1
|
Shaked SA, Weil S, Manor R, Aflalo ED, Moscovitz S, Maman N, Maria R, Kruppke B, Hanke T, Eichler J, Ratzker B, Sokol M, Sagi A. Cuticular proteins (crusticuls) affect 3D chitin bundle nanostructure. NANOSCALE 2025. [PMID: 40405565 DOI: 10.1039/d5nr01455g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2025]
Abstract
The crustacean exoskeleton features a micrometric, three-dimensional chitin scaffold. The intricate organization of this structure makes it an ideal model for investigating scaffold proteins at the nanoscale. Periodic exoskeleton replacement during a rapid and punctual molt cycle involves proteins that govern exoskeleton formation. Relying on binary expression pattern analysis of a molt-related transcriptomic library generated from the cuticle-forming epithelium of the crayfish Cherax quadricarinatus, a family of crustacean cuticle structural proteins termed 'crusticuls' was discovered and shown to present an exoskeleton formation-related expression pattern. All nine crusticuls include a chitin-binding domain bordered by two acidic residue-rich regions, putative functional domains related to exoskeletal formation and biomineralization. Crusticuls knock-down via RNAi resulted in over 95% reduced relative expression in treated versus control crayfish, with phenotypic effects ranging from prolonged molt cycles to lethality. Crusticuls were largely absent from newly formed cuticles following knockdown, resulting in exoskeletal deformities in the three-dimensional organization of chitinous bundles at the micro- and nanometric scales. These structural alterations were phenotypically translated into changes in cuticular hardness and elasticity. The identification of crusticuls as being key for proper nanometric three-dimensional organization of cuticular chitinous scaffolds opens new avenues for synthetic scaffold bio-mimetic applications.
Collapse
Affiliation(s)
- Shai A Shaked
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
- The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Simy Weil
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
- The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Rivka Manor
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
- The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Eliahu D Aflalo
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
- The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Department of Life Sciences, Achva Academic College, Israel
| | - Sharon Moscovitz
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| | - Nitzan Maman
- Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Raquel Maria
- Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Benjamin Kruppke
- Max Bergmann Center of Biomaterials, Institute of Materials Science, Technische Universität Dresden, Dresden, Germany
| | - Thomas Hanke
- Max Bergmann Center of Biomaterials, Institute of Materials Science, Technische Universität Dresden, Dresden, Germany
| | - Jerry Eichler
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| | - Barak Ratzker
- Department of Materials Science and Engineering, Tel Aviv University, Ramat Aviv, Israel
| | - Maxim Sokol
- Department of Materials Science and Engineering, Tel Aviv University, Ramat Aviv, Israel
| | - Amir Sagi
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
- The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
2
|
Jin S, Xiong Y, Zhang W, Qiao H, Wu Y, Jiang S, Fu H. Identification of Candidate Male-Reproduction-Related Genes from the Testis and Androgenic Gland of Macrobrachium nipponense, Regulated by PDHE1, through Transcriptome Profiling Analysis. Int J Mol Sci 2024; 25:1940. [PMID: 38339218 PMCID: PMC10856083 DOI: 10.3390/ijms25031940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 01/27/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
The previous publication identified that pyruvate dehydrogenase E1 (PDHE1) positively regulated the process of male reproduction in M. nipponense through affecting the expressions of insulin-like androgenic gland hormone. The present study aimed to identify the potential male-reproduction-related genes that were regulated by PDHE1 through performing the transcriptome profiling analysis in the testis and androgenic gland after the knockdown of the expressions of PDHE1 by the injection of dsPDHE1. Both RNA-Seq and qPCR analysis identified the significant decreases in PDHE1 expressions in the testis and androgenic gland in dsPDHE1-injected prawns compared to those in dsGFP-injected prawns, indicating the efficiency of dsPDHE1 in the present study. Transcriptome profiling analysis identified 56 and 127 differentially expressed genes (DEGs) in the testis and androgenic gland, respectively. KEGG analysis revealed that the energy-metabolism-related pathways represented the main enriched metabolic pathways of DEGs in both the testis and androgenic gland, including pyruvate metabolism, the Citrate cycle (TCA cycle), Glycolysis/Gluconeogenesis, and the Glucagon signaling pathway. Thus, it is predicted that these metabolic pathways and the DEGs from these metabolic pathways regulated by PDHE1 may be involved in the regulation of male reproduction in M. nipponense. Furthermore, four genes were found to be differentially expressed in both the testis and androgenic gland, of which ribosomal protein S3 was down-regulated and uncharacterized protein LOC113829596 was up-regulated in both the testis and androgenic gland in dsPDHE1-injected prawns. The present study provided valuable evidence for the establishment of an artificial technique to regulate the process of male reproduction in M. nipponense.
