1
|
Furlani M, Visentini D, Cussigh AR, Pesente F, Janes F, Tascini C, Curcio F, Fabris M. Mid-Regional Proadrenomedullin Can Be Reliably Measured in Cerebrospinal Fluid to Improve Diagnosis of Central Nervous System Diseases. J Clin Lab Anal 2025:e70058. [PMID: 40387073 DOI: 10.1002/jcla.70058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 04/17/2025] [Accepted: 05/10/2025] [Indexed: 05/20/2025] Open
Abstract
BACKGROUND Adrenomedullin (ADM) is a potent hormone-like peptide rapidly induced by hypoxia and inflammatory cytokines in the early stages of sepsis. For this reason, the dosage of its more stable precursor fragment called mid-regional (MR)-proADM is currently recommended to assist in triaging patients in the emergency department. Since MR-proADM dosage is currently only approved for use in plasma, we validated its dosage in cerebrospinal fluid (CSF) samples to improve the diagnosis of central nervous system (CNS) diseases. METHODS MR-proADM concentrations were measured in samples using a fully automated platform (Brahms Kryptor Gold Analyzer, Thermo Scientific, Germany), applying the same analytical conditions in plasma and CSF samples, to finally set up an accurate laboratory protocol to validate its dosage in CSF. RESULTS MR-proADM is highly stable in CSF samples stored at room temperature for up to 48 h, allowing it to be measured with confidence also in CSF samples that may be left on the bench for several hours. In addition, the repeatability and within-laboratory precision of the MR-proADM assay using CSF samples appeared equal to or better than those obtained by the manufacturer using plasma samples, allowing the use of this assay, with high precision, also for CSF samples. CONCLUSION The reliable measure of MR-proADM in CSF and the role of this molecule in CNS will allow its introduction in the diagnostic process of infectious, inflammatory, and degenerative neurological diseases.
Collapse
Affiliation(s)
- Matteo Furlani
- Department of Medicine (DMED), University of Udine, Udine, Italy
| | - Daniela Visentini
- Institute of Clinical Pathology, Department of Laboratory Medicine, Azienda Sanitaria Universitaria Friuli Centrale (ASU FC), Udine, Italy
| | - Anna Rosa Cussigh
- Institute of Clinical Pathology, Department of Laboratory Medicine, Azienda Sanitaria Universitaria Friuli Centrale (ASU FC), Udine, Italy
| | - Fiorenza Pesente
- Institute of Clinical Pathology, Department of Laboratory Medicine, Azienda Sanitaria Universitaria Friuli Centrale (ASU FC), Udine, Italy
| | - Francesco Janes
- Clinical Neurology, Azienda Sanitaria Universitaria Friuli Centrale (ASU FC), Udine, Italy
| | - Carlo Tascini
- Department of Medicine (DMED), University of Udine, Udine, Italy
- Infectious Diseases Clinic, Azienda Sanitaria Universitaria Friuli Centrale (ASU FC), Udine, Italy
| | - Francesco Curcio
- Department of Medicine (DMED), University of Udine, Udine, Italy
- Institute of Clinical Pathology, Department of Laboratory Medicine, Azienda Sanitaria Universitaria Friuli Centrale (ASU FC), Udine, Italy
| | - Martina Fabris
- Department of Medicine (DMED), University of Udine, Udine, Italy
- Institute of Clinical Pathology, Department of Laboratory Medicine, Azienda Sanitaria Universitaria Friuli Centrale (ASU FC), Udine, Italy
| |
Collapse
|
2
|
Campos-Sánchez JC, Cabrera-Álvarez MJ, Saraiva JL. Review of Fish Neuropeptides: A Novel Perspective on Animal Welfare. J Comp Neurol 2025; 533:e70029. [PMID: 40008573 DOI: 10.1002/cne.70029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 10/09/2024] [Accepted: 01/28/2025] [Indexed: 02/27/2025]
Abstract
Neuropeptides are highly variable but widely conserved molecules, the main functions of which are the regulation and coordination of physiological processes and behaviors. They are synthesized in the nervous system and generally act on other neuronal and non-neuronal tissues or organs. In recent years, diverse neuropeptide isoforms and their receptors have been identified in different fish species, regulating functions in the neuroendocrine (e.g., corticotropin-releasing hormone and arginine vasotocin), immune (e.g., vasoactive intestinal polypeptide and somatostatin), digestive (e.g., neuropeptide Y), and reproductive (e.g., isotocin) systems, as well as in the commensal microbiota. Interestingly, all these processes carried out by neuropeptides are integrated into the nervous system and are manifested externally in the behavior and affective states of fish, thus having an impact on the modulation of these actions. In this sense, the monitoring of neuropeptides may represent a new approach to assess animal welfare, targeting both physiological and affective aspects in fish. Therefore, although there are many studies investigating the action of neuropeptides in a wide range of paradigms, especially in mammals, their study within a fish welfare framework is scarce. To the best of our knowledge, this is the first review that gathers and integrates up-to-date information on neuropeptides from an animal welfare perspective. In this review, we summarize current findings on neuropeptides in fish and discuss their possible implication in the physiological and emotional state of fish, and therefore in their welfare.
Collapse
Affiliation(s)
- Jose Carlos Campos-Sánchez
- Immunobiology for Aquaculture group, Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, Murcia, Spain
- Fish Ethology and Welfare Group, Centro de Ciências do Mar (CCMAR), Campus de Gambelas, Edificio 7, Universidade do Algarve - CCMAR/CIMAR-LA, Faro, Portugal
| | - María José Cabrera-Álvarez
- Fish Ethology and Welfare Group, Centro de Ciências do Mar (CCMAR), Campus de Gambelas, Edificio 7, Universidade do Algarve - CCMAR/CIMAR-LA, Faro, Portugal
- FishEthoGroup Association, Incubadora de Empresas da Universidade do Algarve Campus de Gambelas, pavilhão B1 8005-226, Faro, Portugal
| | - Joao L Saraiva
- Fish Ethology and Welfare Group, Centro de Ciências do Mar (CCMAR), Campus de Gambelas, Edificio 7, Universidade do Algarve - CCMAR/CIMAR-LA, Faro, Portugal
- FishEthoGroup Association, Incubadora de Empresas da Universidade do Algarve Campus de Gambelas, pavilhão B1 8005-226, Faro, Portugal
| |
Collapse
|
3
|
Su L, Li G, Chow BKC, Cardoso JCR. Neuropeptides and receptors in the cephalochordate: A crucial model for understanding the origin and evolution of vertebrate neuropeptide systems. Mol Cell Endocrinol 2024; 592:112324. [PMID: 38944371 DOI: 10.1016/j.mce.2024.112324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/26/2024] [Accepted: 06/25/2024] [Indexed: 07/01/2024]
Abstract
Genomes and transcriptomes from diverse organisms are providing a wealth of data to explore the evolution and origin of neuropeptides and their receptors in metazoans. While most neuropeptide-receptor systems have been extensively studied in vertebrates, there is still a considerable lack of understanding regarding their functions in invertebrates, an extraordinarily diverse group that account for the majority of animal species on Earth. Cephalochordates, commonly known as amphioxus or lancelets, serve as the evolutionary proxy of the chordate ancestor. Their key evolutionary position, bridging the invertebrate to vertebrate transition, has been explored to uncover the origin, evolution, and function of vertebrate neuropeptide systems. Amphioxus genomes exhibit a high degree of sequence and structural conservation with vertebrates, and sequence and functional homologues of several vertebrate neuropeptide families are present in cephalochordates. This review aims to provide a comprehensively overview of the recent findings on neuropeptides and their receptors in cephalochordates, highlighting their significance as a model for understanding the complex evolution of neuropeptide signaling in vertebrates.
Collapse
Affiliation(s)
- Liuru Su
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China; State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Guang Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China.
| | - Billy K C Chow
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China.
| | - João C R Cardoso
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, 8005-139, Faro, Portugal.
| |
Collapse
|
4
|
Zahed MS, Alimohammadi S, Hassanpour S. Effect of intracerebroventricular (ICV) injection of adrenomedullin and its interaction with NPY and CCK pathways on food intake regulation in neonatal layer-type chicks. Poult Sci 2024; 103:103819. [PMID: 38772088 PMCID: PMC11131059 DOI: 10.1016/j.psj.2024.103819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/25/2024] [Accepted: 05/02/2024] [Indexed: 05/23/2024] Open
Abstract
Adrenomedullin has various physiological roles including appetite regulation. The objective of present study was to determine the effects of ICV injection of adrenomedullin and its interaction with NPY and CCK receptors on food intake regulation. In experiment 1, chickens received ICV injection of saline and adrenomedullin (1, 2, and 3 nmol). In experiment 2, birds injected with saline, B5063 (NPY1 receptor antagonist, 1.25 µg), adrenomedullin (3 nmol) and co-injection of B5063+adrenomedullin. Experiments 3 to 5 were similar to experiment 2 and only SF22 (NPY2 receptor antagonist, 1.25 µg), SML0891 (NPY5 receptor antagonist, 1.25 µg) and CCK4 (1 nmol) were injected instead of B5063. In experiment 6, ICV injection of saline and CCK8s (0.125, 0.25, and 0.5 nmol) were done. In experiment 7, chickens injected with saline, CCK8s (0.125 nmol), adrenomedullin (3 nmol) and co-injection of CCK8s+adrenomedullin. After ICV injection, birds were returned to their individual cages immediately and cumulative food intake was measured at 30, 60, and 120 min after injection. Adrenomedullin (2 and 3 nmol) decreased food intake compared to control group (P < 0.05). Coinjection of B5063+adrenomedullin amplified hypophagic effect of adrenomedullin (P < 0.05). The ICV injection of the CCK8s (0.25 and 0.5 nmol) reduced food intake (P < 0.05). Co-injection of the CCK8s+adrenomedullin significantly potentiated adrenomedullin-induced hypophagia (P < 0.05). Administration of the SF22, SML0891 and CCK4 had no effect on the anorexigenic response evoked by adrenomedullin (P > 0.05). These results suggested that the hypophagic effect of the adrenomedullin is mediated by NPY1 and CCK8s receptors. However, our novel results should form the basis for future experiments.
Collapse
Affiliation(s)
- Maryam Soleymani Zahed
- Section of Physiology, Department of Basic Sciences and Pathobiology, Faculty of Veterinary Medicine, Razi University, Kermanshah, Iran
| | - Samad Alimohammadi
- Section of Physiology, Department of Basic Sciences and Pathobiology, Faculty of Veterinary Medicine, Razi University, Kermanshah, Iran.
| | - Shahin Hassanpour
- Section of Physiology, Department of Basic Sciences, Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
5
|
Cardoso JCR, Mc Shane JC, Li Z, Peng M, Power DM. Revisiting the evolution of Family B1 GPCRs and ligands: Insights from mollusca. Mol Cell Endocrinol 2024; 586:112192. [PMID: 38408601 DOI: 10.1016/j.mce.2024.112192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 02/28/2024]
Abstract
Family B1 G protein-coupled receptors (GPCRs) are one of the most well studied neuropeptide receptor families since they play a central role in many biological processes including endocrine, gastrointestinal, cardiovascular and reproduction in animals. The genes for these receptors emerged from a common ancestral gene in bilaterian genomes and evolved via gene/genome duplications and deletions in vertebrate and invertebrate genomes. Their existence and function have mostly been characterized in vertebrates and few studies exist in invertebrate species. Recently, an increased interest in molluscs, means a series of genomes have become available, and since they are less modified than insect and nematode genomes, they are ideal to explore the origin and evolution of neuropeptide gene families. This review provides an overview of Family B1 GPCRs and their peptide ligands and incorporates new data obtained from Mollusca genomes and taking a comparative approach challenges existing models on their origin and evolution.
