1
|
Mehrotra S, Kaur N, Kaur S, Matharoo K, Pandey RK. From antibodies to nanobodies: The next frontier in cancer theranostics for solid tumors. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2025; 144:287-329. [PMID: 39978969 DOI: 10.1016/bs.apcsb.2024.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
The field of cancer therapeutics has witnessed significant advancements over the past decades, particularly with the emergence of immunotherapy. This chapter traces the transformative journey from traditional antibody-based therapies to the innovative use of nanobodies in the treatment and diagnosis of solid tumors. Nanobodies are the smallest fragments of antibodies derived from camelid immunoglobulins and have redefined the possibilities in cancer theranostics due to their unique structural and functional properties. We provide an overview of the biochemical characteristics of nanobodies that make them particularly suitable for theranostic applications, such as their small size, high stability, enhanced infiltration into the complex tumor microenvironment (TME) and ability to bind with high affinity to epitopes that are inaccessible to conventional antibodies. Further, their ease of modification and functionalization has enabled the development of nanobody-based drug conjugates/toxins and radiolabeled compounds for precise imaging and targeted radiotherapy. We elucidate how nanobodies are being served as valuable tools for prognostic assessment, enabling clinicians to predict disease aggressiveness, monitor treatment response, and stratify patients for personalized therapeutic interventions.
Collapse
Affiliation(s)
- Sanjana Mehrotra
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, Punjab, India.
| | - Navdeep Kaur
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Sukhpreet Kaur
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Kawaljit Matharoo
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, Punjab, India
| | | |
Collapse
|
2
|
Shoari A, Tahmasebi M, Khodabakhsh F, Cohan RA, Oghalaie A, Behdani M. Angiogenic biomolecules specific nanobodies application in cancer imaging and therapy; review and updates. Int Immunopharmacol 2022; 105:108585. [DOI: 10.1016/j.intimp.2022.108585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/18/2022] [Accepted: 01/25/2022] [Indexed: 11/05/2022]
|
3
|
Li X, Liu W, Li H, Wang X, Zhao Y. Capture and purification of an untagged nanobody by mixed weak cation chromatography and cation exchange chromatography. Protein Expr Purif 2021; 192:106030. [PMID: 34920133 DOI: 10.1016/j.pep.2021.106030] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 11/19/2022]
Abstract
Nanobodies (Nbs) are single-domain antibodies, which have potential application value in tumor-targeted therapy, immunotherapy, diagnostic probe, and molecular imaging. Typically, Nbs are captured by affinity chromatography via the addition of specific fusion tags at their N or C terminus. Nerve growth factor (NGF), which regulates the growth and development of peripheral and central neurons, maintains neuronal survival and plays a key role in both arthritis and acute and chronic pain. In this study, a method for capture and purification of an untagged Nb (anti-NGF Nb) by mixed weak cation chromatography and cation exchange chromatography was established. First, pH 4.0-5.0 was demonstrated to be the optimal loading condition for Capto MMC to capture anti-NGF by the design of experiments (DOE). Furthermore, high purity and yield products can be obtained at laboratory scale and commercial production scale by adjusting the protein pH. Additionally, direct capture of anti-NGF Nb using Capto MMC without adjusting anti-NGF Nb harvest pH was investigated. The anti-NGF Nb captured by Capto MMC was 67.2% yield, 94.5% monomer purity, and host cell protein (HCP) was reduced from 74,931 ppm to 484 ppm. The anti-NGF Nb that were further purified using Capto S ImpAct achieved 84.5% yield and 99.2% purity and 77 ppm of HCP. The scaling-up process was consistent with the results of the optimized process, further demonstrating the feasibility of this method. This outcome provides a highly promising and competitive alternative to affinity chromatography-based processing strategies for Nbs.
Collapse
Affiliation(s)
- Xin Li
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, School of Pharmacy, Yantai University, Yantai, 264005, PR China
| | - Wanhui Liu
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, School of Pharmacy, Yantai University, Yantai, 264005, PR China
| | - Heshui Li
- Shandong Boan Biotechnology Company Limited, PR China
| | - Xin Wang
- Shandong Boan Biotechnology Company Limited, PR China
| | - Yanyan Zhao
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, School of Pharmacy, Yantai University, Yantai, 264005, PR China.
