1
|
Bendrath SC, Méndez HG, Dankert AM, Lerma-Cabrera JM, Carvajal F, Dornellas APS, Lee S, Neira S, Haun H, Delpire E, Navarro M, Kash TL, Thiele TE. Corticotropin-Releasing Factor Modulates Binge-Like Ethanol Drinking in a Sex-Dependent Manner: Impact of Amygdala Deletion and Inhibition of a Central Amygdala to Lateral Hypothalamus Circuit. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2025; 5:100405. [PMID: 39660275 PMCID: PMC11629220 DOI: 10.1016/j.bpsgos.2024.100405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/12/2024] [Accepted: 10/12/2024] [Indexed: 12/12/2024] Open
Abstract
Background Binge alcohol drinking is a dangerous behavior that can contribute to the development of more severe alcohol use disorder. Importantly, the rate and severity of alcohol use disorder has historically differed between men and women, suggesting that there may be sex differences in the central mechanisms that modulate alcohol (ethanol) consumption. Corticotropin-releasing factor (CRF) is a centrally expressed neuropeptide that has been implicated in the modulation of binge-like ethanol intake, and emerging data highlight sex differences in CRF systems. Methods In the current report, we characterized CRF+ neurocircuitry arising from the central nucleus of the amygdala (CeA) and innervating the lateral hypothalamus (LH) in the modulation of binge-like ethanol intake in male and female mice. Results Using chemogenetic tools, we found that silencing the CRF+ CeA to LH circuit significantly blunted binge-like ethanol intake in male but not female mice. Consistently, genetic deletion of CRF from neurons of the CeA blunted ethanol intake exclusively in male mice. Furthermore, pharmacological blockade of the CRF1 receptor in the LH significantly reduced binge-like ethanol intake in male mice only, while CRF2 receptor activation in the LH failed to alter ethanol intake in either sex. Finally, a history of binge-like ethanol drinking reduced C rf messenger RNA levels in the CeA regardless of sex. Conclusions These observations provide novel evidence that CRF+ CeA to LH neurocircuitry is more sensitive for modulating binge-like ethanol intake in male mice, which may provide insight into the mechanisms that guide known sex differences in binge-like ethanol intake.
Collapse
Affiliation(s)
- Sophie C. Bendrath
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Hernán G. Méndez
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Anne M. Dankert
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | | | | | - Ana Paula S. Dornellas
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Sophia Lee
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Sofia Neira
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Harold Haun
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Eric Delpire
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Montserrat Navarro
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Thomas L. Kash
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Todd E. Thiele
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
2
|
Favoretto CA, Bertagna NB, Miguel TT, Quadros IMH. The CRF/Urocortin systems as therapeutic targets for alcohol use disorders. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2024; 178:97-152. [PMID: 39523064 DOI: 10.1016/bs.irn.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Development and maintenance of alcohol use disorders have been proposed to recruit critical mechanisms involving Corticotropin Releasing Factor and Urocortins (CRF/Ucns). The CRF/Ucns system is comprised of a family of peptides (CRF, Ucn 1, Ucn 2, Ucn 3) which act upon two receptor subtypes, CRFR1 and CRFR2, each with different affinity profiles to the endogenous peptides and differential brain distribution. Activity of CRF/Ucn system is further modulated by CRF binding protein (CRF-BP), which regulates availability of CRF and Ucns to exert their actions. Extensive evidence in preclinical models support the involvement of CRF/Ucn targets in escalated alcohol drinking, as well as point to changes in CRF/Ucn brain function as a result of chronic alcohol exposure and/or withdrawal. It highlights the role of CRF and CRFR1-mediated signaling in conditions of excessive alcohol taking and seeking, including during various stages of withdrawal and relapse to alcohol. Besides its role in the hypothalamic-pituitary-adrenal (HPA) axis, the importance of extra-hypothalamic CRF pathways, especially in the extended amygdala, in the neurobiology of alcohol abuse and dependence is emphasized. Emerging roles for other targets of the CRF/Ucn system, such as CRF2 receptors, CRF-BP and Ucns in escalated alcohol drinking is also discussed. Finally, the limited translational value of CRF/Ucn interventions in stress-related and alcohol use disorders is discussed. So far, CRFR1 antagonists have shown little or no efficacy in human clinical trials, although a range of unexplored conditions and possibilities remain to be explored.
Collapse
Affiliation(s)
- Cristiane Aparecida Favoretto
- Molecular and Behavioral Neuroscience Laboratory, Pharmacology Department, Escola Paulista de Medicina, Universidade Federal de São Paulo (Unifesp), SP, Brazil; Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States
| | - Natalia Bonetti Bertagna
- Molecular and Behavioral Neuroscience Laboratory, Pharmacology Department, Escola Paulista de Medicina, Universidade Federal de São Paulo (Unifesp), SP, Brazil
| | | | - Isabel M H Quadros
- Psychobiology Department, Escola Paulista de Medicina, Universidade Federal de São Paulo (Unifesp), SP, Brazil.
