1
|
Zhu X, Zhao YF, Wen HJ, Lu Y, You S, Herman RA, Wang J. Silkworm pupae protein co-degradation by magnetic nanoparticles immobilized proteinase K and Mucor circinelloides aspartic protease for further utilization of sericulture by-products. ENVIRONMENTAL RESEARCH 2024; 249:118385. [PMID: 38331140 DOI: 10.1016/j.envres.2024.118385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/18/2024] [Accepted: 01/30/2024] [Indexed: 02/10/2024]
Abstract
Silkworm pupae, by-product of sericulture industry, is massively discarded. The degradation rate of silkworm pupae protein is critical to further employment, which reduces the impact of waste on the environment. Herein, magnetic Janus mesoporous silica nanoparticles immobilized proteinase K mutant T206M and Mucor circinelloides aspartic protease were employed in the co-degradation. The thermostability of T206M improved by enhancing structural rigidity (t1/2 by 30 min and T50 by 5 °C), prompting the degradation efficiency. At 65 °C and pH 7, degradation rate reached the highest of 61.7%, which improved by 26% compared with single free protease degradation. Besides, the immobilized protease is easy to separate and reuse, which maintains 50% activity after 10 recycles. Therefore, immobilized protease co-degradation was first applied to the development and utilization of silkworm pupae resulting in the release of promising antioxidant properties and reduces the environmental impact by utilizing a natural and renewable resource.
Collapse
Affiliation(s)
- Xuan Zhu
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China
| | - Yi-Fan Zhao
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China
| | - Hong-Jian Wen
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China
| | - Yu Lu
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China
| | - Shuai You
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212100, China
| | - Richard Ansah Herman
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212100, China
| | - Jun Wang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212100, China.
| |
Collapse
|
2
|
Liu Y, Sun G, Li J, Cheng P, Song Q, Lv W, Wang C. Starter molds and multi-enzyme catalysis in koji fermentation of soy sauce brewing: A review. Food Res Int 2024; 184:114273. [PMID: 38609250 DOI: 10.1016/j.foodres.2024.114273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024]
Abstract
Soy sauce is a traditional fermented food produced from soybean and wheat under the action of microorganisms. The soy sauce brewing process mainly involves two steps, namely koji fermentation and moromi fermentation. In the koji fermentation process, enzymes from starter molds, such as protease, aminopeptidase, carboxypeptidase, l-glutaminase, amylase, and cellulase, hydrolyze the protein and starch in the raw ingredients to produce short-chain substances. However, the enzymatic reactions may be diminished after being subjected to moromi fermentation due to its high NaCl concentration. These enzymatically hydrolyzed products are further metabolized by lactic acid bacteria and yeasts during the moromi fermentation process into organic acids and aromatic compounds, giving soy sauce a unique flavor. Thus, the starter molds, such as Aspergillus oryzae, Aspergillus sojae, and Aspergillus niger, and their secreted enzymes play crucial roles in soy sauce brewing. This review comprehensively covers the characteristics of the starter molds mainly used in soy sauce brewing, the enzymes produced by starter molds, and the roles of enzymes in the degradation of raw material. We also enumerate current problems in the production of soy sauce, aiming to offer some directions for the improvement of soy sauce taste.
Collapse
Affiliation(s)
- Yihao Liu
- College of Food Science and Engineering, State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin Economy Technological Development Area, No. 29, 13th Avenue, Tianjin, 300222, People Republic of China.
| | - Guangru Sun
- College of Food Science and Engineering, State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin Economy Technological Development Area, No. 29, 13th Avenue, Tianjin, 300222, People Republic of China
| | - Jingyao Li
- College of Food Science and Engineering, State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin Economy Technological Development Area, No. 29, 13th Avenue, Tianjin, 300222, People Republic of China
| | - Peng Cheng
- Tianjin Limin Condiment Co., Ltd., Tianjin Food Group, Tianjin Airport Economic Zone, No. 226, 14th West Road, Tianjin, People Republic of China
| | - Qian Song
- Tianjin Limin Condiment Co., Ltd., Tianjin Food Group, Tianjin Airport Economic Zone, No. 226, 14th West Road, Tianjin, People Republic of China
| | - Wen Lv
- Tianjin Limin Condiment Co., Ltd., Tianjin Food Group, Tianjin Airport Economic Zone, No. 226, 14th West Road, Tianjin, People Republic of China
| | - Chunling Wang
- College of Food Science and Engineering, State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin Economy Technological Development Area, No. 29, 13th Avenue, Tianjin, 300222, People Republic of China.
