1
|
Godoy RSM, Barbosa RC, Procópio TF, Costa BA, Jacobs-Lorena M, Martins GF. FMRF-related peptides in Aedes aegypti midgut: neuromuscular connections and enteric nervous system. Cell Tissue Res 2021; 385:585-602. [PMID: 33961128 PMCID: PMC9841599 DOI: 10.1007/s00441-021-03462-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 04/11/2021] [Indexed: 01/19/2023]
Abstract
FMRFamide-related peptides (FaRPs) are a class of neuropeptides that participate in a variety of physiological processes in invertebrates. They occur in nerves of stomatogastric ganglia and enteroendocrine cells of the insect digestive tract, where they may control muscle functions. However, their direct involvement in muscle function has never been shown in situ. We studied the relationship between FaRPs and midgut muscle during larval-pupal transition of the mosquito Aedes aegypti. In late L4, FaRP-positive neuronal extensions attach to the bundles of the external circular muscle layer, and muscle stem cells start to undergo mitosis in the internal circular layer. Thereafter, the external muscle layer degenerates, disappearing during early pupal development, and is completely absent in the adult mosquito. Our results indicate that FaRP-based neural signals are involved in the reorganization of the muscle fibers of the mosquito midgut during the larval-pupal transition. In addition to confirming FaRP involvement in muscle function, we show that the mosquito midgut muscles are largely innervated, and that circular and longitudinal muscle have specific neuron bodies associated with them.
Collapse
Affiliation(s)
- Raquel S. M. Godoy
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil,Fundação Oswaldo Cruz, Instituto René Rachou, Fiocruz, Belo Horizonte, Minas Gerais 30190-002, Brazil
| | - Renata C. Barbosa
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
| | - Thamara F. Procópio
- Departamento de Bioquímica e Fisiologia, Universidade Federal de Pernambuco, Recife, Pernambuco 50670-420, Brazil
| | - Breno A. Costa
- Fundação Oswaldo Cruz, Instituto René Rachou, Fiocruz, Belo Horizonte, Minas Gerais 30190-002, Brazil
| | - Marcelo Jacobs-Lorena
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology and Johns Hopkins Malaria Research Institute, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Gustavo F. Martins
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
| |
Collapse
|
2
|
Wegener C, Veenstra JA. Chemical identity, function and regulation of enteroendocrine peptides in insects. CURRENT OPINION IN INSECT SCIENCE 2015; 11:8-13. [PMID: 28285763 DOI: 10.1016/j.cois.2015.07.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 07/08/2015] [Accepted: 07/10/2015] [Indexed: 06/06/2023]
Abstract
How animals allocate energy and metabolic decisions are coordinated is a fundamental physiological question. Metabolic research is strongly driven by an increasing obesity rate in humans. For insects-which contain many pest species and disease vectors-the control of feeding is of agroeconomical and medical importance. Regulatory peptides have since long been in focus of metabolic research. In insects, major advances have been made recently, mostly due to research in the genetically tractable Drosophila melanogaster with focus on the central nervous system as a source of neuropeptides. Research on peptides produced by enteroendocrine cells remained peripheral, but this situation is about to change. This review highlights current knowledge and advances on the identity and role of enteroendocrine insect peptides.
Collapse
Affiliation(s)
- Christian Wegener
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, University of Würzburg, Würzburg, Germany.