Collapse
Affiliation(s)
- Shubo Jin
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (Y.X.); (W.Z.); (H.Q.); (Y.W.); (S.J.)
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Yiwei Xiong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (Y.X.); (W.Z.); (H.Q.); (Y.W.); (S.J.)
| | - Wenyi Zhang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (Y.X.); (W.Z.); (H.Q.); (Y.W.); (S.J.)
| | - Hui Qiao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (Y.X.); (W.Z.); (H.Q.); (Y.W.); (S.J.)
| | - Yan Wu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (Y.X.); (W.Z.); (H.Q.); (Y.W.); (S.J.)
| | - Sufei Jiang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (Y.X.); (W.Z.); (H.Q.); (Y.W.); (S.J.)
| | - Hongtuo Fu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (Y.X.); (W.Z.); (H.Q.); (Y.W.); (S.J.)
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| |
Collapse
|
3
|
Knight BM, Edgar KJ, De Yoreo JJ, Dove PM. Chitosan as a Canvas for Studies of Macromolecular Controls on CaCO 3 Biological Crystallization. Biomacromolecules 2023; 24:1078-1102. [PMID: 36853173 DOI: 10.1021/acs.biomac.2c01394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
A mechanistic understanding of how macromolecules, typically as an organic matrix, nucleate and grow crystals to produce functional biomineral structures remains elusive. Advances in structural biology indicate that polysaccharides (e.g., chitin) and negatively charged proteoglycans (due to carboxyl, sulfate, and phosphate groups) are ubiquitous in biocrystallization settings and play greater roles than currently recognized. This review highlights studies of CaCO3 crystallization onto chitinous materials and demonstrates that a broader understanding of macromolecular controls on mineralization has not emerged. With recent advances in biopolymer chemistry, it is now possible to prepare chitosan-based hydrogels with tailored functional group compositions. By deploying these characterized compounds in hypothesis-based studies of nucleation rate, quantitative relationships between energy barrier to crystallization, macromolecule composition, and solvent structuring can be determined. This foundational knowledge will help researchers understand composition-structure-function controls on mineralization in living systems and tune the designs of new materials for advanced applications.
Collapse
Affiliation(s)
- Brenna M Knight
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
- Department of Geosciences, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Kevin J Edgar
- Department of Sustainable Biomaterials, Virginia Tech, Blacksburg, Virginia 24061, United States
- Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - James J De Yoreo
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Patricia M Dove
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
- Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
- Department of Geosciences, Virginia Tech, Blacksburg, Virginia 24061, United States
- Department of Materials Science and Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
4
|
Tarczewska A, Bielak K, Zoglowek A, Sołtys K, Dobryszycki P, Ożyhar A, Różycka M. The Role of Intrinsically Disordered Proteins in Liquid–Liquid Phase Separation during Calcium Carbonate Biomineralization. Biomolecules 2022; 12:biom12091266. [PMID: 36139105 PMCID: PMC9496343 DOI: 10.3390/biom12091266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
Some animal organs contain mineralized tissues. These so-called hard tissues are mostly deposits of calcium salts, usually in the form of calcium phosphate or calcium carbonate. Examples of this include fish otoliths and mammalian otoconia, which are found in the inner ear, and they are an essential part of the sensory system that maintains body balance. The composition of ear stones is quite well known, but the role of individual components in the nucleation and growth of these biominerals is enigmatic. It is sure that intrinsically disordered proteins (IDPs) play an important role in this aspect. They have an impact on the shape and size of otoliths. It seems probable that IDPs, with their inherent ability to phase separate, also play a role in nucleation processes. This review discusses the major theories on the mechanisms of biomineral nucleation with a focus on the importance of protein-driven liquid–liquid phase separation (LLPS). It also presents the current understanding of the role of IDPs in the formation of calcium carbonate biominerals and predicts their potential ability to drive LLPS.
