1
|
Bell SE, Xie YR, Maciejewski MF, Rubakhin SS, Romanova EV, Bell AM, Sweedler JV. Single-Cell Peptide Profiling to Distinguish Stickleback Ecotypes with Divergent Breeding Behavior. J Proteome Res 2025; 24:1596-1605. [PMID: 39792146 PMCID: PMC11971027 DOI: 10.1021/acs.jproteome.4c00832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Variation in parenting behavior is widespread across the animal kingdom, both within and between species. There are two ecotypes of the three-spined stickleback fish (Gasterosteus aculeatus) that exhibit dramatic differences in their paternal behavior. Males of the common ecotype are highly attentive fathers, tending to young from eggs to fry, while males of the white ecotype desert offspring as eggs. As the pituitary is a key regulator in the hypothalamic-pituitary-adrenal (HPA) axis and the hypothalamic-pituitary-gonadal (HPG) axis between the brain and body, its peptides may influence parenting behaviors. Here, we utilized matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS) for high-throughput peptide analysis in single cells of pituitaries from both three-spined stickleback ecotypes. Peptide mass fingerprinting was performed using an in silico generated peptide library to identify detected prohormones. Differential analysis revealed POMC-derived peptides, MCH-derived peptides, and oxytocin as significantly different between the two ecotypes, with higher oxytocin levels in the common ecotype. Interestingly, these subtle chemical differences were not captured by Leiden clustering of the cellular phenotypes. These results call for further investigation of the neurochemical basis for parenting in sticklebacks.
Collapse
Affiliation(s)
- Sara E. Bell
- Department of Chemistry and the Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois, 61801 USA
| | - Yuxuan Richard Xie
- Department of Bioengineering and the Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois, 61801 USA
| | - Meghan F. Maciejewski
- Department of Evolution, Ecology and Behavior, School of Integrative Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, 61801 USA
| | - Stanislav S. Rubakhin
- Department of Chemistry and the Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois, 61801 USA
| | - Elena V. Romanova
- Department of Chemistry and the Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois, 61801 USA
| | - Alison M. Bell
- Department of Evolution, Ecology and Behavior, School of Integrative Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, 61801 USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, 61801 USA
| | - Jonathan V. Sweedler
- Department of Chemistry and the Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois, 61801 USA
- Department of Bioengineering and the Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois, 61801 USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, 61801 USA
| |
Collapse
|
2
|
Concetti C, Peleg-Raibstein D, Burdakov D. Hypothalamic MCH Neurons: From Feeding to Cognitive Control. FUNCTION 2023; 5:zqad059. [PMID: 38020069 PMCID: PMC10667013 DOI: 10.1093/function/zqad059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/06/2023] [Accepted: 10/11/2023] [Indexed: 12/01/2023] Open
Abstract
Modern neuroscience is progressively elucidating that the classic view positing distinct brain regions responsible for survival, emotion, and cognitive functions is outdated. The hypothalamus demonstrates the interdependence of these roles, as it is traditionally known for fundamental survival functions like energy and electrolyte balance, but is now recognized to also play a crucial role in emotional and cognitive processes. This review focuses on lateral hypothalamic melanin-concentrating hormone (MCH) neurons, producing the neuropeptide MCH-a relatively understudied neuronal population with integrative functions related to homeostatic regulation and motivated behaviors, with widespread inputs and outputs throughout the entire central nervous system. Here, we review early findings and recent literature outlining their role in the regulation of energy balance, sleep, learning, and memory processes.
