1
|
Liu Y, Andin VC, Chor WK, Gunasekaran B, Chong CM, Lee PT, Loh JY. A preliminary study on the effects of substituting fishmeal with defatted black soldier fly (Hermetia illucens) larval meal on Asian seabass (Lates calcarifer) juveniles: Growth performance, feed efficiency, nutrient composition, disease resistance, and economic returns. JOURNAL OF FISH BIOLOGY 2024; 105:1681-1693. [PMID: 39175254 DOI: 10.1111/jfb.15908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 08/24/2024]
Abstract
This study aims to develop an alternative aquafeed derived from insect meal for Lates calcarifer juveniles, with the objectives of exploring the physiological performance, biological parameters, and economic analysis of substituting fishmeal (FM) with defatted black soldier fly (Hermetia illucens) larvae (BSFL) as part of the diet of L. calcarifer juveniles. Five practical diets were formulated to include 0% (BSFL0, serves as control group), 5% (BSFL5), 10% (BSFL10), 15% (BSFL15), and 20% (BSFL20) of BSFL meal, partially or fully replacing FM, respectively. Each diet was randomly assigned to triplicate groups of 30 fish (10.70 ± 0.07 g) per tank (300 L). The fish were fed twice daily to apparent satiation. A 56-day feeding trial was conducted to evaluate the impacts of defatted BSFL meal replacing FM on the growth performance, feed efficiency, composition analysis of fish muscle, cumulative mortality rate challenged with Vibrio parahaemolyticus, and economic returns of L. calcarifer. These results show that differences in weight gain and specific growth rate among the different treatments were statistically significant (p < 0.05), except for the absence of significant variation (p < 0.05) between BSFL0 and BSFL5, and followed by BSFL10 > BSFL0 > BSFL5 > BSFL15 > BSFL20. However, the feed conversion ratio and protein efficiency ratio showed the opposite trend as above. Although the diets experienced a decline in crude protein content and an increase in crude fat content with the increasing proportion of BSFL substituting FM, the crude protein and fat content of fish muscle were only slightly influenced. It is worth mentioning that levels of nonessential amino acids, delicious amino acids, saturated fatty acids, omega-6, omega-9 in BSFL10 group all showed an increase compared with the control group. After a 7-day challenge test with V. parahaemolyticus, the cumulative mortality rates of the BSFL5 and BSFL10 groups, respectively, dropped to 5.20%, 5.28% compared to the control group's 16.88%; however, the mortality rates of BSFL15 (34.67%) and BSFL20 (41.77%) groups were found to be significantly (p < 0.05) increased. From an economic perspective, the incidence cost for each experimental group showed a trend as BSFL10 < BSFL0 < BSFL5 < BSFL15 < BSFL20, whereas the profit index in each treatment exhibited the opposite trend as above. It was concluded that low (5%) or moderate (10%) levels of BSFL substituting FM in aquaculture feed could improve the physiological performances, disease resistance, and economic returns of L. calcarifer. However, excessive substitution (>15%) leads to a negative effect. From an economic point of view, 10% inclusion of BSFL in practical diets is recommended for L. calcarifer juveniles.
Collapse
Affiliation(s)
- Yun Liu
- Health Science Center, Guangxi University of Science and Technology, Liuzhou, China
- Faculty of Applied Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - Victor Charlie Andin
- Marine Programme Conservation Department, World Wide Fund for Nature (WWF, Malaysia), Petaling Jaya, Malaysia
| | - Wei-Kang Chor
- Marine Programme Conservation Department, World Wide Fund for Nature (WWF, Malaysia), Petaling Jaya, Malaysia
| | | | - Chou-Min Chong
- Laboratory of Sustainable Aquaculture (AquaLab), International Institute of Aquaculture and Aquatic Sciences (I-AQUAS), Universiti Putra Malaysia, Port Dickson, Malaysia
| | - Po-Tsang Lee
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan
| | - Jiun-Yan Loh
- Faculty of Applied Sciences, UCSI University, Kuala Lumpur, Malaysia
- Tropical Futures Institute, James Cook University Singapore, Singapore, Singapore
| |
Collapse
|
2
|
Lai‐Foenander AS, Kuppusamy G, Manogoran J, Xu T, Chen Y, Tang SY, Ser H, Yow Y, Goh KW, Ming LC, Chuah L, Yap W, Goh B. Black soldier fly ( Hermetia illucens L.): A potential small mighty giant in the field of cosmeceuticals. Health Sci Rep 2024; 7:e2120. [PMID: 38831777 PMCID: PMC11144625 DOI: 10.1002/hsr2.2120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 04/04/2024] [Accepted: 04/27/2024] [Indexed: 06/05/2024] Open
Abstract
