1
|
Hui J, He D, Liu C, Shi P, Zhou R, Kang M, Liu Y, Gou Y, Wang B, Cheng S, Yang X, Pan C, Wei W, Zhang F. A large-scale multi-omics polygenic risk score analysis identified candidate risk locus associated with rheumatoid arthritis. Joint Bone Spine 2024; 92:105841. [PMID: 39732430 DOI: 10.1016/j.jbspin.2024.105841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 11/07/2024] [Accepted: 12/18/2024] [Indexed: 12/30/2024]
Abstract
OBJECTIVE This study aimed to investigate the associations of multi-omics polygenic risk score (PRS) and rheumatoid arthritis (RA) to identify potential genes/proteins and biological pathways. METHODS Based on multi-omics data from 48,813 participants in the INTERVAL cohort, we calculated multi-omics PRS for 13,646 mRNAs (RNASeq), 308 proteins (Olink), 2380 proteins (SomaScan), 726 metabolites (Metabolon), and 141 metabolites (Nightingale). Using the generalized linear model, we first evaluated the associations between multi-omics PRS and RA in 58,813 UK Biobank participants. The Gene Ontology (GO) project and Kyoto Encyclopedia of Genes and Genomes (KEGG) were performed to identify the functional pathways in RA. Furthermore, differential gene expression profile datasets were used to validate the identified genes/proteins in our study. RESULTS We identified 59 transcriptomics PRS and 29 proteomics PRS significantly associated with RA. Both proteomics and transcriptomic PRS identified HLA-DQA2 (RNASeq: OR=1.19, P=1.18×10-24; SomaScan: OR=1.24, P=4.43×10-27) and AGER (RNASeq: OR=0.91, P=4.18×10-4; SomaScan: OR=0.93, P=3.97×10-3) were significantly associated with RA. Proteomic PRS from different profiling platforms (SomaScan and Olink) identified a consistent association between TFF3 (SomaScan: OR=0.90, P=4.08×10-6; Olink: OR=0.93, P=4.87×10-3) and RA. The identified gene/proteins were mainly enriched in the NF-kappa B signaling pathway (hsa04064, P=5.06×10-5) and Cytokine-cytokine receptor interaction (hsa04060, P=2.49×10-4). In addition, a total of 12 candidate genes in our study were verified in two independent GEO datasets, such as FLOT1 and ABCF1. CONCLUSION Our findings provide novel insights into the involvement of identified genes/proteins and pathways in the pathogenesis of RA from multi-omics levels.
Collapse
Affiliation(s)
- Jingni Hui
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, No. 76 Yan Ta West Road, 710061 Xi'an, China
| | - Dan He
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, No. 76 Yan Ta West Road, 710061 Xi'an, China
| | - Chen Liu
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, No. 76 Yan Ta West Road, 710061 Xi'an, China
| | - Panxing Shi
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, No. 76 Yan Ta West Road, 710061 Xi'an, China
| | - Ruixue Zhou
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, No. 76 Yan Ta West Road, 710061 Xi'an, China
| | - Meijuan Kang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, No. 76 Yan Ta West Road, 710061 Xi'an, China
| | - Ye Liu
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, No. 76 Yan Ta West Road, 710061 Xi'an, China
| | - Yifan Gou
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, No. 76 Yan Ta West Road, 710061 Xi'an, China
| | - Bingyi Wang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, No. 76 Yan Ta West Road, 710061 Xi'an, China
| | - Shiqiang Cheng
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, No. 76 Yan Ta West Road, 710061 Xi'an, China
| | - Xuena Yang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, No. 76 Yan Ta West Road, 710061 Xi'an, China
| | - Chuyu Pan
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, No. 76 Yan Ta West Road, 710061 Xi'an, China
| | - Wenming Wei
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, No. 76 Yan Ta West Road, 710061 Xi'an, China
| | - Feng Zhang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, No. 76 Yan Ta West Road, 710061 Xi'an, China.
| |
Collapse
|
2
|
Wang M, Wu J, Lei S, Mo X. Genome-wide identification of RNA modification-related single nucleotide polymorphisms associated with rheumatoid arthritis. BMC Genomics 2023; 24:153. [PMID: 36973646 PMCID: PMC10045113 DOI: 10.1186/s12864-023-09227-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 03/06/2023] [Indexed: 03/29/2023] Open
Abstract
BACKGROUND RNA modification plays important roles in many biological processes, such as gene expression control. The aim of this study was to identify single nucleotide polymorphisms related to RNA modification (RNAm-SNPs) for rheumatoid arthritis (RA) as putative functional variants. METHODS We examined the association of RNAm-SNPs with RA in summary data from a genome-wide association study of 19,234 RA cases and 61,565 controls. We performed eQTL and pQTL analyses for the RNAm-SNPs to find associated gene expression and protein levels. Furthermore, we examined the associations of gene expression and circulating protein levels with RA using two-sample Mendelian randomization analysis methods. RESULTS A total of 160 RNAm-SNPs related to m6A, m1A, A-to-I, m7G, m5C, m5U and m6Am modifications were identified to be significantly associated with RA. These RNAm-SNPs were located in 62 protein-coding genes, which were significantly enriched in immune-related pathways. RNAm-SNPs in important RA susceptibility genes, such as PADI2, SPRED2, PLCL2, HLA-A, HLA-B, HLA-DRB1, HLA-DPB1, TRAF1 and TXNDC11, were identified. Most of these RNAm-SNPs showed eQTL effects, and the expression levels of 26 of the modifiable genes (e.g., PADI2, TRAF1, HLA-A, HLA-DRB1, HLA-DPB1 and HLA-B) in blood cells were associated with RA. Circulating protein levels, such as CFB, GZMA, HLA-DQA2, IL21, LRPAP1 and TFF3, were affected by RNAm-SNPs and were associated with RA. CONCLUSION The present study identified RNAm-SNPs in the reported RA susceptibility genes and suggested that RNAm-SNPs may affect RA risk by affecting the expression levels of corresponding genes and proteins.
Collapse
Affiliation(s)
- Mimi Wang
- Center for Genetic Epidemiology and Genomics, Department of Epidemiology, School of Public Health, Medical College of Soochow University, 199 Renai Road, Suzhou, Jiangsu, 215123, People's Republic of China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Jingyun Wu
- Center for Genetic Epidemiology and Genomics, Department of Epidemiology, School of Public Health, Medical College of Soochow University, 199 Renai Road, Suzhou, Jiangsu, 215123, People's Republic of China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Shufeng Lei
- Center for Genetic Epidemiology and Genomics, Department of Epidemiology, School of Public Health, Medical College of Soochow University, 199 Renai Road, Suzhou, Jiangsu, 215123, People's Republic of China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Xingbo Mo
- Center for Genetic Epidemiology and Genomics, Department of Epidemiology, School of Public Health, Medical College of Soochow University, 199 Renai Road, Suzhou, Jiangsu, 215123, People's Republic of China.
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Medical College of Soochow University, Suzhou, China.
| |
Collapse
|
3
|
Diny NL, Schonfeldova B, Shapiro M, Winder ML, Varsani-Brown S, Stockinger B. The aryl hydrocarbon receptor contributes to tissue adaptation of intestinal eosinophils in mice. J Exp Med 2022; 219:e20210970. [PMID: 35238865 PMCID: PMC8899390 DOI: 10.1084/jem.20210970] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 12/22/2021] [Accepted: 01/28/2022] [Indexed: 12/12/2022] Open
Abstract
Eosinophils are potent sources of inflammatory and toxic mediators, yet they reside in large numbers in the healthy intestine without causing tissue damage. We show here that intestinal eosinophils were specifically adapted to their environment and underwent substantial transcriptomic changes. Intestinal eosinophils upregulated genes relating to the immune response, cell-cell communication, extracellular matrix remodeling, and the aryl hydrocarbon receptor (AHR), a ligand-activated transcription factor with broad functions in intestinal homeostasis. Eosinophils from AHR-deficient mice failed to fully express the intestinal gene expression program, including extracellular matrix organization and cell junction pathways. AHR-deficient eosinophils were functionally impaired in the adhesion to and degradation of extracellular matrix, were more prone to degranulation, and had an extended life span. Lack of AHR in eosinophils had wider effects on the intestinal immune system, affecting the T cell compartment in nave and helminth-infected mice. Our study demonstrates that the response to environmental triggers via AHR partially shapes tissue adaptation of eosinophils in the small intestine.
Collapse
|
4
|
Heuer J, Heuer F, Stürmer R, Harder S, Schlüter H, Braga Emidio N, Muttenthaler M, Jechorek D, Meyer F, Hoffmann W. The Tumor Suppressor TFF1 Occurs in Different Forms and Interacts with Multiple Partners in the Human Gastric Mucus Barrier: Indications for Diverse Protective Functions. Int J Mol Sci 2020; 21:ijms21072508. [PMID: 32260357 PMCID: PMC7177788 DOI: 10.3390/ijms21072508] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 03/30/2020] [Accepted: 04/02/2020] [Indexed: 12/15/2022] Open
Abstract
TFF1 is a protective peptide of the Trefoil Factor Family (TFF), which is co-secreted with the mucin MUC5AC, gastrokine 2 (GKN2), and IgG Fc binding protein (FCGBP) from gastric surface mucous cells. Tff1-deficient mice obligatorily develop antropyloric adenoma and about 30% progress to carcinomas, indicating that Tff1 is a tumor suppressor. As a hallmark, TFF1 contains seven cysteine residues with three disulfide bonds stabilizing the conserved TFF domain. Here, we systematically investigated the molecular forms of TFF1 in the human gastric mucosa. TFF1 mainly occurs in an unusual monomeric form, but also as a homodimer. Furthermore, minor amounts of TFF1 form heterodimers with GKN2, FCGBP, and an unknown partner protein, respectively. TFF1 also binds to the mucin MUC6 in vitro, as shown by overlay assays with synthetic 125I-labeled TFF1 homodimer. The dominant presence of a monomeric form with a free thiol group at Cys-58 is in agreement with previous studies in Xenopus laevis and mouse. Cys-58 is likely highly reactive due to flanking acid residues (PPEEEC58EF) and might act as a scavenger for extracellular reactive oxygen/nitrogen species protecting the gastric mucosa from damage by oxidative stress, e.g., H2O2 generated by dual oxidase (DUOX).