| | - Jan A Veenstra
- University of Bordeaux, INCIA UMR 5287 CNRS, Talence, France
| |
Collapse
|
3
|
Clissold FJ, Kertesz H, Saul AM, Sheehan JL, Simpson SJ. Regulation of water and macronutrients by the Australian plague locust, Chortoicetes terminifera. JOURNAL OF INSECT PHYSIOLOGY 2014; 69:35-40. [PMID: 24975799 DOI: 10.1016/j.jinsphys.2014.06.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 06/19/2014] [Accepted: 06/19/2014] [Indexed: 06/03/2023]
Abstract
Nutritional outcomes for animals are best understood when the intake of multiple nutrients are considered together. The requirements for protein and carbohydrate and the consequences for development, growth and fitness when confined to sub-optimal amounts and ratios of these nutrients are well known for many herbivorous insects. Water is also essential for life, and it is known that herbivorous insects will actively ingest free water, have physiological mechanisms controlling thirst, and suffer fitness consequences if water is excessive or deficient in the diet. As herbivorous insects are thought to obtain the majority of their water from foliage, which can vary in protein, carbohydrate and water content, we investigated if the Australian plague locust, Chortoicetes terminifera, can select among complementary foods to attain a target intake across these three nutrient dimensions. Locusts demonstrated selection behaviour for protein, carbohydrate and water by eating non-randomly from different combinations of complementary foods. A ratio of P:C:H2O of 1:1.13:13.2 or 1(P+C): 6.2 H2O was ingested. Given that locusts strongly regulate water intake, and its importance as an essential resource, we suggest future studies consider the single and interactive influences of water, protein and carbohydrate, when evaluating herbivorous insect host choice and foraging decisions.
Collapse
Affiliation(s)
- Fiona J Clissold
- School of Biological Sciences, A08, The University of Sydney, NSW 2006, Australia; Charles Perkins Centre, The University of Sydney, NSW 2006, Australia.
| | - Helena Kertesz
- School of Biological Sciences, A08, The University of Sydney, NSW 2006, Australia
| | - Amelia M Saul
- School of Biological Sciences, A08, The University of Sydney, NSW 2006, Australia
| | - Julia L Sheehan
- School of Biological Sciences, A08, The University of Sydney, NSW 2006, Australia
| | - Stephen J Simpson
- School of Biological Sciences, A08, The University of Sydney, NSW 2006, Australia; Charles Perkins Centre, The University of Sydney, NSW 2006, Australia
| |
Collapse
|
4
|
Rőszer T, Kiss-Tóth ÉD. FMRF-amide is a glucose-lowering hormone in the snail Helix aspersa. Cell Tissue Res 2014; 358:371-83. [PMID: 25096715 DOI: 10.1007/s00441-014-1966-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 07/07/2014] [Indexed: 11/26/2022]
Abstract
Although glucose is metabolically the most important carbohydrate in almost all living organisms, still little is known about the evolution of the hormonal control of cellular glucose uptake. In this study, we identify Phe-Met-Arg-Phe-amide (FMRFa), also known as molluscan cardioexcitatory tetrapeptide, as a glucose-lowering hormone in the snail Helix aspersa. FMRFa belongs to an evolutionarily conserved neuropeptide family and is involved in the neuron-to-muscle signal transmission in the snail digestive system. This study shows that, beyond this function, FMRFa also has glucose-lowering activity. We found neuronal transcription of genes encoding FMRFa and its receptor and moreover the hemolymph FMRFa levels were peaking at metabolically active periods of the snails. In turn, hypometabolism of the dormant periods was associated with abolished FMRFa production. In the absence of FMRFa, the midintestinal gland ("hepatopancreas") cells were deficient in their glucose uptake, contributing to the development of glucose intolerance. Exogenous FMRFa restored the absorption of hemolymph glucose by the midintestinal gland cells and improved glucose tolerance in dormant snails. We show that FMRFa was released to the hemolymph in response to glucose challenge. FMRFa-containing nerve terminals reach the interstitial sinusoids between the chondroid cells in the artery walls. We propose that, in addition to the known sites of possible FMRFa secretion, these perivascular sinusoids serve as neurohemal organs and allow FMRFa release. This study suggests that in evolution, not only the insulin-like peptides have adopted the ability to increase cellular glucose uptake and can act as hypoglycemic hormones.