Collapse
Affiliation(s)
- João C R Cardoso
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal.
| | - Jennifer C Mc Shane
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Zhi Li
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Maoxiao Peng
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Deborah M Power
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
6
|
Sekiguchi T. Evolution of calcitonin/calcitonin gene-related peptide family in chordates: Identification of CT/CGRP family peptides in cartilaginous fish genome. Gen Comp Endocrinol 2022; 328:114123. [PMID: 36075341 DOI: 10.1016/j.ygcen.2022.114123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 08/29/2022] [Accepted: 08/31/2022] [Indexed: 11/04/2022]
Abstract
The calcitonin (CT)/CT gene-related peptide (CGRP) family is a peptide gene family that is widely found in bilaterians. CT, CGRP, adrenomedullin (AM), amylin (AMY), and CT receptor-stimulating peptide (CRSP) are members of the CT/CGRP family. In mammals, CT is involved in calcium homeostasis, while CGRP and AM primarily function in vasodilation. AMY and CRSP are associated with anorectic effects. Diversification of the molecular features and physiological functions of the CT/CGRP family in vertebrate lineages have been extensively reported. However, the origin and diversification mechanisms of the vertebrate CT/CGRP family of peptides remain unclear. In this review, the molecular characteristics of CT/CGRP family peptides and their receptors, along with their major physiological functions in mammals and teleosts, are introduced. Furthermore, novel candidates of the CT/CGRP family in cartilaginous fish are presented based on genomic information. The CT/CGRP family peptides and receptors in urochordates and cephalochordates, which are closely related to vertebrates, are also described. Finally, a putative evolutionary scenario of the CT/CGRP family peptides and receptors in chordates is discussed.
Collapse
Affiliation(s)
- Toshio Sekiguchi
- Noto Marine Laboratory, Division of Marine Environmental Studies, Institute of Nature and Environmental Technology, Kanazawa University, Housu-gun, Ishikawa 927-0553, Japan.
| |
Collapse
|
7
|
Puri S, Kenyon BM, Hamrah P. Immunomodulatory Role of Neuropeptides in the Cornea. Biomedicines 2022; 10:1985. [PMID: 36009532 PMCID: PMC9406019 DOI: 10.3390/biomedicines10081985] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 12/21/2022] Open
Abstract
The transparency of the cornea along with its dense sensory innervation and resident leukocyte populations make it an ideal tissue to study interactions between the nervous and immune systems. The cornea is the most densely innervated tissue of the body and possesses both immune and vascular privilege, in part due to its unique repertoire of resident immune cells. Corneal nerves produce various neuropeptides that have a wide range of functions on immune cells. As research in this area expands, further insights are made into the role of neuropeptides and their immunomodulatory functions in the healthy and diseased cornea. Much remains to be known regarding the details of neuropeptide signaling and how it contributes to pathophysiology, which is likely due to complex interactions among neuropeptides, receptor isoform-specific signaling events, and the inflammatory microenvironment in disease. However, progress in this area has led to an increase in studies that have begun modulating neuropeptide activity for the treatment of corneal diseases with promising results, necessitating the need for a comprehensive review of the literature. This review focuses on the role of neuropeptides in maintaining the homeostasis of the ocular surface, alterations in disease settings, and the possible therapeutic potential of targeting these systems.
Collapse
Affiliation(s)
- Sudan Puri
- Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA 02111, USA
- Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Brendan M. Kenyon
- Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA 02111, USA
- Program in Neuroscience, Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111, USA
| | - Pedram Hamrah
- Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA 02111, USA
- Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA 02111, USA
- Program in Neuroscience, Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111, USA
- Departments of Immunology and Neuroscience, Tufts University School of Medicine, Boston, MA 02111, USA
- Cornea Service, Tufts New England Eye Center, Boston, MA 02111, USA
| |
Collapse
|
8
|
Ogoshi M, Takahashi M, Aoyagi K, Ukena K, Aizawa S, Takeuchi H, Takahashi S, Takeuchi S. Adrenomedullin 2 and 5 activate the calcitonin receptor-like receptor (clr) - Receptor activity-modifying protein 3 (ramp3) receptor complex in Xenopus tropicalis. Gen Comp Endocrinol 2021; 306:113752. [PMID: 33711314 DOI: 10.1016/j.ygcen.2021.113752] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 01/26/2021] [Accepted: 02/28/2021] [Indexed: 01/24/2023]
Abstract
The adrenomedullin (AM) family is involved in diverse biological functions, including cardiovascular regulation and body fluid homeostasis, in multiple vertebrate lineages. The AM family consists of AM1, AM2, and AM5 in tetrapods, and the receptor for mammalian AMs has been identified as the complex of calcitonin receptor-like receptor (CLR) and receptor activity-modifying protein 2 (RAMP2) or RAMP3. However, the receptors for AM in amphibians have not been identified. In this study, we identified the cDNAs encoding calcrl (clr), ramp2, and ramp3 receptor components from the western clawed frog (Xenopus tropicalis). Messenger RNAs of amphibian clr and ramp2 were highly expressed in the heart, whereas that of ramp3 was highly expressed in the whole blood. In HEK293T cells expressing clr-ramp2, cAMP response element luciferase (CRE-Luc) reporter activity was activated by am1. In HEK293T cells expressing clr-ramp3, CRE-Luc reporter activity was increased by the treatment with am2 at the lowest dose, but with am5 and am1 at higher dose. Our results provided new insights into the roles of AM family peptides through CLR-RAMP receptor complexes in the tetrapods.
Collapse
Affiliation(s)
- Maho Ogoshi
- Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Okayama 700-8530, Japan.
| | - Mikoto Takahashi
- Department of Biology, Faculty of Science, Okayama University, 3-1-1 Tsushima-naka, Okayama 700-8530, Japan
| | - Kota Aoyagi
- Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Okayama 700-8530, Japan
| | - Kazuyoshi Ukena
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-2 Kagamiyama, Higashi-Hiroshima City, Hiroshima 739-8511, Japan.
| | - Sayaka Aizawa
- Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Okayama 700-8530, Japan.
| | - Hideaki Takeuchi
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-Ku, Sendai 980-8577, Japan.
| | - Sumio Takahashi
- Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Okayama 700-8530, Japan.
| | - Sakae Takeuchi
- Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Okayama 700-8530, Japan.
| |
Collapse
|
9
|
Yoshimoto T, Saito S, Omae K, Hattori Y, Fukuma K, Kitamura K, Kakuta R, Kita T, Maruyama H, Yamamoto H, Ihara M. Study Protocol for a Randomized, Double-Blind, Placebo-Controlled, Phase-II Trial: AdrenoMedullin for Ischemic Stroke Study. J Stroke Cerebrovasc Dis 2021; 30:105761. [PMID: 33813084 DOI: 10.1016/j.jstrokecerebrovasdis.2021.105761] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 03/14/2021] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVES Adrenomedullin (AM), a vasoactive peptide, has strong anti-inflammatory and angiogenic properties, which have been reported to ameliorate the consequences of ischemic stroke in several animal models. After a phase I study in healthy volunteers, two phase II trials of AM for inflammatory bowel diseases have been recently completed. The current AdrenoMedullin For Ischemic Stroke (AMFIS) study aims to assess the safety and efficacy of AM in patients with acute ischemic stroke. MATERIALS AND METHODS The AMFIS study is an investigator-initiated, randomized, double-blind, phase-II trial. AM or placebo will be administered to patients with non-cardioembolic ischemic stroke within 24 h after stroke onset. In the first cohort of the AMFIS study, patients will be randomly allocated to the investigation treatment A (30 μg/kg of AM in total for 7 days, n = 20) or placebo group (n = 10). In the second cohort, patients will be assigned to the investigation treatment B (56 μg/kg of AM in total for 7 days, n = 20) or placebo group (n = 10). RESULTS Serious adverse events related to the protocol treatment will be evaluated as the primary outcome. All adverse events will be analyzed as the secondary outcome. Regarding efficacy endpoints, the change in National Institutes of Health Stroke Scale and modified Rankin Scale scores will be compared between investigation treatment and placebo groups. CONCLUSIONS AM is expected to be a safe and effective treatment for ischemic stroke.
Collapse
Affiliation(s)
- Takeshi Yoshimoto
- Department of Neurology, National Cerebral and Cardiovascular Center, 6-1 Kishibe-Shimmachi, Suita, Osaka 564-8565, Japan; Department of Clinical Neuroscience and Therapeutics, Hiroshima University, Hiroshima, Japan.
| | - Satoshi Saito
- Department of Neurology, National Cerebral and Cardiovascular Center, 6-1 Kishibe-Shimmachi, Suita, Osaka 564-8565, Japan; Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry, Suita, Japan.
| | - Katsuhiro Omae
- Department of Data Science, National Cerebral and Cardiovascular Center, Suita, Japan.
| | - Yorito Hattori
- Department of Neurology, National Cerebral and Cardiovascular Center, 6-1 Kishibe-Shimmachi, Suita, Osaka 564-8565, Japan.
| | - Kazuki Fukuma
- Department of Neurology, National Cerebral and Cardiovascular Center, 6-1 Kishibe-Shimmachi, Suita, Osaka 564-8565, Japan.
| | - Kazuo Kitamura
- Division of Circulatory and Body Fluid Regulation, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan.
| | - Ryosuke Kakuta
- Department of Data Science, National Cerebral and Cardiovascular Center, Suita, Japan.
| | - Toshihiro Kita
- Division of Circulatory and Body Fluid Regulation, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan.
| | - Hirofumi Maruyama
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University, Hiroshima, Japan.
| | - Haruko Yamamoto
- Department of Data Science, National Cerebral and Cardiovascular Center, Suita, Japan.
| | - Masafumi Ihara
- Department of Neurology, National Cerebral and Cardiovascular Center, 6-1 Kishibe-Shimmachi, Suita, Osaka 564-8565, Japan.
| |
Collapse
|
10
|
Wang J, Webster A, Sims W, Gilbert ER, Cline MA. The anorexigenic effect of adrenomedullin in Japanese quail (Coturnix japonica) involves increased proopiomelanocortin and cocaine- and amphetamine-regulated transcript mRNAs in the arcuate nucleus of the hypothalamus. Domest Anim Endocrinol 2021; 74:106465. [PMID: 32599450 DOI: 10.1016/j.domaniend.2020.106465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 02/19/2020] [Accepted: 02/24/2020] [Indexed: 11/18/2022]
Abstract
Central administration of adrenomedullin (AM), a 52-amino acid peptide, is associated with anorexigenic effects in some species, including rodents and chickens. However, the associated hypothalamic mechanisms remain unclear and it is unknown if this peptide exerts satiety-inducing effects in other avian species. The objective of this study was thus to investigate AM-induced anorexigenic effects in 7-day-old Japanese quail (Coturnix japonica). After intracerebroventricular injection of 0.3, 1.0, or 3.0 nmol of AM, quail injected with 3.0 nmol of AM ate and drank less than vehicle-injected quail at 180 min after injection. Except for the 1.0 nmol dose of AM exerting an anorexigenic effect at 90 min after injection, no other inhibitory effects on food or water intake were observed. At 60 min after injection, the AM-injected quail had more c-Fos immunoreactive cells in the arcuate nucleus (ARC) than vehicle-injected birds. In the ARC, AM injection was associated with increased proopiomelanocortin (POMC) and cocaine- and amphetamine-regulated transcript (CART) mRNAs. In conclusion, the results suggest that the anorexigenic effect of AM is possibly influenced by the synergistic effect of POMC and CART in the ARC.