Collapse
Affiliation(s)
- Jörn Heuer
- Institute of Molecular Biology and Medicinal Chemistry, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Franziska Heuer
- Institute of Molecular Biology and Medicinal Chemistry, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - René Stürmer
- Institute of Molecular Biology and Medicinal Chemistry, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Sönke Harder
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Hartmut Schlüter
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Nayara Braga Emidio
- Institute for Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Markus Muttenthaler
- Institute for Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
- Institute of Biological Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Dörthe Jechorek
- Institute of Pathology, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
| | - Frank Meyer
- Department of Surgery, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
| | - Werner Hoffmann
- Institute of Molecular Biology and Medicinal Chemistry, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
- Correspondence:
| |
Collapse
|
5
|
Trefoil Factor Family (TFF) Modules Are Characteristic Constituents of Separate Mucin Complexes in the Xenopus laevis Integumentary Mucus: In Vitro Binding Studies with FIM-A.1. Int J Mol Sci 2020; 21:ijms21072400. [PMID: 32244312 PMCID: PMC7177656 DOI: 10.3390/ijms21072400] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/20/2020] [Accepted: 03/26/2020] [Indexed: 02/06/2023] Open
Abstract
The skin of the frog Xenopus laeevis is protected from microbial infections by a mucus barrier that contains frog integumentary mucins (FIM)-A.1, FIM-B.1, and FIM-C.1. These gel-forming mucins are synthesized in mucous glands consisting of ordinary mucous cells and one or more cone cells at the gland base. FIM-A.1 and FIM-C.1 are unique because their cysteine-rich domains belong to the trefoil factor family (TFF). Furthermore, FIM-A.1 is unusually short (about 400 amino acid residues). In contrast, FIM-B.1 contains cysteine-rich von Willebrand D (vWD) domains. Here, we separate skin extracts by the use of size exclusion chromatography and analyze the distribution of FIM-A.1 and FIM-C.1. Two mucin complexes were detected, i.e., a high-molecular-mass Complex I, which contains FIM-C.1 and little FIM-A.1, whereas Complex II is of lower molecular mass and contains the bulk of FIM-A.1. We purified FIM-A.1 by a combination of size-exclusion chromatography (SEC) and anion-exchange chromatography and performed first in vitro binding studies with radioactively labeled FIM-A.1. Binding of 125I-labeled FIM-A.1 to the high-molecular-mass Complex I was observed. We hypothesize that the presence of FIM-A.1 in Complex I is likely due to lectin interactions, e.g., with FIM-C.1, creating a complex mucus network.
Collapse
|
6
|
Subcellular Localization of the TFF Peptides xP1 and xP4 in the Xenopus laevis Gastric/Esophageal Mucosa: Different Secretion Modes Reflecting Diverse Protective Functions. Int J Mol Sci 2020; 21:ijms21030761. [PMID: 31979419 PMCID: PMC7037415 DOI: 10.3390/ijms21030761] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/15/2020] [Accepted: 01/20/2020] [Indexed: 12/15/2022] Open
Abstract
The TFF peptides xP1 and xP4 from Xenopus laevis are orthologs of TFF1 and TFF2, respectively. xP1 is secreted as a monomer from gastric surface mucous cells and is generally not associated with mucins, whereas xP4 is a typical secretory peptide from esophageal goblet cells, and gastric mucous neck and antral gland cells tightly associated as a lectin with the ortholog of mucin MUC6. Both TFF peptides have diverse protective functions, xP1 as a scavenger for reactive oxygen species preventing oxidative damage and xP4 as a constituent of the water-insoluble adherent inner mucus barrier. Here, we present localization studies using immunofluorescence and immunoelectron microscopy. xP1 is concentrated in dense cores of secretory granules of surface mucous cells, whereas xP4 mixes with MUC6 in esophageal goblet cells. Of note, we observe two different types of goblet cells, which differ in their xP4 synthesis, and this is even visible morphologically at the electron microscopic level. xP4-negative granules are recognized by their halo, which is probably the result of shrinkage during the processing of samples for electron microscopy. Probably, the tight lectin binding of xP4 and MUC6 creates a crosslinked mucous network forming a stabile granule matrix, which prevents shrinkage.
Collapse
|
7
|
Znalesniak EB, Salm F, Hoffmann W. Molecular Alterations in the Stomach of Tff1-Deficient Mice: Early Steps in Antral Carcinogenesis. Int J Mol Sci 2020; 21:ijms21020644. [PMID: 31963721 PMCID: PMC7014203 DOI: 10.3390/ijms21020644] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/07/2020] [Accepted: 01/14/2020] [Indexed: 02/07/2023] Open
Abstract
TFF1 is a peptide of the gastric mucosa co-secreted with the mucin MUC5AC. It plays a key role in gastric mucosal protection and repair. Tff1-deficient (Tff1KO) mice obligatorily develop antropyloric adenoma and about 30% progress to carcinomas. Thus, these mice represent a model for gastric tumorigenesis. Here, we compared the expression of selected genes in Tff1KO mice and the corresponding wild-type animals (RT-PCR analyses). Furthermore, we systematically investigated the different molecular forms of Tff1 and its heterodimer partner gastrokine-2 (Gkn2) in the stomach (Western blot analyses). As a hallmark, a large portion of murine Tff1 occurs in a monomeric form. This is unexpected because of its odd number of seven cysteine residues. Probably the three conserved acid amino acid residues (EEE) flanking the 7th cysteine residue allow monomeric secretion. As a consequence, the free thiol of monomeric Tff1 could have a protective scavenger function, e.g., for reactive oxygen/nitrogen species. Furthermore, a minor subset of Tff1 forms a disulfide-linked heterodimer with IgG Fc binding protein (Fcgbp). Of special note, in Tff1KO animals a homodimeric form of Gkn2 was observed. In addition, Tff1KO animals showed strongly reduced Tff2 transcript and protein levels, which might explain their increased sensitivity to Helicobacter pylori infection.
Collapse
|
8
|
Popp J, Schicht M, Garreis F, Klinger P, Gelse K, Sesselmann S, Tsokos M, Etzold S, Stiller D, Claassen H, Paulsen F. Human Synovia Contains Trefoil Factor Family (TFF) Peptides 1-3 Although Synovial Membrane Only Produces TFF3: Implications in Osteoarthritis and Rheumatoid Arthritis. Int J Mol Sci 2019; 20:ijms20236105. [PMID: 31817054 PMCID: PMC6928748 DOI: 10.3390/ijms20236105] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 11/27/2019] [Accepted: 11/28/2019] [Indexed: 01/15/2023] Open
Abstract
Objective: Trefoil factor family peptide 3 (TFF3) has been shown to support catabolic functions in cases of osteoarthritis (OA). As in joint physiology and diseases such as OA, the synovial membrane (SM) of the joint capsule also plays a central role. We analyze the ability of SM to produce TFF compare healthy SM and its secretion product synovial fluid (SF) with SM and SF from patients suffering from OA or rheumatoid arthritis (RA). Methods: Real-time PCR and ELISA were used to measure the expression of TFFs in healthy SM and SM from patients suffering from OA or RA. For tissue localization, we investigated TFF1-3 in differently aged human SM of healthy donors by means of immunohistochemistry, real-time PCR and Western blot. Results: Only TFF3 but not TFF1 and -2 was expressed in SM from healthy donors as well as cases of OA or RA on protein and mRNA level. In contrast, all three TFFs were detected in all samples of SF on the protein level. No significant changes were observed for TFF1 at all. TFF2 was significantly upregulated in RA samples in comparison to OA samples. TFF3 protein was significantly downregulated in OA samples in comparison to healthy samples and cases of RA significantly upregulated compared to OA. In contrast, in SM TFF3 protein was not significantly regulated. Conclusion: The data demonstrate the production of TFF3 in SM. Unexpectedly, SF contains all three known TFF peptides. As neither articular cartilage nor SM produce TFF1 and TFF2, we speculate that these originate with high probability from blood serum.
Collapse
Affiliation(s)
- Judith Popp
- Friedrich Alexander University Erlangen-Nürnberg (FAU), Institute of Functional and Clinical Anatomy, 91054 Erlangen, Germany; (J.P.); (M.S.); (F.G.); (P.K.)
| | - Martin Schicht
- Friedrich Alexander University Erlangen-Nürnberg (FAU), Institute of Functional and Clinical Anatomy, 91054 Erlangen, Germany; (J.P.); (M.S.); (F.G.); (P.K.)
| | - Fabian Garreis
- Friedrich Alexander University Erlangen-Nürnberg (FAU), Institute of Functional and Clinical Anatomy, 91054 Erlangen, Germany; (J.P.); (M.S.); (F.G.); (P.K.)
| | - Patricia Klinger
- Friedrich Alexander University Erlangen-Nürnberg (FAU), Institute of Functional and Clinical Anatomy, 91054 Erlangen, Germany; (J.P.); (M.S.); (F.G.); (P.K.)
| | - Kolja Gelse
- University Hospital Erlangen, Department of Trauma Surgery, 91054 Erlangen, Germany;
| | - Stefan Sesselmann
- University of Applied Sciences Amberg-Weiden, Institute for Medical Engineering, 92637 Weiden, Germany;
| | - Michael Tsokos
- Charité-Universitätsmedizin Berlin, Institute of Legal Medicine and Forensic Sciences, 10117 Berlin, Germany; (M.T.); (S.E.)
| | - Saskia Etzold
- Charité-Universitätsmedizin Berlin, Institute of Legal Medicine and Forensic Sciences, 10117 Berlin, Germany; (M.T.); (S.E.)
| | - Dankwart Stiller
- Martin Luther University Halle-Wittenberg (MLU), Department of Legal Medicine, 06108 Halle (Saale), Germany;
| | - Horst Claassen
- Martin Luther University Halle-Wittenberg (MLU), Department of Anatomy and Cell Biology, 06108 Halle (Saale), Germany;
| | - Friedrich Paulsen
- Friedrich Alexander University Erlangen-Nürnberg (FAU), Institute of Functional and Clinical Anatomy, 91054 Erlangen, Germany; (J.P.); (M.S.); (F.G.); (P.K.)