Collapse
Affiliation(s)
- Tamás Rőszer
- Department of General Zoology and Endocrinology, Faculty of Science, University of Ulm, Helmholtz Straße 8/1, 89081, Ulm, Germany,
| | | |
Collapse
|
5
|
Huang Y, Crim JW, Nuss AB, Brown MR. Neuropeptide F and the corn earworm, Helicoverpa zea: a midgut peptide revisited. Peptides 2011; 32:483-92. [PMID: 20869419 DOI: 10.1016/j.peptides.2010.09.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Revised: 09/10/2010] [Accepted: 09/10/2010] [Indexed: 01/06/2023]
Abstract
The neuropeptide Y family of peptides is implicated in the regulation of feeding across a broad range of animals, including insects. Among vertebrates, neuropeptide Y exerts its actions mainly centrally, whereas peptide YY and pancreatic polypeptide arise from digestive tissues. Among invertebrates, neuropeptide F (NPF) is the sole counterpart of the NPY family. Shared features of NPF sequences derived for Lepidoptera indicate that the midgut peptide (Hez-MP-I) of the corn earworm, Helicoverpa zea, characterized more than a decade ago, is a carboxyl fragment of a full-length NPF. An antibody to Hez-MP-I was used to characterize the peptide's distribution in tissues of larvae, pupae, and adults. Immunostaining demonstrated NPF-related material both in nervous tissues and in abundant endocrine cells of the midgut. Radioimmunoassay of Hez-MP-I in the head, midgut and hemolymph of fifth instar larvae revealed concentration changes corresponding to development and feeding state. As with the vertebrate homologs, NPF may arise both centrally and peripherally to modulate the physiology of feeding and digestion of Lepidoptera.
Collapse
Affiliation(s)
- Yongqin Huang
- Department of Cellular Biology, University of Georgia, 302B Franklin House, Athens, GA 30602, USA
| | | | | | | |
Collapse
|
6
|
Elliott KL, Chan KK, Teesch L, Clor O, Stay B. Identification of Phe-Gly-Leu-amide type allatostatin-7 in Reticulitermes flavipes: its localization in tissues and relation to juvenile hormone synthesis. Peptides 2009; 30:495-506. [PMID: 18652864 DOI: 10.1016/j.peptides.2008.06.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Revised: 06/25/2008] [Accepted: 06/25/2008] [Indexed: 10/21/2022]
Abstract
The allatostatins (ASTs), with a Tyr/Phe-Xaa-Phe-Gly-Leu/Ile-amide C-terminus, are neuropeptides that occur in many orders of insects, but are known to inhibit juvenile hormone (JH) synthesis by corpora allata (CA) only in cockroaches, crickets, and termites. 5 AST peptides with similar sequences to those of 6 species of cockroaches have been isolated and sequenced from extract of brain tissue of the termite Reticulitermes flavipes. The amino acid sequence of a 6th peptide, R. flavipes AST-7, determined by LC-MS/MS following HPLC fractionation of brain extract, is S-P-S-S-G-N-Q-R-L-Y-G-F-G-L-NH(2). The 8 terminal amino acids are identical to AST-7 of the cockroach Diploptera punctata. R. flavipes and D. punctata AST-7s inhibited JH synthesis by CA of both species equally and their affinity for antibody against D. punctata AST-7 is similar. Immunoreactivity of termite tissue with this antibody indicates neuro- and myomodulatory activity of the peptide in addition to its demonstrated allatostatic function. The density of AST immunostaining in axons within the CA of R. flavipes and the rate of JH synthesis by similar glands were negatively correlated. This is evidence that when AST is abundant in the glands it is being released in vivo to limit JH production.