Collapse
Affiliation(s)
- J Wang
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - A Webster
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - W Sims
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - E R Gilbert
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA; School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - M A Cline
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA; School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.
| |
Collapse
|
11
|
Fischer JP, Els-Heindl S, Beck-Sickinger AG. Adrenomedullin - Current perspective on a peptide hormone with significant therapeutic potential. Peptides 2020; 131:170347. [PMID: 32569606 DOI: 10.1016/j.peptides.2020.170347] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 06/04/2020] [Accepted: 06/08/2020] [Indexed: 12/11/2022]
Abstract
The peptide hormone adrenomedullin (ADM) consists of 52 amino acids and plays a pivotal role in the regulation of many physiological processes, particularly those of the cardiovascular and lymphatic system. Like calcitonin (CT), calcitonin gene-related peptide (CGRP), intermedin (IMD) and amylin (AMY), it belongs to the CT/CGRP family of peptide hormones, which despite their low little sequence identity share certain characteristic structural features as well as a complex multicomponent receptor system. ADM, IMD and CGRP exert their biological effects by activation of the calcitonin receptor-like receptor (CLR) as a complex with one of three receptor activity-modifying proteins (RAMP), which alter the ligand affinity. Selectivity within the receptor system is largely mediated by the amidated C-terminus of the peptide hormones, which bind to the extracellular domains of the receptors. This enables their N-terminus consisting of a disulfide-bonded ring structure and a helical segment to bind within the transmembrane region and to induce an active receptor confirmation. ADM is expressed in a variety of tissues in the human body and is fundamentally involved in multitude biological processes. Thus, it is of interest as a diagnostic marker and a promising candidate for therapeutic interventions. In order to fully exploit the potential of ADM, it is necessary to improve its pharmacological profile by increasing the metabolic stability and, ideally, creating receptor subtype-selective analogs. While several successful attempts to prolong the half-life of ADM were recently reported, improving or even retaining receptor selectivity remains challenging.
Collapse
Affiliation(s)
- Jan-Patrick Fischer
- Institut für Biochemie, Universität Leipzig, Brüderstraße 34, 04103 Leipzig, Germany
| | - Sylvia Els-Heindl
- Institut für Biochemie, Universität Leipzig, Brüderstraße 34, 04103 Leipzig, Germany
| | | |
Collapse
|
12
|
Mohammadi M, Ramezani-Jolfaie N, Lorzadeh E, Khoshbakht Y, Salehi-Abargouei A. Hesperidin, a major flavonoid in orange juice, might not affect lipid profile and blood pressure: A systematic review and meta-analysis of randomized controlled clinical trials. Phytother Res 2019; 33:534-545. [PMID: 30632207 DOI: 10.1002/ptr.6264] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 11/23/2018] [Accepted: 11/28/2018] [Indexed: 12/19/2022]
Abstract
Previous studies have led to conflicting results regarding the effect of hesperidin supplementation on cardiometabolic markers. This study aimed to evaluate the efficacy of hesperidin supplementation on lipid profile and blood pressure through a systematic review and meta-analysis of randomized controlled trials (RCTs). PubMed, Web of Science, Scopus, and Google Scholar, as well as the reference lists of the identified relevant RCTs, were searched up to May 2018. Effect sizes were pooled by using the random effects model. Ten RCTs (577 participants) were eligible to be included in the systematic review. The meta-analysis revealed that hesperidin supplementation had no effect on serum total cholesterol (weighted mean difference [WMD] = -1.04 mg/dl; 95% confidence interval [CI]: -5.65, 3.57), low-density lipoprotein cholesterol (WMD = -1.96 mg/dl; 95% CI [-7.56, 3.64]), high-density lipoprotein cholesterol (WMD = 0.16 mg/dl; 95% CI [-1.94, 2.28]), and triglyceride (WMD = 0.69 mg/dl; 95% CI [-5.91, 7.30]), with no significant between-study heterogeneity. Hesperidin supplement also had no effect on systolic (WMD = -0.85 mmHg; 95% CI [-3.07, 1.36]) and diastolic blood pressure (WMD = -0.48 mmHg; 95% CI [-2.39, 1.42]). Hesperidin supplementation might not improve lipid profile and blood pressure. Future well-designed trials are still needed to confirm these results.
Collapse
Affiliation(s)
- Mohammad Mohammadi
- Nutrition and Food Security Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Nahid Ramezani-Jolfaie
- Nutrition and Food Security Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Elnaz Lorzadeh
- Nutrition and Food Security Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Yadollah Khoshbakht
- Nutrition and Food Security Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Amin Salehi-Abargouei
- Nutrition and Food Security Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
13
|
Cai W, Kim CH, Go HJ, Egertová M, Zampronio CG, Jones AM, Park NG, Elphick MR. Biochemical, Anatomical, and Pharmacological Characterization of Calcitonin-Type Neuropeptides in Starfish: Discovery of an Ancient Role as Muscle Relaxants. Front Neurosci 2018; 12:382. [PMID: 29937709 PMCID: PMC6002491 DOI: 10.3389/fnins.2018.00382] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 05/18/2018] [Indexed: 11/16/2022] Open
Abstract
Calcitonin (CT) is a peptide hormone released by the thyroid gland that regulates blood Ca2+ levels in mammals. The CT gene is alternatively spliced, with one transcript encoding CT and another transcript encoding the CT-like neuropeptide calcitonin-gene related peptide (α-CGRP), which is a powerful vasodilator. Other CT-related peptides in vertebrates include adrenomedullin, amylin, and intermedin, which also act as smooth muscle relaxants. The evolutionary origin of CT-type peptides has been traced to the bilaterian common ancestor of protostomes and deuterostomes and a CT-like peptide (DH31) has been identified as a diuretic hormone in some insect species. However, little is known about the physiological roles of CT-type peptides in other invertebrates. Here we characterized a CT-type neuropeptide in a deuterostomian invertebrate—the starfish Asterias rubens (Phylum Echinodermata). A CT-type precursor cDNA (ArCTP) was sequenced and the predicted structure of the peptide (ArCT) derived from ArCTP was confirmed using mass spectrometry. The distribution of ArCTP mRNA and the ArCT peptide was investigated using in situ hybridization and immunohistochemistry, respectively, revealing stained cells/processes in the nervous system, digestive system, and muscular organs, including the apical muscle and tube feet. Investigation of the effects of synthetic ArCT on in vitro preparations of the apical muscle and tube feet revealed that it acts as a relaxant, causing dose-dependent reversal of acetylcholine-induced contraction. Furthermore, a muscle relaxant present in whole-animal extracts of another starfish species, Patiria pectinifera, was identified as an ortholog of ArCT and named PpCT. Consistent with the expression pattern of ArCTP in A. rubens, RT-qPCR revealed that in P. pectinifera the PpCT precursor transcript is more abundant in the radial nerve cords than in other tissues/organs analyzed. In conclusion, our findings indicate that the physiological action of CT-related peptides as muscle relaxants in vertebrates may reflect an evolutionarily ancient role of CT-type neuropeptides that can be traced back to the common ancestor of deuterostomes.
Collapse
Affiliation(s)
- Weigang Cai
- School of Biological & Chemical Sciences Queen Mary University of London, London, United Kingdom
| | - Chan-Hee Kim
- Department of Biotechnology, College of Fisheries Sciences Pukyong National University, Busan, South Korea
| | - Hye-Jin Go
- Department of Biotechnology, College of Fisheries Sciences Pukyong National University, Busan, South Korea
| | - Michaela Egertová
- School of Biological & Chemical Sciences Queen Mary University of London, London, United Kingdom
| | - Cleidiane G Zampronio
- School of Life Sciences and Proteomics Research Technology Platform University of Warwick, Coventry, United Kingdom
| | - Alexandra M Jones
- School of Life Sciences and Proteomics Research Technology Platform University of Warwick, Coventry, United Kingdom
| | - Nam Gyu Park
- Department of Biotechnology, College of Fisheries Sciences Pukyong National University, Busan, South Korea
| | - Maurice R Elphick
- School of Biological & Chemical Sciences Queen Mary University of London, London, United Kingdom
| |
Collapse
|
14
|
Tsiolaki PL, Nasi GI, Baltoumas FA, Louros NN, Magafa V, Hamodrakas SJ, Iconomidou VA. αCGRP, another amyloidogenic member of the CGRP family. J Struct Biol 2018; 203:27-36. [PMID: 29501724 DOI: 10.1016/j.jsb.2018.02.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 01/26/2018] [Accepted: 02/28/2018] [Indexed: 10/17/2022]
Abstract
The Calcitonin-gene related peptide (CGRP) family is a group of peptide hormones, which consists of IAPP, calcitonin, adrenomedullin, intermedin, αCGRP and βCGRP. IAPP and calcitonin have been extensively associated with the formation of amyloid fibrils, causing Type 2 Diabetes and Medullary Thyroid Carcinoma, respectively. In contrast, the potential amyloidogenic properties of αCGRP still remain unexplored, although experimental trials have indicated its presence in deposits, associated with the aforementioned disorders. Therefore, in this work, we investigated the amyloidogenic profile of αCGRP, a 37-residue-long peptide hormone, utilizing both biophysical experimental techniques and Molecular Dynamics simulations. These efforts unravel a novel amyloidogenic member of the CGRP family and provide insights into the mechanism underlying the αCGRP polymerization.
Collapse
Affiliation(s)
- Paraskevi L Tsiolaki
- Section of Cell Biology and Biophysics, Department of Biology, School of Sciences, National and Kapodistrian University of Athens, Panepistimiopolis, Athens 157 01, Greece.
| | - Georgia I Nasi
- Section of Cell Biology and Biophysics, Department of Biology, School of Sciences, National and Kapodistrian University of Athens, Panepistimiopolis, Athens 157 01, Greece.
| | - Fotis A Baltoumas
- Section of Cell Biology and Biophysics, Department of Biology, School of Sciences, National and Kapodistrian University of Athens, Panepistimiopolis, Athens 157 01, Greece.
| | - Nikolaos N Louros
- Section of Cell Biology and Biophysics, Department of Biology, School of Sciences, National and Kapodistrian University of Athens, Panepistimiopolis, Athens 157 01, Greece.
| | - Vassiliki Magafa
- Department of Pharmacy, University of Patras, Patras 26504, Greece.
| | - Stavros J Hamodrakas
- Section of Cell Biology and Biophysics, Department of Biology, School of Sciences, National and Kapodistrian University of Athens, Panepistimiopolis, Athens 157 01, Greece.
| | - Vassiliki A Iconomidou
- Section of Cell Biology and Biophysics, Department of Biology, School of Sciences, National and Kapodistrian University of Athens, Panepistimiopolis, Athens 157 01, Greece.
| |
Collapse
|
15
|
Sekiguchi T. The Calcitonin/Calcitonin Gene-Related Peptide Family in Invertebrate Deuterostomes. Front Endocrinol (Lausanne) 2018; 9:695. [PMID: 30555412 PMCID: PMC6283891 DOI: 10.3389/fendo.2018.00695] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 11/05/2018] [Indexed: 12/31/2022] Open
Abstract
Calcitonin (CT)/CT gene-related peptide (CGRP) family peptides (CT/CGRP family peptides) including CT, CGRP, adrenomedullin, amylin, and CT receptor-stimulating peptide have been identified from various vertebrates and perform a variety of important physiological functions. These peptides bind to two types of receptors including CT receptor (CTR) and CTR-like receptor (CLR). Receptor recognition of CT/CGRP family peptides is determined by the heterodimer between CTR/CLR and receptor activity-modifying protein (RAMP). Comparative studies of the CT/CGRP family have been exclusively performed in vertebrates from teleost fishes to mammals and strongly manifest that the CGRP family system containing peptides, their receptors, and RAMPs was derived from a common ancestor. In addition, CT/CGRP family peptides and their receptors are also identified and inferred from various invertebrate species. However, the evolutionary process of the CT/CGRP family from invertebrates to vertebrates remains enigmatic. In this review, I principally summarize the CT/CGRP family peptides and their receptors in invertebrate deuterostomes, highlighting the study of invertebrate chordates including ascidians and amphioxi. The CT/CGRP family peptide that shows similar molecular structure and function with that of vertebrate CT has been identified from ascidian, Ciona intestinalis. Amphioxus, Branchiostoma floridae also possessed three CT/CGRP family peptides, one CTR/CLR receptor, and three RAMP-like proteins. The molecular function of the receptor complex formed by amphioxus CTR/CLR and a RAMP-like protein was clarified. Moreover, CT/CGRP family peptides have been identified in the superphylum Ambulacraria, which is close to Chordata. Finally, this review provides potential hypotheses of the evolution of CGRP family peptides and their receptors from invertebrates to vertebrates.