Collapse
|
5
|
Huang YY, Wang GD, Liu JS, Zhang LL, Huang SY, Wang YL, Yang ZW, Ge H. Analysis of transcriptome difference between rapid-growing and slow-growing in Penaeus vannamei. Gene 2021; 787:145642. [PMID: 33848570 DOI: 10.1016/j.gene.2021.145642] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/28/2021] [Accepted: 04/07/2021] [Indexed: 01/13/2023]
Abstract
Penaeus vannamei is the principle cultured shrimp species in China. However, with the increase of culture density, the growth difference between individuals is also expanding. Here, we make use of RNA-seq to study the growth mechanisms of P. vannamei. After 120 days, we examined the transcriptomes of rapid-growing individuals (RG) and slow-growing individuals (SG). A total of 2116 and 176 differentially expressed genes (DEGs) were found in SG and RG, respectively. Moreover, the main DEGs are opsin, heat shock protein (HSP), actin, myosin, superoxide dismutase (SOD), cuticle protein, and chitinase. GO analysis further revealed that the DEGs were enriched in biological processes significantly, such as "sensory perception," "sensory perception of light stimulus," "response to stimulus," and "response to stress." Additionally, KEGG enrichment analysis showed that the DEGs were mainly enriched in "pentose and glucuronate interconversions," "amino sugar and nucleotide sugar metabolism," "glycophospholipid biosynthesis," and "glutathione metabolism." Interestingly, the upstream genes in the ecdysone signaling pathway, including molting inhibition hormone (MIH) and crustacean hyperglycemic hormone (CHH), did not differ significantly between RG and SG, which suggests that the cause for the inconsistent growth performance is due to the stress levels rather than the ecdysone signal pathway. In summary, this work provides data that will be useful for future studies on shrimp growth and development.
Collapse
Affiliation(s)
- Yong-Yu Huang
- Fisheries College of Jimei University, Xiamen 361021, China; Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, China
| | - Guo-Dong Wang
- Fisheries College of Jimei University, Xiamen 361021, China; Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, China.
| | - Jun-Sheng Liu
- Fisheries College of Jimei University, Xiamen 361021, China; Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, China
| | - Li-Li Zhang
- Fisheries College of Jimei University, Xiamen 361021, China; Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, China
| | - Shi-Yu Huang
- Fisheries College of Jimei University, Xiamen 361021, China; Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, China
| | - Yi-Lei Wang
- Fisheries College of Jimei University, Xiamen 361021, China; Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, China
| | - Zhang-Wu Yang
- Fisheries Research Institute of Fujian, 7 Shanhai Road, Huli, Xiamen 361000, China.
| | - Hui Ge
- Fisheries Research Institute of Fujian, 7 Shanhai Road, Huli, Xiamen 361000, China
| |
Collapse
|
6
|
Natural Composite Systems for Bioinspired Materials. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 940:143-166. [PMID: 27677512 DOI: 10.1007/978-3-319-39196-0_7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
From a relatively limited selection of base materials, nature has steered the development of truly remarkable materials. The simplest and often overlooked organisms have demonstrated the ability to manufacture multi-faceted, molecular-level hierarchical structures that combine mechanical properties rarely seen in synthetic materials. Indeed, these natural composite systems, composed of an array of intricately arranged and functionally relevant organic and inorganic substances serve as inspiration for materials design. A better understanding of these composite systems, specifically at the interface of the hetero-assemblies, would encourage faster development of environmentally friendly "green" materials with molecular level specificities.
Collapse
|
7
|
Wojtas M, Hołubowicz R, Poznar M, Maciejewska M, Ożyhar A, Dobryszycki P. Calcium ion binding properties and the effect of phosphorylation on the intrinsically disordered Starmaker protein. Biochemistry 2015; 54:6525-34. [PMID: 26445027 DOI: 10.1021/acs.biochem.5b00933] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Starmaker (Stm) is an intrinsically disordered protein (IDP) involved in otolith biomineralization in Danio rerio. Stm controls calcium carbonate crystal formation in vivo and in vitro. Phosphorylation of Stm affects its biomineralization properties. This study examined the effects of calcium ions and phosphorylation on the structure of Stm. We have shown that CK2 kinase phosphorylates 25 or 26 residues in Stm. Furthermore, we have demonstrated that Stm's affinity for calcium binding is dependent on its phosphorylation state. Phosphorylated Stm (StmP) has an estimated 30 ± 1 calcium binding sites per protein molecule with a dissociation constant (KD) of 61 ± 4 μM, while the unphosphorylated protein has 28 ± 3 sites and a KD of 210 ± 22 μM. Calcium ion binding induces a compaction of the Stm molecule, causing a significant decrease in its hydrodynamic radius and the formation of a secondary structure. The screening effect of Na(+) ions on calcium binding was also observed. Analysis of the hydrodynamic properties of Stm and StmP showed that Stm and StmP molecules adopt the structure of native coil-like proteins.