Collapse
Affiliation(s)
- Karen L Elliott
- Department of Biology, University of Iowa, Dubuque Street, Iowa Avenue, Iowa City, IA 52242, United States
| | | | | | | | | |
Collapse
|
7
|
Haselton AT, Yin CM, Stoffolano JG. FMRFamide-like immunoreactivity in the central nervous system and alimentary tract of the non-hematophagous blow fly, Phormia regina, and the hematophagous horse fly, Tabanus nigrovittatus. JOURNAL OF INSECT SCIENCE (ONLINE) 2008; 8:1-17. [PMID: 20302523 PMCID: PMC3062497 DOI: 10.1673/031.008.6501] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2006] [Accepted: 12/10/2007] [Indexed: 05/29/2023]
Abstract
FMRFamide-related peptides (FaRPs) are a diverse and physiologically important class of neuropepeptides in the metazoa. In insects, FaRPs function as brain-gut neuropeptides and have been immunolocalized throughout the nervous system and alimentary tract where they have been shown to affect feeding behavior. The occurrence of FMRFamide-like immunoreactivity (FLI) was examined in the central nervous system and alimentary tract of non-hematophagous blow fly, Phormia regina Meigen (Diptera: Calliphoridae), and the hematophagous horse fly, Tabanus nigrovittatus Macquart (Diptera:Tabanidae). Although the central nervous system and alimentary anatomy differ between these two dipteran species, many aspects of FLI remain similar. FLI was observed throughout the central and stomatogastric nervous systems, foregut, and midgut in both flies. In the central nervous system, cells and processes with FLI occurred in the brain, subesophageal ganglion, and ventral nerve cord. FLI was associated with neurohemal areas of the brain and ventral nerve cord. A neurohemal plexus of fibers with FLI was present on the dorsal region of the thoracic central nervous system in both species. In the gut, processes with FLI innervated the crop duct, crop and anterior midgut. Endocrine cells with FLI were present in the posterior midgut. The distribution of FLI in these two flies, in spite of their different feeding habits, further supports the role of FaRPs as important components of the braingut neurochemical axis in these insects and implicates FaRPs as regulators of insect feeding physiology among divergent insect taxa.
Collapse
Affiliation(s)
- Aaron T Haselton
- Department of Biology, State University of New York at New Paltz, New Paltz, NY
| | - Chih-Ming Yin
- Department of Entomology, University of Massachusetts Amherst, Amherst MA
| | - John G Stoffolano
- Department of Entomology, University of Massachusetts Amherst, Amherst MA
| |
Collapse
|
8
|
Hill SR, Orchard I. Isolation and sequencing of two FMRFamide-related peptides from the gut of Locusta migratoria L. Peptides 2007; 28:1490-7. [PMID: 17707763 DOI: 10.1016/j.peptides.2007.06.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2006] [Revised: 06/02/2007] [Accepted: 06/04/2007] [Indexed: 10/23/2022]
Abstract
Two FMRFamide-related peptides (FaRPs) have been isolated and sequenced from the whole gut of Locusta migratoria L. Peptides were extracted from 500 locust whole guts and separated using reversed-phase high performance liquid chromatography (RP-HPLC). Fractions containing FMRFamide-like immunoreactive (FLI) material were identified using radioimmunoassay (RIA). Sequencing of fractions, using tandem mass spectrometry (MALDI-TOF MS/MS), revealed the myosuppressin previously isolated from the locust CNS, SchistoFLRFamide (PDVDHVFLRFamide), and a novel extended RFamide (LWENLRFamide). The isolation of SchistoFLRFamide from midgut tissue supports the hypothesis that this myosuppressin is released locally from FLI processes over the gut and/or from endocrine-like midgut cells to play a role in the regulation of digestion.
Collapse
Affiliation(s)
- Sharon R Hill
- Division of Chemical Ecology, Department of Crop Science, Swedish University of Agricultural Sciences, SE-230 53 Alnarp, Sweden.
| | | |
Collapse
|
9
|
Bede JC, McNeil JN, Tobe SS. The role of neuropeptides in caterpillar nutritional ecology. Peptides 2007; 28:185-96. [PMID: 17161504 DOI: 10.1016/j.peptides.2006.08.030] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2006] [Revised: 08/10/2006] [Accepted: 08/10/2006] [Indexed: 11/17/2022]
Abstract
Plant diet strongly impacts the fitness of insect herbivores. Immediately, we think of plant defensive compounds that may act as feeding deterrents or toxins. We are, probably, less aware that plants also influence insect growth and fecundity through their nutritional quality. However, most herbivores respond to their environment and select the diet which optimizes their growth and development. This regulation of nutritional balance may occur on many levels: through selecting and ingesting appropriate plant tissue and nutrient digestion, absorption and utilization. Here, we review evidence of how nutritional requirements, particularly leaf protein to digestible carbohydrate ratios, affect caterpillar herbivores. We propose a model where midgut endocrine cells assess and integrate hemolymph nutritional status and gut content and release peptides which influence digestive processes. Understanding the effects of diet on the insect herbivore is essential for the rational design and implementation of sustainable pest management practices.