Collapse
|
16
|
Hu CK, Southey BR, Romanova EV, Maruska KP, Sweedler JV, Fernald RD. Identification of prohormones and pituitary neuropeptides in the African cichlid, Astatotilapia burtoni. BMC Genomics 2016; 17:660. [PMID: 27543050 PMCID: PMC4992253 DOI: 10.1186/s12864-016-2914-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 07/06/2016] [Indexed: 12/14/2022] Open
Abstract
Background Cichlid fishes have evolved remarkably diverse reproductive, social, and feeding behaviors. Cell-to-cell signaling molecules, notably neuropeptides and peptide hormones, are known to regulate these behaviors across vertebrates. This class of signaling molecules derives from prohormone genes that have undergone multiple duplications and losses in fishes. Whether and how subfunctionalization, neofunctionalization, or losses of neuropeptides and peptide hormones have contributed to fish behavioral diversity is largely unknown. Information on fish prohormones has been limited and is complicated by the whole genome duplication of the teleost ancestor. We combined bioinformatics, mass spectrometry-enabled peptidomics, and molecular techniques to identify the suite of neuropeptide prohormones and pituitary peptide products in Astatotilapia burtoni, a well-studied member of the diverse African cichlid clade. Results Utilizing the A. burtoni genome, we identified 148 prohormone genes, with 21 identified as a single copy and 39 with at least 2 duplicated copies. Retention of prohormone duplicates was therefore 41 %, which is markedly above previous reports for the genome-wide average in teleosts. Beyond the expected whole genome duplication, differences between cichlids and mammals can be attributed to gene loss in tetrapods and additional duplication after divergence. Mass spectrometric analysis of the pituitary identified 620 unique peptide sequences that were matched to 120 unique proteins. Finally, we used in situ hybridization to localize the expression of galanin, a prohormone with exceptional sequence divergence in cichlids, as well as the expression of a proopiomelanocortin, prohormone that has undergone an additional duplication in some bony fish lineages. Conclusion We characterized the A. burtoni prohormone complement. Two thirds of prohormone families contain duplications either from the teleost whole genome duplication or a more recent duplication. Our bioinformatic and mass spectrometric findings provide information on a major vertebrate clade that will further our understanding of the functional ramifications of these prohormone losses, duplications, and sequence changes across vertebrate evolution. In the context of the cichlid radiation, these findings will also facilitate the exploration of neuropeptide and peptide hormone function in behavioral diversity both within A. burtoni and across cichlid and other fish species. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2914-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Caroline K Hu
- Department of Biology, Stanford University, Stanford, CA, 94305, USA.,Present address: Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Bruce R Southey
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Elena V Romanova
- Department of Chemistry and the Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Karen P Maruska
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Jonathan V Sweedler
- Department of Chemistry and the Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Russell D Fernald
- Department of Biology, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
17
|
Iwanaga S, Isawa H, Yuda M. Horizontal gene transfer of a vertebrate vasodilatory hormone into ticks. Nat Commun 2015; 5:3373. [PMID: 24556716 DOI: 10.1038/ncomms4373] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 02/04/2014] [Indexed: 12/20/2022] Open
Abstract
The horizontal gene transfer (HGT) of functional molecules is found in higher eukaryotes, but its influence on their evolution has not been fully evaluated. Here we describe the HGT of a vertebrate vasodilator, adrenomedullin (ADM), into ticks of the genus Ornithodoros and hypothesize its involvement in tick evolution. The salivary glands of Ornithodoros ticks contain ADM-like vasodilators, tick-adrenomedullin (TAM). ADM-like molecules, including TAM, are conserved in all vertebrates and Ornithodoros ticks but not in any other invertebrates, including Argas ticks, which share a common ancestor with Ornithodoros ticks. In addition, the close evolutionarily relationship between TAM and ADM is supported through genomic sequence and phylogenetic relatedness analyses. Ornithodoros ticks horizontally acquired vertebrate ADM and currently employ it to facilitate blood feeding. The acquisition of TAM might result in a beneficial change in feeding behaviour and influence the divergence of Ornithodoros ticks.
Collapse
Affiliation(s)
- Shiroh Iwanaga
- School of Medicine, Mie University, Tsu, Mie 514-8507, Japan
| | - Haruhiko Isawa
- 1] School of Medicine, Mie University, Tsu, Mie 514-8507, Japan [2]
| | - Masao Yuda
- School of Medicine, Mie University, Tsu, Mie 514-8507, Japan
| |
Collapse
|
18
|
Yang W, Xv M, Yang WC, Wang N, Zhang XZ, Li WZ. Exogenous α-calcitonin gene-related peptide attenuates lipopolysaccharide-induced acute lung injury in rats. Mol Med Rep 2015; 12:2181-8. [PMID: 25892548 DOI: 10.3892/mmr.2015.3620] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 10/24/2014] [Indexed: 11/06/2022] Open
Abstract
α-Calcitonin gene-related peptide (α-CGRP) is a 37 amino-acid neuropeptide that is primarily released from C-type sensory neurons. α-CGRP exerts multiple modulatory effects on immune responses and visceral organ function, but the role of exogenous α-CGRP in lipopolysaccharide (LPS)-induced acute lung injury (ALI) has remained to be elucidated. Forty-eight rats were randomized to receive continuous intraperitoneal infusion of α-CGRP (0.4 μg/kg/min) or normal saline for 30 min, followed by intratracheal injection of 0.5 mg/kg LPS or saline. There were four groups of animals: The saline-saline (S-S) group; the saline-α-CGRP (S-C) group; the LPS-saline (L-S) group and the LPS-α-CGRP (L-C) group. Mean arterial pressure and arterial blood gases were assessed prior to α-CGRP and LPS administration and every hour following LPS treatment. After 4 h, bronchoalveolar lavage was performed and used to assess total cell count and levels of tumor necrosis factor-α, interleukin-1β, intracellular cell adhesion molecule 1 and macrophage inflammatory protein 2. Lung tissue was also collected for assessing wet-to-dry (W/D) ratio, histology and Evans blue (EB) dye extravasation. Pulmonary α-CGRP concentration and α-CGRP receptor expression were also examined, and inducible cyclic adenosine monophosphate early repressor (ICER) and TNF-α mRNA expression levels were measured. Treatment with exogenous α-CGRP improved oxygenation during LPS-induced ALI. Correspondingly, histological injury, total cell count, inflammatory cytokine levels, W/D ratio and EB dye extravasation were also significantly reduced. α-CGRP receptor 1 expression was noted in pulmonary endothelial cells and alveolar macrophages and α-CGRP receptor expression levels were decreased during ALI, whereas pulmonary α-CGRP expression was continuously increased. Furthermore, exogenous α-CGRP induced upregulation of ICER during LPS-induced ALI. In conclusion, exogenous α-CGRP improved oxygenation and ameliorated lung damage in LPS-induced ALI, and these effects were associated with the upregulation of ICER.
Collapse
Affiliation(s)
- Wang Yang
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Meng Xv
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Wan Chao Yang
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Nan Wang
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Xue Zhong Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Wen Zhi Li
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| |
Collapse
|
19
|
Ogoshi M, Kato K, Sakamoto T. Effect of environmental salinity on expression of adrenomedullin genes suggests osmoregulatory activity in the medaka, Oryzias latipes. ZOOLOGICAL LETTERS 2015; 1:12. [PMID: 26605057 PMCID: PMC4657274 DOI: 10.1186/s40851-015-0012-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 02/13/2015] [Indexed: 06/05/2023]
Abstract
INTRODUCTION The adrenomedullins (AMs) comprise a hormonal family in mammals and teleost fishes, with five members (AM1-5) found or predicted in most of the teleosts including Japanese medaka (Oryzias latipes). AM1 is known to have cardiovascular and osmoregulatory functions in mammals, but the roles of most AMs are yet to be determined. RESULTS Using medaka, we first analyzed the tissue distribution of all five AM genes and found detectable expression in all tissues examined, with relatively high levels of AM3 and AM5 in the liver and kidney. To assess the osmoregulatory roles of these AMs, mRNA levels were examined in the brain (including the eyes), gill, liver, kidney and spleen of medaka one week after transfer from isotonic saline (11 ppt) to freshwater (0 ppt) or seawater (33 ppt). Expression of AM1 in the brain-eye increased in freshwater. The central level of AM4 (the paralog of AM1) decreased in seawater; the branchial level of AM4 decreased in freshwater and seawater, but the renal level increased in freshwater. The branchial level of AM2 increased in seawater, whereas the renal level decreased in freshwater and seawater. Expression of AM3, the AM2 paralog, decreased in the brain-eye of seawater-acclimated fish. Expression of AM5 in the brain-eye and kidney decreased in seawater. CONCLUSIONS Except for branchial AM2, the members of AM family tend to be involved in promotion of hyper-osmoregulation and/or inhibition of hypo-osmoregulation, although each AM may play a distinct role during adaptation to different salinities.
Collapse
Affiliation(s)
- Maho Ogoshi
- Ushimado Marine Institute, Faculty of Science, Okayama University, 130-17 Kashino, Ushimado, Okayama 701-4303 Japan
| | - Kanoko Kato
- Ushimado Marine Institute, Faculty of Science, Okayama University, 130-17 Kashino, Ushimado, Okayama 701-4303 Japan
| | - Tatsuya Sakamoto
- Ushimado Marine Institute, Faculty of Science, Okayama University, 130-17 Kashino, Ushimado, Okayama 701-4303 Japan
| |
Collapse
|
20
|
Relative distribution of gastrin-, CCK-8-, NPY- and CGRP-immunoreactive cells in the digestive tract of dorado (Salminus brasiliensis). Tissue Cell 2015; 47:123-31. [PMID: 25771084 DOI: 10.1016/j.tice.2015.01.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 01/29/2015] [Accepted: 01/30/2015] [Indexed: 01/16/2023]
Abstract
The endocrine cells (ECs) of the gastrointestinal mucosa form the largest endocrine system in the body, not only in terms of cell numbers but also in terms of the different produced substances. Data describing the association between the relative distributions of the peptide-specific ECs in relation to feeding habits can be useful tools that enable the creation of a general expected pattern of EC distribution. We aimed to investigate the distribution of ECs immunoreactive for the peptides gastrin (GAS), cholecystokinin (CCK-8), neuropeptide Y (NPY), and calcitonin gene-related peptide (CGRP) in different segments of the digestive tract of carnivorous fish dorado (Salminus brasiliensis) by using immunohistochemistry procedures. The distribution of endocrine cells immunoreactive for gastrin (GAS), cholecystokinin (CCK-8), neuropeptide Y (NPY), and calcitonin gene-related peptide (CGRP) in digestive tract of dorado S. brasiliensis was examined by immunohistochemistry. The results describe the association between the distribution of the peptide-specific endocrine cells and feeding habits in different carnivorous fish. The largest number of endocrine cells immunoreactive for GAS, CCK-8, and CGRP were found in the pyloric stomach region and the pyloric caeca. However, NPY-immunoreactive endocrine cells were markedly restricted to the midgut. The distribution pattern of endocrine cells identified in S. brasiliensis is similar to that found in other carnivorous fishes.