| |
Collapse
|
3
|
Liu X, Lian M, Zhao M, Huang M. Advances in recombinant protease production: current state and perspectives. World J Microbiol Biotechnol 2024; 40:144. [PMID: 38532149 DOI: 10.1007/s11274-024-03957-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 03/13/2024] [Indexed: 03/28/2024]
Abstract
Proteases, enzymes that catalyze the hydrolysis of peptide bonds in proteins, are important in the food industry, biotechnology, and medical fields. With increasing demand for proteases, there is a growing emphasis on enhancing their expression and production through microbial systems. However, proteases' native hosts often fall short in high-level expression and compatibility with downstream applications. As a result, the recombinant production of proteases has become a significant focus, offering a solution to these challenges. This review presents an overview of the current state of protease production in prokaryotic and eukaryotic expression systems, highlighting key findings and trends. In prokaryotic systems, the Bacillus spp. is the predominant host for proteinase expression. Yeasts are commonly used in eukaryotic systems. Recent advancements in protease engineering over the past five years, including rational design and directed evolution, are also highlighted. By exploring the progress in both expression systems and engineering techniques, this review provides a detailed understanding of the current landscape of recombinant protease research and its prospects for future advancements.
Collapse
Affiliation(s)
- Xiufang Liu
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510641, China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou, 510650, China
| | - Mulin Lian
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510641, China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou, 510650, China
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510641, China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou, 510650, China
| | - Mingtao Huang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510641, China.
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou, 510650, China.
| |
Collapse
|
4
|
Song P, Zhang X, Wang S, Xu W, Wang F, Fu R, Wei F. Microbial proteases and their applications. Front Microbiol 2023; 14:1236368. [PMID: 37779686 PMCID: PMC10537240 DOI: 10.3389/fmicb.2023.1236368] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/30/2023] [Indexed: 10/03/2023] Open
Abstract
Proteases (proteinases or peptidases) are a class of hydrolases that cleave peptide chains in proteins. Endopeptidases are a type of protease that hydrolyze the internal peptide bonds of proteins, forming shorter peptides; exopeptidases hydrolyze the terminal peptide bonds from the C-terminal or N-terminal, forming free amino acids. Microbial proteases are a popular instrument in many industrial applications. In this review, the classification, detection, identification, and sources of microbial proteases are systematically introduced, as well as their applications in food, detergents, waste treatment, and biotechnology processes in the industry fields. In addition, recent studies on techniques used to express heterologous microbial proteases are summarized to describe the process of studying proteases. Finally, future developmental trends for microbial proteases are discussed.
Collapse
Affiliation(s)
- Peng Song
- College of Life Sciences, Liaocheng University, Liaocheng, China
- Shandong Aobo Biotech Co. Ltd., Liaocheng, China
- Jiangxi Zymerck Biotech Co. Ltd., Nanchang, China
| | - Xue Zhang
- College of Life Sciences, Liaocheng University, Liaocheng, China
| | - Shuhua Wang
- Shandong Aobo Biotech Co. Ltd., Liaocheng, China
| | - Wei Xu
- College of Life Sciences, Liaocheng University, Liaocheng, China
| | - Fei Wang
- College of Life Sciences, Liaocheng University, Liaocheng, China
| | - Rongzhao Fu
- Jiangxi Zymerck Biotech Co. Ltd., Nanchang, China
| | - Feng Wei
- College of Life Sciences, Liaocheng University, Liaocheng, China
| |
Collapse
|
5
|
Rahimnahal S, Yousefizadeh S, Mohammadi Y. Novel multi-epitope vaccine against bovine brucellosis: approach from immunoinformatics to expression. J Biomol Struct Dyn 2023; 41:15460-15484. [PMID: 36927475 DOI: 10.1080/07391102.2023.2188962] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 03/02/2023] [Indexed: 03/18/2023]
Abstract