| |
Collapse
|
3
|
Bendrath SC, Méndez HG, Dankert AM, Lerma-Cabrera JM, Carvajal F, Dornellas-Loper AP, Lee S, Neira S, Haun H, Delpire E, Navarro M, Kash TL, Thiele TE. Inhibiting CRF Projections from the Central Amygdala to Lateral Hypothalamus and Amygdala Deletion of CRF Alters Binge-Like Ethanol Drinking in a Sex-Dependent Manner. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.09.588750. [PMID: 38645149 PMCID: PMC11030312 DOI: 10.1101/2024.04.09.588750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Background Binge alcohol drinking is a dangerous pattern of consumption that can contribute to the development of more severe alcohol use disorders (AUDs). Importantly, the rate and severity of AUDs has historically differed between men and women, suggesting that there may be sex differences in the central mechanisms that modulate alcohol (ethanol) consumption. Corticotropin releasing factor (CRF) is a centrally expressed neuropeptide that has been implicated in the modulation of binge-like ethanol intake, and emerging data highlight sex differences in central CRF systems. Methods In the present report we characterized CRF+ neurocircuitry arising from the central nucleus of the amygdala (CeA) and innervating the lateral hypothalamus (LH) in the modulation of binge-like ethanol intake in male and female mice. Results Using chemogenetic tools we found that silencing the CRF+ CeA to LH circuit significantly blunted binge-like ethanol intake in male, but not female, mice. Consistently, genetic deletion of CRF from neurons of the CeA blunted ethanol intake exclusively in male mice. Furthermore, pharmacological blockade of the CRF type-1 receptor (CRF1R) in the LH significantly reduced binge-like ethanol intake in male mice only, while CRF2R activation in the LH failed to alter ethanol intake in either sex. Finally, a history of binge-like ethanol drinking blunted CRF mRNA in the CeA regardless of sex. Conclusions These observations provide novel evidence that CRF+ CeA to LH neurocircuitry modulates binge-like ethanol intake in male, but not female mice, which may provide insight into the mechanisms that guide known sex differences in binge-like ethanol intake.
Collapse
Affiliation(s)
- Sophie C. Bendrath
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599-3270, USA
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599-7178, USA
| | - Hernán G. Méndez
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599-3270, USA
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599-7178, USA
| | - Anne M. Dankert
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599-3270, USA
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599-7178, USA
| | | | | | - Ana Paula Dornellas-Loper
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599-3270, USA
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599-7178, USA
| | - Sophia Lee
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599-3270, USA
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599-7178, USA
| | - Sofia Neira
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599-3270, USA
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599-7178, USA
| | - Harold Haun
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599-3270, USA
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599-7178, USA
| | - Eric Delpire
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Montserrat Navarro
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599-3270, USA
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599-7178, USA
| | - Thomas L. Kash
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599-3270, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599-3270, USA
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599-7178, USA
| | - Todd E. Thiele
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599-3270, USA
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599-7178, USA
| |
Collapse
|
4
|
Kuebler IRK, Suárez M, Wakabayashi KT. Sex differences and sex-specific regulation of motivated behavior by Melanin-concentrating hormone: a short review. Biol Sex Differ 2024; 15:33. [PMID: 38570844 PMCID: PMC10993549 DOI: 10.1186/s13293-024-00608-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 03/23/2024] [Indexed: 04/05/2024] Open
Abstract
Recent preclinical research exploring how neuropeptide transmitter systems regulate motivated behavior reveal the increasing importance of sex as a critical biological variable. Neuropeptide systems and their central circuits both contribute to sex differences in a range of motivated behaviors and regulate sex-specific behaviors. In this short review, we explore the current research of how sex as a biological variable influences several distinct motivated behaviors that are modulated by the melanin-concentrating hormone (MCH) neuropeptide system. First, we review how MCH regulates feeding behavior within the context of energy homeostasis differently between male and female rodents. Then, we focus on MCH's role in lactation as a sex-specific process within the context of energy homeostasis. Next, we discuss the sex-specific effects of MCH on maternal behavior. Finally, we summarize the role of MCH in drug-motivated behaviors. While these topics are traditionally investigated from different scientific perspectives, in this short review we discuss how these behaviors share commonalities within the larger context of motivated behaviors, and that sex differences discovered in one area of research may impact our understanding in another. Overall, our review highlights the need for further research into how sex differences in energy regulation associated with reproduction and parental care contribute to regulating motivated behaviors.
Collapse
Affiliation(s)
- Isabel R K Kuebler
- Neurocircuitry of Motivated Behavior Laboratory, Department of Psychology, University of Nebraska-Lincoln, Lincoln, NE, 68588-0308, USA
| | - Mauricio Suárez
- Neurocircuitry of Motivated Behavior Laboratory, Department of Psychology, University of Nebraska-Lincoln, Lincoln, NE, 68588-0308, USA
| | - Ken T Wakabayashi
- Neurocircuitry of Motivated Behavior Laboratory, Department of Psychology, University of Nebraska-Lincoln, Lincoln, NE, 68588-0308, USA.
- Rural Drug Addiction Research Center, University of Nebraska-Lincoln, 660 N 12th St., Lincoln, NE, 68588, USA.