Collapse
|
21
|
Nag K, Sultana N, Kato A, Dranik A, Nakamura N, Kutsuzawa K, Hirose S, Akaike T. Ligand-induced internalization, recycling, and resensitization of adrenomedullin receptors depend not on CLR or RAMP alone but on the receptor complex as a whole. Gen Comp Endocrinol 2015; 212:156-62. [PMID: 24815888 DOI: 10.1016/j.ygcen.2014.04.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 04/28/2014] [Indexed: 11/24/2022]
Abstract
Adrenomedullins (AM) is a multifaceted distinct subfamily of peptides that belongs to the calcitonin gene-related peptide (CGRP) superfamily. These peptides exert their functional activities via associations of calcitonin receptor-like receptors (CLRs) and receptor activity-modifying proteins (RAMPs) RAMP2 and RAMP3. Recent studies established that RAMPs and CLRs can modify biochemical properties such as trafficking and glycosylation of each other. However there is very little or no understanding regarding how RAMP or CLR influence ligand-induced events of AM-receptor complex. In this study, using pufferfish homologs of CLR (mfCLR1-3) and RAMP (mfRAMP2 and mfRAMP3), we revealed that all combinations of CLR and RAMP quickly underwent ligand-induced internalization; however, their recycling rates were different as follows: mfCLR1-mfRAMP3>mfCLR2-mfRAMP3>mfCLR3-mfRAMP3. Functional receptor assay confirmed that the recycled receptors were resensitized on the plasma membrane. In contrast, a negligible amount of mfCLR1-mfRAMP2 was recycled and reconstituted. Immunocytochemistry results indicated that the lower recovery rate of mfCLR3-mfRAMP3 and mfCLR1-mfRAMP2 was correlated with higher proportion of lysosomal localization of these receptor complexes compared to the other combinations. Collectively our results indicate, for the first time, that the ligand-induced internalization, recycling, and reconstitution properties of RAMP-CLR receptor complexes depend on the receptor-complex as a whole, and not on individual CLR or RAMP alone.
Collapse
Affiliation(s)
- Kakon Nag
- Department of Biological Sciences, Tokyo Institute of Technology, 4259-B19 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan; Department of Pathology and Molecular Medicine, McMaster University, 1200 Main St. W. Hamilton, ON L8N 3Z5, Canada; Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259-B19 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan.
| | - Naznin Sultana
- Department of Biological Sciences, Tokyo Institute of Technology, 4259-B19 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | - Akira Kato
- Department of Biological Sciences, Tokyo Institute of Technology, 4259-B19 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | - Anna Dranik
- Department of Pathology and Molecular Medicine, McMaster University, 1200 Main St. W. Hamilton, ON L8N 3Z5, Canada
| | - Nobuhiro Nakamura
- Department of Biological Sciences, Tokyo Institute of Technology, 4259-B19 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | - Koichi Kutsuzawa
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259-B19 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | - Shigehisa Hirose
- Department of Biological Sciences, Tokyo Institute of Technology, 4259-B19 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | - Toshihiro Akaike
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259-B19 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| |
Collapse
|
22
|
Cameron MS, Nobata S, Takei Y, Donald JA. Vasodilatory effects of homologous adrenomedullin 2 and adrenomedullin 5 on isolated blood vessels of two species of eel. Comp Biochem Physiol A Mol Integr Physiol 2015; 179:157-63. [DOI: 10.1016/j.cbpa.2014.09.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 09/10/2014] [Accepted: 09/24/2014] [Indexed: 11/26/2022]
|
23
|
Martins R, Vieira FA, Power DM. Calcitonin receptor family evolution and fishing for function using in silico promoter analysis. Gen Comp Endocrinol 2014; 209:61-73. [PMID: 24815885 DOI: 10.1016/j.ygcen.2014.04.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 04/27/2014] [Indexed: 11/30/2022]
Abstract
In the present study the calcitonin receptor (CTR) sub-family of family B G-protein coupled receptors (GPCRs) in teleosts is evaluated and put in the context of the families overall evolution from echinodermates to vertebrates. Echinodermates, hemichordates, cephalochordates and tunicates have a single gene that encodes a receptor that bears similarity to the vertebrate calcitonin receptor (CTR) and calcitonin-like receptor (CTR/CLR). In tetrapods one gene encodes the calcitonin receptor (CALCR) and another gene the calcitonin receptor-like receptor (CALCRL). The evolution of CALCR has been under strong conservative pressure and a single copy is also found in fishes and high conservation of gene organisation and synteny exits from teleosts to human. A teleost specific CTR innovation that occurred after their divergence from holostei is the presence of several HBDs in the N-terminus. CALCRL had a different evolutionary trajectory from CALCR and although a single gene copy is present in tetrapods the sarcopterygii fish, the coelacanth, has 1 copy of CALCRL but also a fish specific form CALCRL3. The ray-finned fish, the spotted gar, has 1 copy of CALCRL and 1 of CALCRL3 but the teleost specific whole genome duplication has resulted in a CALCRL1 and CALCRL2 in addition to the fish specific CALCRL3. Strong conservation of CALCRL gene structure exists from human to fish. Promoter analysis in silico reveals that the duplicated CALCRL genes in the teleosts, zebrafish, takifugu, tetraodon and medaka, have divergent promoters and different putative co-regulated gene partners suggesting their function is different.
Collapse
Affiliation(s)
- Rute Martins
- Centro de Ciências do Mar, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Flobela A Vieira
- Centro de Ciências do Mar, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Deborah M Power
- Centro de Ciências do Mar, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.
| |
Collapse
|
24
|
Hay DL, Harris PWR, Kowalczyk R, Brimble MA, Rathbone DL, Barwell J, Conner AC, Poyner DR. Structure-activity relationships of the N-terminus of calcitonin gene-related peptide: key roles of alanine-5 and threonine-6 in receptor activation. Br J Pharmacol 2014; 171:415-26. [PMID: 24125506 PMCID: PMC3904261 DOI: 10.1111/bph.12464] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 09/10/2013] [Accepted: 10/07/2013] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND AND PURPOSE The N-terminus of calcitonin gene-related peptide (CGRP) is important for receptor activation, especially the disulphide-bonded ring (residues 1-7). However, the roles of individual amino acids within this region have not been examined and so the molecular determinants of agonism are unknown. This study has examined the role of residues 1, 3-6 and 8-9, excluding Cys-2 and Cys-7. EXPERIMENTAL APPROACH CGRP derivatives were substituted with either cysteine or alanine; further residues were introduced at position 6. Their affinity was measured by radioligand binding and their efficacy by measuring cAMP production in SK-N-MC cells and β-arrestin 2 translocation in CHO-K1 cells at the CGRP receptor. KEY RESULTS Substitution of Ala-5 by cysteine reduced affinity 270-fold and reduced efficacy for production of cAMP in SK-N-MCs. Potency at β-arrestin translocation was reduced by ninefold. Substitution of Thr-6 by cysteine destroyed all measurable efficacy of both cAMP and β-arrestin responses; substitution with either alanine or serine impaired potency. Substitutions at positions 1, 4, 8 and 9 resulted in approximately 10-fold reductions in potency at both responses. Similar observations were made at a second CGRP-activated receptor, the AMY(1(a)) receptor. CONCLUSIONS AND IMPLICATIONS Ala-5 and Thr-6 are key determinants of agonist activity for CGRP. Ala-5 is also very important for receptor binding. Residues outside of the 1-7 ring also contribute to agonist activity.
Collapse
Affiliation(s)
- Debbie L Hay
- School of Biological Sciences and Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Wang G, Brumfield B, DiCroce M, Nelson L, Newmyer BA, Flower J, Hipskind K, Sharma S, Gilbert ER, Cline MA. Anorexigenic effects of central adrenomedullin are associated with hypothalamic changes in juvenile Gallus gallus. Gen Comp Endocrinol 2014; 204:223-8. [PMID: 24929231 DOI: 10.1016/j.ygcen.2014.05.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 05/26/2014] [Accepted: 05/28/2014] [Indexed: 11/17/2022]
Abstract
Adrenomedullin (AM), a 52 residue neuropeptide, is associated with anorexia in mammals and has a poorly understood central mechanism of action. Thus, this study focused on elucidating AM's central mechanism of action in an alternative vertebrate model, the chick (Gallus gallus). In Experiment 1, chicks centrally injected with AM dose-dependently reduced food but not water intake. In Experiment 2, those chicks that received central AM had increased c-Fos immunoreactivity in the magnocellular division of the paraventricular nucleus (PaMC), ventromedial hypothalamus (VMH) and doromedial hypothalamus (DM). The lateral hypothalamic area, parvocellular division of the paraventricular hypothalamus and the arcuate nucleus were not affected. In Experiment 3, antagonism of corticotrophin releasing factor (CRF) receptors did not affect AM-associated anorexia. In Experiment 4, a comprehensive behavior analysis was conducted and AM-treated chicks pecked less, moved more, jumped more and spent more time in deep rest. In conclusion, exogenous AM induced anorexia is associated with activation of the PaMC, VMH and DM of the hypothalamus, is not CRF dependent, and affects behaviors unrelated to food intake in chicks.
Collapse
Affiliation(s)
- Guoqing Wang
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | | | - Michael DiCroce
- Department of Physics, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Laura Nelson
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Brandon A Newmyer
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Joshua Flower
- Department of Biology, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Kelly Hipskind
- Department of Biology, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Shaan Sharma
- Department of Biology, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Elizabeth R Gilbert
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Mark A Cline
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.
| |
Collapse
|
26
|
Watkins HA, Rathbone DL, Barwell J, Hay DL, Poyner DR. Structure-activity relationships for α-calcitonin gene-related peptide. Br J Pharmacol 2013; 170:1308-22. [PMID: 23186257 PMCID: PMC3838678 DOI: 10.1111/bph.12072] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 10/11/2012] [Accepted: 11/15/2012] [Indexed: 12/30/2022] Open
Abstract
UNLABELLED Calcitonin gene-related peptide (CGRP) is a member of the calcitonin (CT) family of peptides. It is a widely distributed neuropeptide implicated in conditions such as neurogenic inflammation. With other members of the CT family, it shares an N-terminal disulphide-bonded ring which is essential for biological activity, an area of potential α-helix, and a C-terminal amide. CGRP binds to the calcitonin receptor-like receptor (CLR) in complex with receptor activity-modifying protein 1 (RAMP1), a member of the family B (or secretin-like) GPCRs. It can also activate other CLR or calcitonin-receptor/RAMP complexes. This 37 amino acid peptide comprises the N-terminal ring that is required for receptor activation (residues 1-7); an α-helix (residues 8-18), a region incorporating a β-bend (residues 19-26) and the C-terminal portion (residues 27-37), that is characterized by bends between residues 28-30 and 33-34. A few residues have been identified that seem to make major contributions to receptor binding and activation, with a larger number contributing either to minor interactions (which collectively may be significant), or to maintaining the conformation of the bound peptide. It is not clear if CGRP follows the pattern of other family B GPCRs in binding largely as an α-helix. LINKED ARTICLES This article is part of a themed section on Neuropeptides. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2013.170.issue-7.