Collapse
Affiliation(s)
- Cristina Concetti
- Neurobehavioural Dynamics Laboratory, ETH Zürich, Schorenstrasse 16, Schwerzenbach 8603, Switzerland
| | - Daria Peleg-Raibstein
- Neurobehavioural Dynamics Laboratory, ETH Zürich, Schorenstrasse 16, Schwerzenbach 8603, Switzerland
| | - Denis Burdakov
- Neurobehavioural Dynamics Laboratory, ETH Zürich, Schorenstrasse 16, Schwerzenbach 8603, Switzerland
| |
Collapse
|
3
|
Beekly BG, Rupp A, Burgess CR, Elias CF. Fast neurotransmitter identity of MCH neurons: Do contents depend on context? Front Neuroendocrinol 2023; 70:101069. [PMID: 37149229 PMCID: PMC11190671 DOI: 10.1016/j.yfrne.2023.101069] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 04/07/2023] [Accepted: 04/29/2023] [Indexed: 05/08/2023]
Abstract
Hypothalamic melanin-concentrating hormone (MCH) neurons participate in many fundamental neuroendocrine processes. While some of their effects can be attributed to MCH itself, others appear to depend on co-released neurotransmitters. Historically, the subject of fast neurotransmitter co-release from MCH neurons has been contentious, with data to support MCH neurons releasing GABA, glutamate, both, and neither. Rather than assuming a position in that debate, this review considers the evidence for all sides and presents an alternative explanation: neurochemical identity, including classical neurotransmitter content, is subject to change. With an emphasis on the variability of experimental details, we posit that MCH neurons may release GABA and/or glutamate at different points according to environmental and contextual factors. Through the lens of the MCH system, we offer evidence that the field of neuroendocrinology would benefit from a more nuanced and dynamic interpretation of neurotransmitter identity.
Collapse
Affiliation(s)
- B G Beekly
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, United States; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States; Elizabeth W. Caswell Diabetes Institute, University of Michigan, Ann Arbor, MI, United States.
| | - A Rupp
- Elizabeth W. Caswell Diabetes Institute, University of Michigan, Ann Arbor, MI, United States
| | - C R Burgess
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, United States; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States; Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, United States
| | - C F Elias
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, United States; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States; Elizabeth W. Caswell Diabetes Institute, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
4
|
Shi G, Kang Z, Liu H, Ren F, Zhou Y. The effects of quercetin combined with nucleopolyhedrovirus on the growth and immune response in the silkworm (Bombyx mori). ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2021; 108:e21839. [PMID: 34427962 DOI: 10.1002/arch.21839] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 08/07/2021] [Accepted: 08/12/2021] [Indexed: 06/13/2023]
Abstract
Flavonoids are secondary metabolites that help plants resist insect attack. It can resist insect attack by inhibiting insect immune defense, and pathogens can also inhibit insect immune defense. It is speculated that the combination of flavonoids and pathogens may inhibit the immune defense and have stronger toxicity to silkworm. In this study, the combined treatment of quercetin with Bombyx mori nuclear polyhedrosis virus (BmNPV) had significant negative effects on the growth and survival of silkworm compared with BmNPV group. The detoxifying enzyme activity of BmNPV group was significantly increased at 96 h, while the activity of the combined treatment group was significantly decreased with the increase of quercetin exposure time (72 or 96 h). The activity of antioxidant enzymes also showed a similar trend, that was, the activity of antioxidant enzymes in the combined treatment group also decreased significantly with the increase of quercetin exposure time, which led to the increase of reactive oxygen species content. The silkworm cells would produce lipid peroxidation, malondialdehyde content was significantly increased, so that the expression of immune-related genes (the antimicrobial peptide, Toll pathway, IMD pathway, JAK-STAT pathway, and melanin genes) were decreased, leading to the damage of the immune system of silkworm. These results indicated that quercetin combined with BmNPV could inhibit the activities of protective enzymes and lead to oxidative damage to silkworm. It can also affect the immune response of the silkworm, and thus resulting in abnormal growth. This study provides the novel conclusion that quercetin accumulation will increase the susceptibility of silkworm to pathogens.
