sun
- School of Food Engineering, Ludong University, Yantai, 264025 Shandong People's Republic of China.,Institute of Bionanotechnology, Ludong University, Yantai, 264025 Shandong People's Republic of China
| |
Collapse
|
7
|
Zhang L, Liu MR, Yao YC, Bostrom IK, Wang YD, Chen AQ, Li JX, Gu SH, Ji CN. Characterization and structure of glyceraldehyde-3-phosphate dehydrogenase type 1 from Escherichia coli. Acta Crystallogr F Struct Biol Commun 2020; 76:406-413. [PMID: 32880588 PMCID: PMC7470045 DOI: 10.1107/s2053230x20010067] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 07/21/2020] [Indexed: 11/10/2022] Open
Abstract
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a key enzyme in the glycolytic pathway that catalyzes the conversion of D-glyceraldehyde 3-phosphate to 1,3-diphosphoglycerate. Here, the full-length GAPDH type 1 from Escherichia coli (EcGAPDH1) was cloned and overexpressed, and the protein was purified. Biochemical analyses found that the optimum reaction temperature and pH of EcGAPDH1 were 55°C and 10.0, respectively. The protein has a certain amount of thermostability. Crystals of EcGAPDH1 were obtained using the sitting-drop vapor-diffusion technique and X-ray diffraction data were collected to 1.88 Å resolution. Characterization of the crystals showed that they belonged to space group P41212, with unit-cell parameters a = b = 89.651, c = 341.007 Å, α = β = γ = 90°. The structure of EcGAPDH1 contains four subunits, each of which includes an N-terminal NAD+-binding domain and a C-terminal catalytic domain. Analysis of the NAD+-bound form showed some differences between the structures of EcGAPDH1 and human GAPDH. As EcGAPDH1 shares 100% identity with GAPDH from Shigella sonnei, its structure may help in finding a drug for the treatment of shigellosis.
Collapse
Affiliation(s)
- L. Zhang
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai 200438, People’s Republic of China
| | - M. R. Liu
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai 200438, People’s Republic of China
| | - Y. C. Yao
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1679, USA
| | - I. K. Bostrom
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1679, USA
| | - Y. D. Wang
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai 200438, People’s Republic of China
| | - A. Q. Chen
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai 200438, People’s Republic of China
| | - J. X. Li
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai 200438, People’s Republic of China
| | - S. H. Gu
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai 200438, People’s Republic of China
| | - C. N. Ji
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai 200438, People’s Republic of China
- Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, 2005 Songhu Road, Shanghai 200438, People’s Republic of China
| |
Collapse
|
8
|
Li X, Cheng X, Liao B, Xu J, Han X, Zhang J, Lin Z, Hu L. Spatial protein expression of Panax ginseng by in-depth proteomic analysis for ginsenoside biosynthesis and transportation. J Ginseng Res 2020; 45:58-65. [PMID: 33437157 PMCID: PMC7790901 DOI: 10.1016/j.jgr.2020.01.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 01/21/2020] [Indexed: 01/04/2023] Open
Abstract
Background Panax ginseng, as one of the most widely used herbal medicines worldwide, has been studied comprehensively in terms of the chemical components and pharmacology. The proteins from ginseng are also of great importance for both nutrition value and the mechanism of secondary metabolites. However, the proteomic studies are less reported in the absence of the genome information. With the completion of ginseng genome sequencing, the proteome profiling has become available for the functional study of ginseng protein components. Methods We optimized the protein extraction process systematically by using SDS-PAGE and one-dimensional liquid chromatography mass spectrometry. The extracted proteins were then analyzed by two-dimensional chromatography separation and cutting-edge mass spectrometry technique. Results A total of 2,732 and 3,608 proteins were identified from ginseng root and cauline leaf, respectively, which was the largest data set reported so far. Only around 50% protein overlapped between the cauline leaf and root tissue parts because of the function assignment for plant growing. Further gene ontology and KEGG pathway revealed the distinguish difference between ginseng root and leaf, which accounts for the photosynthesis and metabolic process. With in-deep analysis of functional proteins related to ginsenoside synthesis, we interestingly found the cytochrome P450 and UDP-glycosyltransferase expression extensively in cauline leaf but not in the root, indicating that the post glucoside synthesis of ginsenosides might be carried out when growing and then transported to the root at withering. Conclusion The systematically proteome analysis of Panax ginseng will provide us comprehensive understanding of ginsenoside synthesis and guidance for artificial cultivation.