Background and Aims Natural products are widely used in the pharmaceutical and cosmetics industries due to their high-value bioactive compounds, which make for "greener" and more environmentally friendly ingredients. These natural compounds are also considered a safer alternative to antibiotics, which may result in antibiotic resistance as well as unfavorable side effects. The development of cosmeceuticals, which combine the cosmetic and pharmaceutical fields to create skincare products with therapeutic value, has increased the demand for unique natural resources. The objective of this review is to discuss the biological properties of extracts derived from larvae of the black soldier fly (BSF; Hermetia illucens), the appropriate extraction methods, and the potential of this insect as a novel active ingredient in the formulation of new cosmeceutical products. This review also addresses the biological actions of compounds originating from the BSF, and the possible association between the diets of BSF larvae and their subsequent bioactive composition. Methods A literature search was conducted using PubMed and Google Scholar to identify and evaluate the various biological properties of the BSF. Results One such natural resource that may be useful in the cosmeceutical field is the BSF, a versatile insect with numerous potential applications due to its nutrient content and scavenging behavior. Previous research has also shown that the BSF has several biological properties, including antimicrobial, antioxidant, anti-inflammatory, and wound healing effects. Conclusion Given the range of biological activities and metabolites possessed by the BSF, this insect may have the cosmeceutical potential to treat a number of skin pathologies.
Collapse
Affiliation(s)
- Ashley Sean Lai‐Foenander
- Biofunctional Molecule Exploratory Research Group, School of PharmacyMonash University MalaysiaBandar SunwayMalaysia
| | - Giva Kuppusamy
- Laboratory of Molecular Biology, Department of Research and DevelopmentGK Aqua Sdn Bhd, Port DicksonNegeri SembilanMalaysia
| | - Janaranjani Manogoran
- Laboratory of Molecular Biology, Department of Research and DevelopmentGK Aqua Sdn Bhd, Port DicksonNegeri SembilanMalaysia
| | - Tengfei Xu
- College of Pharmaceutical SciencesZhejiang UniversityHangzhouChina
| | - Yong Chen
- College of Pharmaceutical SciencesZhejiang UniversityHangzhouChina
| | - Siah Ying Tang
- Chemical Engineering Discipline, School of EngineeringMonash University Malaysia, Bandar SunwaySelangor Darul EhsanMalaysia
| | - Hooi‐Leng Ser
- Department of Biological SciencesSchool of Medical and Life Sciences, Sunway UniversityBandar SunwayMalaysia
| | - Yoon‐Yen Yow
- Department of Biological SciencesSchool of Medical and Life Sciences, Sunway UniversityBandar SunwayMalaysia
| | - Khang Wen Goh
- Faculty of Data Science and Information TechnologyINTI International UniversityNilaiMalaysia
| | - Long Chiau Ming
- Department of Medical SciencesSchool of Medical and Life Sciences, Sunway UniversityBandar SunwayMalaysia
| | - Lay‐Hong Chuah
- Biofunctional Molecule Exploratory Research Group, School of PharmacyMonash University MalaysiaBandar SunwayMalaysia
| | - Wei‐Hsum Yap
- School of BiosciencesTaylor's University, Subang JayaSelangorMalaysia
- Centre for Drug Discovery and Molecular Pharmacology (CDDMP)Faculty of Health and Medical Sciences (FHMS), Taylor's University, Subang JayaSelangorMalaysia
| | - Bey‐Hing Goh
- Biofunctional Molecule Exploratory Research Group, School of PharmacyMonash University MalaysiaBandar SunwayMalaysia
- College of Pharmaceutical SciencesZhejiang UniversityHangzhouChina
- Sunway Biofunctional Molecules Discovery Centre (SBMDC)School of Medical and Life Sciences, Sunway UniversitySunwayMalaysia
- Faculty of Health, Australian Research Centre in Complementary and Integrative MedicineUniversity of Technology SydneyUltimoNSWAustralia
| |
Collapse
|
3
|
Peng J, Li L, Wan Y, Yang Y, An X, Yuan K, Qiu Z, Jiang Y, Guo G, Shen F, Liang G. Molecular characterization and antimicrobial activity of cecropin family in Hermetia illucens. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 152:105111. [PMID: 38081402 DOI: 10.1016/j.dci.2023.105111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023]
Abstract
Antimicrobial peptides are potential alternatives to traditional antibiotics in the face of increasing bacterial resistance. Insects possess many antimicrobial peptides and have become a valuable source of novel and highly effective antimicrobial peptides. Hermetia illucens as a resource insect, for example, has the highest number of antimicrobial peptides of any dipteran. However, most antimicrobial peptides, especially cecropin, have not been comprehensively identified and have not been evaluated for their antimicrobial ability. In this study, we analyzed the localization and gene structure of 33 cecropin molecules in the H. illucens genome and evaluated their activity against common human pathogens. The results showed that 32 cecropin molecules were concentrated on 1 chromosome, most with 2 exons. More importantly, most of the cecropins had a good antibacterial effect against Gram-negative bacteria, and were not hemolytic. The minimum inhibitory concentration (MIC) of the cecropin designated H3 against E. coli was 4 μg/mL. The toxicity, killing time kinetics, and anti-biofilm activity of H3 were further investigated and confirmed its antimicrobial ability. Overall, H3 is a potential candidate for the development of new antimicrobials to treat severe infections caused by Gram-negative pathogens such as E. coli.