| |
Collapse
|
5
|
Pairing Binge Drinking and a High-Fat Diet in Adolescence Modulates the Inflammatory Effects of Subsequent Alcohol Consumption in Mice. Int J Mol Sci 2021; 22:ijms22105279. [PMID: 34067897 PMCID: PMC8157004 DOI: 10.3390/ijms22105279] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/08/2021] [Accepted: 05/15/2021] [Indexed: 12/12/2022] Open
Abstract
Alcohol binge drinking (BD) and poor nutritional habits are two frequent behaviors among many adolescents that alter gut microbiota in a pro-inflammatory direction. Dysbiotic changes in the gut microbiome are observed after alcohol and high-fat diet (HFD) consumption, even before obesity onset. In this study, we investigate the neuroinflammatory response of adolescent BD when combined with a continuous or intermittent HFD and its effects on adult ethanol consumption by using a self-administration (SA) paradigm in mice. The inflammatory biomarkers IL-6 and CX3CL1 were measured in the striatum 24 h after BD, 3 weeks later and after the ethanol (EtOH) SA. Adolescent BD increased alcohol consumption in the oral SA and caused a greater motivation to seek the substance. Likewise, mice with intermittent access to HFD exhibited higher EtOH consumption, while the opposite effect was found in mice with continuous HFD access. Biochemical analyses showed that after BD and three weeks later, striatal levels of IL-6 and CX3CL1 were increased. In addition, in saline-treated mice, CX3CL1 was increased after continuous access to HFD. After oral SA procedure, striatal IL-6 was increased only in animals exposed to BD and HFD. In addition, striatal CX3CL1 levels were increased in all BD- and HFD-exposed groups. Overall, our findings show that adolescent BD and intermittent HFD increase adult alcohol intake and point to neuroinflammation as an important mechanism modulating this interaction.
Collapse
|
6
|
Morganstern I, Gulati G, Leibowitz SF. Role of melanin-concentrating hormone in drug use disorders. Brain Res 2020; 1741:146872. [PMID: 32360868 DOI: 10.1016/j.brainres.2020.146872] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 04/17/2020] [Accepted: 04/28/2020] [Indexed: 12/22/2022]
Abstract
Melanin-concentrating hormone (MCH) is a neuropeptide primarily transcribed in the lateral hypothalamus (LH), with vast projections to many areas throughout the central nervous system that play an important role in motivated behaviors and drug use. Anatomical, pharmacological and genetic studies implicate MCH in mediating the intake and reinforcement of commonly abused substances, acting by influencing several systems including the mesolimbic dopaminergic system, glutamatergic as well as GABAergic signaling and being modulated by inflammatory neuroimmune pathways. Further support for the role of MCH in controlling behavior related to drug use will be discussed as it relates to cerebral ventricular volume transmission and intracellular molecules including cocaine- and amphetamine-regulated transcript peptide, dopamine- and cAMP-regulated phosphoprotein 32 kDa. The primary goal of this review is to introduce and summarize current literature surrounding the role of MCH in mediating the intake and reinforcement of commonly abused drugs, such as alcohol, cocaine, amphetamine, nicotine and opiates.
Collapse
Affiliation(s)
| | - Gazal Gulati
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY 10065, USA
| | - Sarah F Leibowitz
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
7
|
Genders SG, Scheller KJ, Djouma E. Neuropeptide modulation of addiction: Focus on galanin. Neurosci Biobehav Rev 2020; 110:133-149. [DOI: 10.1016/j.neubiorev.2018.06.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 06/07/2018] [Accepted: 06/21/2018] [Indexed: 12/12/2022]
|
8
|
Jacobsen JHW, Buisman-Pijlman FTA, Mustafa S, Rice KC, Hutchinson MR. The efficacy of (+)-Naltrexone on alcohol preference and seeking behaviour is dependent on light-cycle. Brain Behav Immun 2018; 67:181-193. [PMID: 28864261 PMCID: PMC7387101 DOI: 10.1016/j.bbi.2017.08.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 08/18/2017] [Accepted: 08/28/2017] [Indexed: 02/06/2023] Open
Abstract
Circadian rhythm affects drug-induced reward behaviour and the innate immune system. Peaks in reward-associated behaviour and immune responses typically occur during the active (dark) phase of rodents. While the role of the immune system, specifically, Toll-like receptor 4 (TLR4, an innate immune receptor) in drug-induced reward is becoming increasingly appreciated, it is unclear whether its effects vary according to light-cycle. Therefore, the aim of this study was to characterise the effects of the phase of the light-cycle and the state of the innate immune system on alcohol reward behaviour and subsequently determine whether the efficacy of targeting the immune component of drug reward depends upon the light-cycle. This study demonstrates that mice exhibit greater alcohol-induced conditioned place preference and alcohol two-bottle choice preference during the dark cycle. This effect overlapped with elevations in reward-, thirst- and immune-related genes. Administration of (+)-Naltrexone, a TLR4 antagonist, reduced immune-related gene mRNA expression and alcohol preference with its effects most pronounced during the dark cycle. However, (+)-Naltrexone, like other TLR4 antagonists exhibited off-target side effects, with a significant reduction in overall saccharin intake - an effect likely attributable to a reduction in tyrosine hydroxylase (Th) mRNA expression levels. Collectively, the study highlights a link between a time-of-day dependent influence of TLR4 on natural and alcohol reward-like behaviour in mice.
Collapse
Affiliation(s)
- Jonathan Henry W Jacobsen
- Discipline of Pharmacology, Adelaide Medical School, University of Adelaide, South Australia, Australia
| | - Femke T A Buisman-Pijlman
- Discipline of Pharmacology, Adelaide Medical School, University of Adelaide, South Australia, Australia
| | - Sanam Mustafa
- Discipline of Physiology, Adelaide Medical School, University of Adelaide, South Australia, Australia; ARC Centre of Excellence for Nanoscale Biophotonics, University of Adelaide, South Australia, Australia
| | - Kenner C Rice
- Drug Design and Synthesis Section, NIDA, Rockville, MD, USA
| | - Mark R Hutchinson
- Discipline of Physiology, Adelaide Medical School, University of Adelaide, South Australia, Australia; ARC Centre of Excellence for Nanoscale Biophotonics, University of Adelaide, South Australia, Australia.