- Sechenov University, Department of Topographic Anatomy and Operative Surgery, 119146 Moscow, Russia
- Correspondence: ; Tel.: +49-9131-8522865; Fax: +49-9131-8522862
| |
Collapse
|
9
|
The TFF Peptides xP1 and xP4 Appear in Distinctive Forms in the Xenopus laevis Gastric Mucosa: Indications for Different Protective Functions. Int J Mol Sci 2019; 20:ijms20236052. [PMID: 31801293 PMCID: PMC6929139 DOI: 10.3390/ijms20236052] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/13/2019] [Accepted: 11/29/2019] [Indexed: 12/23/2022] Open
Abstract
The gastric secretory trefoil factor family (TFF) peptides xP1 and xP4 are the Xenopus laevis orthologs of mammalian TFF1 and TFF2, respectively. The aim of this study was to analyze the molecular forms of xP1 and xP4 in the X. laevis gastric mucosa by FPLC. xP1 mainly occurred in a monomeric low-molecular-mass form and only a minor subset is associated with the mucus fraction. The occurrence of monomeric xP1 is unexpected because of its odd number of cysteine residues. Probably a conserved acidic residue flanking Cys55 allows monomeric secretion. Furthermore, Cys55 is probably post-translationally modified. For the first time, we hypothesize that the free thiol of monomeric xP1-and probably also its mammalian ortholog TFF1-could have a protective scavenger function, e.g., for reactive oxygen/nitrogen species. In contrast, xP4 mainly occurs in a high-molecular-mass form and is non-covalently bound to a mucin similarly as TFF2. In vitro binding studies with radioactively labeled porcine TFF2 even showed binding to X. laevis gastric mucin. Thus, xP4 is expected to bind as a lectin to an evolutionary conserved sugar epitope of the X. laevis ortholog of mucin MUC6 creating a tight mucus barrier. Taken together, xP1 and xP4 appear to have different gastric protective functions.
Collapse
|
10
|
Heuer F, Stürmer R, Heuer J, Kalinski T, Lemke A, Meyer F, Hoffmann W. Different Forms of TFF2, A Lectin of the Human Gastric Mucus Barrier: In Vitro Binding Studies. Int J Mol Sci 2019; 20:ijms20235871. [PMID: 31771101 PMCID: PMC6928932 DOI: 10.3390/ijms20235871] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 11/13/2019] [Accepted: 11/21/2019] [Indexed: 12/19/2022] Open
Abstract
Trefoil factor family 2 (TFF2) and the mucin MUC6 are co-secreted from human gastric and duodenal glands. TFF2 binds MUC6 as a lectin and is a constituent of the gastric mucus. Herein, we investigated human gastric extracts by FPLC and identified mainly high- but also low-molecular-mass forms of TFF2. From the high-molecular-mass forms, TFF2 can be completely released by boiling in SDS or by harsh denaturing extraction. The low-molecular-mass form representing monomeric TFF2 can be washed out in part from gastric mucosa specimens with buffer. Overlay assays with radioactively labeled TFF2 revealed binding to the mucin MUC6 and not MUC5AC. This binding is modulated by Ca2+ and can be blocked by the lectin GSA-II and the monoclonal antibody HIK1083. TFF2 binding was also inhibited by Me-β-Gal, but not the α anomer. Thus, both the α1,4GlcNAc as well as the juxtaperipheral β-galactoside residues of the characteristic GlcNAcα1→4Galβ1→R moiety of human MUC6 are essential for TFF2 binding. Furthermore, there are major differences in the TFF2 binding characteristics when human is compared with the porcine system. Taken together, TFF2 appears to fulfill an important role in stabilizing the inner insoluble gastric mucus barrier layer, particularly by its binding to the mucin MUC6.
Collapse
Affiliation(s)
- Franziska Heuer
- Institute of Molecular Biology and Medicinal Chemistry, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - René Stürmer
- Institute of Molecular Biology and Medicinal Chemistry, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Jörn Heuer
- Institute of Molecular Biology and Medicinal Chemistry, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Thomas Kalinski
- Institute of Pathology, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
| | - Antje Lemke
- Institute of Pathology, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
| | - Frank Meyer
- Department of Surgery, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
| | - Werner Hoffmann
- Institute of Molecular Biology and Medicinal Chemistry, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
- Correspondence:
| |
Collapse
|
11
|
Meditskou S, Grekou A, Toskas A, Papamitsou T, Miliaras D. Pyloric and foveolar type metaplasia are important diagnostic features in Crohn's disease that are frequently missed in routine pathology. Histol Histopathol 2019; 35:553-558. [PMID: 31538655 DOI: 10.14670/hh-18-167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Pyloric type metaplasia (PYME) as evidence of chronic mucosal damage, is one of the main histopathological findings for diagnosing Crohn's Disease (CD) in terminal ileum biopsies, according to the latest guidelines but still frequently underdiagnosed in routine pathology. Foveolar metaplasia (FOME) changes in mucosa, another aspect of the chronic post -inflammatory Ulcer Associated Cell Lineage (UACL), have only been reported in a few cases. However, their clinical significance has not been investigated in depth except in pouchitis. The aim of this study was to investigate the importance of meticulous study of terminal ileum biopsies for the recognition of PYME/FOME as an adjunct finding helpful for the diagnosis of CD. In the present study, two experienced gastrointestinal pathologists, have reviewed 105 terminal ileum biopsies from 105 patients with CD, using a protocol of 15 sections on average per biopsy. In 21% (22/105) of cases PYME was recognized and in 4% (4/105) FOME was also present. PYME/FOME had not been detected in 83% of these cases in the original reports. FOME was also identified in terminal ileum biopsies, a feature not reported previously in CD. Conclusively, PYME/FOME can be easily missed in terminal ileum biopsies from patients with suspected or known CD unless a meticulous study of the histologic material is carried out combined with awareness of the pathologist about its importance.
Collapse
Affiliation(s)
- Soultana Meditskou
- Laboratory of Histology - Embryology, Aristotle University of Thessaloniki, Thessaloniki, Greece.,"Istodiagnostiki" Histopathology Laboratory, Thessaloniki, Greece
| | - Alexandra Grekou
- "Istodiagnostiki" Histopathology Laboratory, Thessaloniki, Greece
| | - Alexandros Toskas
- Laboratory of Histology - Embryology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Theodora Papamitsou
- Laboratory of Histology - Embryology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Dimosthenis Miliaras
- Laboratory of Histology - Embryology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
12
|
Guo J, Xu L, Teng X, Sun M. MicroRNA-7-5p regulates the proliferation and migration of intestinal epithelial cells by targeting trefoil factor 3 via inhibiting the phosphoinositide 3-kinase/Akt signalling pathway. Int J Mol Med 2017; 40:1435-1443. [PMID: 28901375 PMCID: PMC5627888 DOI: 10.3892/ijmm.2017.3120] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 08/21/2017] [Indexed: 12/27/2022] Open
Abstract
Trefoil factor 3 (TFF3) reconstructs the epithelial barrier by stimulating epithelial cell migration and proliferation, and significantly contributes to intestinal mucosal damage and healing. In a previous study, TFF3 was identified as a novel target of microRNA-7-5p (miR-7-5p). The aim of the present study was to investigate the roles and mechanisms of miR-7-5p in the proliferation and migration of intestinal epithelial cells. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was performed to determine the expression level of miR-7-5p in the experimental groups. In addition, western blot analysis was performed to examine the expression levels of TFF3, phosphoinositide 3-kinase (PI3K), Akt and phosphorylated (p)-AKT when miR-7-5p or TFF3 was overexpressed, and the effects of miR-7-5p and TFF3 on LS174T cell proliferation and migration were simultaneously investigated. miR-7-5p was demonstrated to decrease the expression level of TFF3, and inhibit LS174T cell proliferation and migration, which was accompanied by decreased expression levels of PI3K and p-Akt. miR-7-5p was decreased following combined treatment with the TFF3 plasmid and miR‑7-5p mimics, compared with treatment with miR-7-5p mimics alone, which was accompanied by increased expression levels of TFF3, PI3K and p-Akt, and enhanced LS174T cell proliferation and migration effects. The expression levels of miR-7-5p in the miRNA negative control (NC) + LY294002 group, the miR‑7-5p mimic + LY294002 group, and the miR-7-5p mimic + TFF3 plasmid + LY294002 group were higher than those in the NC group, the miR-7-5p mimic group and the miR-7-5p mimic + TFF3 plasmid group, respectively. Accordingly, the expression level of TFF3 was downregulated and the proliferation and migration ability of the cells was downregulated. The present study demonstrates that overexpressed miR-7-5p may inhibit the proliferation and migration of LS174T cells by targeting the expression of TFF3 via inhibiting the PI3K/Akt signalling pathway. The PI3K/Akt signalling pathway may exert a feedback regulation effect on miR-7-5p, inhibiting the activity of this signalling pathway, which increases the miR-7-5p expression levels and further enhances the effects of miR-7-5p on cell proliferation and migration.