Brucellosis is a zoonotic caused by the Brucella which is a well-known infectious disease agent in domestic animals and if transmitted, it can cause infection in humans. Because brucellosis is contagious, its control depends on the eradication of the animal disease in farms. There are two vaccines based on the killed and/or weakened bacteria against B. melitensis and B. abortus, but no recombinant vaccine is available for preventing the disease. The present study was designed to develop a multi-epitope vaccine against of B. melitensis and B. abortus using virB10, Omp31 and Omp16 antigens by the prediction of T lymphocytes, T cell cytotoxicity and IFN-γ epitopes. 50S L7/L12 Ribosomal protein from Mycobacterium tuberculosis was used as a bovine TLR4 and TLR9 agonist. GPGPG, AAY and KK linkers were used as a linker. Brucella construct was well-integrated in the pET-32a Shuttle vector with BamHI and HindIII restriction enzymes. The final construct contained 769 amino acids, that it was soluble protein of about ∼82 kDa after expression in the Escherichia coli SHuffle host. Modeled protein analysis based on the tertiary structure validation, molecular docking studies, molecular dynamics simulations results like RMSD, Gyration and RMSF as well as MM/PBSA analysis showed that this protein has a stable construct and is capable being in interaction with bovine TLR4 and TLR9. Analysis of the data obtained suggests that the proposed vaccine can induce the immune response by stimulating T- and B-cells, and may be used for prevention and remedial purposes, against B. melitensis and B. abortus.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Somayyeh Rahimnahal
- Department of Animal Science, Faculty of Agriculture, Ilam University, Ilam, Iran
| | - Shahnaz Yousefizadeh
- Department of Laboratory and Clinical Sciences, Faculty of Para-Veterinary, Ilam University, Ilam, Iran
| | - Yahya Mohammadi
- Department of Animal Science, Faculty of Agriculture, Ilam University, Ilam, Iran
| |
Collapse
|
6
|
Zhang L, Kang L, Xu Y. Phenotypic, Genomic, and Transcriptomic Comparison of Industrial Aspergillus oryzae Used in Chinese and Japanese Soy Sauce: Analysis of Key Proteolytic Enzymes Produced by Koji Molds. Microbiol Spectr 2023; 11:e0083622. [PMID: 36744888 PMCID: PMC10100866 DOI: 10.1128/spectrum.00836-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 01/11/2023] [Indexed: 02/07/2023] Open
Abstract
Aspergillus oryzae, which generates numerous enzymes for the breakdown of raw materials, is an essential koji mold in soy sauce production. For better soy sauce productivity and flavor quality, China and Japan have developed their own industrial A. oryzae strains at distinct evolutionary branches for use in soy sauce production for decades. However, systematic comparison between the two national industrial strains has been poorly conducted, and thus we have not been able to generate adequate knowledge, especially regarding what are the key hydrolytic enzymes produced by A. oryzae during koji production. This study sequenced and assembled three high-quality genome sequences of industrial A. oryzae originating from China and Japan. Based on the genome sequences, a phylogenetic tree analysis was performed and revealed the evolutional distances between the two national industrial koji molds. Meanwhile, a comparative phenotypic analysis revealed that the two national industrial strains differed in growth and catalytic characteristics, particularly in proteolytic enzyme activities. To investigate the molecular mechanism underlying the phenotypic difference, we conducted systematic comparative genome and transcriptome investigations. We found minor differences in the quantity and diversity of proteolytic enzyme genes between Chinese and Japanese koji molds, while the protease secretion ratio and transcriptional level were dissimilar. We identified 58 potential important enzymes associated with high protein breakdown efficiency during industrial koji fermentation by combining comparative phenotypic and transcriptome data. More research is required to confirm the function of these putative key hydrolytic enzymes. IMPORTANCE Aspergillus oryzae is widely used as an industrial koji mold for soy sauce brewing due to its powerful raw material decomposition capability. Although various proteases in A. oryzae have been identified, it remains a challenge to find essential enzymes involved in soy sauce production. Generally, the industrial A. oryzae used in soy sauce brewing has excellent proteolytic activity. Based on this, we analyzed key proteolytic enzymes according to a comparison of the genome and transcriptome between three industrial strains. This study found little difference in gene numbers and mutations of proteolytic enzymes between three industrial A. oryzae strains. However, variations in protease secretion ratio and transcriptome were discovered between industrial strains. Based on that, we generated 58 candidate key proteolytic enzymes. This work comprehensively analyzed three industrial koji molds, revealing genome development under separate artificial domestication and helping in the study of key proteolytic enzymes during soy sauce production.