Collapse
Affiliation(s)
- Jacqueline C Bede
- Department of Plant Science, McGill University, Ste-Anne-de-Bellevue, Que., Canada H9X 3V9.
| | | | | |
Collapse
|
10
|
Gallus L, Bottaro M, Ferrando S, Girosi L, Ramoino P, Tagliafierro G. Distribution of FMRFamide-like immunoreactivity in the alimentary tract and hindgut ganglia of the barnacle Balanus amphitrite (Cirripedia, Crustacea). Microsc Res Tech 2006; 69:636-41. [PMID: 16770768 DOI: 10.1002/jemt.20333] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In this study, the presence and distribution of FMRFamide-like immunoreactivity in the alimentary tract of barnacle Balanus amphitrite were investigated. A net of nerve fibers strongly immunoreactive to FMRFamide-like molecules was localized in the posterior midgut and hindgut. Positive varicose nerve terminals were also localized close to the circular muscle cells and, in the hindgut, close to the radial muscular fibers. Besides this nerve fibers network, one pair of contralateral ganglia was localized in the hindgut, each of them constituted by two strongly FMRFamide-labeled neurons and one nonlabeled neuron. Their immunoreactive axons directed toward the hindgut and posterior midgut suggest an involvement of FMRFamide-like substances in adult B. amphitrite gut motility. The hindgut associated ganglia of barnacles seem to correspond to the terminal abdominal ganglia of the other crustaceans. Since they are the only residual gut ganglia in the barnacle's reduced nervous system, we can hypothesize that gut motility needs a nervous system regulation partially independent of the central nervous system.
Collapse
Affiliation(s)
- Lorenzo Gallus
- Dipartimento per lo studio del Territorio e delle sue Risorse (DIPTERIS), Università di Genova, Corso Europa 26, I-16132, Italy.
| | | | | | | | | | | |
Collapse
|
11
|
Hill SR, Orchard I. In vitro analysis of the digestive enzymes amylase and alpha-glucosidase in the midguts of Locusta migratoria L. in response to the myosuppressin, SchistoFLRFamide. JOURNAL OF INSECT PHYSIOLOGY 2005; 51:1-9. [PMID: 15686640 DOI: 10.1016/j.jinsphys.2004.10.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2004] [Revised: 10/01/2004] [Accepted: 10/06/2004] [Indexed: 05/24/2023]
Abstract
We have investigated the effect of the locust myosuppressin, SchistoFLRFamide, on the activity of amylase and alpha-glucosidase in the midgut of 2-week old male locusts. Total enzyme activity in the lumen contents and tissue extracts of midguts responds to SchistoFLRFamide in a dose-dependent manner that appears to vary with the feeding state of the locust and duration of exposure to the peptide. Starvation for 24h prior to assessment alters the distribution of enzyme activity between the midgut lumen contents and tissue extracts in response to SchistoFLRFamide when compared with fed locusts. Duration of exposure to SchistoFLRFamide also alters the distribution of total amylase and alpha-glucosidase activity; as duration of exposure increases, lower concentrations of SchistoFLRFamide increase total enzyme activity in the lumen contents while decreasing total enzyme activity in the tissue extracts. We suggest that the minimum amino acid sequence in SchistoFLRFamide necessary to increase both amylase and alpha-glucosidase activity is DHVFLRFamide. We have determined that two other peptides endogenous to the locust, AFIRFamide and GQERNFLRFamide, increase amylase and alpha-glucosidase activity in midgut lumen contents.
Collapse
Affiliation(s)
- Sharon R Hill
- Department of Biology, University of Toronto at Mississauga, Mississauga, Ontario, Canada L5L 1C6.
| | | |
Collapse
|