| |
Collapse
|
4
|
Khirehgesh MR, Sharifi J, Akbari B, Mansouri K, Safari F, Soleymani B, Yari K. Design and construction a novel humanized biparatopic nanobody-based immunotoxin against epidermal growth factor receptor (EGFR). J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
5
|
Sharifi J, Khirehgesh MR, Akbari B, Soleymani B, Mansouri K. Paper Title "Hu7CG2: A Novel Humanized Anti-Epidermal Growth Factor Receptor (EGFR) Biparatopic Nanobody". Mol Biotechnol 2021; 63:525-533. [PMID: 33772436 DOI: 10.1007/s12033-021-00317-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/13/2021] [Indexed: 12/16/2022]
Abstract
Targeted therapy is an effective and appropriate approach with low side effects in cancer therapy compared with other treatment approaches. Epidermal growth factor receptor, EGFR, is a favorable biomarker as targeted therapy because it overexpresses in several cancers. Monoclonal antibodies are common agents for targeted therapy. Nanobody is the smallest format of monoclonal antibodies with unique properties that include hiding epitope targeting, high stability, low production cost, and ease of connection to other components. The main challenge in targeted therapy by monoclonal antibodies is their immunogenicity due to their non-human nature. In this study, we designed, constructed, and evaluated a novel humanized anti- EGFR biparatopic nanobody, hu7CG2. The hu7CG2 was designed by grafting the complementarity-determining regions of two camelid anti- EGFR nanobodies known as 7C12 and EG2 to a universal scaffold and then connected with a glycine-serine linker. The results of antigen-binding activity and cell viability assays showed that the hu7CG2 inhibited the growth of EGFR overexpression tumor cells. The data showed that hu7CG2 might be a useful tool in the targeting and treatment of tumor cells.
Collapse
Affiliation(s)
- Jafar Sharifi
- Department of Medical Biotechnology, School of Medical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Reza Khirehgesh
- Department of Medical Biotechnology, School of Medical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Bahman Akbari
- Department of Medical Biotechnology, School of Medical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran. .,Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Bijan Soleymani
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Kamran Mansouri
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
6
|
Sun S, Ding Z, Yang X, Zhao X, Zhao M, Gao L, Chen Q, Xie S, Liu A, Yin S, Xu Z, Lu X. Nanobody: A Small Antibody with Big Implications for Tumor Therapeutic Strategy. Int J Nanomedicine 2021; 16:2337-2356. [PMID: 33790553 PMCID: PMC7997558 DOI: 10.2147/ijn.s297631] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/16/2021] [Indexed: 12/15/2022] Open
Abstract
The development of monoclonal antibody treatments for successful tumor-targeted therapies took several decades. However, the efficacy of antibody-based therapy is still confined and desperately needs further improvement. Nanobodies are the recombinant variable domains of heavy-chain-only antibodies, with many unique properties such as small size (~15kDa), excellent solubility, superior stability, ease of manufacture, quick clearance from blood, and deep tissue penetration, which gain increasing acceptance as therapeutical tools and are considered also as building blocks for chimeric antigen receptors as well as for targeted drug delivery. Thus, one of the promising novel developments that may address the deficiency of monoclonal antibody-based therapies is the utilization of nanobodies. This article provides readers the significant factors that the structural and biochemical properties of nanobodies and the research progress on nanobodies in the fields of tumor treatment, as well as their application prospect.