Collapse
Affiliation(s)
- Guiqin Shi
- Zhengzhou University of Light Industry, Zhengzhou, China
| | - Zhaoyang Kang
- Zhengzhou University of Light Industry, Zhengzhou, China
| | - Huijuan Liu
- Zhengzhou University of Light Industry, Zhengzhou, China
| | - Fei Ren
- Zhengzhou University of Light Industry, Zhengzhou, China
| | - Yuan Zhou
- Zhengzhou University of Light Industry, Zhengzhou, China
| |
Collapse
|
5
|
Yousaf A, Lee J, Fang W, Kolodney MS. Association Between Alopecia Areata and Natural Hair Color Among White Individuals. JAMA Dermatol 2021:2777019. [PMID: 33688924 PMCID: PMC7948107 DOI: 10.1001/jamadermatol.2021.0144] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 01/22/2021] [Indexed: 01/16/2023]
Abstract
IMPORTANCE Alopecia areata (AA) is a complex immune-mediated disorder that causes nonscarring hair loss. Previous reports have documented preferential targeting of pigmented hair follicles with sparing of gray, nonpigmented hair follicles in alopecia lesions. Thus, immune targeting of melanogenesis-associated proteins in melanocytes and keratinocytes represents a potential mechanism for the inflammation that targets anagen hairs in alopecia areata. OBJECTIVE To investigate the association of alopecia areata with hair color among White residents of the UK. DESIGN, SETTING, AND PARTICIPANTS This matched, case-control study conducted in October 2020 used a large prospectively acquired cohort and included data that were collected from the UK Biobank, a large-scale prospective resource designed to study phenotypic and genotypic determinants in adults. A total of 502 510 UK Biobank participants were reviewed for inclusion. Among these individuals, 1673 cases of alopecia areata with reported hair color were captured and matched by age and sex to 6692 controls without alopecia areata using 1:4 matching. MAIN OUTCOMES AND MEASURES Conditional logistic regression analysis was performed, in which the outcome variable was alopecia areata and the main predictor was natural hair color before graying. The variables considered included diabetes, hypothyroidism, hyperthyroidism, and vitiligo. RESULTS Of 464 353 participants, 254 505 (54.8%) were women, and the mean (SD) age for those with alopecia areata was 46.9 (16.5) years. Alopecia areata was significantly more common in individuals with black (adjusted odds ratio [aOR], 2.97; 95% CI, 2.38-3.71) and dark brown hair (aOR, 1.26; 95% CI, 1.11-1.42) compared with light brown hair. In contrast, blond individuals exhibited significantly decreased alopecia areata compared with those with light brown hair (aOR, 0.69; 95% CI, 0.56-0.85). Red hair color was not significantly different from light brown hair. CONCLUSIONS AND RELEVANCE The findings of this matched case-control study seem to indicate that alopecia areata is modulated by natural hair color, preferentially targeting darker hair. Our results support a previously proposed model of alopecia areata in which immunity is directed against melanogenesis-associated proteins in the anagen hair follicles. However, further study is needed to more precisely understand the immunopathogenic association between alopecia areata and hair color.
Collapse
Affiliation(s)
- Ahmed Yousaf
- Department of Dermatology, West Virginia University, Morgantown
| | - Justin Lee
- Department of Dermatology, West Virginia University, Morgantown
| | - Wei Fang
- West Virginia Clinical and Translational Science Institute, Morgantown
| | | |
Collapse
|
6
|
Shi G, Kang Z, Ren F, Zhou Y, Guo P. Effects of Quercetin on the Growth and Expression of Immune-Pathway-Related Genes in Silkworm (Lepidoptera: Bombycidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2020; 20:5960128. [PMID: 33159528 PMCID: PMC7648594 DOI: 10.1093/jisesa/ieaa124] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Indexed: 05/05/2023]
Abstract
Quercetin is a flavonoid produced as a defense by plants. The effects of 1% quercetin on the growth and development of Bombyx mori were studied. The activities of the enzymes superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), carboxy-lesterase (CarEs), and glutathione S-transferase (GST) were all measured at 24, 48, 72, and 96 h after quercetin exposure. The results show that quercetin induces the activities of antioxidant and detoxification enzymes. With longer exposure times, enzyme activity first increased and then decreased. The relative expressions of AMP (defensin, CecA), the Toll pathway (cactus, Spatzle, and Rel), the IMD pathway (Imd, Fadd, and Dorsal), the JAK-STAT pathway (STAT, HOP, and Pi3k60), and the Melanization gene (DDC and PAH) were analyzed using quantitative polymerase chain reaction (qPCR). The results indicated that long-term exposure to quercetin could inhibit the expression of immune-related pathway genes in silkworms. This suggests that it can inhibit the activities of antioxidant and detoxifying enzymes, thus inhibiting the immune system and affecting the growth and development, resulting in an increase in the death rate in silkworm. This study provides the novel conclusion that quercetin accumulation inhibits the immune system of silkworm and increases its death rate, a result that may promote the development and utilization of better biopesticides that avoid environmental pollution.