Collapse
Affiliation(s)
- Jian Peng
- Translational Medicine Research Center, Guizhou Medical University, Guiyang, 550025, Guizhou, People's Republic of China; Guizhou Institute of Precision Medicine, Affiliated Hospital of Guizhou Medical University, Guiyang, 550009, Guizhou, People's Republic of China; Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Cellular Immunotherapy Engineering Research Center of Guizhou Province, School of Biology and Engineering/School of Basic Medical Sciences, Guizhou Medical University, Guiyang, 550025, Guizhou, People's Republic of China
| | - Lu Li
- Guizhou Institute of Precision Medicine, Affiliated Hospital of Guizhou Medical University, Guiyang, 550009, Guizhou, People's Republic of China; Department of Intensive Care Unit, Affiliated Hospital of Guizhou Medical University, Guiyang, 550009, Guizhou, People's Republic of China
| | - Yan Wan
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Cellular Immunotherapy Engineering Research Center of Guizhou Province, School of Biology and Engineering/School of Basic Medical Sciences, Guizhou Medical University, Guiyang, 550025, Guizhou, People's Republic of China
| | - Yifan Yang
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Cellular Immunotherapy Engineering Research Center of Guizhou Province, School of Biology and Engineering/School of Basic Medical Sciences, Guizhou Medical University, Guiyang, 550025, Guizhou, People's Republic of China
| | - Xiaoqin An
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Cellular Immunotherapy Engineering Research Center of Guizhou Province, School of Biology and Engineering/School of Basic Medical Sciences, Guizhou Medical University, Guiyang, 550025, Guizhou, People's Republic of China
| | - Kexin Yuan
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Cellular Immunotherapy Engineering Research Center of Guizhou Province, School of Biology and Engineering/School of Basic Medical Sciences, Guizhou Medical University, Guiyang, 550025, Guizhou, People's Republic of China
| | - Zhilang Qiu
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Cellular Immunotherapy Engineering Research Center of Guizhou Province, School of Biology and Engineering/School of Basic Medical Sciences, Guizhou Medical University, Guiyang, 550025, Guizhou, People's Republic of China
| | - Yinhui Jiang
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Cellular Immunotherapy Engineering Research Center of Guizhou Province, School of Biology and Engineering/School of Basic Medical Sciences, Guizhou Medical University, Guiyang, 550025, Guizhou, People's Republic of China
| | - Guo Guo
- Translational Medicine Research Center, Guizhou Medical University, Guiyang, 550025, Guizhou, People's Republic of China
| | - Feng Shen
- Guizhou Institute of Precision Medicine, Affiliated Hospital of Guizhou Medical University, Guiyang, 550009, Guizhou, People's Republic of China; Department of Intensive Care Unit, Affiliated Hospital of Guizhou Medical University, Guiyang, 550009, Guizhou, People's Republic of China.
| | - Guiyou Liang
- Translational Medicine Research Center, Guizhou Medical University, Guiyang, 550025, Guizhou, People's Republic of China; Department of Cardiac Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550009, Guizhou, People's Republic of China.