Collapse
Affiliation(s)
- Shuyang Sun
- International Nanobody Research Center, Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
- School of Stomatology, Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
| | - Ziqiang Ding
- International Nanobody Research Center, Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
| | - Xiaomei Yang
- International Nanobody Research Center, Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
- School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
| | - Xinyue Zhao
- International Nanobody Research Center, Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
- School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
| | - Minlong Zhao
- International Nanobody Research Center, Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
- School of Stomatology, Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
| | - Li Gao
- International Nanobody Research Center, Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
- School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
| | - Qu Chen
- International Nanobody Research Center, Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
- School of Stomatology, Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
| | - Shenxia Xie
- International Nanobody Research Center, Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
- Department of Pharmacology, Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
| | - Aiqun Liu
- International Nanobody Research Center, Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
| | - Shihua Yin
- International Nanobody Research Center, Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
| | - Zhiping Xu
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, QLD, 4072, Australia
| | - Xiaoling Lu
- International Nanobody Research Center, Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
- School of Stomatology, Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
| |
Collapse
|
7
|
Xu Z, Qiu C, Wen B, Wang S, Zhu L, Zhao L, Li H. A bispecific nanobody targeting the dimerization interface of epidermal growth factor receptor: Evidence for tumor suppressive actions in vitro and in vivo. Biochem Biophys Res Commun 2021; 548:78-83. [PMID: 33636638 DOI: 10.1016/j.bbrc.2021.02.059] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 02/14/2021] [Indexed: 12/30/2022]
Abstract
Targeting the dimer interface for the epidermal growth factor receptor (EGFR) that is highly conserved in the structure and directly involved in dimerization may solve the resistance problem that plagues anti-EGFR therapy. Heavy chain single domain antibodies have promising prospects as therapeutic antibodies. A bispecific nanobody was constructed based on previously screened humanized nanobodies that target the β-loop at the EGFR dimer interface, an anti-FcγRIIIa (CD16) of natural killer cells (NK) nanobodies and anti-human serum albumin (HSA) nanobodies. The target gene was effectively expressed and secreted while controlled by promoter GAP in Pichia pastoris X33, and the expressed product was purified with a cation exchange and nickel chelation chromatography. The bispecific nanobody specifically bound to the surfaces of EGFR-overexpressed human epidermal carcinoma A431 cells and effectively inhibited tumor cell growth both in vitro and in vivo. In the A431 cell nude mouse xenograft model, the growth inhibition effect from the bispecific nanobody was significantly increased with the assistance of peripheral blood mononuclear cells (PBMCs), which was consistent with the results obtained in vitro, suggesting that there was an antibody-dependent cell-mediated cytotoxicity (ADCC) effect. In addition, the intraperitoneal administration of bispecific nanobodies effectively reached tumor tissues in the shoulder dorsal region, but in significantly less distributed quantities than EGFR Dimer Nb77. To conclude, a bispecific nanobody targeting the EGFR dimer interface with ADCC effect was successfully constructed.
Collapse
Affiliation(s)
- Zhimin Xu
- Guangdong Provincial Key Laboratory for Biotechnology Candidate Drug Research, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Chuangnan Qiu
- Guangdong Provincial Key Laboratory for Biotechnology Candidate Drug Research, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Biyan Wen
- Guangdong Provincial Key Laboratory for Biotechnology Candidate Drug Research, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Shuang Wang
- Guangdong Provincial Key Laboratory for Biotechnology Candidate Drug Research, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Linfeng Zhu
- Guangdong Provincial Key Laboratory for Biotechnology Candidate Drug Research, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Lin Zhao
- Guangdong Provincial Key Laboratory for Biotechnology Candidate Drug Research, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Huangjin Li
- Guangdong Provincial Key Laboratory for Biotechnology Candidate Drug Research, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| |
Collapse
|
8
|
Xi X, Sun W, Su H, Zhang X, Sun F. Identification of a novel anti-EGFR nanobody by phage display and its distinct paratope and epitope via homology modeling and molecular docking. Mol Immunol 2020; 128:165-174. [PMID: 33130376 DOI: 10.1016/j.molimm.2020.10.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/06/2020] [Accepted: 10/18/2020] [Indexed: 02/07/2023]
Abstract
Since EGFR is an important and effective target for tumor therapy in the clinic. Several monoclonal antibodies and nanobodies were proved to target domain III of EGFR. Regarding the increased attention on nanobodies, the present study aimed to generate nanobodies specifically against domain III. After camel immunization, a gene repertoire of sdAb fragments with a diversity of 3×109 clones was produced. Following the construction of two sdAb phage display libraries, the successful epitope binning was carried out to identify the nanobody with the designated epitope. Modelling of the identified nanobody and molecular docking studies illustrated the paratope and epitope. Docking analysis revealed that the paratope focused on CDR2 loop of the identified nanobody. The identified nanobody potently cover part of the epitope of Matuzumab and Nb 9G8, which indicated that it blocked EGFR by preventing dimerization of the receptors.
Collapse
Affiliation(s)
- Xi Xi
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, Jilin, China
| | - Weihan Sun
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, Jilin, China
| | - Hang Su
- Practice Innovations Center, Changchun University of Chinese Medicine, Changchun, China
| | - Xitian Zhang
- Changchun Intellicrown Pharmaceutical Co., Ltd, No. 1688 Jichang Road, Changchun, 130507, Jilin, China
| | - Fei Sun
- Institute of Frontier Medical Science, Jilin University, No. 1163 Xinmin Street, Changchun, 130021, Jilin, China.