Collapse
Affiliation(s)
- Harriet A Watkins
- School of Biological Sciences, University of AucklandAuckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of AucklandAuckland, New Zealand
| | - Dan L Rathbone
- School of Life and Health Sciences, Aston UniversityBirmingham, UK
| | - James Barwell
- School of Life and Health Sciences, Aston UniversityBirmingham, UK
| | - Debbie L Hay
- School of Biological Sciences, University of AucklandAuckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of AucklandAuckland, New Zealand
| | - David R Poyner
- School of Life and Health Sciences, Aston UniversityBirmingham, UK
| |
Collapse
|
27
|
Rowe ML, Elphick MR. The neuropeptide transcriptome of a model echinoderm, the sea urchin Strongylocentrotus purpuratus. Gen Comp Endocrinol 2012; 179:331-44. [PMID: 23026496 DOI: 10.1016/j.ygcen.2012.09.009] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 09/12/2012] [Accepted: 09/13/2012] [Indexed: 01/03/2023]
Abstract
Neuronal secretion of peptide signaling molecules (neuropeptides) is an evolutionarily ancient feature of nervous systems. Here we report the identification of 20 cDNAs encoding putative neuropeptide precursors in the sea urchin Strongylocentrotus purpuratus (Phylum Echinodermata), providing new insights on the evolution and diversity of neuropeptides. Identification of a gonadotropin-releasing hormone-like peptide precursor (SpGnRHP) is consistent with the widespread phylogenetic distribution of GnRH-type neuropeptides in the bilateria. A protein (SpTRHLP) comprising multiple copies of peptides that share structural similarity with thyrotropin-releasing hormone (TRH) is the first TRH-like precursor to be identified in an invertebrate. SpCTLP is the first calcitonin-like peptide with two N-terminally located cysteine residues to be found in a non-chordate species. Discovery of two proteins (SpPPLNP1, SpPPLNP2) comprising homologs of molluscan pedal peptides and arthropod orcokinins indicates the existence of a bilaterian family of pedal peptide/orcokinin-type neuropeptides. Other proteins identified contain peptides that do not share apparent sequence similarity with known neuropeptides. These include Spnp5, which comprises multiple copies of C-terminally amidated peptides that have an N-terminal Ala-Asn motif (AN peptides), and Spnp9, Spnp10 and Spnp12, which contain putative neuropeptides with a C-terminal Phe-amide, Ser-amide or Pro-amide, respectively. Several proteins (Spnp11, 14, 15, 16, 17, 18, 19 and 20) contain putative neuropeptides with multiple cysteine residues (2, 6 or 8), which may mediate formation of intramolecular or intermolecular disulphide bridges. Looking ahead, the identification of these neuropeptide precursors in S. purpuratus has provided a strong basis for a comprehensive analysis of neuropeptide function in this model echinoderm species.
Collapse
Affiliation(s)
- Matthew L Rowe
- Queen Mary University of London, School of Biological & Chemical Sciences, Mile End Road, London E1 4NS, UK
| | | |
Collapse
|
28
|
Lenhart PM, Caron KM. Adrenomedullin and pregnancy: perspectives from animal models to humans. Trends Endocrinol Metab 2012; 23:524-32. [PMID: 22425034 PMCID: PMC3380178 DOI: 10.1016/j.tem.2012.02.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 02/17/2012] [Accepted: 02/22/2012] [Indexed: 01/22/2023]
Abstract
A healthy pregnancy requires strict coordination of genetic, physiologic and environmental factors. The relatively common incidence of infertility and pregnancy complications has resulted in increased interest in understanding the mechanisms that underlie normal versus abnormal pregnancy. The peptide hormone adrenomedullin (AM) has recently been the focus of some exciting breakthroughs in the pregnancy field. Supported by mechanistic studies in genetic animal models, there continues to be a growing body of evidence demonstrating the importance of AM protein levels in a variety of human pregnancy complications. With more extensive mechanistic studies and improved consistency in clinical measurements of AM, there is great potential for the development of AM as a clinically-relevant biomarker in pregnancy and pregnancy complications.
Collapse
Affiliation(s)
- Patricia M. Lenhart
- Department of Cell & Molecular Physiology, The University of North Carolina, Chapel Hill, North Carolina, USA 27599
| | - Kathleen M. Caron
- Department of Cell & Molecular Physiology, The University of North Carolina, Chapel Hill, North Carolina, USA 27599
- Corresponding Author: Kathleen M. Caron, Department of Cell and Molecular Physiology, CB #7545, 6340B MBRB 111 Mason Farm Road, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599. Tel: (919) 966-5215, FAX: (919) 966-5230.
| |
Collapse
|
29
|
Hashimoto H, Uezono Y, Ueta Y. Pathophysiological function of oxytocin secreted by neuropeptides: A mini review. PATHOPHYSIOLOGY 2012; 19:283-98. [DOI: 10.1016/j.pathophys.2012.07.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2012] [Revised: 07/04/2012] [Accepted: 07/11/2012] [Indexed: 10/28/2022] Open
|
30
|
Le Mével JC, Lancien F, Mimassi N, Kermorgant M, Conlon JM. Central ventilatory and cardiovascular actions of calcitonin gene-related peptide in unanesthetized trout. ACTA ACUST UNITED AC 2012; 215:1930-7. [PMID: 22573772 DOI: 10.1242/jeb.070177] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Calcitonin gene-related peptide (CGRP) and its receptors are widely distributed in the tissues of teleost fish, including the brain, but little is known about the ventilatory and cardiovascular effects of the peptide in these vertebrates. The present study was undertaken to compare the central and peripheral actions of graded doses (5-50 pmol) of trout CGRP on ventilatory and cardiovascular variables in unanesthetized rainbow trout. Compared with vehicle, intracerebroventricular injection of CGRP significantly elevated the ventilation frequency (f(V)) and the ventilation amplitude (V(AMP)) and, consequently, the total ventilation (V(TOT)). The maximum hyperventilatory effect of CGRP (V(TOT): +300%), observed at a dose of 50 pmol, was mostly due to its stimulatory action on V(AMP) (+200%) rather than f(V) (+30%). In addition, CGRP produced a significant and dose-dependent increase in mean dorsal aortic blood pressure (P(DA)) (50 pmol: +40%) but the increase in heart rate (f(H)) was not significant. Intra-arterial injections of CGRP were without effect on the ventilatory variables but significantly and dose-dependently elevated P(DA) (50 pmol: +36%) without changing f(H). At the highest dose tested, this hypertensive phase was preceded by a rapid and transient hypotensive response. In conclusion, our study suggests that endogenous CGRP within the brain of the trout may act as a potent neurotransmitter and/or neuromodulator in the regulation of cardio-ventilatory functions. In the periphery, endogenous CGRP may act as a local and/or circulating hormone preferentially involved in vasoregulatory mechanisms.
Collapse
Affiliation(s)
- Jean-Claude Le Mével
- Université Européenne de Bretagne, Université de Brest, INSERM UMR101, Brest, CHU de Brest, France.
| | | | | | | | | |
Collapse
|
31
|
Abstract
Although blood pressure effects have been reported for adrenomedullin 5 (AM-5), a newly identified member of the calcitonin gene-related peptide superfamily, little is known about other biological actions. We report the integrated hemodynamic, hormonal, and renal actions of AM-5 (10 and 100 ng·kg·min each for 90 minutes) in normal conscious sheep. AM-5 reduced the mean arterial pressure by 12 mm Hg at the end of the high dose (P < 0.001) in association with dose-dependent increments in the heart rate (40 beats/min--high dose, P < 0.001) and cardiac output (50%-high dose, P < 0.001) and dose-dependent falls in calculated total peripheral resistance (P < 0.001). Plasma renin activity (4-fold increment, P < 0.001), aldosterone (2-fold increment, P = 0.014), and cyclic adenosine monophosphate (50% increment, P < 0.001) all rose in response to high dose AM-5. Urine volume and sodium excretion were unchanged. In conclusion, it is observed that intravenous infusions of AM-5 administered to normal conscious sheep induced significant hemodynamic actions including reduced mean arterial pressure and calculated total peripheral resistance and increased heart rate and cardiac output. Concurrently, AM-5 activated plasma cyclic adenosine monophosphate, plasma renin activity, and aldosterone. These actions are similar to those previously reported for AM and AM-2. Thus, AM-5 may be an another important regulator of volume and pressure homeostasis and may play a role in the pathophysiology of heart disease.
Collapse
|
32
|
Haemodynamic, endocrine and renal actions of adrenomedullin 5 in an ovine model of heart failure. Clin Sci (Lond) 2012; 122:429-37. [PMID: 22087608 PMCID: PMC3259696 DOI: 10.1042/cs20110483] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
AM5 (adrenomedullin 5), a newly described member of the CGRP (calcitonin gene-related peptide) family, is reported to play a role in normal cardiovascular physiology. The effects of AM5 in HF (heart failure), however, have not been investigated. In the present study, we intravenously infused two incremental doses of AM5 (10 and 100 ng/min per kg of body weight each for 90 min) into eight sheep with pacing-induced HF. Compared with time-matched vehicle control infusions, AM5 produced progressive and dose-dependent increases in left ventricular dP/dt(max) [LD (low dose), +56 mmHg/s and HD (high dose), +152 mmHg/s] and cardiac output (+0.83 l/min and +1.81 l/min), together with decrements in calculated total peripheral resistance (−9.4 mmHg/min per litre and −14.7 mmHg/min per litre), mean arterial pressure (−2.8 mmHg and −8.4 mmHg) and LAP (left atrial pressure; −2.6 mmHg and −5.6 mmHg) (all P<0.001). HD AM5 significantly raised PRA (plasma renin activity) (3.5-fold increment, P<0.001), whereas plasma aldosterone levels were unchanged over the intra-infusion period and actually fell in the post-infusion period (70% decrement, P<0.01), resulting in a marked decrease in the aldosterone/PRA ratio (P<0.01). Despite falls in LAP, plasma atrial natriuretic peptide and B-type natriuretic peptide concentrations were maintained relative to controls. AM5 infusion also induced significant increases in urine volume (HD 2-fold increment, P<0.05) and urine sodium (2.7-fold increment, P<0.01), potassium (1.7-fold increment, P<0.05) and creatinine (1.4-fold increment, P<0.05) excretion and creatinine clearance (60% increment, P<0.05). In conclusion, AM5 has significant haemodynamic, endocrine and renal actions in experimental HF likely to be protective and compensatory in this setting. These results suggest that AM5 may have potential as a therapeutic agent in human HF.
Collapse
|
33
|
Nag K, Sultana N, Hirose S. Calcitonin receptor-like receptor (CLR) influences posttranslational events of receptor activity-modifying proteins (RAMPs). Biochem Biophys Res Commun 2012; 418:824-9. [DOI: 10.1016/j.bbrc.2012.01.116] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2012] [Accepted: 01/24/2012] [Indexed: 11/29/2022]
|
34
|
|
35
|
Le Mével JC, Lancien F, Mimassi N, Conlon JM. Brain neuropeptides in central ventilatory and cardiovascular regulation in trout. Front Endocrinol (Lausanne) 2012; 3:124. [PMID: 23115556 PMCID: PMC3483629 DOI: 10.3389/fendo.2012.00124] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Accepted: 10/01/2012] [Indexed: 12/20/2022] Open
Abstract
Many neuropeptides and their G-protein coupled receptors (GPCRs) are present within the brain area involved in ventilatory and cardiovascular regulation but only a few mammalian studies have focused on the integrative physiological actions of neuropeptides on these vital cardio-respiratory regulations. Because both the central neuroanatomical substrates that govern motor ventilatory and cardiovascular output and the primary sequence of regulatory peptides and their receptors have been mostly conserved through evolution, we have developed a trout model to study the central action of native neuropeptides on cardio-ventilatory regulation. In the present review, we summarize the most recent results obtained using this non-mammalian model with a focus on PACAP, VIP, tachykinins, CRF, urotensin-1, CGRP, angiotensin-related peptides, urotensin-II, NPY, and PYY. We propose hypotheses regarding the physiological relevance of the results obtained.