Collapse
Affiliation(s)
- Lijie Zhang
- Laboratory of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Le Kang
- Laboratory of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Yan Xu
- Laboratory of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
7
|
Fang X, Chen Z, Wu W, Chen H, Nie S, Gao H. Effects of different protease treatment on protein degradation and flavor components of
Lentinus edodes. EFOOD 2022. [DOI: 10.1002/efd2.41] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Xiangjun Fang
- Institute of Food Science Zhejiang Academy of Agricultural Sciences Hangzhou China
- Key Laboratory of Post‐harvest Handling of Fruits Ministry of Agriculture and Rural Affairs Hangzhou China
- Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province Hangzhou China
| | - Ziqi Chen
- Institute of Food Science Zhejiang Academy of Agricultural Sciences Hangzhou China
- Key Laboratory of Post‐harvest Handling of Fruits Ministry of Agriculture and Rural Affairs Hangzhou China
- Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province Hangzhou China
| | - Weijie Wu
- Institute of Food Science Zhejiang Academy of Agricultural Sciences Hangzhou China
- Key Laboratory of Post‐harvest Handling of Fruits Ministry of Agriculture and Rural Affairs Hangzhou China
- Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province Hangzhou China
| | - Hangjun Chen
- Institute of Food Science Zhejiang Academy of Agricultural Sciences Hangzhou China
- Key Laboratory of Post‐harvest Handling of Fruits Ministry of Agriculture and Rural Affairs Hangzhou China
- Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province Hangzhou China
| | - Shaoping Nie
- State Key Laboratory of Food Science and Technology, China‐Canada Joint Laboratory of Food Science and Technology (Nanchang) Key Laboratory of Bioactive Polysaccharides of Jiangxi Province Nanchang University Nanchang China
| | - Haiyan Gao
- Institute of Food Science Zhejiang Academy of Agricultural Sciences Hangzhou China
- Key Laboratory of Post‐harvest Handling of Fruits Ministry of Agriculture and Rural Affairs Hangzhou China
- Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province Hangzhou China
| |
Collapse
|
8
|
Deo S, Turton KL, Kainth T, Kumar A, Wieden HJ. Strategies for improving antimicrobial peptide production. Biotechnol Adv 2022; 59:107968. [PMID: 35489657 DOI: 10.1016/j.biotechadv.2022.107968] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 04/18/2022] [Accepted: 04/25/2022] [Indexed: 01/10/2023]
Abstract
Antimicrobial peptides (AMPs) found in a wide range of animal, insect, and plant species are host defense peptides forming an integral part of their innate immunity. Although the exact mode of action of some AMPs is yet to be deciphered, many exhibit membrane lytic activity or interact with intracellular targets. The ever-growing threat of antibiotic resistance has brought attention to research on AMPs to enhance their clinical use as a therapeutic alternative. AMPs have several advantages over antibiotics such as broad range of antimicrobial activities including anti-fungal, anti-viral and anti-bacterial, and have not reported to contribute to resistance development. Despite the numerous studies to develop efficient production methods for AMPs, limitations including low yield, degradation, and loss of activity persists in many recombinant approaches. In this review, we outline available approaches for AMP production and various expression systems used to achieve higher yield and quality. In addition, recent advances in recombinant strategies, suitable fusion protein partners, and other molecular engineering strategies for improved AMP production are surveyed.
Collapse
Affiliation(s)
- Soumya Deo
- Department of Microbiology, Buller building, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Kristi L Turton
- Alberta RNA Research and Training Institute, Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Dr. W., Lethbridge, AB T1K 3M4, Canada
| | - Tajinder Kainth
- Department of Microbiology, Buller building, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Ayush Kumar
- Department of Microbiology, Buller building, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Hans-Joachim Wieden
- Department of Microbiology, Buller building, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
| |
Collapse
|
9
|
Beklemishev AB, Pykhtina MB, Kulikov YM, Goryachkovskaya TN, Bochkov DV, Sergeeva SV, Vasileva AR, Romanov VP, Novikova DS, Peltek SE. Creation of a recombinant Komagataella phaffii strain, a producer of proteinase K from Tritirachium album. Vavilovskii Zhurnal Genet Selektsii 2022; 25:882-888. [PMID: 35083407 PMCID: PMC8755523 DOI: 10.18699/vj21.102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 11/29/2021] [Accepted: 11/29/2021] [Indexed: 11/19/2022] Open
Abstract
The objects of the study were recombinant clones of Komagataella phaffii K51 carrying the heterologous proteinase K (PK-w) gene from Tritirachium album integrated into their genome as well as samples of recombinant proteinase K isolated from these clones. The aims of this work were i) to determine whether it is possible to create recombinant K. phaffii K51 clones overexpressing functionally active proteinase K from T. album and ii) to analyze the enzymatic activity of the resulting recombinant enzyme. The following methods were used: computational analysis of primary structure of the proteinase K gene, molecular biological methods (PCR, electrophoresis of DNA in an agarose gel, electrophoresis of proteins in an SDS polyacrylamide gel under denaturing conditions, spectrophotometry, and quantitative assays of protease activity), and genetic engineering techniques (cloning and selection of genes in bacterial cells Escherichia coli TOP10 and in the methylotrophic yeast K. phaffii K51). The gene encoding natural proteinase K (PK-w) was designed and optimized for expression in K. phaffii K51. The proteinase K gene was synthesized and cloned within the plasmid pPICZα-A vector in E. coli TOP10 cells. The proteinase K gene was inserted into pPICZα-A in such a way that – at a subsequent stage of transfection into yeast cells – it was efficiently expressed under the control of the promoter and terminator of the AOX1 gene, and the product of the exogenous gene contained the signal peptide of the Saccharomyces cerevisiae a-factor to ensure the protein’s secretion into the culture medium. The resultant recombinant plasmid (pPICZα-A/PK-w) was transfected into K. phaffii K51 cells. A recombinant K. phaffii K51 clone was obtained that carried the synthetic proteinase K gene and ensured its effective expression and secretion into the culture medium. An approximate productivity of the yeast recombinant clones for recombinant proteinase K was 25 μg/ mL after 4 days of cultivation. The resulting recombinant protease has a high specific proteolytic activity: ~5000 U/mg.