Collapse
Affiliation(s)
- Jing Guo
- Department of Pediatrics, The Affiliated Shengjing Hospital, China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Lingfen Xu
- Department of Pediatrics, The Affiliated Shengjing Hospital, China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Xu Teng
- Department of Pediatrics, The Affiliated Shengjing Hospital, China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Mei Sun
- Department of Pediatrics, The Affiliated Shengjing Hospital, China Medical University, Shenyang, Liaoning 110004, P.R. China
| |
Collapse
|
13
|
Corfield A. Eukaryotic protein glycosylation: a primer for histochemists and cell biologists. Histochem Cell Biol 2017; 147:119-147. [PMID: 28012131 PMCID: PMC5306191 DOI: 10.1007/s00418-016-1526-4] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2016] [Indexed: 12/21/2022]
Abstract
Proteins undergo co- and posttranslational modifications, and their glycosylation is the most frequent and structurally variegated type. Histochemically, the detection of glycan presence has first been performed by stains. The availability of carbohydrate-specific tools (lectins, monoclonal antibodies) has revolutionized glycophenotyping, allowing monitoring of distinct structures. The different types of protein glycosylation in Eukaryotes are described. Following this educational survey, examples where known biological function is related to the glycan structures carried by proteins are given. In particular, mucins and their glycosylation patterns are considered as instructive proof-of-principle case. The tissue and cellular location of glycoprotein biosynthesis and metabolism is reviewed, with attention to new findings in goblet cells. Finally, protein glycosylation in disease is documented, with selected examples, where aberrant glycan expression impacts on normal function to let disease pathology become manifest. The histological applications adopted in these studies are emphasized throughout the text.
Collapse
Affiliation(s)
- Anthony Corfield
- Mucin Research Group, School of Clinical Sciences, Bristol Royal Infirmary, University of Bristol, Bristol, BS2 8HW, UK.
| |
Collapse
|
14
|
Protective effects of intestinal trefoil factor (ITF) on gastric mucosal epithelium through activation of extracellular signal-regulated kinase 1/2 (ERK1/2). Mol Cell Biochem 2015; 404:263-70. [PMID: 25776570 DOI: 10.1007/s11010-015-2386-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Accepted: 03/05/2015] [Indexed: 01/03/2023]
Abstract
The rapid repair of gastric mucosa is critical upon exposure to injurious agents. Intestinal trefoil factor (ITF) is a member of the trefoil factor family domain peptides, which play an important role in the cytoprotection of gastric epithelium. However, the underlying molecular mechanisms that are responsible for ITF-induced gastric epithelial repair remain unclear. In the present study, we demonstrate that ITF enhances the proliferation and migration of GES-1 gastric endothelial cells in a dose- and time-dependent manner through the activation of extracellular signal-regulated kinase 1/2 (ERK1/2). Furthermore, the ITF-mediated protection of GES-1 cells from a NS398 (nonsteroidal anti-inflammatory drug) was dependent on the ERK1/2 signaling pathway. Taken together, the results provide a mechanistic explanation for ITF-mediated protection of gastric epithelial mucosa cells, suggesting that activation of the ERK1/2 signaling pathway may provide a new therapeutic strategy for repairing gastric injury.
Collapse
|
15
|
Lin N, Xu LF, Sun M. The protective effect of trefoil factor 3 on the intestinal tight junction barrier is mediated by toll-like receptor 2 via a PI3K/Akt dependent mechanism. Biochem Biophys Res Commun 2013; 440:143-149. [PMID: 24051092 DOI: 10.1016/j.bbrc.2013.09.049] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 09/09/2013] [Indexed: 01/29/2023]
Abstract
Trefoil factor peptides are highly conserved secreted molecules characterized by heat and enzymatic digestion resistance. Intestinal trefoil factor 3 (TFF3) protects and repairs the gastrointestinal mucosa and restores normal intestinal permeability, which is dependent on the integrity of the tight junction (TJ) barrier and the TJ associated proteins claudin-1, zona occludens-1 (ZO-1) and occludin. Despite the important role of intestinal barrier dysfunction in the pathogenesis of inflammatory bowel diseases, the underlying mechanisms and associated molecules remain unclear. In the present study, we show that TFF3 and toll-like receptor 2 (TLR2) are functionally linked and modulate intestinal epithelial permeability via a mechanism that involves the PI3K/Akt pathway. We used the Caco-2 cell model to show that TLR2 and TFF3 inhibit the IL-1β induced increase in permeability and release of proinflammatory cytokines, and that this effect is mediated by activation of PI3K/Akt signaling. TLR2 silencing downregulated the expression of TFF3 and overexpression of TLR2 and TFF3 increased the levels of phospho-Akt. TFF3 overexpression significantly upregulated the expression of ZO-1, occludin and claudin-1 and this effect was abrogated by inhibition of the PI3K/Akt pathway. Taken together, our results indicate that TLR2 signaling selectively enhances intestinal TJ barrier integrity through a mechanism involving TFF3 and the activation of the PI3K/Akt pathway.
Collapse
Affiliation(s)
- Nan Lin
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | | | | |
Collapse
|
16
|
Limaye SA, Haddad RI, Cilli F, Sonis ST, Colevas AD, Brennan MT, Hu KS, Murphy BA. Phase 1b, multicenter, single blinded, placebo-controlled, sequential dose escalation study to assess the safety and tolerability of topically applied AG013 in subjects with locally advanced head and neck cancer receiving induction chemotherapy. Cancer 2013; 119:4268-76. [DOI: 10.1002/cncr.28365] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 07/13/2013] [Accepted: 07/17/2013] [Indexed: 11/11/2022]
Affiliation(s)
| | - Robert I. Haddad
- Dana-Farber Cancer Institute/Harvard Medical School; Boston Massachusetts
| | | | - Stephen T. Sonis
- Brigham and Women's Hospital; Boston Massachusetts
- Biomodels LLC; Watertown Massachusetts
| | | | | | | | | |
Collapse
|
17
|
Buda A, Jepson MA, Pignatelli M. Regulatory function of trefoil peptides (TFF) on intestinal cell junctional complexes. ACTA ACUST UNITED AC 2012. [PMID: 23181544 DOI: 10.3109/15419061.2012.748326] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Abstract Trefoil peptides (TFF) are constitutively expressed in the gastrointestinal tract and are involved in gastrointestinal defence and repair by promoting epithelial restitution. Although there is a general consensus regarding the pro-motogenic activity of trefoil peptides, the cellular mechanisms through which they mediate these processes are not completely understood. Pertubation of the E-cadherin/catenin complex at intercellular junctions appears to be a functional pathway through which TFF2 and TFF3 promote cell migration. Tight junction complexes seal the paracellular spaces between cells and contribute to epithelial barrier function. TFF3 peptide stimulation stabilises these junctions through upregulation of the tightening protein claudin-1 and redistribution of ZO-1 from the cytoplasm to the intercellular membrane with an increase in binding to occludin. Modulation of the functional activity and subcellular localisation of epithelial junctional adhesion molecules represent important mechanisms by which trefoil peptides may promote migration of intestinal epithelial cells in vitro and healing of mucosal damage in vivo.
Collapse
Affiliation(s)
- Andrea Buda
- School of Clinical Sciences, University of Bristol, Bristol, UK
| | | | | |
Collapse
|
18
|
Moghanibashi M, Mohamadynejad P, Rasekhi M, Ghaderi A, Mohammadianpanah M. Polymorphism of estrogen response element in TFF1 gene promoter is associated with an increased susceptibility to gastric cancer. Gene 2012; 492:100-3. [DOI: 10.1016/j.gene.2011.10.048] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Revised: 10/25/2011] [Accepted: 10/27/2011] [Indexed: 12/12/2022]
|
19
|
Kubota S, Yamauchi K, Sugano M, Kawasaki K, Sugiyama A, Matsuzawa K, Akamatsu T, Ohmoto Y, Ota H. Pathophysiological investigation of the gastric surface mucous gel layer of patients with Helicobacter pylori infection by using immunoassays for trefoil factor family 2 and gastric gland mucous cell-type mucin in gastric juice. Dig Dis Sci 2011; 56:3498-506. [PMID: 21559742 DOI: 10.1007/s10620-011-1724-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Accepted: 04/15/2011] [Indexed: 12/29/2022]
Abstract
BACKGROUND The trefoil factor family (TFF) 2 protein is produced by gastric gland mucous cells (GMCs), and the secreted TFF2 shares a mucosal barrier function with GMC-type mucin. Recently, we presented an enzyme-linked immunosorbent assay (ELISA) method for measurement of GMC-type mucin in the gastric juice. AIMS We aimed to develop an ELISA for TFF2 and to assess pathophysiological changes in the gastric surface mucous gel layer (SMGL) of patients with Helicobacter pylori infection. METHODS The distribution of TFF2 and GMC-type mucin in the SMGL was immunohistochemically determined. The ELISA for TFF2 was based on a polyclonal goat antibody. Recombinant TFF2 was employed to prepare the calibrators. TFF2 and GMC-type mucin in the gastric juice in healthy individuals (n = 33) and patients with gastritis (n = 37), gastric ulcer (n = 16), and duodenal ulcer (n = 10) were assayed using ELISA. RESULTS TFF2 and GMC-type mucin were immunohistochemically co-localized in the gastric SMGL and GMCs. The TFF2 levels in the patients were significantly higher than those in the healthy individuals. Further, the TFF2 levels in the H. pylori-positive patients were significantly higher than those in the H. pylori-negative patients, and decreased after the eradication of the infection. GMC-type mucin levels showed a tendency similar to that of TFF2 levels. CONCLUSIONS The upregulation of TFF2 and GMC-type mucin secretion may reflect the response of the gastric mucosa to H. pylori-induced injuries. TFF2 and GMC-type mucin secreted into the SMGL may protect the gastric mucosa against H. pylori.