Collapse
Affiliation(s)
- Guiqin Shi
- The College of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
- Corresponding author, e-mail:
| | - Zhaoyang Kang
- The College of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Fei Ren
- The College of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Yuan Zhou
- The College of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Penglei Guo
- The College of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| |
Collapse
|
7
|
Battagello DS, Lorenzon AR, Diniz GB, Motta-Teixeira LC, Klein MO, Ferreira JGP, Arias CM, Adamantidis A, Sita LV, Cipolla-Neto J, Bevilacqua EMAF, Sawchenko PE, Bittencourt JC. The Rat Mammary Gland as a Novel Site of Expression of Melanin-Concentrating Hormone Receptor 1 mRNA and Its Protein Immunoreactivity. Front Endocrinol (Lausanne) 2020; 11:463. [PMID: 32849267 PMCID: PMC7411258 DOI: 10.3389/fendo.2020.00463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 06/12/2020] [Indexed: 11/24/2022] Open
Abstract
Lactation is a complex physiological process, depending on orchestrated central and peripheral events, including substantial brain plasticity. Among these events is a novel expression of pro-melanin-concentrating hormone (Pmch) mRNA in the rodent hypothalamus, such as the ventral part of the medial preoptic area (vmMPOA). This expression reaches its highest levels around postpartum day 19 (PPD19), when dams transition from lactation to the weaning period. The appearance of this lactation-related Pmch expression occurs simultaneously with the presence of one of the Pmch products, melanin-concentrating hormone (MCH), in the serum. Given the relevance of the MPOA to maternal physiology and the contemporaneity between Pmch expression in this structure and the weaning period, we hypothesized that MCH has a role in the termination of lactation, acting as a mediator between central and peripheral changes. To test this, we investigated the presence of the MCH receptor 1 (MCHR1) and its gene expression in the mammary gland of female rats in different stages of the reproductive cycle. To that end, in situ hybridization, RT-PCR, RT-qPCR, nucleotide sequencing, immunohistochemistry, and Western blotting were employed. Although Mchr1 expression was detected in the epidermis and dermis of both diestrus and lactating rats, parenchymal expression was exclusively found in the functional mammary gland of lactating rats. The expression of Mchr1 mRNA oscillated through the lactation period and reached its maximum in PPD19 dams. Presence of MCHR1 was confirmed with immunohistochemistry with preferential location of MCHR1 immunoreactive cells in the alveolar secretory cells. As was the case for gene expression, the MCHR1 protein levels were significantly higher in PPD19 than in other groups. Our data demonstrate the presence of an anatomical basis for the participation of MCH peptidergic system on the control of lactation through the mammary gland, suggesting that MCH could modulate a prolactation action in early postpartum days and the opposite role at the end of the lactation.
Collapse
Affiliation(s)
- Daniella S. Battagello
- Instituto de Psicologia, Nucleo de Neurociencias e Comportamento, Universidade de São Paulo, São Paulo, Brazil
- Instituto de Ciencias Biomedicas, Laboratorio de Neuroanatomia Quimica, Universidade de São Paulo, São Paulo, Brazil
| | - Aline R. Lorenzon
- Departmento de Biologia Celular e Do Desenvolvimento, Instituto de Ciencias Biomedicas, Universidade de São Paulo, São Paulo, Brazil
| | - Giovanne B. Diniz
- Instituto de Ciencias Biomedicas, Laboratorio de Neuroanatomia Quimica, Universidade de São Paulo, São Paulo, Brazil
| | - Lívia C. Motta-Teixeira
- Departmento de Fisiologia e Biofisica, Instituto de Ciencias Biomedicas, Universidade de São Paulo, São Paulo, Brazil
| | - Marianne O. Klein
- Instituto de Ciencias Biomedicas, Laboratorio de Neuroanatomia Quimica, Universidade de São Paulo, São Paulo, Brazil
| | - Jozélia G. P. Ferreira
- Instituto de Ciencias Biomedicas, Laboratorio de Neuroanatomia Quimica, Universidade de São Paulo, São Paulo, Brazil
| | - Carlos M. Arias
- Laboratory of Neuronal Structure and Function, The Salk Institute for Biological Studies, La Jolla, CA, United States
| | | | - Luciane V. Sita