| |
Collapse
|
4
|
She W, Xiao Q, Meng Y, Zhao P, Wu C, Huang F, Cai M, Zhang J, Yu Z, Ur Rehman K, Peng D, Zheng L. Isolated and identified pathogenic bacteria from black soldier fly larvae with "soft rot" reared in mass production facilities and its incidence characteristics. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 163:85-95. [PMID: 37003117 DOI: 10.1016/j.wasman.2023.03.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/07/2023] [Accepted: 03/19/2023] [Indexed: 06/19/2023]
Abstract
The black soldier fly larvae (BSFL) can transform organic waste into high-end proteins, lipids, chitin, biodiesel, and melanin at an industrial scale. But scaling up of its production capacity has also posed health risks to the insect itself. In this investigation, larval "soft rot" which is occurring in mass production facilities that cause larval developmental inhibition and a certain degree of death was reported. Responsible pathogen GX6 was isolated from BSFL with "soft rot" and identified to be Paenibacillus thiaminolyticus. No obvious impact on larval growth was observed when treated with GX6 spores, whereas mortality of 6-day-old BSFL increased up to 29.33% ± 2.05% when GX6 vegetative cells (1 × 106 cfu/g) were inoculated into the medium. Moreover, higher temperature further enhanced the BSFL mortality and suppressed larval development, but increasing substrate moisture showed the opposite effect. The middle intestine of infected larvae became swollen and transparent after dissection and examination. Transmission electron microscopy (TEM) observation indicated that GX6 had destroyed the peritrophic matrix and intestinal microvilli and damaged epithelial cells of larval gut. Furthermore, 16S rRNA gene sequencing analysis of intestinal samples revealed that gut microflora composition was significantly altered by GX6 infection as well. It can be noticed that Dysgonomonas, Morganella, Myroides, and Providencia bacteria became more numerous in the intestines of GX6-infected BSFL as compared to controls. This study will lay foundations for efficient control of "soft rot" and promote healthy development of the BSFL industry to contribute to organic waste management and circular economy.
Collapse
Affiliation(s)
- Wangjun She
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, PR China; Hubei Hongshan Laboratory, Wuhan, PR China
| | - Qi Xiao
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, PR China; Hubei Hongshan Laboratory, Wuhan, PR China
| | - Ying Meng
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, PR China; Hubei Hongshan Laboratory, Wuhan, PR China
| | - Peng Zhao
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, PR China; Hubei Hongshan Laboratory, Wuhan, PR China
| | - Chuanliang Wu
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, PR China; Hubei Hongshan Laboratory, Wuhan, PR China
| | - Feng Huang
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, PR China; Hubei Hongshan Laboratory, Wuhan, PR China
| | - Minmin Cai
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, PR China; Hubei Hongshan Laboratory, Wuhan, PR China
| | - Jibin Zhang
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, PR China; Hubei Hongshan Laboratory, Wuhan, PR China
| | - Ziniu Yu
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, PR China; Hubei Hongshan Laboratory, Wuhan, PR China
| | - Kashif Ur Rehman
- Department of Microbiology, Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur, Pakistan; DIL Deutsches Institut für Lebensmitteltechnik e. V. - German Institute of Food Technologies, Quakenbrück, Germany; Poultry Research Institute, Rawalpindi, Livestock and Dairy Development Department, Punjab, Pakistan
| | - Donghai Peng
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, PR China; Hubei Hongshan Laboratory, Wuhan, PR China
| | - Longyu Zheng
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, PR China; Hubei Hongshan Laboratory, Wuhan, PR China.
| |
Collapse
|
5
|
Bose U, Juhasz A, Stockwell S, Escobar-Correas S, Marcora A, Paull C, Broadbent JA, Wijffels G. Unpacking the Proteome and Metaproteome of the Black Soldier Fly Larvae: Efficacy and Complementarity of Multiple Protein Extraction Protocols. ACS OMEGA 2023; 8:7319-7330. [PMID: 36872973 PMCID: PMC9979371 DOI: 10.1021/acsomega.2c04462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
The larvae of the black soldier fly (BSF), Hermetia illucens (Diptera: Stratiomyidae), have demonstrated the ability to efficiently bioconvert organic waste into a sustainable source of food and feed, but fundamental biology remains to be discovered to exploit their full biodegradative potential. Herein, LC-MS/MS was used to assess the efficiency of eight differing extraction protocols to build foundational knowledge regarding the proteome landscape of both the BSF larvae body and gut. Each protocol yielded complementary information to improve BSF proteome coverage. Protocol 8 (liquid nitrogen, defatting, and urea/thiourea/chaps) was better than all other protocols for the protein extraction from larvae gut samples, and the exclusion of defatting steps yielded the highest number of proteins for the larval body samples. Protocol-specific functional annotation using protein level information has shown that the selection of extraction buffer can affect protein detection and their associated functional classes within the measured BSF larval gut proteome. A targeted LC-MRM-MS experiment was performed on the selected enzyme subclasses to assess the influence of protocol composition using peptide abundance measurements. Metaproteome analysis of the BSF larvae gut has uncovered the prevalence of two bacterial phyla: actinobacteria and proteobacteria. We envisage that using complementary extraction protocols and investigating the proteome from the BSF body and gut separately will expand the fundamental knowledge of the BSF proteome and thereby provide translational opportunities for future research to enhance their efficiency for waste degradation and contribution to the circular economy.