Collapse
Affiliation(s)
- A. B. Beklemishev
- Federal Research Center of Fundamental and Translational Medicine; Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences
| | - M. B. Pykhtina
- Federal Research Center of Fundamental and Translational Medicine; Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences
| | - Ya. M. Kulikov
- Federal Research Center of Fundamental and Translational Medicine; Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences
| | - T. N. Goryachkovskaya
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences
| | - D. V. Bochkov
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences
| | - S. V. Sergeeva
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences
| | - A. R. Vasileva
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences
| | - V. P. Romanov
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences
| | | | - S. E. Peltek
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences
| |
Collapse
|
10
|
Song P, Xu W, Wang K, Zhang Y, Wang F, Zhou X, Shi H, Feng W. Cloning, expression and characterization of metalloproteinase HypZn from Aspergillus niger. PLoS One 2021; 16:e0259809. [PMID: 34762700 PMCID: PMC8584677 DOI: 10.1371/journal.pone.0259809] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 10/26/2021] [Indexed: 11/18/2022] Open
Abstract
A predicted metalloproteinase gene, HypZn, was cloned from Aspergillus niger CGMCC 3.7193 and expressed in Pichia pastoris GS115, and the physicochemical characteristics of recombinant HypZn were investigated after separation and purification. The results showed that the specific activity of the purified HypZn reached 1859.2 U/mg, and the optimum temperature and pH value of HypZn were 35°C and 7.0, respectively. HypZn remained stable both at 40°C and at pH values between 5.0 and 8.0. The preferred substrate of HypZn was soybean protein isolates, and the Km and Vmax values were 21.5 μmol/mL and 4926.6 μmol/(mL∙min), respectively. HypZn was activated by Co2+ and Zn2+ and inhibited by Cu2+ and Fe2+. The degree of soybean protein isolate hydrolysis reached 14.7%, and the hydrolysates were of uniform molecular weight. HypZn could tolerate 5000 mM NaCl and completely lost its activity after 30 min at 50°C. The enzymological characterizations indicated that HypZn has great application potential in the food industry, especially in fermented food processing.
Collapse
Affiliation(s)
- Peng Song
- School of Life Sciences, Liaocheng University, Liaocheng, China
| | - Wei Xu
- School of Life Sciences, Liaocheng University, Liaocheng, China
| | - Kuiming Wang
- School of Life Sciences, Liaocheng University, Liaocheng, China
| | - Yang Zhang
- School of Life Sciences, Liaocheng University, Liaocheng, China
| | - Fei Wang
- School of Life Sciences, Liaocheng University, Liaocheng, China
| | - Xiuling Zhou
- School of Life Sciences, Liaocheng University, Liaocheng, China
| | - Haiying Shi
- School of Life Sciences, Liaocheng University, Liaocheng, China
| | - Wei Feng
- School of Life Sciences, Liaocheng University, Liaocheng, China
| |
Collapse
|
11
|
Hernández-Corroto E, Sánchez-Milla M, Sánchez-Nieves J, de la Mata FJ, Marina ML, García MC. Immobilization of thermolysin enzyme on dendronized silica supports. Evaluation of its feasibility on multiple protein hydrolysis cycles. Int J Biol Macromol 2020; 165:2338-2348. [PMID: 33132126 DOI: 10.1016/j.ijbiomac.2020.10.138] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 10/14/2020] [Accepted: 10/16/2020] [Indexed: 11/17/2022]
Abstract
This work evaluates different dendrimer-silica supports for the immobilization of enzymes by multipoint covalent binding. Thermolysin was immobilized on two dendrimers (PAMAM and carbosilane) with two different generations (zero (G0) and first (G1)). Results were compared with a control, a silica support functionalized with a monofunctional molecule. Dendrimers increased the number of available sites to bind the enzyme. Despite the enzyme was immobilized on all supports, G0 dendrimers immobilized a 30% more enzyme than G1. Thermolysin immobilized on G0 dendrimer supports showed the highest activity and could be employed in three consecutive hydrolysis cycles. Optimal immobilization time was 1 h while optimal protein loading was 25 mg enzyme/100 mg support. Enzyme activity was promoted when using 5 mg of immobilized enzyme at 750 rpm, 60 °C, and 2 h of hydrolysis. Under these conditions, the activity of thermolysin increased up to the 78% of the free enzyme activity. Kinetics of the hydrolysis reaction using the immobilized thermolysin was also studied and compared with the obtained using the free thermolysin. The addition of ZnCl2 and NaCl during the immobilization procedure increased thermolysin activity in the second (22% more) and in the third (14% more) hydrolysis clycles.