Collapse
Affiliation(s)
- Seiko Kubota
- Department of Laboratory Medicine, Shinshu University Hospital, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Samson MH, Poulsen SS, Obeid R, Herrmann W, Nexo E. Trefoil factor family peptides in the human foetus and at birth. Eur J Clin Invest 2011; 41:785-92. [PMID: 21651517 DOI: 10.1111/j.1365-2362.2011.02489.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Trefoil factors (TFF1-3) are cysteine-rich peptides secreted by mucosal surfaces. Changing levels of expression are reflected in serum concentrations. Serum levels of TFF2 and TFF3 are highly elevated during pregnancy. Here, we explore a possible foetal origin of these increased levels. MATERIALS AND METHODS We examined the expression of trefoil peptides in foetal tissues, placentas and foetal membranes from midterm abortions by immunohistochemistry. Employing in-house ELISAs, serum concentrations of TFF1-3 were measured in 92 paired samples of cord and maternal blood prior to delivery. Size exclusion chromatography was used to investigate the molecular forms of TFF1-3. RESULTS Immunohistochemistry showed all trefoil peptides to be present during foetal life, but compared to adults with a more widespread expression of TFF2 and TFF3 in the stomach and Brunner's glands. No trefoil peptides were seen in placentas or foetal membranes. Median serum concentrations of TFF1 in cord blood were comparable to those observed in the (mother) [0·42 (0·37) nM, P = 0·25], whereas TFF2 and TFF3 showed lower values than in the mother [0·11 (0·69), and 1·2 (6·7) nM, respectively, P < 0·0001 for both peptides]. Size exclusion chromatography showed comparable patterns in mothers and newborns. CONCLUSIONS All three trefoil peptides are expressed in foetal tissues but not in placenta or foetal membranes. Cord blood contains high levels of all three peptides, although for TFF2 and TFF3 at considerably lower levels than observed in the mother. Thus, the elevated serum levels of TFF2 and TFF3 in the pregnant women were most likely not of foetal origin.
Collapse
Affiliation(s)
- Mie H Samson
- Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark.
| | | | | | | | | |
Collapse
|
21
|
Rinaldi M, Dreesen L, Hoorens PR, Li RW, Claerebout E, Goddeeris B, Vercruysse J, Van Den Broek W, Geldhof P. Infection with the gastrointestinal nematode Ostertagia ostertagi in cattle affects mucus biosynthesis in the abomasum. Vet Res 2011; 42:61. [PMID: 21569362 PMCID: PMC3102617 DOI: 10.1186/1297-9716-42-61] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Accepted: 05/11/2011] [Indexed: 12/22/2022] Open
Abstract
The mucus layer in the gastrointestinal (GI) tract is considered to be the first line of defense to the external environment. Alteration in mucus components has been reported to occur during intestinal nematode infection in ruminants, but the role of mucus in response to abomasal parasites remains largely unclear. The aim of the current study was to analyze the effects of an Ostertagia ostertagi infection on the abomasal mucus biosynthesis in cattle. Increased gene expression of MUC1, MUC6 and MUC20 was observed, while MUC5AC did not change during infection. Qualitative changes of mucins, related to sugar composition, were also observed. AB-PAS and HID-AB stainings highlighted a decrease in neutral and an increase in acidic mucins, throughout the infection. Several genes involved in mucin core structure synthesis, branching and oligomerization, such as GCNT3, GCNT4, A4GNT and protein disulphide isomerases were found to be upregulated. Increase in mucin fucosylation was observed using the lectin UEA-I and through the evaluation of fucosyltransferases gene expression levels. Finally, transcription levels of 2 trefoil factors, TFF1 and TFF3, which are co-expressed with mucins in the GI tract, were also found to be significantly upregulated in infected animals. Although the alterations in mucus biosynthesis started early during infection, the biggest effects were found when adult worms were present on the surface of the abomasal mucosa and are likely caused by the alterations in mucosal cell populations, characterized by hyperplasia of mucus secreting cells.
Collapse
Affiliation(s)
- Manuela Rinaldi
- Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Leentje Dreesen
- Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Prisca R Hoorens
- Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Robert W Li
- Bovine Functional Genomics Laboratory, Animal and Natural Resources Institute, USDA-ARS, 10300 Baltimore Avenue, Beltsville, MD 20705, USA
| | - Edwin Claerebout
- Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Bruno Goddeeris
- Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
- Department of Biosystems, Faculty of Bioscience Engineering, K.U. Leuven, Kasteelpark Arenberg 30, 3001 Leuven, Belgium
| | - Jozef Vercruysse
- Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Wim Van Den Broek
- Department of Morphology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Peter Geldhof
- Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| |
Collapse
|
22
|
Ota H, Harada O, Uehara T, Hayama M, Ishii K. Aberrant expression of TFF1, TFF2, and PDX1 and their diagnostic value in lobular endocervical glandular hyperplasia. Am J Clin Pathol 2011; 135:253-61. [PMID: 21228366 DOI: 10.1309/ajcpqmao3pw4ogof] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Lobular endocervical glandular hyperplasia (LEGH) is a distinct benign glandular lesion expressing gastric gland mucous cell-type mucin (N-acetylglucosaminα1 → 4galactose → R [GlcNAcα1 → 4Gal → R]). To investigate histogenesis and diagnostic markers of LEGH, we examined the immunohistochemical expression profile of gastric surface mucous cell (MUC5AC and TFF1), gastric gland mucous cell (MUC6, TFF2, and GlcNAcα1 → 4Gal → R), gastric pyloric epithelial cell (PDX1), and endocervical cell (keratan sulfate) markers in normal endocervix samples and benign glandular lesions (nabothian cysts, tunnel clusters, and LEGHs). MUC5AC and MUC6 were expressed in normal endocervical mucosa and benign glandular lesions. TFF1, TFF2, GlcNAcα1 → 4Gal → R, and PDX1 were expressed only in LEGH. Keratan sulfate was expressed in normal endocervical mucosa and benign glandular lesions. In LEGH, gastric surface mucous cell and gastric gland mucous cell differentiation were demonstrated, and transdifferentiation from endocervical mucosa into gastric pyloric mucosa was suggested. In addition to GlcNAcα1 → 4Gal → R, TFF1, TFF2, and PDX1 are additional useful markers for LEGH.
Collapse
Affiliation(s)
- Hiroyoshi Ota
- Department of Biomedical Sciences, School of Health Sciences, Shinshu University School of Medicine, Matsumoto, Japan
| | - Oi Harada
- Division of Surgical Pathology, Nippon Medical School Hospital, Tokyo, Japan
| | - Takeshi Uehara
- Department of Laboratory Medicine, Shinshu University Hospital, Matsumoto, Japan
| | - Masayoshi Hayama
- Department of Biomedical Sciences, School of Health Sciences, Shinshu University School of Medicine, Matsumoto, Japan
| | - Keiko Ishii
- Department of Pathology, Okaya Municipal Hospital, Okaya, Japan
| |
Collapse
|
23
|
Samson MH, Chaiyarit P, Nortvig H, Vestergaard EM, Ernst E, Nexo E. Trefoil factor family peptides in human saliva and cyclical cervical mucus. Method evaluation and results on healthy individuals. Clin Chem Lab Med 2011; 49:861-8. [PMID: 21275809 DOI: 10.1515/cclm.2011.123] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Trefoil peptides are 7-12 kDa molecules, se-creted by a variety of mucin-producing epithelial cells from different tissues and believed to be essential for protection and maintenance of gastrointestinal mucosa. Data on concentrations of trefoil peptides in secretions are limited. METHODS We validated in-house ELISA assays, developed for measurement of trefoil peptide concentrations (TFF1, TFF2 and TFF3) in serum, for use with saliva and cervical mucus. Saliva from healthy individuals (n=30), and cervical mucus as well as blood collected three times during the menstrual cycle from healthy women (n=18) were analyzed. RESULTS Recovery of all trefoil peptides in the initial supernatants of saliva and (cervical mucus) were 86 and (92)% or more. Recovery of exogenously added trefoil peptides was 93 and (95)% or more. Western blotting showed that antibodies used in the TFF3-ELISA assay recognised one molecule of the same size as TFF3 in both saliva and cervical mucus. Median concentrations of TFF1, TFF2 and TFF3 in saliva and (cervical mucus) were 2.7 (2.7), 0.08 (0.58) and 14 (430) nmol/g protein, with a significant decrease in concentrations in cervical mucus after ovulation. Serum concentrations resembled previously measured values in blood donors and showed no cyclic change. CONCLUSIONS Previously established ELISA assays can be employed for measurement of trefoil peptides in saliva and cervical mucus. TFF3 was the predominant trefoil peptide in both saliva and cervical mucus, and TFF3 in cervical mucus represents the highest concentration measured in a biological fluid to date.
Collapse
|
24
|
Vannay A, Sziksz E, Prókai A, Veres G, Molnár K, Szakál DN, Onódy A, Korponay-Szabó IR, Szabó A, Tulassay T, Arató A, Szebeni B. Increased expression of hypoxia-inducible factor 1alpha in coeliac disease. Pediatr Res 2010; 68:118-22. [PMID: 20453713 DOI: 10.1203/pdr.0b013e3181e5bc96] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Previously, it has been suggested that hypoxia-inducible factor (HIF) 1 signaling may play determinative role in the maintenance of the barrier function of the intestinal epithelium in inflammatory bowel disease. Our aim was to depict the alteration of HIF-1alpha and related genes in celiac disease (CD) where the importance of the barrier function is well known. Duodenal biopsy specimens were collected from 16 children with untreated CD, 9 children with treated CD and 10 controls. HIF-1alpha, trefoil factor 1 (TFF1), ecto-5-prime nucleotidase (CD73), and multi drug resistance gene 1 (MDR1) mRNA and HIF-1alpha protein expression were determined by real-time PCR and Western blot, respectively. Localization of HIF-1alpha was determined by immunofluorescent staining. We found increased HIF-1alpha and TFF1 mRNA and HIF-1alpha protein expression in the duodenal mucosa of children with untreated CD compared with controls or children with treated CD (p < 0.05). In untreated CD children, HIF-1alpha staining was present in cytoplasmic and nuclear region of the villous enterocytes. In treated CD mRNA expression of CD73 and MDR1 were increased compared with controls (p < 0.01 and 0.05, respectively). Our results of increased mucosal HIF-1alpha expression in CD children suggest the contribution of this signaling pathway in the pathomechanism of CD.