Collapse
Affiliation(s)
- Xiaoying Li
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, National Engineering Laboratory of AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Xianhui Cheng
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, National Engineering Laboratory of AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Baosheng Liao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiang Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xu Han
- Jilin Zixin Pharmaceutical Industrial Co., Ltd, China
| | - Jinbo Zhang
- Nanjing Novogene Bio Technology Co., Ltd, China
| | - Zhiwei Lin
- Nanjing Novogene Bio Technology Co., Ltd, China
| | - Lianghai Hu
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, National Engineering Laboratory of AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| |
Collapse
|
9
|
Zhang L, Lei D, Deng X, Li F, Ji H, Yang S. Cytosolic glyceraldehyde-3-phosphate dehydrogenase 2/5/6 increase drought tolerance via stomatal movement and reactive oxygen species scavenging in wheat. PLANT, CELL & ENVIRONMENT 2020; 43:836-853. [PMID: 31873939 DOI: 10.1111/pce.13710] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 12/18/2019] [Accepted: 12/19/2019] [Indexed: 05/07/2023]
Abstract
Drought is a major threat to wheat growth and crop productivity. However, there has been only limited success in developing drought-hardy cultivars. This lack of progress is due, at least in part, to a lack of understanding of the molecular mechanisms of drought tolerance in wheat. Here, we evaluated the potential role of three cytosolic glyceraldehyde-3-phosphate dehydrogenases (TaGAPC2/5/6) under drought stress in wheat and Arabidopsis. We found that TaGAPC2/5/6 all positively responded to drought stress via reactive oxygen species (ROS) scavenging and stomatal movement. The results of yeast co-transformation and electrophoretic mobility shift assay showed that TaWRKY33 acted as a direct regulator of TaGAPC2/5/6 genes. The dual luciferase reporter assay indicated that TaWRKY33 positively activated the expression of TaGAPC2/5/6. The results of bimolecular fluorescence complementation and yeast two-hybrid system demonstrated that TaGAPC2/5/6 interacted with phospholipase Dδ (PLDδ). We then demonstrated that TaGAPC2/5/6 positively promoted the activity of TaPLDδ in vitro and in vivo. Furthermore, lower PLDδ activity in RNAi wheat could lead to less PA accumulation, causing higher stomatal aperture sizes under drought stress. In summary, our results establish a new positive regulatory mechanism of TaGAPCs which helps wheat fine-tune their drought responses.
Collapse
Affiliation(s)
- Lin Zhang
- College of Life Sciences, Northwest A&F University, Yangling, People's Republic of China
| | - Daili Lei
- College of Life Sciences, Northwest A&F University, Yangling, People's Republic of China
| | - Xia Deng
- College of Life Sciences, Northwest A&F University, Yangling, People's Republic of China
| | - Fangfang Li
- College of Life Sciences, Northwest A&F University, Yangling, People's Republic of China
| | - Haikun Ji
- College of Life Sciences, Northwest A&F University, Yangling, People's Republic of China
| | - Shushen Yang
- College of Life Sciences, Northwest A&F University, Yangling, People's Republic of China
| |
Collapse
|
10
|
Zhang L, Xu Z, Ji H, Zhou Y, Yang S. TaWRKY40 transcription factor positively regulate the expression of TaGAPC1 to enhance drought tolerance. BMC Genomics 2019; 20:795. [PMID: 31666006 PMCID: PMC6822423 DOI: 10.1186/s12864-019-6178-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 10/10/2019] [Indexed: 02/03/2023] Open
Abstract
BACKGROUNDS Drought stress is one of the major factors that affects wheat yield. Glyceraldehyde-3-Phosphate dehydrogenase (GAPDH) is a multifunctional enzyme that plays the important role in abiotic stress and plant development. However, in wheat, limited information about drought-responsive GAPC genes has been reported, and the mechanism underlying the regulation of the GAPC protein is unknown. RESULTS In this study, we evaluated the potential role of GAPC1 in drought stress in wheat and Arabidopsis. We found that the overexpression of TaGAPC1 could enhance the tolerance to drought stress in transgenic Arabidopsis. Yeast one-hybrid library screening and EMSA showed that TaWRKY40 acts as a direct regulator of the TaGAPC1 gene. A dual luciferase reporter assay indicated that TaWRKY40 improved the TaGAPC1 promoter activity. The results of qRT-PCR in wheat protoplast cells with instantaneous overexpression of TaWRKY40 indicated that the expression level of TaGAPC1 induced by abiotic stress was upregulated by TaWRKY40. Moreover, TaGAPC1 promoted H2O2 detoxification in response to drought. CONCLUSION These results demonstrate that the inducible transcription factor TaWRKY40 could activate the transcription of the TaGAPC1 gene, thereby increasing the tolerance of plants to drought stress.
Collapse
Affiliation(s)
- Lin Zhang
- College of Life Sciences, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Zhiyong Xu
- College of Life Sciences, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Haikun Ji
- College of Life Sciences, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Ye Zhou
- College of Life Sciences, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Shushen Yang
- College of Life Sciences, Northwest A&F University, Yangling, 712100 Shaanxi China
| |
Collapse
|