Collapse
Affiliation(s)
- Magdalena Wojtas
- Wrocław University of Technology , Faculty of Chemistry, Department of Biochemistry, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Rafał Hołubowicz
- Wrocław University of Technology , Faculty of Chemistry, Department of Biochemistry, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Monika Poznar
- Wrocław University of Technology , Faculty of Chemistry, Department of Biochemistry, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Marta Maciejewska
- Wrocław University of Technology , Faculty of Chemistry, Department of Biochemistry, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Andrzej Ożyhar
- Wrocław University of Technology , Faculty of Chemistry, Department of Biochemistry, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Piotr Dobryszycki
- Wrocław University of Technology , Faculty of Chemistry, Department of Biochemistry, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| |
Collapse
|
8
|
Arakaki A, Shimizu K, Oda M, Sakamoto T, Nishimura T, Kato T. Biomineralization-inspired synthesis of functional organic/inorganic hybrid materials: organic molecular control of self-organization of hybrids. Org Biomol Chem 2015; 13:974-89. [DOI: 10.1039/c4ob01796j] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Biomineralization-inspired synthesis of functional organic/inorganic hybrid materials. Molecularly controlled mechanisms of biomineralization and application of the processes towards future material synthesis are introduced.
Collapse
Affiliation(s)
- Atsushi Arakaki
- Division of Biotechnology and Life Science
- Institute of Engineering
- Tokyo University of Agriculture and Technology
- Japan
| | - Katsuhiko Shimizu
- Organization for Regional Industrial Academic Cooperation
- Tottori University
- Tottori 680-8550
- Japan
| | - Mayumi Oda
- Division of Biotechnology and Life Science
- Institute of Engineering
- Tokyo University of Agriculture and Technology
- Japan
| | - Takeshi Sakamoto
- Department of Chemistry and Biotechnology
- School of Engineering
- The University of Tokyo
- Tokyo 113-8656
- Japan
| | - Tatsuya Nishimura
- Department of Chemistry and Biotechnology
- School of Engineering
- The University of Tokyo
- Tokyo 113-8656
- Japan
| | - Takashi Kato
- Department of Chemistry and Biotechnology
- School of Engineering
- The University of Tokyo
- Tokyo 113-8656
- Japan
| |
Collapse
|
9
|
Nishimura T. Macromolecular templates for the development of organic/inorganic hybrid materials. Polym J 2014. [DOI: 10.1038/pj.2014.107] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
10
|
Różycka M, Wojtas M, Jakób M, Stigloher C, Grzeszkowiak M, Mazur M, Ożyhar A. Intrinsically disordered and pliable Starmaker-like protein from medaka (Oryzias latipes) controls the formation of calcium carbonate crystals. PLoS One 2014; 9:e114308. [PMID: 25490041 PMCID: PMC4260845 DOI: 10.1371/journal.pone.0114308] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 11/07/2014] [Indexed: 01/31/2023] Open
Abstract
Fish otoliths, biominerals composed of calcium carbonate with a small amount of organic matrix, are involved in the functioning of the inner ear. Starmaker (Stm) from zebrafish (Danio rerio) was the first protein found to be capable of controlling the formation of otoliths. Recently, a gene was identified encoding the Starmaker-like (Stm-l) protein from medaka (Oryzias latipes), a putative homologue of Stm and human dentine sialophosphoprotein. Although there is no sequence similarity between Stm-l and Stm, Stm-l was suggested to be involved in the biomineralization of otoliths, as had been observed for Stm even before. The molecular properties and functioning of Stm-l as a putative regulatory protein in otolith formation have not been characterized yet. A comprehensive biochemical and biophysical analysis of recombinant Stm-l, along with in silico examinations, indicated that Stm-l exhibits properties of a coil-like intrinsically disordered protein. Stm-l possesses an elongated and pliable structure that is able to adopt a more ordered and rigid conformation under the influence of different factors. An in vitro assay of the biomineralization activity of Stm-l indicated that Stm-l affected the size, shape and number of calcium carbonate crystals. The functional significance of intrinsically disordered properties of Stm-l and the possible role of this protein in controlling the formation of calcium carbonate crystals is discussed.