Collapse
Affiliation(s)
- Jean-Claude Le Mével
- INSERM UMR 1101, Laboratoire de Traitement de l'Information Médicale, Laboratoire de Neurophysiologie, SFR ScInBioS, Faculté de Médecine et des Sciences de la Santé, Université Européenne de Bretagne, Université de Brest, CHU de BrestBrest, France
- *Correspondence: Jean-Claude Le Mével, INSERM UMR 1101, Laboratoire de Traitement de l'Information Médicale, Laboratoire de Neurophysiologie, SFR ScInBioS, Faculté de Médecine et des Sciences de la Santé, Université Européenne de Bretagne, Université de Brest, CHU de Brest, 22 avenue Camille Desmoulins, CS 93837, 29238 Brest Cedex 3, France. e-mail:
| | - Frédéric Lancien
- INSERM UMR 1101, Laboratoire de Traitement de l'Information Médicale, Laboratoire de Neurophysiologie, SFR ScInBioS, Faculté de Médecine et des Sciences de la Santé, Université Européenne de Bretagne, Université de Brest, CHU de BrestBrest, France
| | - Nagi Mimassi
- INSERM UMR 1101, Laboratoire de Traitement de l'Information Médicale, Laboratoire de Neurophysiologie, SFR ScInBioS, Faculté de Médecine et des Sciences de la Santé, Université Européenne de Bretagne, Université de Brest, CHU de BrestBrest, France
| | - J. Michael Conlon
- Department of Biochemistry, Faculty of Medicine and Health Sciences, United Arab Emirates UniversityAl Ain, United Arab Emirates
| |
Collapse
|
36
|
The gastrointestinal tract as an endocrine/neuroendocrine/paracrine organ: organization, chemical messengers and physiological targets. FISH PHYSIOLOGY 2010. [DOI: 10.1016/s1546-5098(10)03007-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
37
|
Sekiguchi T, Suzuki N, Fujiwara N, Aoyama M, Kawada T, Sugase K, Murata Y, Sasayama Y, Ogasawara M, Satake H. Calcitonin in a protochordate, Ciona intestinalis--the prototype of the vertebrate calcitonin/calcitonin gene-related peptide superfamily. FEBS J 2009; 276:4437-47. [PMID: 19691140 DOI: 10.1111/j.1742-4658.2009.07151.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The calcitonin (CT)/CT gene-related peptides (CGRPs) constitute a large peptide family in vertebrates. However, no CT/CGRP superfamily members have so far been identified in invertebrates, and the evolutionary process leading to the diverse vertebrate CT/CGRP superfamily members remains unclear. In this study, we have identified an authentic invertebrate CT, Ci-CT, in the ascidian Ciona intestinalis, which is the phylogenetically closest invertebrate chordate to vertebrates. The amino acid sequence of Ci-CT was shown to display high similarity to those of vertebrate CTs and to share CT consensus motifs, including the N-terminal circular region and C-terminal amidated proline. Furthermore, the Ci-CT gene was found to be the only Ciona CT/CGRP superfamily gene. Ci-CT also exhibited less potent, but significant, activation of the human CT receptor, as compared with salmon CT. Physiological analysis revealed that Ci-CT reduced the osteoclastic activity that is specific to vertebrate CTs. CD analysis demonstrated that Ci-CT weakly forms an alpha-helix structure. These results provide evidence that the CT/CGRP superfamily is essentially conserved in ascidians as well as in vertebrates, and indicate that Ci-CT is a prototype of vertebrate CT/CGRP superfamily members. Moreover, expression analysis demonstrated that Ci-CT is expressed in more organs than vertebrate CTs in the cognate organs, suggesting that an original CT/CGRP superfamily member gene was also expressed in multiple organs, and each CT/CGRP superfamily member acquired its current specific tissue distribution and physiological role concomitantly with diversification of the CT/CGRP superfamily during the evolution of chordates. This is the first report on a CT/CGRP superfamily member in invertebrates.
Collapse
|
38
|
Katafuchi T, Yasue H, Osaki T, Minamino N. Calcitonin receptor-stimulating peptide: Its evolutionary and functional relationship with calcitonin/calcitonin gene-related peptide based on gene structure. Peptides 2009; 30:1753-62. [PMID: 19540291 DOI: 10.1016/j.peptides.2009.06.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2009] [Revised: 06/09/2009] [Accepted: 06/10/2009] [Indexed: 12/21/2022]
Abstract
This review focuses on the evolutionary and functional relationship of calcitonin receptor-stimulating peptide (CRSP) with calcitonin (CT)/calcitonin gene-related peptide (CGRP) in mammals. CRSP shows high sequence identity with CGRP, but distinct biological properties. CRSP genes (CRSPs) have been identified in mammals such as pigs and dogs of the Laurasiatheria, but not in primates and rodents of the Euarchontoglires or in non-placental mammals. CRSPs have genomic organizations highly similar to those of CT/CGRP genes (CT/CGRPs), which are located along with CGRPs in a locus between CYP2R1 and INSC, while the other members of the CGRP superfamily, adrenomedullin and amylin, show genomic organizations and locations distinct from CT, CGRP, and CRSP. Thus, we categorized these three peptides into the CT/CGRP/CRSP family. Non-placental mammals having one and placental mammals having multiple CT/CGRP/CRSP family genes suggests that multiplicity of CT/CGRP started at an early stage of mammalian evolution. In the placental mammals, Laurasiatheria generally possesses multiple CRSPs and only one CT/CGRP, while Euarchontoglires possesses CT/CGRP and CGRPbeta but no CRSP, indicating an increase in the diversity and multiplicity of this family of genes in mammalian evolution. Phylogenetic analysis suggests that some CRSPs have been generated very recently in mammalian evolution. Taken together, the increase in the number and complexity of the CT/CGRP/CRSP family genes may have due to evolutionary pressure to facilitate adaptation during mammalian evolution. In this regard, it is important to elucidate the physiological roles of CT, CGRP and CRSP from the viewpoint of the CT/CGRP/CRSP family even in Euarchontoglires.
Collapse
Affiliation(s)
- Takeshi Katafuchi
- Department of Pharmacology, National Cardiovascular Center Research Institute, 5-7-1 Fujishirodai, Suita, Osaka, Japan
| | | | | | | |
Collapse
|
39
|
Hashimoto H, Miyamoto R, Watanabe N, Shiba D, Ozato K, Inoue C, Kubo Y, Koga A, Jindo T, Narita T, Naruse K, Ohishi K, Nogata K, Shin-I T, Asakawa S, Shimizu N, Miyamoto T, Mochizuki T, Yokoyama T, Hori H, Takeda H, Kohara Y, Wakamatsu Y. Polycystic kidney disease in the medaka (Oryzias latipes) pc mutant caused by a mutation in the Gli-Similar3 (glis3) gene. PLoS One 2009; 4:e6299. [PMID: 19609364 PMCID: PMC2706989 DOI: 10.1371/journal.pone.0006299] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2009] [Accepted: 06/09/2009] [Indexed: 11/24/2022] Open
Abstract
Polycystic kidney disease (PKD) is a common hereditary disease in humans. Recent studies have shown an increasing number of ciliary genes that are involved in the pathogenesis of PKD. In this study, the Gli-similar3 (glis3) gene was identified as the causal gene of the medaka pc mutant, a model of PKD. In the pc mutant, a transposon was found to be inserted into the fourth intron of the pc/glis3 gene, causing aberrant splicing of the pc/glis3 mRNA and thus a putatively truncated protein with a defective zinc finger domain. pc/glis3 mRNA is expressed in the epithelial cells of the renal tubules and ducts of the pronephros and mesonephros, and also in the pancreas. Antisense oligonucleotide-mediated knockdown of pc/glis3 resulted in cyst formation in the pronephric tubules of medaka fry. Although three other glis family members, glis1a, glis1b and glis2, were found in the medaka genome, none were expressed in the embryonic or larval kidney. In the pc mutant, the urine flow rate in the pronephros was significantly reduced, which was considered to be a direct cause of renal cyst formation. The cilia on the surface of the renal tubular epithelium were significantly shorter in the pc mutant than in wild-type, suggesting that shortened cilia resulted in a decrease in driving force and, in turn, a reduction in urine flow rate. Most importantly, EGFP-tagged pc/glis3 protein localized in primary cilia as well as in the nucleus when expressed in mouse renal epithelial cells, indicating a strong connection between pc/glis3 and ciliary function. Unlike human patients with GLIS3 mutations, the medaka pc mutant shows none of the symptoms of a pancreatic phenotype, such as impaired insulin expression and/or diabetes, suggesting that the pc mutant may be suitable for use as a kidney-specific model for human GLIS3 patients.
Collapse
Affiliation(s)
- Hisashi Hashimoto
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Wong MKS, Takei Y. Cyclostome and chondrichthyan adrenomedullins reveal ancestral features of the adrenomedullin family. Comp Biochem Physiol B Biochem Mol Biol 2009; 154:317-25. [PMID: 19616113 DOI: 10.1016/j.cbpb.2009.07.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2009] [Revised: 07/08/2009] [Accepted: 07/09/2009] [Indexed: 11/18/2022]
Abstract
The adrenomedullin (AM) family is a newly identified group of regulatory peptides involved in various aspects of homeostasis. Different forms of AMs are the result of genome duplication during vertebrate evolution, but nothing is known about the AM genes before divergence of bony fish. In the present study, we identified novel AM genes in cyclostomes (a hagfish and two lamprey species) and chondrichthyes (a holocephalan and two elasmobranch species). The AM of cyclostomes possessed features of both AM1 and AM2, with gene structure and overall precursor sequence more similar to AM1 of teleosts and tetrapods but mature sequence more similar to AM2. A sequence reminiscent of proAM N-terminal 20 peptide (PAMP), another bioactive peptide present in the prosegment of AM1 precursors, exists in the lamprey AM precursor. An AM gene with both AM1 and AM2 characteristics was also found in chondrichthyes, and an additional AM5-like gene was detected in Squalus acanthias. The hybrid-type AM gene from cyclostomes and chondrichthyes was expressed ubiquitously in all tissues examined including the skeletal muscle, while the Squalus AM5-like gene transcripts were detected more specifically in the liver. Taken together, the ancestral gene of the AM family appears to possess both AM1 and AM2 characteristics as observed in the lamprey AM gene, and the general structure including PAMP was retained by the extant AM1 genes, but the mature sequence was retained by the extant AM2 genes.
Collapse
Affiliation(s)
- Marty K S Wong
- Hadal Environmental Science Education Program, Ocean Research Institute, The University of Tokyo, Nakano-ku, Tokyo 164-8639, Japan
| | | |
Collapse
|
41
|
Martínez-Alvarez RM, Volkoff H, Muñoz-Cueto JA, Delgado MJ. Effect of calcitonin gene-related peptide (CGRP), adrenomedullin and adrenomedullin-2/intermedin on food intake in goldfish (Carassius auratus). Peptides 2009; 30:803-7. [PMID: 19150637 DOI: 10.1016/j.peptides.2008.12.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2008] [Revised: 12/18/2008] [Accepted: 12/18/2008] [Indexed: 10/21/2022]
Abstract
The purpose of the present study was to elucidate the possible role of calcitonin gene-related peptide (CGRP), adrenomedullin (AM) and adrenomedullin-2/intermedin (IMD) on food intake regulation in goldfish (Carassius auratus). We examined the effects of intracerebroventricular (ICV) administration of these related hormones on food intake. Food-deprived goldfish were subjected to ICV injections of CGRP, AM and IMD and their food intake were quantified. CGRP at 10ng/g body weight (bw) significantly decreased food intake as compared to saline-treated fish. IMD at 10 and 50ng/g bw both significantly decreased food intake as compared to saline group. No significant differences were observed after AM administration. Our results suggest, for the first time in fish, a role for both CGRP and IMD in the central regulation of feeding in fish.