| |
Collapse
|
9
|
Quadros IMH, Macedo GC, Domingues LP, Favoretto CA. An Update on CRF Mechanisms Underlying Alcohol Use Disorders and Dependence. Front Endocrinol (Lausanne) 2016; 7:134. [PMID: 27818644 PMCID: PMC5073134 DOI: 10.3389/fendo.2016.00134] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 09/09/2016] [Indexed: 12/31/2022] Open
Abstract
Alcohol is the most commonly used and abused substance worldwide. The emergence of alcohol use disorders, and alcohol dependence in particular, is accompanied by functional changes in brain reward and stress systems, which contribute to escalated alcohol drinking and seeking. Corticotropin-releasing factor (CRF) systems have been critically implied in the transition toward problematic alcohol drinking and alcohol dependence. This review will discuss how dysregulation of CRF function contributes to the vulnerability for escalated alcohol drinking and other consequences of alcohol consumption, based on preclinical evidence. CRF signaling, mostly via CRF1 receptors, seems to be particularly important in conditions of excessive alcohol taking and seeking, including during early and protracted withdrawal, relapse, as well as during withdrawal-induced anxiety and escalated aggression promoted by alcohol. Modulation of CRF1 function seems to exert a less prominent role over low to moderate alcohol intake, or to species-typical behaviors. While CRF mechanisms in the hypothalamic-pituitary-adrenal axis have some contribution to the neurobiology of alcohol abuse and dependence, a pivotal role for extra-hypothalamic CRF pathways, particularly in the extended amygdala, is well characterized. More recent studies further suggest a direct modulation of brain reward function by CRF signaling in the ventral tegmental area, nucleus accumbens, and the prefrontal cortex, among other structures. This review will further discuss a putative role for other components of the CRF system that contribute for the overall balance of CRF function in reward and stress pathways, including CRF2 receptors, CRF-binding protein, and urocortins, a family of CRF-related peptides.
Collapse
Affiliation(s)
- Isabel Marian Hartmann Quadros
- Department of Psychobiology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, São Paulo, Brazil
| | - Giovana Camila Macedo
- Department of Psychobiology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, São Paulo, Brazil
| | - Liz Paola Domingues
- Department of Psychobiology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, São Paulo, Brazil
| | - Cristiane Aparecida Favoretto
- Department of Psychobiology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, São Paulo, Brazil
| |
Collapse
|
10
|
Ziółkowski M, Czarnecki D, Budzyński J, Rosińska Z, Żekanowska E, Góralczyk B. Orexin in Patients with Alcohol Dependence Treated for Relapse Prevention: A Pilot Study. Alcohol Alcohol 2015; 51:416-21. [PMID: 26597795 DOI: 10.1093/alcalc/agv129] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 10/26/2015] [Indexed: 11/14/2022] Open
Abstract
AIM The aim of the study was to assess the blood concentration of orexin and its association with other clinical factors in patients with alcohol dependence. METHODS Thirty-two males hospitalized on an addiction treatment ward due to alcohol dependence and 23 healthy men as a control group were enrolled in the study. The measurement of orexin in the blood was made at the beginning of the treatment (after withdrawal symptoms had stopped) and again after 4 weeks of observation. RESULTS At the beginning of the observation, the alcohol-dependent patients had significantly greater orexin blood concentration than the control group. After 4 weeks of treatment for relapse prevention, the blood orexin level decreased significantly to a value similar to that in the control group. At the beginning of the study, more severely alcohol-dependent patients (Short Alcohol Dependence Data [SADD] score range: 20-45) had significantly greater orexin blood concentration than individuals with moderate addiction severity (SADD score range: 10-19). However, after 4 weeks of abstinence, the peptide blood concentration was similar in both groups of alcoholic patients. CONCLUSIONS Orexin or its receptor is a potential target for relapse prevention treatment, but further study with long-term observation is needed to verify the usefulness of blood orexin determination as a marker of alcohol relapse risk.
Collapse
Affiliation(s)
- M Ziółkowski
- Faculty of Health Sciences, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | - D Czarnecki
- Faculty of Health Sciences, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | - J Budzyński
- Faculty of Health Sciences, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | - Z Rosińska
- Faculty of Health Sciences, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | - E Żekanowska
- Faculty of Pharmacy, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | - B Góralczyk
- Faculty of Pharmacy, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Toruń, Poland
| |
Collapse
|
11
|
Carvajal F, Alcaraz-Iborra M, Lerma-Cabrera JM, Valor LM, de la Fuente L, Sanchez-Amate MDC, Cubero I. Orexin receptor 1 signaling contributes to ethanol binge-like drinking: Pharmacological and molecular evidence. Behav Brain Res 2015; 287:230-7. [DOI: 10.1016/j.bbr.2015.03.046] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 03/03/2015] [Accepted: 03/22/2015] [Indexed: 12/27/2022]
|
12
|
CART treatment improves memory and synaptic structure in APP/PS1 mice. Sci Rep 2015; 5:10224. [PMID: 25959573 PMCID: PMC4426675 DOI: 10.1038/srep10224] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 04/07/2015] [Indexed: 01/11/2023] Open
Abstract
Major characteristics of Alzheimer’s disease (AD) include deposits of β-amyloid (Aβ) peptide in the brain, loss of synapses, and cognitive dysfunction. Cocaine- and amphetamine-regulated transcript (CART) has recently been reported to attenuate Aβ-induced toxicity. In this study, CART localization in APP/PS1 mice was characterized and the protective effects of exogenous CART treatment were examined. Compared to age-matched wild type mice, 8-month-old APP/PS1 mice had significantly greater CART immunoreactivity in the hippocampus and cortex. A strikingly similar pattern of Aβ plaque-associated CART immunoreactivity was observed in the cortex of AD cases. Treatment of APP/PS1 mice with exogenous CART ameliorated memory deficits; this effect was associated with improvements in synaptic ultrastructure and long-term potentiation, but not a reduction of the Aβ plaques. Exogenous CART treatment in APP/PS1 mice prevented depolarization of the mitochondrial membrane and stimulated mitochondrial complex I and II activities, resulting in an increase in ATP levels. CART treatment of APP/PS1 mice also reduced reactive oxygen species and 4-hydroxynonenal, and mitigated oxidative DNA damage. In summary, CART treatment reduced multiple neuropathological measures and improved memory in APP/PS1 mice, and may therefore be a promising and novel therapy for AD.