Collapse
Affiliation(s)
- Adám Vannay
- First Department of Pediatrics, Semmelweis University, H-1083 Budapest, Hungary
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Lindsay CD. Novel therapeutic strategies for acute lung injury induced by lung damaging agents: the potential role of growth factors as treatment options. Hum Exp Toxicol 2010; 30:701-24. [PMID: 20621953 DOI: 10.1177/0960327110376982] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The increasing threat from terrorism has brought attention to the possible use of toxic industrial compounds (TICs) and other lung-damaging agents as weapons against civilian populations. The way in which these agents could be used favours the development of generic countermeasures. Improved medical countermeasures would increase survivability and improve the quality of recovery of lung damaged casualties. It is evident that there is a dearth of therapeutic regimes available to treat those forms of lung damage that currently require intensive care management. It is quite possible that mass casualties from a terrorist incident or major industrial accident involving the release of large quantities of inhaled TICs would place a severe burden on already scarce intensive care facilities. The development of effective pharmacological approaches to assist the recovery of casualties suffering from acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) may improve the prognosis of such patients (which is currently poor) and would ideally be used as a means of preventing subjects from developing the pulmonary oedema characteristic of ALI/ARDS. Many promising candidate pharmacological treatments have been evaluated for the treatment of ALI/ARDS, but their clinical value is often debatable. Thus, despite improvements in ventilation strategies, pharmacological intervention for ALI/ARDS remains problematical. A new approach is clearly required for the treatment of patients with severely compromised lungs. Whilst the pathology of ALI/ARDS associated with exposure to a variety of agents is complex, numerous experimental studies suggest that generic therapeutic intervention directed at approaches that aim to upregulate repair of the damaged alveolar blood/air barrier of the lung may be of value, particularly with respect to chemical-induced injury. To this end, keratinocyte growth factor (KGF), epithelial growth factor (EGF) and basic fibroblast growth factor (bFGF) are emerging as the most important candidates. Hepatocyte growth factor (HGF) does not have epithelial specificity for lung tissue. However, the enhanced effects of combinations of growth factors, such as the synergistic effect of HGF upon vascular endothelial growth factor (VEGF)-mediated endothelial cell activity, and the combined effect of HGF and KGF in tissue repair should be investigated, particularly as the latter pair of growth factors are frequently implicated in processes associated with the repair of lung damage. Synergistic interactions also occur between trefoil factor family (TFF) peptides and growth factors such as EGF. TFF peptides are most likely to be of value as a short term therapeutic intervention strategy in stimulating epithelial spreading activities which allow damaged mucosal surfaces to be rapidly covered by epithelial cells.
Collapse
Affiliation(s)
- Christopher D Lindsay
- Biomedical Sciences Department, Defence Science and Technology Laboratory, Porton Down, Salisbury, Wiltshire, UK.
| |
Collapse
|
26
|
Luu Y, Junker W, Rachagani S, Das S, Batra SK, Heinrikson RL, Shekels LL, Ho SB. Human intestinal MUC17 mucin augments intestinal cell restitution and enhances healing of experimental colitis. Int J Biochem Cell Biol 2010; 42:996-1006. [PMID: 20211273 DOI: 10.1016/j.biocel.2010.03.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Revised: 02/13/2010] [Accepted: 03/01/2010] [Indexed: 12/19/2022]
Abstract
UNLABELLED The membrane-bound mucins, MUC17 (human) and Muc3 (mouse), are highly expressed on the apical surface of intestinal epithelia and are thought to be cytoprotective. The extracellular regions of these mucins contain EGF-like Cys-rich segments (CRD1 and CRD2) connected by an intervening linker domain (L). The purpose of this study was to determine the functional activity of human MUC17 membrane-bound mucin. METHODS Endogenous MUC17 was inhibited in LS174T colon cells by stable transfection of a small hairpin RNA targeting MUC17 (LSsi cells). The effect of recombinant MUC17-CRD1-L-CRD2 protein on migration, apoptosis, and experimental colitis was determined. RESULTS Reduced MUC17 expression in LSsi cells was associated with visibly reduced cell aggregation, reduced cell-cell adherence, and reduced cell migration, but no change in tumorigenicity. LSsi cells also demonstrated a 3.7-fold increase in apoptosis rates compared with control cells following treatment with etoposide. Exposure of colonic cell lines to exogenous recombinant MUC17-CRD1-L-CRD2 protein significantly increased cell migration and inhibited apoptosis. As a marker of biologic activity, MUC17-CRD1-L-CRD2 proteins stimulate ERK phosphorylation in colonic cell lines; and inhibition of ERK phosphorylation reduced the anti-apoptosis and migratory effect of MUC17-CRD1-L-CRD2. Finally, mice treated with MUC17-CRD1-L-CRD2 protein given per rectum demonstrated accelerated healing in acetic acid and dextran sodium sulfate induced colitis in vivo. These data indicate that both native MUC17 and the exogenous recombinant cysteine-rich domain of MUC17 play a role in diverse cellular mechanisms related to cell restitution, and suggest a potential role for MUC17-CRD1-L-CRD2 recombinant protein in the treatment of mucosal inflammatory diseases.
Collapse
Affiliation(s)
- Ying Luu
- Department of Medicine, VA San Diego Healthcare System and University of California San Diego, 3350 La Jolla Village Drive, San Diego, CA 92161, United States
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Trefoil Peptides, E-cadherin, and β-catenin Expression in Sporadic Fundic Gland Polyps. Appl Immunohistochem Mol Morphol 2009; 17:431-7. [DOI: 10.1097/pai.0b013e3181a03188] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
28
|
Musumba C, Pritchard DM, Pirmohamed M. Review article: cellular and molecular mechanisms of NSAID-induced peptic ulcers. Aliment Pharmacol Ther 2009; 30:517-31. [PMID: 19575764 DOI: 10.1111/j.1365-2036.2009.04086.x] [Citation(s) in RCA: 149] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Nonsteroidal anti-inflammatory drugs (NSAIDs) are some of the most prescribed drugs worldwide and have now probably overtaken Helicobacter pylori as the most common cause of gastrointestinal injury in Western countries. Further understanding of the pathogenesis of NSAID-induced ulcers is important to enable the development of novel and effective preventive strategies. AIMS To provide an update on recent advances in our understanding of the cellular and molecular mechanisms involved in the development of NSAID-induced ulcers. METHODS A Medline search was performed to identify relevant literature using search terms including 'nonsteroidal anti-inflammatory drugs, aspirin, gastric ulcer, duodenal ulcer, pathogenesis, pharmacogenetics'. RESULTS The mechanisms of NSAID-induced ulcers can be divided into topical and systemic effects and the latter may be prostaglandin-dependent (through COX inhibition) or prostaglandin-independent. Genetic factors may play an important role in determining individual predisposition. CONCLUSIONS The pathogenesis of NSAID-induced peptic ulcers is complex and multifactorial. Recent advances in cellular and molecular biology have highlighted the importance of various prostaglandin-independent mechanisms. Pharmacogenetic studies may provide further insights into the pathogenetic mechanisms of NSAID-induced ulcers and help identify patients at increased risk.
Collapse
Affiliation(s)
- C Musumba
- Department of Pharmacology and Therapeutics, School of Biomedical Sciences, University of Liverpool, Liverpool, UK
| | | | | |
Collapse
|
29
|
Samson MH, Vestergaard EM, Milman N, Poulsen SS, Nexo E. Circulating serum trefoil factors increase dramatically during pregnancy. Scandinavian Journal of Clinical and Laboratory Investigation 2009; 68:369-74. [PMID: 19172695 DOI: 10.1080/00365510701767862] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
OBJECTIVE Trefoil factors (TFF1-3) are 7-12 kDa peptides secreted by mucosal surfaces, with changing levels of expression reflected in serum concentrations. The genes for the peptides are located on chromosome 21, the chromosome duplicated in trisomy 21. We studied the levels of circulating TFFs in pregnant women carrying trisomy 21 foetuses and in women with normal pregnancies, throughout pregnancy and postpartum. MATERIAL AND METHODS Employing ELISA methods, serum collected at gestational weeks (GW) 18, 32, 39 and 8 weeks postpartum from women carrying normal foetuses (n=141) was analysed for TFFs. In addition, serum collected at GW 6-14 (median = 10) from women carrying trisomy 21 foetuses (n=48) or healthy foetuses (n=46) was analysed. RESULTS Peaking at 39 GW, concentrations of TFF2 and TFF3 were 3.5 and 47 times higher, respectively, than postpartum. Postpartum levels were comparable to concentrations previously measured in nonpregnant women. TFF1 concentrations rose throughout pregnancy and postpartum, being 1.5 times higher postpartum compared to 18 GW. No differences in the levels of TFFs were observed between women carrying trisomy 21 and those with healthy foetuses. To our knowledge, circulating TFF3 has never been reported to reach the levels observed here. Also, the pattern of increase is unusual, as previous reports have shown parallel increases in TFF1 and TFF3 with no alterations in TFF2. CONCLUSIONS Our results demonstrate that circulating TFFs are not candidate markers of trisomy 21 in first-trimester pregnancies, but raise intriguing questions concerning the origin of TFFs produced during pregnancy and their physiological function.