Collapse
Affiliation(s)
- Utpal Bose
- CSIRO
Agriculture and Food, 306 Carmody Road, St Lucia, Queensland 4067, Australia
- Australian
Research Council Centre of Excellence for Innovations in Peptide and
Protein Science, School of Science, Edith
Cowan University, Joondalup, Western Australia 6027, Australia
- School
of Pharmacy, The University of Queensland, Brisbane, Queensland 4067, Australia
| | - Angela Juhasz
- Australian
Research Council Centre of Excellence for Innovations in Peptide and
Protein Science, School of Science, Edith
Cowan University, Joondalup, Western Australia 6027, Australia
| | - Sally Stockwell
- CSIRO
Agriculture and Food, 306 Carmody Road, St Lucia, Queensland 4067, Australia
| | - Sophia Escobar-Correas
- CSIRO
Agriculture and Food, 306 Carmody Road, St Lucia, Queensland 4067, Australia
- Australian
Research Council Centre of Excellence for Innovations in Peptide and
Protein Science, School of Science, Edith
Cowan University, Joondalup, Western Australia 6027, Australia
- CSIRO
Agriculture and Food, Boggo Road, Dutton Park, Brisbane, Queensland 4001, Australia
| | - Anna Marcora
- School
of Pharmacy, The University of Queensland, Brisbane, Queensland 4067, Australia
| | - Cate Paull
- School
of Pharmacy, The University of Queensland, Brisbane, Queensland 4067, Australia
| | - James A. Broadbent
- CSIRO
Agriculture and Food, 306 Carmody Road, St Lucia, Queensland 4067, Australia
| | - Gene Wijffels
- CSIRO
Agriculture and Food, 306 Carmody Road, St Lucia, Queensland 4067, Australia
| |
Collapse
|
6
|
Quah Y, Tong SR, Bojarska J, Giller K, Tan SA, Ziora ZM, Esatbeyoglu T, Chai TT. Bioactive Peptide Discovery from Edible Insects for Potential Applications in Human Health and Agriculture. Molecules 2023; 28:molecules28031233. [PMID: 36770900 PMCID: PMC9921607 DOI: 10.3390/molecules28031233] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/11/2023] [Accepted: 01/16/2023] [Indexed: 01/31/2023] Open
Abstract
In the past decade, there has been fast-growing interest among researchers to discover bioactive peptides from edible insects and to evaluate their potential applications in the management of human, livestock, and plant health. This review summarizes current knowledge of insect-derived peptides and their potential role in tackling human health issues and solving agriculture problems by protecting crops and livestock against their pathogens. Numerous bioactive peptides have been identified from edible insect species, including peptides that were enzymatically liberated from insect proteins and endogenous peptides that occur naturally in insects. The peptides exhibited diverse bioactivities, encompassing antioxidant, anti-angiotensin-converting enzyme, anti-dipeptidyl peptidase-IV, anti-glucosidase, anti-lipase, anti-lipoxygenase, anti-cyclooxygenase, anti-obesity, and hepatoprotective activities. Such findings point to their potential contribution to solving human health problems related to inflammation, free radical damage, diabetes, hypertension, and liver damage, among others. Although most of the experiments were performed in vitro, evidence for the in vivo efficacy of some peptides is emerging. Evidence of the protective effects of insect-derived endogenous antimicrobial peptides in combating farm animal and plant pathogens is available. The ability of insect-derived endogenous neuropeptides to protect plants against herbivorous insects has been demonstrated as well. Nevertheless, the potency of peptides identified from insect protein hydrolysates in modulating livestock and plant health remains a knowledge gap to be filled.