Collapse
|
13
|
Ryan PJ, Krstew EV, Sarwar M, Gundlach AL, Lawrence AJ. Relaxin-3 mRNA levels in nucleus incertus correlate with alcohol and sucrose intake in rats. Drug Alcohol Depend 2014; 140:8-16. [PMID: 24837581 DOI: 10.1016/j.drugalcdep.2014.04.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 04/02/2014] [Accepted: 04/09/2014] [Indexed: 11/17/2022]
Abstract
BACKGROUND Chronic alcohol intake produces multiple neuroadaptive changes, including up- and down-regulation of neuropeptides and receptors. There are widespread projections of relaxin-3 containing neurons to, and abundant relaxin family peptide 3 receptor (RXFP3) expression within, brain regions involved in modulating alcohol intake. Recently we demonstrated the involvement of relaxin-3/RXFP3 signalling in alcohol-seeking in rats; therefore in this study we examined whether relaxin-3 and/or RXFP3 expression were altered by chronic alcohol intake in alcohol-preferring iP rats. METHODS Expression of relaxin-3 mRNA in the hindbrain nucleus incertus and RXFP3 radioligand binding levels in discrete forebrain regions were investigated following voluntary intake of alcohol or sucrose for 12 weeks, with a 2 day washout, using quantitative in situ hybridisation histochemistry and in vitro receptor autoradiography, respectively, in cohorts of adult, male iP rats. RESULTS Levels of relaxin-3 mRNA in the hindbrain nucleus incertus were positively correlated with the level of intake of both alcohol (r(12)=0.59, p=0.03) and sucrose (r(7)=0.70, p=0.04) in iP rats. Dense binding of the RXFP3-selective radioligand, [(125)]-R3/I5, was detected in hypothalamic and extrahypothalamic sites, but no significant changes in the density of RXFP3 were observed in the brain regions quantified following chronic sucrose or ethanol intake. CONCLUSIONS Our findings suggest high endogenous relaxin-3 expression may be associated with higher intake of rewarding substances, rather than its expression being regulated in response to their intake, consistent with an active role for the relaxin-3/RXFP3 system in modulating ingestive and alcohol-related behaviours.
Collapse
Affiliation(s)
- P J Ryan
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia; Florey Department of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - E V Krstew
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - M Sarwar
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Parkville, Victoria, Australia; Department of Pharmacology, Monash University, Clayton, Victoria, Australia
| | - A L Gundlach
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia; Florey Department of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia; Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, Victoria, Australia
| | - A J Lawrence
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia; Florey Department of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
14
|
Azarov AV, Woodward DJ. Early ethanol and water intake: choice mechanism and total fluid regulation operate in parallel in male alcohol preferring (P) and both Wistar and Sprague Dawley rats. Physiol Behav 2013; 123:11-9. [PMID: 24095933 DOI: 10.1016/j.physbeh.2013.09.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 07/13/2013] [Accepted: 09/25/2013] [Indexed: 10/26/2022]
Abstract
The goal of this study was to clarify similar and distinctly different parameters of fluid intake during early phases of ethanol and water choice drinking in alcohol preferring P-rat vs. non-selected Wistar and Sprague Dawley (SD) rats. Precision information on the drinking amounts and timing is needed to analyze micro-behavioral components of the acquisition of ethanol intake and to enable a search for its causal activity patterns within individual CNS circuits. The experiment followed the standard ethanol-drinking test used in P-rat selective breeding, with access to water, then 10% ethanol (10E) as sole fluids, and next to ethanol/water choice. The novelty of the present approach was to eliminate confounding prandial elevations of fluid intake, by time-separating daily food from fluid access. P-rat higher initial intakes of water and 10E as sole fluids suggest adaptations to ethanol-induced dehydration in P vs. Wistar and SD rats. P-rat starting and overall ethanol intake during the choice period were the highest. The absolute extent of ethanol intake elevation during choice period was greatest in Wistar and their final intake levels approached those of P-rat, contrary to the hypothesis that selection would produce the strongest elevation of ethanol intake. The total daily fluid during ethanol/water choice period was strikingly similar between P, Wistar and SD rats. This supports the hypothesis for a universal system that gauges the overall intake volume by titrating and integrating ethanol and water drinking fluctuations, and indicates a stable daily level of total fluid as a main regulated parameter of fluid intake across the three lines in choice conditions. The present findings indicate that a stable daily level of total fluid comprises an independent physiological limit for daily ethanol intake. Ethanol drinking, in turn, stays under the ceiling of this limit, driven by a parallel mechanism of ethanol/water choice.