| |
Collapse
|
9
|
Yang EY, Shah K. Nanobodies: Next Generation of Cancer Diagnostics and Therapeutics. Front Oncol 2020; 10:1182. [PMID: 32793488 PMCID: PMC7390931 DOI: 10.3389/fonc.2020.01182] [Citation(s) in RCA: 175] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 06/10/2020] [Indexed: 12/14/2022] Open
Abstract
The development of targeted medicine has greatly expanded treatment options and spurred new research avenues in cancer therapeutics, with monoclonal antibodies (mAbs) emerging as a prevalent treatment in recent years. With mixed clinical success, mAbs still hold significant shortcomings, as they possess limited tumor penetration, high manufacturing costs, and the potential to develop therapeutic resistance. However, the recent discovery of “nanobodies,” the smallest-known functional antibody fragment, has demonstrated significant translational potential in preclinical and clinical studies. This review highlights their various applications in cancer and analyzes their trajectory toward their translation into the clinic.
Collapse
Affiliation(s)
- Emily Y Yang
- Center for Stem Cell Therapeutics and Imaging, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, United States.,Departments of Neurosurgery, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, United States
| | - Khalid Shah
- Center for Stem Cell Therapeutics and Imaging, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, United States.,Departments of Neurosurgery, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, United States.,Harvard Stem Cell Institute, Harvard University, Cambridge, MA, United States
| |
Collapse
|
10
|
Lin Y, Chen Z, Hu C, Chen ZS, Zhang L. Recent progress in antitumor functions of the intracellular antibodies. Drug Discov Today 2020; 25:1109-1120. [DOI: 10.1016/j.drudis.2020.02.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 02/10/2020] [Accepted: 02/20/2020] [Indexed: 02/07/2023]
|
11
|
Wen B, Zhao L, Wang Y, Qiu C, Xu Z, Huang K, Zhu H, Li Z, Li H. Nanobodies targeting the interaction interface of programmed death receptor 1 (PD-1)/PD-1 ligand 1 (PD-1/PD-L1). Prep Biochem Biotechnol 2019; 50:252-259. [PMID: 31799894 DOI: 10.1080/10826068.2019.1692217] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Targeting the interaction interface is an effective strategy to obtain programmed death receptor 1 (PD-1)/PD-1 ligand 1 (PD-L1) nanobody blockers. To validate this strategy, the interaction interface between PD-1 and the PD-L1 extracellular domain were analyzed using Cn3D 4.1. The peptide PD-1125-136 located at the interface of PD-1 was selected as the antigen to screen nanobodies from a humanized nanobody phage display library. Six different nanobodies were screened, with molecular weights of 12 ∼ 13 kDa, excluding a single basic protein. The nanobody with the longest CDR3 region, termed PD-1-Nb-B20, was selected for further analysis. For mass production, the C-terminal His6-tagged nanobody coding sequence was optimized and cloned into pET-21b for over-expression under the T7 promoter in Escherichia coli BL21 (DE3). PD-1-Nb-B20 was expressed and pancreatic adenocarcinoma cells BxPC-3 over-expressing PD-L1 were selected for nanobody competitive inhibition assays. The purified nanobodies significantly inhibited PD-1 binding to the surface of target cells, indicating their ability to block the PD-1/PD-L1 interaction.
Collapse
Affiliation(s)
- Biyan Wen
- Guangdong Provincial Key Laboratory of Biotechnology Candidate Drug Research, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, Guangdong, P. R. China
| | - Lin Zhao
- Guangdong Provincial Key Laboratory of Biotechnology Candidate Drug Research, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, Guangdong, P. R. China
| | - Yuchu Wang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong, P. R. China
| | - Chuangnan Qiu
- Guangdong Provincial Key Laboratory of Biotechnology Candidate Drug Research, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, Guangdong, P. R. China
| | - Zhimin Xu
- Guangdong Provincial Key Laboratory of Biotechnology Candidate Drug Research, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, Guangdong, P. R. China
| | - Kunling Huang
- Guangdong Provincial Key Laboratory of Biotechnology Candidate Drug Research, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, Guangdong, P. R. China
| | - He Zhu
- Guangdong Provincial Key Laboratory of Biotechnology Candidate Drug Research, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, Guangdong, P. R. China
| | - Zemin Li
- Guangdong Provincial Key Laboratory of Biotechnology Candidate Drug Research, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, Guangdong, P. R. China
| | - Huangjin Li
- Guangdong Provincial Key Laboratory of Biotechnology Candidate Drug Research, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, Guangdong, P. R. China
| |
Collapse
|