Collapse
Affiliation(s)
- M Hessellund Samson
- Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark.
| | | | | | | | | |
Collapse
|
30
|
Matsuda K, Yamauchi K, Matsumoto T, Sano K, Yamaoka Y, Ota H. Quantitative analysis of the effect of Helicobacter pylori on the expressions of SOX2, CDX2, MUC2, MUC5AC, MUC6, TFF1, TFF2, and TFF3 mRNAs in human gastric carcinoma cells. Scand J Gastroenterol 2008; 43:25-33. [PMID: 18938748 PMCID: PMC3128253 DOI: 10.1080/00365520701579795] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE To investigate the phenotypic characters of carcinoma cells and the response of gastric epithelial cells to Helicobacter pylori (H. pylori) infection using the gastric carcinoma cell lines. MATERIAL AND METHODS Real-time reverse transcription-polymerase chain reaction (RT-PCR) was used to assess the effect of H. pylori infection on mRNA levels of transcription factors (SOX2 and CDX2), mucin core proteins (MUC2, MUC5AC, and MUC6), and trefoil factor family peptides (TFF) (TFF1, TFF2, and TFF3) in gastric carcinoma cells (AGS, MKN45, and KATO III cells). H. pylori ATCC 43504 and its isogenic cag pathogenicity island (PAI) deleted mutant were used. RESULTS These cell lines expressed mixed gastric and intestinal phenotypes. The intestinal phenotype predominated in AGS cells and gastric phenotypes in MKN45 and KATO III cells. In all three cell lines, H. pylori infection inhibited SOX2 mRNA expression, but induced the three TFFs mRNAs. In AGS cells, H. pylori induced cag PAI-dependent mRNA expression of CDX2, MUC2, MUC5AC, and MUC6. mRNA expressions of CDX2, MUC5AC, and MUC6 were inhibited in KATO III cells, whereas MUC2 mRNA expression was unchanged. In MKN45 cells, H. pylori induced the three MUCs mRNAs but inhibited CDX2 mRNA expression. CONCLUSIONS This study provides a useful platform for selecting appropriate cell lines to model H. pylori-related changes in the gastric epithelium that mirror the changes seen in vivo. The outcome of H. pylori infection may reflect changes in the mucus gel layer caused by altered expression of mucins and TFF peptides.
Collapse
Affiliation(s)
- Kazuyuki Matsuda
- Department of Laboratory Medicine, Shinshu University Hospital, Asahi, Matsumoto, Japan
| | - Kazuyoshi Yamauchi
- Department of Laboratory Medicine, Shinshu University Hospital, Asahi, Matsumoto, Japan
| | - Takehisa Matsumoto
- Department of Laboratory Medicine, Shinshu University Hospital, Asahi, Matsumoto, Japan
| | - Kenji Sano
- Department of Laboratory Medicine, Shinshu University Hospital, Asahi, Matsumoto, Japan
| | - Yoshio Yamaoka
- Department of Medicine/Gastroenterology, Michael E. DeBakey Veterans Affairs Medical Center and Baylor College of Medicine, Houston, Texas, USA
| | - Hiroyoshi Ota
- Department of Biomedical Laboratory Sciences, School of Health Sciences, Shinshu University School of Medicine, Asahi, Matsumoto, Japan
| |
Collapse
|
31
|
Altered expression of CDX-2, PDX-1 and mucin core proteins in "Ulcer-associated cell lineage (UACL)" in Crohn's disease. J Mol Histol 2007; 39:161-8. [PMID: 17957487 DOI: 10.1007/s10735-007-9149-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2007] [Accepted: 09/27/2007] [Indexed: 12/15/2022]
Abstract
The ulcer-associated cell lineage (UACL) induced at the site of ileac chronic ulceration in Crohn's disease has been reported to show histological differentiation resembling gastric pyloric mucosa. To clarify the significance of homeobox gene-encoded transcription factors in the formation of the UACL in Crohn's disease, we investigated the immunohistochemical expression of gastrointestinal mucins (MUC5AC for gastric surface mucous cells; MUC6 for gastric gland mucous cells, and MUC2 for intestinal goblet cells) and homeobox gene-encoded transcription factors (CDX-2 for intestinal mucosa and PDX-1 for pyloric mucosa) in the UACL. The analysis was undertaken on ileal mucosa obtained from ileal resections performed in 19 patients with active Crohn's disease of the small bowel. The UACL was observed in nine patients. In the UACL, expression of mucous cells with a foveolar-structure showed immunoreactivity to MUC5AC, and the mucous cells with a glandular structure showed immunoreactivity to MUC6, and the expression of MUC2 was decreased. In addition, we detected the decreased expression of CDX-2 along with the increased expression of PDX-1 in the UACL. The UACL showed histological differentiation simulating gastric pylori mucosa. The down-regulation of CDX-2 and the up-regulation of PDX-1 could be an important mechanism in the induction of the UACL.
Collapse
|
32
|
Mochizuka A, Uehara T, Nakamura T, Kobayashi Y, Ota H. Hyperplastic polyps and sessile serrated 'adenomas' of the colon and rectum display gastric pyloric differentiation. Histochem Cell Biol 2007; 128:445-55. [PMID: 17851679 DOI: 10.1007/s00418-007-0326-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/05/2007] [Indexed: 01/08/2023]
Abstract
The serrated polyp-neoplasia pathway is a novel concept that has been demonstrated to differ from the conventional adenoma-carcinoma pathway. To characterize the phenotypic patterns of differentiation in colorectal serrated polyps, we examined the immunohistochemical expression profile of gastric (MUC5AC, TFF1, MUC6, GlcNAcalpha1 --> 4Gal --> R, and PDX1) and intestinal (MUC2, TFF3, and CDX2) epithelial markers in 15 hyperplastic polyps (HPs), 29 sessile serrated adenomas (SSAs),12 traditional serrated adenomas (TSAs), and 16 conventional adenomas (CAs). MUC5AC and TFF1 were upregulated in the HPs, SSAs, and TSAs. MUC6 was expressed in the HPs and SSAs. GlcNAcalpha1 --> 4Gal --> R was expressed only in the SSAs. Although MUC2 expression was preserved, TFF3 was downregulated in the HPs, SSAs, and TSAs. PDX1 was upregulated in the HPs, SSAs, and TSAs. On the other hand, CDX2 was downregulated in the HPs and SSAs. The colorectal serrated polyps showed higher expression of gastric makers than CAs. The HPs and SSAs showed gastric and intestinal mixed phenotype expression with gastric pyloric organoid differentiation and almost identical, but different from the TSAs, marker profile. PDX1 up-regulation and CDX2 down-regulation could be important for the induction of a gastric pyloric pattern of cell differentiation in colorectal serrated polyps.
Collapse
Affiliation(s)
- Akiyoshi Mochizuka
- Department of Laboratory Medicine, Shinshu University Graduate School of Medicine, 3-1-1 Asahi, Matsumoto, Japan
| | | | | | | | | |
Collapse
|
33
|
Ho SB, Dvorak LA, Moor RE, Jacobson AC, Frey MR, Corredor J, Polk DB, Shekels LL. Cysteine-rich domains of muc3 intestinal mucin promote cell migration, inhibit apoptosis, and accelerate wound healing. Gastroenterology 2006; 131:1501-17. [PMID: 17101324 DOI: 10.1053/j.gastro.2006.09.006] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2005] [Accepted: 07/19/2006] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Muc3 intestinal mucin contains an extracellular cysteine-rich domain with 2 epidermal growth factor (EGF)-like motifs. The aim of this study was to determine the functional properties of Muc3 proteins. METHODS Glutathione S-transferase-fusion proteins containing both Muc3 EGF-like domains (m3EGF1,2) or truncated versions (m3EGF1 and m3EGF2) were purified from Escherichia coli. Mouse colon (young adult mouse colon) and human A431 and LoVo cells were examined for migration and tyrosine phosphorylation in response to recombinant proteins. LoVo cells were transfected with a human MUC3A transmembrane-EGF1,2 construct and a stable clone was isolated (LhM3c14). Endogenous MUC3A in LoVo was inhibited by specific small interfering RNA transfection. Apoptosis was quantitated by nuclear morphology or terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate biotin nick-end labeling assay. Colitis was induced in mice by oral 5% dextran sodium sulfate or rectal 5% acetic acid, followed by enema treatments. RESULTS m3EGF1,2 stimulated cell migration in all cell lines, but did not induce proliferation. Migration was inhibited by a tyrosine phosphorylation inhibitor, genistein, but not by the EGF receptor inhibitor, tyrphostin (AG1478). Inhibition of endogenous MUC3A in LoVo reduced baseline migration. Tyrosine phosphorylation of ErbB receptors was not observed after treatment of cells with m3EGF1,2. LoVo cells pretreated with m3EGF1,2 and transfected LhM3c14 cells showed reduced apoptosis in response to tumor necrosis factor alpha or Fas-receptor stimulation. Administration of m3EGF1,2 per rectum significantly reduced mucosal ulceration and apoptosis in experimental acute colitis. Truncated proteins m3EGF1 and m3EGF2 had no effect. CONCLUSIONS The Muc3 mucin cysteine-rich domain plays an active role in epithelial restitution, and represents a potential novel therapeutic agent for intestinal wound healing.