Collapse
Affiliation(s)
- Alexey V Azarov
- Neuroscience Research Institute of North Carolina, 101 N. Chestnut St., Suite 200, Winston-Salem, NC 27101, United States.
| | | |
Collapse
|
15
|
Machaalani R, Hunt NJ, Waters KA. Effects of changes in energy homeostasis and exposure of noxious insults on the expression of orexin (hypocretin) and its receptors in the brain. Brain Res 2013; 1526:102-22. [PMID: 23830852 DOI: 10.1016/j.brainres.2013.06.035] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 06/19/2013] [Accepted: 06/25/2013] [Indexed: 12/23/2022]
Abstract
This review summarizes data regarding the brain expression of the orexin (hypocretin) system including: prepro-orexin (PPO), orexin A (OxA), orexin B (OxB) and the two orexin receptors 1 and 2 (OxR1, OxR2). Clinical data is limited to OxA and OxB in cerebral spinal fluid and serum/plasma, thus necessitating the development of animal models to undertake mechanistic studies. We focus on changes in animal models that were either exposed to a regime of altered sleep, metabolic energy homeostasis, exposed to drugs and noxious insults. Many more expressional studies are available for PPO, OxA and OxB levels, compared to studies of the receptors. Interestingly, the direction and pattern of change for PPO, OxA and OxB is inconsistent amongst studies, whereas for the receptors, there tends to be increased expression for both OxR1 and OxR2 after alterations in energy homeostasis, and an increased expression after noxious insults or exposure to some drugs. The clinical implications of these results from animal models are discussed in light of the findings from human studies, and future research directions are suggested to fill knowledge gaps with regard to the orexin system, particularly during early brain development.
Collapse
Affiliation(s)
- Rita Machaalani
- Department of Medicine, Blackburn Building, DO6, University of Sydney, NSW 2006, Australia.
| | | | | |
Collapse
|
16
|
Barson JR, Morganstern I, Leibowitz SF. Neurobiology of consummatory behavior: mechanisms underlying overeating and drug use. ILAR J 2012; 53:35-58. [PMID: 23520598 PMCID: PMC3954603 DOI: 10.1093/ilar.53.1.35] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Consummatory behavior is driven by both caloric and emotional need, and a wide variety of animal models have been useful in research on the systems that drive consumption of food and drugs. Models have included selective breeding for a specific trait, manipulation of gene expression, forced or voluntary exposure to a substance, and identification of biomarkers that predict which animals are prone to overconsuming specific substances. This research has elucidated numerous brain areas and neurochemicals that drive consummatory behavior. Although energy homeostasis is primarily mediated by the hypothalamus, reinforcement is more strongly mediated by nuclei outside the hypothalamus, in mesocorticolimbic regions. Orexigenic neurochemicals that control food intake can provide a general signal for promoting caloric intake or a more specific signal for stimulating consumption of a particular macronutrient, fat, carbohydrate, or protein. The neurochemicals involved in controlling fat ingestion--galanin, enkephalin, orexin, melanin-concentrating hormone, and the endocannabinoids--show positive feedback with this macronutrient, as these peptides both increase fat intake and are further stimulated by its intake. This positive association offers some explanation for why foods high in fat are so often overconsumed. Consumption of ethanol, a drug of abuse that also contains calories, is similarly driven by the neurochemical systems involved in fat intake, according to evidence that closely relates fat and ethanol consumption. Further understanding of the systems involved in consummatory behavior will enable the development of effective therapies for the treatment of both overeating and drug abuse.
Collapse
Affiliation(s)
- Jessica R Barson
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, New York 10065, USA
| | | | | |
Collapse
|
17
|
Voorhees CM, Cunningham CL. Involvement of the orexin/hypocretin system in ethanol conditioned place preference. Psychopharmacology (Berl) 2011; 214:805-18. [PMID: 21107540 PMCID: PMC3063857 DOI: 10.1007/s00213-010-2082-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Accepted: 10/30/2010] [Indexed: 12/20/2022]
Abstract
RATIONALE Recent studies suggest that orexin/hypocretin is involved in drug reward and drug-seeking behaviors, including ethanol self-administration. However, orexin's role in ethanol-induced seeking behaviors remains unclear. OBJECTIVE These studies examined the role of orexin in the acquisition and expression of ethanol conditioned place preference (CPP) using the orexin 1 receptor (OX1R) antagonist SB-334867. METHODS Effects of SB-334867 (0-30 mg/kg) on locomotor activity were determined in DBA/2J mice (Experiment 1). SB-334867 (0-30 mg/kg) was administered during acquisition of ethanol (2 g/kg) CPP to determine whether orexin signaling is required (Experiment 2). Blood ethanol concentrations (BECs) were measured after ethanol (2 g/kg) injection to determine whether SB-334867 (30 mg/kg) pretreatment altered ethanol pharmacokinetics (Experiment 3). Finally, SB-334867 (0-40 mg/kg) was given before ethanol-free preference testing (Experiments 4 and 5). RESULTS SB-334867 did not alter basal locomotor activity (Experiment 1). SB-334867 (30 mg/kg) reduced ethanol-induced locomotor stimulation, but did not affect the acquisition of ethanol CPP (Experiment 2) or BEC, suggesting no alteration in ethanol pharmacokinetics (Experiment 3). Although OX1R antagonism blocked expression of a weak ethanol CPP (Experiment 4), it did not affect expression of a moderate to strong CPP (Experiment 5). CONCLUSIONS Blockade of OX1R by systemic administration of SB-334867 reduced ethanol-stimulated activity, but did not affect acquisition or expression of ethanol-induced CPP, suggesting that orexin does not influence ethanol's primary or conditioned rewarding effects. Other neurotransmitter systems may be sufficient to support acquisition and expression of CPP despite alterations in orexin signaling.