Collapse
Affiliation(s)
- Yixian Quah
- Developmental and Reproductive Toxicology Research Group, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea
| | - Shi-Ruo Tong
- Department of Physical Science, Faculty of Applied Sciences, Tunku Abdul Rahman University of Management and Technology, Setapak, Kuala Lumpur 53300, Malaysia
| | - Joanna Bojarska
- Department of Chemistry, Technical University of Lodz, Zeromskiego 116, 90-924 Lodz, Poland
| | - Katrin Giller
- Institute of Agricultural Sciences, ETH Zurich, Universitätstrasse 2, 8092 Zurich, Switzerland
| | - Sheri-Ann Tan
- Department of Bioscience, Faculty of Applied Sciences, Tunku Abdul Rahman University of Management and Technology, Setapak, Kuala Lumpur 53300, Malaysia
| | - Zyta Maria Ziora
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Tuba Esatbeyoglu
- Department of Food Development and Food Quality, Institute of Food Science and Human Nutrition, Gottfried Wilhelm Leibniz University Hannover, Am Kleinen Felde 30, 30167 Hannover, Germany
| | - Tsun-Thai Chai
- Department of Chemical Science, Faculty of Science, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, Kampar 31900, Malaysia
- Center for Agriculture and Food Research, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, Kampar 31900, Malaysia
- Correspondence:
| |
Collapse
|
7
|
Dong B, Lin Y, Wang J, Du W, Sun C, Fu S, Wu T. Antibacterial activity of antimicrobial peptide gcDefb1 against foodborne pathogenic bacteria and its application in pork storage. Food Sci Biotechnol 2022; 31:597-605. [PMID: 35529682 PMCID: PMC9033914 DOI: 10.1007/s10068-022-01060-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 01/24/2023] Open
Abstract
Pork and its products are preferably contaminated by bacteria; thus, it is essential to develop low-cost, high-efficiency and biologically safe preservatives to prevent the growth of bacteria during storage. In the current study, grass carp β-defensin 1 (gcDefb1) was produced and purified from Pichia pastoris through the heterologous expression method. The in vitro antimicrobial assay demonstrated that yeast-derived gcDefb1 possesses a broad antibacterial spectrum, including both Gram-positive and -negative bacteria, and the MIC values against Escherichia coli ATCC 25,922 were as low as 30 μg/mL and showed no cytotoxicity or hemolytic activity. The bactericidal rate of gcDefb1 was less than 60 min by disrupting the cell membranes, and it inhibited the formation of bacterial biofilms. Moreover, gcDefb1 was used as a biopreservative for pork storage, indicating that the physicochemical and sensory qualities were improved. This study provides an efficient method to prepare and utilize gcDefb1 as a novel biopreservative. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-022-01060-9.
Collapse
Affiliation(s)
- Bin Dong
- Present Address: Shandong Provincial Engineering and Technology Research Center for Wild Plant Resources Development and Application of Yellow River Delta, College of Biological and Environmental Engineering, Binzhou University, 391 Huanghe 5th Road, Binzhou City, 256603 Shandong Province China
| | - Yanjun Lin
- Present Address: Shandong Provincial Engineering and Technology Research Center for Wild Plant Resources Development and Application of Yellow River Delta, College of Biological and Environmental Engineering, Binzhou University, 391 Huanghe 5th Road, Binzhou City, 256603 Shandong Province China
| | - Jun Wang
- Present Address: Shandong Provincial Engineering and Technology Research Center for Wild Plant Resources Development and Application of Yellow River Delta, College of Biological and Environmental Engineering, Binzhou University, 391 Huanghe 5th Road, Binzhou City, 256603 Shandong Province China
| | - Wen Du
- Present Address: Shandong Provincial Engineering and Technology Research Center for Wild Plant Resources Development and Application of Yellow River Delta, College of Biological and Environmental Engineering, Binzhou University, 391 Huanghe 5th Road, Binzhou City, 256603 Shandong Province China
| | - Chunlong Sun
- Present Address: Shandong Provincial Engineering and Technology Research Center for Wild Plant Resources Development and Application of Yellow River Delta, College of Biological and Environmental Engineering, Binzhou University, 391 Huanghe 5th Road, Binzhou City, 256603 Shandong Province China
| | - Shijun Fu
- Shandong Binzhou Animal Science and Veterinary Medicine Academy, Binzhou, China
| | - Tao Wu
- Present Address: Shandong Provincial Engineering and Technology Research Center for Wild Plant Resources Development and Application of Yellow River Delta, College of Biological and Environmental Engineering, Binzhou University, 391 Huanghe 5th Road, Binzhou City, 256603 Shandong Province China
| |
Collapse
|