Collapse
Affiliation(s)
- Ester Hernández-Corroto
- Departamento de Química Analítica, Química Física e Ingeniería Química, Universidad de Alcalá, Ctra. Madrid-Barcelona Km. 33.600, 28871 Alcalá de Henares, Madrid, Spain
| | - María Sánchez-Milla
- Instituto de Investigación Química "Andrés M. del Río", Universidad de Alcalá, Ctra. Madrid-Barcelona Km. 33.600, 28871 Alcalá de Henares, Madrid, Spain; Departamento de Química Orgánica y Química Inorgánica, Universidad de Alcalá (IRYCIS), Campus Universitario, 28871 Alcalá de Henares, Madrid, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Javier Sánchez-Nieves
- Instituto de Investigación Química "Andrés M. del Río", Universidad de Alcalá, Ctra. Madrid-Barcelona Km. 33.600, 28871 Alcalá de Henares, Madrid, Spain; Departamento de Química Orgánica y Química Inorgánica, Universidad de Alcalá (IRYCIS), Campus Universitario, 28871 Alcalá de Henares, Madrid, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - F Javier de la Mata
- Instituto de Investigación Química "Andrés M. del Río", Universidad de Alcalá, Ctra. Madrid-Barcelona Km. 33.600, 28871 Alcalá de Henares, Madrid, Spain; Departamento de Química Orgánica y Química Inorgánica, Universidad de Alcalá (IRYCIS), Campus Universitario, 28871 Alcalá de Henares, Madrid, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - M Luisa Marina
- Departamento de Química Analítica, Química Física e Ingeniería Química, Universidad de Alcalá, Ctra. Madrid-Barcelona Km. 33.600, 28871 Alcalá de Henares, Madrid, Spain; Instituto de Investigación Química "Andrés M. del Río", Universidad de Alcalá, Ctra. Madrid-Barcelona Km. 33.600, 28871 Alcalá de Henares, Madrid, Spain
| | - M Concepción García
- Departamento de Química Analítica, Química Física e Ingeniería Química, Universidad de Alcalá, Ctra. Madrid-Barcelona Km. 33.600, 28871 Alcalá de Henares, Madrid, Spain; Instituto de Investigación Química "Andrés M. del Río", Universidad de Alcalá, Ctra. Madrid-Barcelona Km. 33.600, 28871 Alcalá de Henares, Madrid, Spain.
| |
Collapse
|
12
|
dos Reis SV, Beys-da-Silva WO, Tirloni L, Santi L, Seixas A, Termignoni C, da Silva MV, Macedo AJ. The extremophile Anoxybacillus sp. PC2 isolated from Brazilian semiarid region (Caatinga) produces a thermostable keratinase. J Basic Microbiol 2020; 60:809-815. [PMID: 32602226 PMCID: PMC11025368 DOI: 10.1002/jobm.202000186] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/26/2020] [Accepted: 06/16/2020] [Indexed: 02/03/2023]
Abstract
The aim of this study was to select and identify thermophilic bacteria from Caatinga biome (Brazil) able to produce thermoactive keratinases and characterize the keratinase produced by the selected isolate. After enrichment in keratin culture media, an Anoxybacillus caldiproteolyticus PC2 was isolated. This thermotolerant isolate presents a remarkable feature producing a thermostable keratinase at 60°C. The partially purified keratinase, identified as a thermolysin-like peptidase, was active at a pH range of 5.0-10.0 with maximal activity at a temperature range of 50-80°C. The optimal activity was observed at pH 7.0 and 50-60°C. These characteristics are potentially useful for biotechnological purposes such as processing and bioconversion of keratin.