Collapse
Affiliation(s)
- Charlene M. Voorhees
- Department of Behavioral Neuroscience, L470 Portland Alcohol Research Center, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239-3098, USA
| | - Christopher L. Cunningham
- Department of Behavioral Neuroscience, L470 Portland Alcohol Research Center, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239-3098, USA
| |
Collapse
|
18
|
Anacker AMJ, Loftis JM, Kaur S, Ryabinin AE. Prairie voles as a novel model of socially facilitated excessive drinking. Addict Biol 2011; 16:92-107. [PMID: 20579002 DOI: 10.1111/j.1369-1600.2010.00234.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Social relationships strongly affect alcohol drinking in humans. Traditional laboratory rodents do not exhibit social affiliations with specific peers, and cannot adequately model how such relationships impact drinking. The prairie vole is a socially monogamous rodent used to study social bonds. The present study tested the prairie vole as a potential model for the effects of social affiliations on alcohol drinking. Same-sex adult sibling prairie voles were paired for five days, and then either separated into individual cages, or housed in pairs. Starting at the time of separation, the voles received unlimited access to alcohol in a two-bottle choice test versus water. Pair-housed siblings exhibited higher preference for alcohol, but not saccharin, than singly housed voles. There was a significant correlation between the amount of alcohol consumed by each member of a pair when they were housed together (r = 0.79), but not when housed apart (r = 0.20). Following automated analysis of circadian patterns of fluid consumption indicating peak fluid intake before and after the dark phase, a limited access two-hour two-bottle choice procedure was established. Drinking in this procedure resulted in physiologically relevant blood ethanol concentrations and increased Fos immunoreactivity in perioculomotor urocortin containing neurons (but not in nucleus accumbens or central nucleus of the amygdala). The high ethanol preference and sensitivity to social manipulation indicate that prairie voles can serve to model social influences on excessive drinking.
Collapse
Affiliation(s)
- Allison M J Anacker
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland Veterans Affairs Medical Center, 97238, USA
| | | | | | | |
Collapse
|
19
|
Morganstern I, Chang GQ, Chen YW, Barson JR, Zhiyu Y, Hoebel BG, Leibowitz SF. Role of melanin-concentrating hormone in the control of ethanol consumption: Region-specific effects revealed by expression and injection studies. Physiol Behav 2010; 101:428-37. [PMID: 20670637 PMCID: PMC2949500 DOI: 10.1016/j.physbeh.2010.07.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Revised: 05/27/2010] [Accepted: 07/21/2010] [Indexed: 11/23/2022]
Abstract
The peptide melanin-concentrating hormone (MCH), produced mainly by cells in the lateral hypothalamus (LH), perifornical area (PF) and zona incerta (ZI), is suggested to have a role in the consumption of rewarding substances, such as ethanol, sucrose and palatable food. However, there is limited information on the specific brain sites where MCH acts to stimulate intake of these rewarding substances and on the feedback effects that their consumption has on the expression of endogenous MCH. The current study investigated MCH in relation to ethanol consumption, in Sprague-Dawley rats. In Experiment 1, chronic consumption of ethanol (from 0.70 to 2.7 g/kg/day) dose-dependently reduced MCH gene expression in the LH. In Experiments 2-4, the opposite effect was observed with acute oral ethanol, which stimulated MCH expression specifically in the LH but not the ZI. In Experiment 5, the effect of MCH injection in brain-cannulated rats on ethanol consumption was examined. Compared to saline, MCH injected in the paraventricular nucleus (PVN) and nucleus accumbens (NAc) selectively stimulated ethanol consumption without affecting food or water intake. In contrast, it reduced ethanol intake when administered into the LH, while having no effect in the ZI. These results demonstrate that voluntary, chronic consumption of ethanol leads to local negative feedback control of MCH expression in the LH. However, with a brief exposure, ethanol stimulates MCH-expressing neurons in this region, which through projections to the feeding-related PVN and reward-related NAc can promote further drinking behavior.
Collapse
Affiliation(s)
- I Morganstern
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY 10065, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Galanin and consummatory behavior: special relationship with dietary fat, alcohol and circulating lipids. EXPERIENTIA SUPPLEMENTUM (2012) 2010; 102:87-111. [PMID: 21299064 DOI: 10.1007/978-3-0346-0228-0_8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Galanin (GAL) plays an integral role in consummatory behavior. In particular, hypothalamic GAL has a positive, reciprocal relationship with dietary fat and alcohol. In this relationship, GAL increases the consumption of fat or alcohol which, in turn, stimulates the expression of GAL, ultimately leading to overconsumption. Through actions in the amygdala, this relationship may become especially important in stress-induced food or drug intake. These effects of GAL in promoting overconsumption may involve various neurotransmitters, with GAL facilitating intake by stimulating norepinephrine and dopamine and reducing satiety by decreasing serotonin and acetylcholine. In addition, GAL in the hypothalamus stimulates the opioid, enkephalin, throughout the brain, which also promotes overconsumption. The relationship between GAL, fat, and alcohol may involve triglycerides, circulating lipids that are released by fat or alcohol and that correlate positively with hypothalamic GAL expression. In females, levels of endogenous GAL also fluctuate across the reproductive cycle, driven by a rise in the ovarian steroids, estrogen, and progesterone. They peak during the proestrous phase and also at puberty, simultaneous to a sharp increase in preference for fat to meet energy demands. Prenatal exposure to a high-fat diet also enhances hypothalamic expression of GAL into adulthood because of an increase in neurogenesis and proliferation of GAL-expressing neurons in this region. This organizational change may reflect the role of GAL in neuronal development, including neurite growth in adulthood, cell survival in aging, and cell stability in the disease state. By responding positively to fat and alcohol and guiding further neuronal development, GAL potentiates a long-term propensity to overconsume fat and alcohol.