Collapse
|
42
|
Takei Y, Balment RJ. Chapter 8 The Neuroendocrine Regulation of Fluid Intake and Fluid Balance. FISH PHYSIOLOGY 2009. [DOI: 10.1016/s1546-5098(09)28008-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
43
|
Holmgren S, Olsson C. Chapter 10 The Neuronal and Endocrine Regulation of Gut Function. ACTA ACUST UNITED AC 2009. [DOI: 10.1016/s1546-5098(09)28010-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
44
|
Effect of calcitonin gene-related peptide (CGRP) on avian appetite-related processes. Behav Brain Res 2009; 196:242-7. [DOI: 10.1016/j.bbr.2008.09.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2008] [Revised: 09/07/2008] [Accepted: 09/09/2008] [Indexed: 11/19/2022]
|
45
|
Ogoshi M, Nobata S, Takei Y. Potent osmoregulatory actions of homologous adrenomedullins administered peripherally and centrally in eels. Am J Physiol Regul Integr Comp Physiol 2008; 295:R2075-83. [PMID: 18922959 DOI: 10.1152/ajpregu.90688.2008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The teleost adrenomedullin (AM) family consists of three groups, AM1/AM4, AM2/AM3, and AM5. In the present study, we examined the effects of homologous AM1, AM2, and AM5 on drinking and renal function after peripheral or central administration in conscious freshwater eels. AM2 and AM5, but not AM1, exhibited dose-dependent (0.01-1 nmol/kg) dipsogenic and antidiuretic effects after intra-arterial bolus injection. The antidiuretic effect was significantly correlated with the degree of associated hypotension. To avoid the potential indirect osmoregulatory effects of AM-induced hypotension, infusion of AMs was also performed at nondepressor doses. Drinking was enhanced dose-dependently at 0.1-3 pmol.kg(-1).min(-1) of AM2 and AM5, matching the potency and efficacy of angiotensin II (ANG II), the most potent dipsogenic hormone known thus far. AM2 and AM5 infusion also induced mild antidiuresis, while AM1 caused antinatriuresis. Additionally, AMs were injected into the third and fourth ventricles of conscious eels to assess their site of dipsogenic action. However, none of the AMs at 0.05-0.5 nmol induced drinking, while ANG II was highly dipsogenic. AM2 and ANG II injected into the third ventricle increased arterial pressure while AM5 decreased it in a dose-dependent manner, and both AM2 and AM5 decreased blood pressure when injected into the fourth ventricle. These data suggest that circulating AM2 and AM5 act on a target site in the brain that lacks the blood-brain barrier. Collectively, the present study showed that AM2 and AM5 are potent osmoregulatory hormones in the eel, and their actions imply involvement in seawater adaptation of this euryhaline species.
Collapse
Affiliation(s)
- Maho Ogoshi
- Laboratory of Physiology, Ocean Research Institute, University of Tokyo, Tokyo, Japan.
| | | | | |
Collapse
|
46
|
Martínez-Alvarez RM, Volkoff H, Cueto JAM, Delgado MJ. Molecular characterization of calcitonin gene-related peptide (CGRP) related peptides (CGRP, amylin, adrenomedullin and adrenomedullin-2/intermedin) in goldfish (Carassius auratus): cloning and distribution. Peptides 2008; 29:1534-43. [PMID: 18539360 DOI: 10.1016/j.peptides.2008.04.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2008] [Revised: 04/18/2008] [Accepted: 04/22/2008] [Indexed: 11/21/2022]
Abstract
To further characterize the structure and function of calcitonin gene-related peptide (CGRP) related peptides in fish, we have cloned cDNA sequences for CGRP, amylin, adrenomedullin (AM) and adrenomedullin-2/intermedin (IMD) in goldfish (Carassius auratus) and examined their tissue distribution. CGRP, amylin, AM and IMD cDNAs were isolated by reverse transcription (RT) and rapid amplification of cDNA ends (RACE). The cloned sequences contain the complete four mature peptides, which present a high degree of identity with mature peptide sequences from other fish. Phylogenetic analyses show that goldfish AM and IMD form a sub-family within the CGRP-related peptides that is distinct from the CGRP/amylin sub-family. The distribution of goldfish CGRP-like peptides mRNA expression in different tissues and within the brain was studied by RT-PCR. CGRP, IMD and AM are detected throughout the brain, in pituitary and in most peripheral tissues examined. Amylin mRNA is mostly expressed in the brain, in particular posterior brain, optic tectum and hypothalamus, but is also present in pituitary, gonad, kidney and muscle. Our results suggest that goldfish CGRP, amylin, AM and IMD are conserved peptides that show the typical structure characteristics present in their mammalian counterparts. The widespread distributions of CGRP, AM and IMD suggest that these peptides could be involved in the regulation of many diverse physiological functions in fish. Amylin mRNA distribution suggests possible new roles for this peptide in teleosts, including the control of reproduction.
Collapse
Affiliation(s)
- R M Martínez-Alvarez
- Dpto. Fisiología, Fac. Ciencias Biológicas, Univ. Complutense, 28040 Madrid, Spain.
| | | | | | | |
Collapse
|
47
|
Takei Y. Exploring novel hormones essential for seawater adaptation in teleost fish. Gen Comp Endocrinol 2008; 157:3-13. [PMID: 18452919 DOI: 10.1016/j.ygcen.2008.03.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2008] [Revised: 03/11/2008] [Accepted: 03/12/2008] [Indexed: 12/29/2022]
Abstract
Marine fish are dehydrated in hyperosmotic seawater (SW), but maintain water balance by drinking surrounding SW if they are capable of excreting the excess ions, particularly Na(+) and Cl(-), absorbed with water by the intestine. An integrative approach is essential for understanding the mechanisms for SW adaptation, in which hormones play pivotal roles. Comparative genomic analyses have shown that hormones that have Na(+)-extruding and vasodepressor properties are greatly diversified in teleost fish. Physiological studies at molecular to organismal levels have revealed that these diversified hormones are much more potent and efficacious in teleost fish than in mammals and are important for survival in SW and for maintenance of low arterial pressure in a gravity-free aquatic environment. This is typified by the natriuretic peptide (NP) family, which is diversified into seven members (ANP, BNP, VNP and CNP1, 2, 3 and 4) and exerts potent hyponatremic and vasodepressor actions in marine fish. Another example is the guanylin family, which consists of three paralogs (guanylin, uroguanylin and renoguanylin), and stimulates Cl(-) secretion into the intestinal lumen and activates the absorptive-type Na-K-2Cl cotransporter by local luminocrine actions. The most recent addition is the adrenomedullin (AM) family, which has five members (AM1, 2, 3, 4 and 5), with AM2 and AM5 showing the most potent or efficacious vasodepressor and osmoregulatory effects among known hormones in teleost fish. Accumulating evidence strongly indicates that members of these diversified hormone families play essential roles in SW adaptation in teleost fish. In this short review, the author has attempted to propose a novel approach for identification of new hormones that are important for SW adaptation using comparative genomic and functional studies. The author has also suggested potential hormone families that are diversified in teleost fish and appear to be involved in SW adaptation through their ion-extruding actions.
Collapse
Affiliation(s)
- Yoshio Takei
- Laboratory of Physiology, Ocean Research Institute, The University of Tokyo, 1-15-1 Minamidai, Nakano, Tokyo 164-8639, Japan.
| |
Collapse
|
48
|
Nobata S, Ogoshi M, Takei Y. Potent cardiovascular actions of homologous adrenomedullins in eels. Am J Physiol Regul Integr Comp Physiol 2008; 294:R1544-53. [DOI: 10.1152/ajpregu.00707.2007] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Adrenomedullin (AM), known as a multifunctional hormone in mammals, forms a unique family of five paralogous peptides in teleost fish. To examine their cardiovascular effects using homologous AMs in eels, we isolated cDNAs encoding four eel AMs, and named AM1 (ortholog of mammalian AM), AM2, AM3 (paralog of AM2 generated only in teleost lineage), and AM5 according to the known teleost AM sequences. Unlike pufferfish, not only AM1 but AM2/3 and AM5 were expressed ubiquitously in various eel tissues. Synthetic mature AM1, AM2, and AM5 exhibited vasodepressor effects after intra-arterial injections, and the effects were more potent at dorsal aorta than at ventral aorta. This indicates that AMs preferentially act on peripheral resistance vessels rather than on branchial arterioles. The potency was in the order of AM2 = AM5 ≫ AM1 in both freshwater (FW) and seawater (SW) eels, which is different from the result of mammals in which AM1 is as potent as, or more potent than, AM2 when injected peripherally. The minimum effective dose of AM2 and AM5 in eels was 1/10 that of AM1 in mammals. The hypotension reached 50% at 1.0 nmol/kg of AM2 and AM5, which is much greater than atrial natriuretic peptide (20%), another potent vasodepressor hormone. Even with such hypotension, AMs did not change heart rate in eels. In addition, AM1 increased blood pressure at ventral aorta and dorsal aorta immediately after an initial hypotension at 5.0 nmol/kg, but not with AM2 and AM5. These data strongly suggest that specific receptors for AM2 and AM5 exist in eels, which differ from the AM1 receptors identified in mammals.
Collapse
|
49
|
Distribution of adrenomedullin-like immunoreactivity in the brain of the adult sea lamprey. Brain Res Bull 2008; 75:261-5. [DOI: 10.1016/j.brainresbull.2007.10.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2007] [Accepted: 10/17/2007] [Indexed: 11/22/2022]
|
50
|
Takei Y, Ogoshi M, Inoue K. A 'reverse' phylogenetic approach for identification of novel osmoregulatory and cardiovascular hormones in vertebrates. Front Neuroendocrinol 2007; 28:143-60. [PMID: 17659326 DOI: 10.1016/j.yfrne.2007.05.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2006] [Revised: 04/23/2007] [Accepted: 05/09/2007] [Indexed: 11/20/2022]
Abstract
Vertebrates expanded their habitats from aquatic to terrestrial environments during the course of evolution. In parallel, osmoregulatory and cardiovascular systems evolved to counter the problems of desiccation and gravity on land. In our physiological studies on body fluid and blood pressure regulation in various vertebrate species, we found that osmoregulatory and cardiovascular hormones have changed their structure and function during the transition from aquatic to terrestrial life. In fact, Na(+)-regulating and vasodepressor hormones play essential roles in fishes, while water-regulating and vasopressor hormones are dominant in tetrapods. Accordingly, Na(+)-regulating and vasodepressor hormones, such as natriuretic peptide (NP) and adrenomedullin (AM), are much diversified in teleost fishes compared with mammals. Based on this finding, new NPs and AMs were identified in mammals and other tetrapods. These hormones have only minor roles in the maintenance of normal blood volume and pressure in mammals, but their importance seems to increase when homeostasis is disrupted. Therefore, such hormones can be used for diagnosis and treatment of body fluid and cardiovascular disorders such as cardiac/renal failure and hypertension. In this review, we introduce a new approach for identification of novel Na(+)-regulating and vasodepressor hormones in mammals based on fish studies. Until recently, new hormones were first discovered in mammals, and then identified and applied in fishes. However, chances are increasing in recent years to identify new hormones first in fishes then in mammals, based on the difference in the regulatory systems between fishes and tetrapods. As the direction is opposite from the traditional phylogenetic approach, we added 'reverse' to its name. The 'reverse' phylogenetic approach offers a typical example of how comparative fish studies can contribute to the general and clinical endocrinology.
Collapse
Affiliation(s)
- Yoshio Takei
- Laboratory of Physiology, Ocean Research Institute, University of Tokyo, 1-15-1 Minamidai, Nakano, Tokyo 164-8639, Japan.
| | | | | |
Collapse
|