Collapse
Affiliation(s)
- Mirosława Różycka
- Department of Biochemistry, Faculty of Chemistry, Wrocław University of Technology, Wrocław, Poland
| | - Magdalena Wojtas
- Department of Biochemistry, Faculty of Chemistry, Wrocław University of Technology, Wrocław, Poland
| | - Michał Jakób
- Department of Biochemistry, Faculty of Chemistry, Wrocław University of Technology, Wrocław, Poland
| | - Christian Stigloher
- Division of Electron Microscopy, Biocenter, University of Würzburg, Würzburg, Germany
| | - Mikołaj Grzeszkowiak
- NanoBioMedical Centre and Department of Macromolecular Physics, Faculty of Physics, Adam Mickiewicz University, Poznań, Poland
| | - Maciej Mazur
- Department of Chemistry, University of Warsaw, Warsaw, Poland
| | - Andrzej Ożyhar
- Department of Biochemistry, Faculty of Chemistry, Wrocław University of Technology, Wrocław, Poland
- * E-mail:
| |
Collapse
|
11
|
Nakayama S, Suzuki M, Endo H, Iimura K, Kinoshita S, Watabe S, Kogure T, Nagasawa H. Identification and characterization of a matrix protein (PPP-10) in the periostracum of the pearl oyster, Pinctada fucata. FEBS Open Bio 2013; 3:421-7. [PMID: 24251105 PMCID: PMC3821031 DOI: 10.1016/j.fob.2013.10.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 10/01/2013] [Accepted: 10/01/2013] [Indexed: 10/28/2022] Open
Abstract
The periostracum is a layered structure that is formed as a mollusk shell grows. The shell is covered by the periostracum, which consists of organic matrices that prevent decalcification of the shell. In the present study, we discovered the presence of chitin in the periostracum and identified a novel matrix protein, Pinctada fucata periostracum protein named PPP-10. It was purified from the sodium dodecyl sulfate/dithiothreitol-soluble fraction of the periostracum of the Japanese pearl oyster, P. fucata. The deduced amino acid sequence was determined by a combination of amino acid sequence analysis and cDNA cloning. The open reading frame encoded a precursor protein of 112 amino acid residues including a 21-residue signal peptide. The 91 residues following the signal peptide contained abundant Cys and Tyr residues. PPP-10 was expressed on the outer side of the outer fold in the mantle, indicating that PPP-10 was present in the second or third layer of the periostracum. We also determined that the recombinant PPP-10 had chitin-binding activity and could incorporate chitin into the scaffolds of the periostracum. These results shed light on the early steps in mollusk shell formation.
Collapse
Affiliation(s)
- Seiji Nakayama
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
Biomineralization is a process of mineral deposition by organisms. Calcium salts are the major component of various biominerals, calcium carbonate being the predominant type in aquatic organisms. The mechanism of biomineralization has been conventionally analyzed by microscopic observation. The findings obtained suggest that minute amounts of organic matrices in biominerals play a key role in biomineralization. We first introduced the methodology of bioactive compound chemistry into this research field. Using various biominerals, such as the exoskeleton and gastroliths of the crayfish, the otoliths and scales of fish, the coccoliths of coccolithophores, bivalve shells, and coral skeleton, a range of organic matrices were purified by simple functional assays, and their chemical structures were determined. The function of each matrix component was estimated by its ability to interact with calcium carbonate and by in vitro crystallization, immunological localization, and site-specific and temporal expression of the encoding genes in the case of proteins and peptides, among other compounds. It was found that there was almost no similarity in chemical structure among organic matrices from various biominerals, but similarity in function was observed, and that made possible the functional classification of organic matrices.