Collapse
|
21
|
Abstract
There has been increasing interest in the ability of neuropeptides involved in feeding to modulate circuits important for responses to drugs of abuse. A number of peptides with effects on hypothalamic function also modulate the mesolimbic dopamine system (ventral tegmental area and nucleus accumbens). Similarly, common stress-related pathways can modulate food intake, drug reward and symptoms of drug withdrawal. Galanin promotes food intake and the analgesic properties of opiates, thus it initially seemed possible that galanin might potentiate opiate reinforcement. Instead, galanin agonists decrease opiate reward, measured by conditioned place preference, and opiate withdrawal signs, whereas opiate reward and withdrawal are increased in knockout mice lacking galanin. This is consistent with studies showing that galanin decreases activity-evoked dopamine release in striatal slices and decreases the firing rate of noradrenergic neurons in locus coeruleus, areas involved in drug reward and withdrawal, respectively. These data suggest that polymorphisms in genes encoding galanin or galanin receptors might be associated with susceptibility to opiate abuse. Further, galanin receptors might be potential targets for development of novel treatments for addiction.
Collapse
Affiliation(s)
- Marina R Picciotto
- Department of Psychiatry, Yale University School of Medicine, 34 Park Street, 3rd Floor Research, New Haven, CT 06508, USA.
| |
Collapse
|
22
|
Lawrence AJ. Regulation of alcohol-seeking by orexin (hypocretin) neurons. Brain Res 2009; 1314:124-9. [PMID: 19646424 DOI: 10.1016/j.brainres.2009.07.072] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2009] [Revised: 07/21/2009] [Accepted: 07/22/2009] [Indexed: 12/11/2022]
Abstract
Orexins (hypocretins) are found primarily within a restricted portion of neurons within the hypothalamus, but provide innervation across the neuraxis. Orexin A (hypocretin 1) has been implicated in drug and food reward. Not surprisingly therefore, interest has come to bear on whether orexins are implicated in aspects of alcohol consumption and/or seeking. This mini-review provides a concise, but timely, discussion on this issue. The evidence to date would suggest a role for orexins in alcohol use, and integration of orexin-containing neurons in reward-seeking circuitry. There are however still many unanswered questions, some of which are canvassed herein.
Collapse
Affiliation(s)
- Andrew J Lawrence
- Howard Florey Institute and Centre for Neuroscience, University of Melbourne, Royal Parade, Parkville, Victoria 3010, Australia.
| |
Collapse
|
23
|
Alsiö J, Roman E, Olszewski PK, Jonsson P, Fredriksson R, Levine AS, Meyerson BJ, Hulting AL, Lindblom J, Schiöth HB. Inverse association of high-fat diet preference and anxiety-like behavior: a putative role for urocortin 2. GENES BRAIN AND BEHAVIOR 2008; 8:193-202. [PMID: 19077174 DOI: 10.1111/j.1601-183x.2008.00464.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The aim of this study was to investigate whether the preference for a palatable high-fat diet (HFD) is associated with response to novelty and with anxiety-like behavior in rats and whether such fat preference correlates with gene expression of hypothalamic neuropeptides related to feeding. We subjected male rats to two tests of exploration of novel environments: the multivariate concentric square field (MCSF) and the elevated plus maze (EPM). The rats were then exposed to a 5-day test of preference for a palatable HFD versus reference diets. Messenger RNA (mRNA) levels of 21 neuropeptides were investigated by quantitative polymerase chain reaction. We found a strong positive correlation of HFD preference and open-arm activity in the EPM (% open-arm time, r(s) = 0.629, df = 26, P < 0.001). Thus, HFD preference was inversely associated with anxiety-like behavior. The same association was found for HFD preference and behavior in the MCSF (bridge entries, r(s) = 0.399, df = 23, P = 0.048). In addition, the HFD preference was positively correlated (r(s) = 0.433, df = 25, P = 0.021) with hypothalamic mRNA levels of urocortin 2 (Ucn 2). Moreover, behavior in the EPM was significantly correlated with expression levels of the receptor for Ucn 2, the corticotropin-releasing factor receptor 2, in the hypothalamus (r(s) = 0.382, df = 33, P = 0.022, pituitary (r(s) = 0.494, df = 31, P = 0.004) and amygdala (r(s) = 0.381, df = 30, P = 0.032). We conclude that preference for palatable HFD is inversely associated with anxiety and propose that Ucn 2 signaling may play a role in this association.
Collapse
Affiliation(s)
- J Alsiö
- Department of Neuroscience, Functional Pharmacology, Uppsala University, BMC, Uppsala, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
This paper is the thirtieth consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2007 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior, and the roles of these opioid peptides and receptors in pain and analgesia; stress and social status; tolerance and dependence; learning and memory; eating and drinking; alcohol and drugs of abuse; sexual activity and hormones, pregnancy, development and endocrinology; mental illness and mood; seizures and neurologic disorders; electrical-related activity and neurophysiology; general activity and locomotion; gastrointestinal, renal and hepatic functions; cardiovascular responses; respiration and thermoregulation; and immunological responses.
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, 65-30 Kissena Blvd.,Flushing, NY 11367, United States.
| |
Collapse
|