Collapse
Affiliation(s)
- Sharon V. dos Reis
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Walter O. Beys-da-Silva
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Lucas Tirloni
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Lucélia Santi
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Adriana Seixas
- Departamento de Ciências Básicas da Saude, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Carlos Termignoni
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Márcia V. da Silva
- Departamento de Bioquímica, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Alexandre J. Macedo
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
13
|
Tarrahimofrad H, Meimandipour A, Arjmand S, Beigi Nassiri M, Jahangirian E, Tavana H, Zamani J, Rahimnahal S, Aminzadeh S. Structural and biochemical characterization of a novel thermophilic Coh01147 protease. PLoS One 2020; 15:e0234958. [PMID: 32574185 PMCID: PMC7310833 DOI: 10.1371/journal.pone.0234958] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 06/03/2020] [Indexed: 01/28/2023] Open
Abstract
Proteases play an essential role in living organisms and represent one of the largest groups of industrial enzymes. The aim of this work was recombinant production and characterization of a newly identified thermostable protease 1147 from thermophilum indigenous Cohnella sp. A01. Phylogenetic tree analysis showed that protease 1147 is closely related to the cysteine proteases from DJ-1/ThiJ/PfpI superfamily, with the conserved catalytic tetrad. Structural prediction using MODELLER 9v7 indicated that protease 1147 has an overall α/β sandwich tertiary structure. The gene of protease 1147 was cloned and expressed in Escherichia coli (E. coli) BL21. The recombinant protease 1147 appeared as a homogenous band of 18 kDa in SDS-PAGE, which was verified by western blot and zymography. The recombinant protein was purified with a yield of approximately 88% in a single step using Ni-NTA affinity chromatography. Furthermore, a rapid one-step thermal shock procedure was successfully implemented to purify the protein with a yield of 73%. Using casein as the substrate, Km, and kcat, kcat/Km values of 13.72 mM, 3.143 × 10−3 (s-1), and 0.381 (M-1 S-1) were obtained, respectively. The maximum protease activity was detected at pH = 7 and 60°C with the inactivation rate constant (kin) of 2.10 × 10–3 (m-1), and half-life (t1/2) of 330.07 min. Protease 1147 exhibited excellent stability to organic solvent, metal ions, and 1% SDS. The protease activity was significantly enhanced by Tween 20 and Tween 80 and suppressed by cysteine protease specific inhibitors. Docking results and molecular dynamics (MD) simulation revealed that Tween 20 interacted with protease 1147 via hydrogen bonds and made the structure more stable. CD and fluorescence spectra indicated structural changes taking place at 100°C, very basic and acidic pH, and in the presence of Tween 20. These properties make this newly characterized protease a potential candidate for various biotechnological applications.
Collapse
Affiliation(s)
- Hossein Tarrahimofrad
- Bioprocess Engineering Group, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
- Department of Animal Science and Food Technology, Agriculture Science and Natural Resources University Khouzestan, Ahwaz, Iran
| | - Amir Meimandipour
- Bioprocess Engineering Group, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Sareh Arjmand
- Protein Research Center, Shahid Beheshti University, G. C., Tehran, Iran
| | - Mohammadtaghi Beigi Nassiri
- Department of Animal Science and Food Technology, Agriculture Science and Natural Resources University Khouzestan, Ahwaz, Iran
| | - Ehsan Jahangirian
- Bioprocess Engineering Group, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Hossein Tavana
- Department of Biomedical Engineering, The University of Akron, Akron, OH, United States of America
| | - Javad Zamani
- Bioprocess Engineering Group, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Somayyeh Rahimnahal
- Bioprocess Engineering Group, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
- Department of Animal Science and Food Technology, Agriculture Science and Natural Resources University Khouzestan, Ahwaz, Iran
| | - Saeed Aminzadeh
- Bioprocess Engineering Group, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
- * E-mail:
| |
Collapse
|
14
|
Yu P, Wang X, Huang X, Ren Q, Yan T. Purification and characterization of a propanol-tolerant neutral protease from Bacillus sp. ZG20. Prep Biochem Biotechnol 2019; 49:718-726. [PMID: 31050583 DOI: 10.1080/10826068.2019.1605526] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A propanol-tolerant neutral protease was purified and characterized from Bacillus sp. ZG20 in this study. This protease was purified to homogeneity with a specific activity of 26,655 U/mg. The recovery rate and purification fold of the protease were 13.7% and 31.5, respectively. The SDS-PAGE results showed that the molecular weight of the protease was about 29 kDa. The optimal temperature and pH of the protease were 45 °C and 7.0, respectively. The protease exhibited a good thermal- and pH stability, and was tolerant to 50% propanol. Mg2+, Zn2+, K+, Na+ and Tween-80 could improve its activity. The calculated Km and Vmax values of the protease towards α-casein were 12.74 mg/mL and 28.57 µg/(min mL), respectively. This study lays a good foundation for the future use of the neutral protease from Bacillus sp. ZG20.