Collapse
Affiliation(s)
- Samuel B Ho
- Department of Medicine, Veterans Affairs Medical Center and University of Minnesota, Minneapolis, Minnesota, USA.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
LeSimple P, van Seuningen I, Buisine MP, Copin MC, Hinz M, Hoffmann W, Hajj R, Brody SL, Coraux C, Puchelle E. Trefoil factor family 3 peptide promotes human airway epithelial ciliated cell differentiation. Am J Respir Cell Mol Biol 2006; 36:296-303. [PMID: 17008636 DOI: 10.1165/rcmb.2006-0270oc] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Human airway surface epithelium is frequently damaged by inhaled factors (viruses, bacteria, xenobiotic substances) as well as by inflammatory mediators that contribute to the shedding of surface epithelial cells. To regain its protective function, the epithelium must rapidly repair and redifferentiate. The Trefoil Factor Family (TFF) peptides are secretory products of many mucous cells. TFF3, the major TFF in the airways, is able to enhance airway epithelial cell migration, but the role of this protein in differentiation has not been defined. To identify the specific role of TFF3 in the differentiation of the human airway surface epithelium, we analyzed the temporal expression pattern of TFF3, MUC5AC, and MUC5B mucins (goblet cells) and ciliated cell markers beta-tubulin (cilia) and FOXJ1 (ciliogenesis) during human airway epithelial regeneration using in vivo humanized airway xenograft and in vitro air-liquid interface (ALI) culture models. We observed that TFF3, MUC5AC, MUC5B, and ciliated cell markers were expressed in well-differentiated airway epithelium. The addition of exogenous recombinant human TFF3 to epithelial cell cultures before the initiation of differentiation resulted in no change in MUC5AC or cytokeratin 13 (CK13, basal cell marker)-positive cells, but induced an increase in the number of FOXJ1-positive cells and in the number of beta-tubulin-positive ciliated cells (P < 0.05). Furthermore, this effect on ciliated cell differentiation could be reversed by specific epidermal growth factor (EGF) receptor (EGF-R) inhibition. These results indicate that TFF3 is able to induce ciliogenesis and to promote airway epithelial ciliated cell differentiation, in part through an EGF-R-dependent pathway.
Collapse
Affiliation(s)
- Pierre LeSimple
- INSERM U514, Université Reims Champagne Ardenne, and CHU Reims, Hôpital Maison Blanche, Reims, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Kouznetsova I, Chwieralski CE, Bälder R, Hinz M, Braun A, Krug N, Hoffmann W. Induced trefoil factor family 1 expression by trans-differentiating Clara cells in a murine asthma model. Am J Respir Cell Mol Biol 2006; 36:286-95. [PMID: 16990615 DOI: 10.1165/rcmb.2006-0008oc] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Asthma is a chronic inflammatory disease of the airways that is accompanied by goblet cell metaplasia and mucus hypersecretion. Trefoil factor family (TFF) peptides represent major secretory products of the respiratory tract and are synthesized together with mucins. In the murine lung, TFF2 is mainly expressed, whereas TFF1 transcripts represent only a minor species. TFF peptides are well known for their motogenic and anti-apoptotic effects, and they modulate the inflammatory response of bronchial epithelial cells. Here, an established mouse model of asthma was investigated (i.e., exposure to Aspergillus fumigatus [AF] antigens). RT-PCR analysis of lung tissue showed elevated levels particularly of TFF1 transcripts in AF-sensitized/challenged animals. In contrast, transcripts encoding Clara cell secretory protein (CCSP/CC10) were strongly diminished in these animals. For comparison, the expression of the goblet cell secretory granule marker mCLCA3/Gob-5, the mucins Muc1-Muc6 and Muc19, and the secretoglobins ScgB3A1 and ScgB3A2, as well as the mammalian ependymin-related gene MERP2, were monitored. Immunohistochemistry localized TFF1 mainly in cells with a mixed phenotype (e.g., TFF1-positive cells stain with the lectin wheat germ agglutinin (WGA), which recognizes mucins characteristic of goblet cells). In addition, these cells express CCSP/CC10, a Clara cell marker. When compared with mucins or CCSP/CC10, TFF1 was stored in a different population of secretory granules localized at the more basolateral portion of these cells. Thus, the results presented indicate for the first time that allergen exposure leads to the trans-differentiation of Clara cells toward a TFF1-expressing mucous phenotype.
Collapse
Affiliation(s)
- Irina Kouznetsova
- Institut für Molekularbiologie und Medizinische Chemie, Otto-von-Guericke-Universität, Magdeburg; and Fraunhofer-Institut für Toxikologie und Experimentelle Medizin, Hannover, Germany
| | | | | | | | | | | | | |
Collapse
|
36
|
Ota H, Hayama M, Momose M, El-Zimaity HMT, Matsuda K, Sano K, Maruta F, Okumura N, Katsuyama T. Co-localization of TFF2 with gland mucous cell mucin in gastric mucous cells and in extracellular mucous gel adherent to normal and damaged gastric mucosa. Histochem Cell Biol 2006; 126:617-25. [PMID: 16786324 DOI: 10.1007/s00418-006-0197-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2006] [Indexed: 12/11/2022]
Abstract
Trefoil factor 2 (TFF2) is mucin associated peptide that has a mucosal barrier function in addition to participating in repair and healing. We examined the localization of TFF2 and gastric mucins in gastric mucous cells, the surface mucous gel layer (SMGL) adherent to normal gastric mucosa, and in the mucoid cap covering gastric erosions. Carnoy's solution, or formalin/picric acid-fixed paraffin embedded materials from resected stomachs and formalin-fixed paraffin embedded gastric biopsy materials were used. Sections were immunostained for the TFF2 and histochemically stained for gastric mucins. In addition, thick sectioned gastric mucosa fixed in Carnoy's solution were stained with FITC-labeled GSA-II lectin specific for gland mucous cell mucin and examined for three-dimensional images of the SMGL using a confocal laser scanning microscope. The TFF2 and gland mucous cell mucin were found intermixed together in the gastric gland mucous cells, in the SMGL in laminated layers, and in the mucoid cap. A laminated arrangement of continuous sheets of gland mucous cell mucin in the SMGL was demonstrated in the three-dimensional images. Co-localization of the TFF2 with gland mucous cell mucin suggests a physical interaction between the TFF2 and gland mucous cell mucin. The TFF2 trapped in the adherent mucins may be responsible for mucosal defense, healing, and repair.
Collapse
Affiliation(s)
- H Ota
- Department of Biomedical Laboratory Sciences, School of Health Sciences, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
van Baal JWPM, Milano F, Rygiel AM, Bergman JJGHM, Rosmolen WD, van Deventer SJH, Wang KK, Peppelenbosch MP, Krishnadath KK. A comparative analysis by SAGE of gene expression profiles of Barrett's esophagus, normal squamous esophagus, and gastric cardia. Gastroenterology 2005; 129:1274-81. [PMID: 16230080 DOI: 10.1053/j.gastro.2005.07.026] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2005] [Accepted: 07/06/2005] [Indexed: 12/16/2022]
Abstract
BACKGROUND & AIMS The metaplastic process in which the normal squamous epithelium of the distal esophagus is replaced by columnar-lined epithelium, known as Barrett's esophagus (BE), is poorly understood. The aim of this study was to define, analyze, and compare transcription profiles of BE, normal cardia epithelium, and squamous epithelium to gain more insight into the process of metaplasia and to identify uniquely expressed genes in these epithelia. METHODS Serial analysis of gene expression was applied for obtaining transcription libraries of biopsy specimens taken from a BE-affected patient with intestinal type of metaplasia and from normal squamous and gastric cardia epithelia. Validation of results by reverse-transcription polymerase chain reaction and immunoblotting was performed using tissues of 20 patients with BE. RESULTS More than 120,000 tags were sequenced. Between BE and squamous 776, and between BE and gastric cardia 534 tags were significantly differentially expressed (P < .05, pairwise comparison). In contrast, squamous compared with gastric cardia epithelia showed significant differential expression of 1316 tags. The most up-regulated genes in BE compared with squamous epithelium were trefoil factors, annexin A10, and galectin-4. Each of the epithelia showed a unique cytokeratin expression profile. CONCLUSIONS This study provides a comparison of the transcriptomes of BE, squamous epithelium, and gastric cardia epithelium. BE proves to be an incompletely differentiated type of epithelium that shows similarities to both normal squamous and gastric cardia epithelia. In addition, several uniquely expressed genes are identified. These results are a major advancement in understanding the process of metaplasia that leads to BE.
Collapse
Affiliation(s)
- Jantine W P M van Baal
- Laboratory of Experimental Internal Medicine, Academic Medical Center, Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Chwieralski CE, Schnurra I, Thim L, Hoffmann W. Epidermal growth factor and trefoil factor family 2 synergistically trigger chemotaxis on BEAS-2B cells via different signaling cascades. Am J Respir Cell Mol Biol 2004; 31:528-37. [PMID: 15256384 DOI: 10.1165/rcmb.2003-0433oc] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Injured areas of the respiratory epithelium are subject to rapid repair by the migration of adjacent epithelial cells, a process termed "restitution". Rapid re-epithelialization is promoted by interactions between migrating cells and the extracellular matrix proteins. Furthermore, epidermal growth factor (EGF) as well as trefoil factor family (TFF) peptides are well known regulators of epithelial restitution due to their motogenic effects. Migration of the human bronchial epithelial cell line BEAS-2B in modified Boyden chambers was used as a model system for airway restitution. EGF or recombinant human TFF2 or TFF3 showed mainly chemotactic activity. The motogenic response was strictly dependent upon a haptotactic substrate, but to different degrees. EGF induced phosphorylation of extracellular signal-regulated kinases (ERK) 1/2, c-Jun-N-terminal kinase, p38, Akt, and p70S6K in BEAS-2B cells. Using specific inhibitors, the signaling cascades responsible for the motogenic response were shown to differ drastically when EGF was compared with TFF2. The motogenic effect of TFF2 was previously demonstrated to depend on ERK1/2 and protein kinase C activation; whereas the EGF-triggered motogenic response was completely independent of ERK1/2 activation but sensitive to the inhibition of phosphoinositide 3-kinase, p38, protein kinase C, or nuclear factor kappaB. However, the motogenic effects of EGF and TFF2 are additive. These data suggest that luminal EGF and TFF peptides can act synergistically in the human respiratory epithelium to enhance rapid repair processes in the course of diseases such as asthma.
Collapse
Affiliation(s)
- Caroline E Chwieralski
- Institut für Molekularbiologie und Medizinische Chemie, Otto-von-Guericke-Universität, Magdeburg, Germany
| | | | | | | |
Collapse
|