Collapse
|
13
|
Luquet G. Biomineralizations: insights and prospects from crustaceans. Zookeys 2012:103-21. [PMID: 22536102 PMCID: PMC3335408 DOI: 10.3897/zookeys.176.2318] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Accepted: 12/19/2011] [Indexed: 11/12/2022] Open
Abstract
For growing, crustaceans have to molt cyclically because of the presence of a rigid exoskeleton. Most of the crustaceans harden their cuticle not only by sclerotization, like all the arthropods, but also by calcification. All the physiology of crustaceans, including the calcification process, is then linked to molting cycles. This means for these animals to find regularly a source of calcium ions quickly available just after ecdysis. The sources of calcium used are diverse, ranging from the environment where the animals live to endogenous calcium deposits cyclically elaborated by some of them. As a result, crustaceans are submitted to an important and energetically demanding calcium turnover throughout their life. The mineralization process occurs by precipitation of calcium carbonate within an organic matrix network of chitin-proteins fibers. Both crystalline and stabilized amorphous polymorphs of calcium carbonate are found in crustacean biominerals. Furthermore, Crustacea is the only phylum of animals able to elaborate and resorb periodically calcified structures. Notably for these two previous reasons, crustaceans are more and more extensively studied and considered as models of choice in the biomineralization research area.
Collapse
Affiliation(s)
- Gilles Luquet
- Biogéosciences, UMR 5561 CNRS - Université de Bourgogne, Dijon, France
| |
Collapse
|
14
|
Miyabe K, Tokunaga H, Endo H, Inoue H, Suzuki M, Tsutsui N, Yokoo N, Kogure T, Nagasawa H. GSP-37, a novel goldfish scale matrix protein: identification, localization and functional analysis. Faraday Discuss 2012. [DOI: 10.1039/c2fd20051a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
15
|
Kumagai H, Matsunaga R, Nishimura T, Yamamoto Y, Kajiyama S, Oaki Y, Akaiwa K, Inoue H, Nagasawa H, Tsumoto K, Kato T. CaCO3/Chitin hybrids: recombinant acidic peptides based on a peptide extracted from the exoskeleton of a crayfish controls the structures of the hybrids. Faraday Discuss 2012. [DOI: 10.1039/c2fd20057k] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
16
|
Structure and Function of Matrix Proteins and Peptides in the Biomineral Formation in Crustaceans. MOLECULAR BIOMINERALIZATION 2011; 52:315-29. [DOI: 10.1007/978-3-642-21230-7_11] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
17
|
Sugisaka A, Inoue H, Nagasawa H. Structure-activity relationship of CAP-1, a cuticle peptide of the crayfish Procambarus clarkii, in terms of calcification inhibitory activity. ACTA ACUST UNITED AC 2009. [DOI: 10.1007/s11706-009-0028-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
18
|
Suzuki M, Nagasawa H. The structure-function relationship analysis of Prismalin-14 from the prismatic layer of the Japanese pearl oyster, Pinctada fucata. FEBS J 2007; 274:5158-66. [PMID: 17822437 DOI: 10.1111/j.1742-4658.2007.06036.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The mollusk shell is a hard tissue consisting of calcium carbonate and organic matrices. The organic matrices are considered to play important roles in shell formation. We have previously identified a prismatic layer-specific protein named Prismalin-14, which consists of 105 amino acid residues and includes four structurally characteristic regions; a repeated sequence of Pro-Ile-Tyr-Arg, a Gly/Tyr-rich region and N- and C-terminal Asp-rich regions. Prismalin-14 showed an inhibitory activity on calcium carbonate precipitation and a calcium-binding ability in vitro. In this study, we prepared some molecular species of recombinant proteins including Prismalin-14 and its truncated proteins in an Escherichia coli expression system to reveal a structure-function relationship of Prismalin-14. The results showed that the Gly/Tyr-rich region was responsible for chitin binding and was identified as a novel chitin-binding sequence. On the other hand, both N- and C-terminal Asp-rich regions are related to inhibitory activity on calcium carbonate precipitation in vitro. Immunohistological observation revealed that Prismalin-14 was localized at the acid-insoluble organic framework including chitin. All these results strongly suggest that Prismalin-14 is a framework protein that mediates chitin and calcium carbonate crystals by using its acidic and chitin-binding regions.
Collapse
Affiliation(s)
- Michio Suzuki
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Japan
| | | |
Collapse
|