Collapse
Affiliation(s)
- Ping Yu
- a College of Food Science and Biotechnology , Zhejiang Gongshang University , Hangzhou , People's Republic of China
| | - Xinxin Wang
- a College of Food Science and Biotechnology , Zhejiang Gongshang University , Hangzhou , People's Republic of China
| | - Xingxing Huang
- a College of Food Science and Biotechnology , Zhejiang Gongshang University , Hangzhou , People's Republic of China
| | - Qian Ren
- a College of Food Science and Biotechnology , Zhejiang Gongshang University , Hangzhou , People's Republic of China
| | - Tingting Yan
- a College of Food Science and Biotechnology , Zhejiang Gongshang University , Hangzhou , People's Republic of China
| |
Collapse
|
15
|
Ao XL, Yu X, Wu DT, Li C, Zhang T, Liu SL, Chen SJ, He L, Zhou K, Zou LK. Purification and characterization of neutral protease from Aspergillus oryzae Y1 isolated from naturally fermented broad beans. AMB Express 2018; 8:96. [PMID: 29896640 PMCID: PMC5997607 DOI: 10.1186/s13568-018-0611-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 05/12/2018] [Indexed: 11/10/2022] Open
Abstract
The strain Y1, with a notably high production of neutral protease, was isolated from naturally fermented broad beans and subsequently identified as Aspergillus oryzae, through the analysis of its morphology characteristics and 18S rDNA sequence. Naturally fermented broad beans are the main raw material in Sichuan broad-bean sauce. The neutral protease from Aspergillus oryzae Y1 was purified using ammonium sulphate precipitation and DEAE-Sepharose Fast Flow chromatography, which resulted in a 10.0-fold increase in the specific activity (2264.3 U/mg) and a recovery rate of 21%. The estimated molecular mass of the purified protease was approximately 45 kDa. The optimal pH and temperature of the purified protease were 7.0 and 55 °C, respectively. The heat resistance of the purified protease was significantly higher than the commercial protease. The effect of metal ions on the activity of the purified protease approximated that of commercial neutral protease. Furthermore, the maximum hydrolysis rate (Vmax) and apparent Michaelis-Menten constant (Km) values of the purified protease were 256.4103 μg/mL min and 20.0769 mg/mL, respectively. The purified protease had a higher affinity for the substrate than the commercial neutral protease. All the results suggest that this neutral protease exhibits the potential for application in industry due to its good resistance to high temperatures and wide range of acids and bases.
Collapse
Affiliation(s)
- Xiao-lin Ao
- Sichuan Agricultural University, Xinkang Road 46, Yaan, 625014 Sichuan China
| | - Xi Yu
- Sichuan Agricultural University, Xinkang Road 46, Yaan, 625014 Sichuan China
| | - Ding-tao Wu
- Sichuan Agricultural University, Xinkang Road 46, Yaan, 625014 Sichuan China
| | - Chao Li
- Sichuan Agricultural University, Xinkang Road 46, Yaan, 625014 Sichuan China
| | - Tong Zhang
- Sichuan Agricultural University, Xinkang Road 46, Yaan, 625014 Sichuan China
| | - Shu-liang Liu
- Sichuan Agricultural University, Xinkang Road 46, Yaan, 625014 Sichuan China
| | - Shu-juan Chen
- Sichuan Agricultural University, Xinkang Road 46, Yaan, 625014 Sichuan China
| | - Li He
- Sichuan Agricultural University, Xinkang Road 46, Yaan, 625014 Sichuan China
| | - Kang Zhou
- Sichuan Agricultural University, Xinkang Road 46, Yaan, 625014 Sichuan China
| | - Li-kou Zou
- Sichuan Agricultural University, Xinkang Road 46, Yaan, 625014 Sichuan China
| |
Collapse
|