- Instituto de Ciencias Biomedicas, Laboratorio de Neuroanatomia Quimica, Universidade de São Paulo, São Paulo, Brazil
| | - José Cipolla-Neto
- Departmento de Fisiologia e Biofisica, Instituto de Ciencias Biomedicas, Universidade de São Paulo, São Paulo, Brazil
| | - Estela M. A. F. Bevilacqua
- Departmento de Biologia Celular e Do Desenvolvimento, Instituto de Ciencias Biomedicas, Universidade de São Paulo, São Paulo, Brazil
| | - Paul E. Sawchenko
- Laboratory of Neuronal Structure and Function, The Salk Institute for Biological Studies, La Jolla, CA, United States
| | - Jackson C. Bittencourt
- Instituto de Psicologia, Nucleo de Neurociencias e Comportamento, Universidade de São Paulo, São Paulo, Brazil
- Instituto de Ciencias Biomedicas, Laboratorio de Neuroanatomia Quimica, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
8
|
Owhor LE, Reese S, Kölle S. Salpingitis Impairs Bovine Tubal Function and Sperm-Oviduct Interaction. Sci Rep 2019; 9:10893. [PMID: 31350463 PMCID: PMC6659645 DOI: 10.1038/s41598-019-47431-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 07/17/2019] [Indexed: 01/11/2023] Open
Abstract
Salpingitis is a common cause for subfertility and infertility both in humans and animals. However, the effects of salpingitis on tubal function and reproductive success are largely unknown. Therefore we set out to investigate the effects of inflammation on sperm and oocyte transport and gameto-maternal interaction in the oviduct using the bovine as a model. For this purpose, oviducts revealing mild (n = 45), moderate (n = 55) and severe (n = 45) inflammation were obtained from cows immediately after slaughter and investigated by live cell imaging, histochemistry and scanning electron microscopy. Our studies showed that endometritis was always correlated with salpingitis. Moderate and severe inflammation caused a significant increase in the thickness of tubal folds (p < 0.05). Severe inflammation was characterized by luminal accumulations of mucus and glycoproteins, increased apoptosis, loss of tight junctions and shedding of tubal epithelial cells. The mean ciliary beat frequency (CBF) in the ampulla was significantly reduced as compared to the controls (p < 0.05). The higher the grade of inflammation, the lower was the CBF (p < 0.001). In severe inflammation, spermatozoa were stuck in mucus resulting in decreased sperm motility. Our results imply that tubal inflammation impairs proper tubal function and leads to reduced sperm fertilizing capacity.
Collapse
Affiliation(s)
- Loveth E Owhor
- School of Medicine, Health Sciences Centre, University College Dublin (UCD), Dublin, Ireland
| | - Sven Reese
- School of Veterinary Medicine, Institute of Veterinary Anatomy, Histology and Embryology, LMU, Munich, Germany
| | - Sabine Kölle
- School of Medicine, Health Sciences Centre, University College Dublin (UCD), Dublin, Ireland.
| |
Collapse
|
9
|
Chang GQ, Karatayev O, Leibowitz SF. Prenatal exposure to ethanol stimulates hypothalamic CCR2 chemokine receptor system: Possible relation to increased density of orexigenic peptide neurons and ethanol drinking in adolescent offspring. Neuroscience 2015; 310:163-75. [PMID: 26365610 DOI: 10.1016/j.neuroscience.2015.09.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 09/03/2015] [Accepted: 09/07/2015] [Indexed: 12/14/2022]
Abstract
Clinical and animal studies indicate that maternal consumption of ethanol during pregnancy increases alcohol drinking in the offspring. Possible underlying mechanisms may involve orexigenic peptides, which are stimulated by prenatal ethanol exposure and themselves promote drinking. Building on evidence that ethanol stimulates neuroimmune factors such as the chemokine CCL2 that in adult rats is shown to colocalize with the orexigenic peptide, melanin-concentrating hormone (MCH) in the lateral hypothalamus (LH), the present study sought to investigate the possibility that CCL2 or its receptor CCR2 in LH is stimulated by prenatal ethanol exposure, perhaps specifically within MCH neurons. Our paradigm of intraoral administration of ethanol to pregnant rats, at low-to-moderate doses (1 or 3g/kg/day) during peak hypothalamic neurogenesis, caused in adolescent male offspring twofold increase in drinking of and preference for ethanol and reinstatement of ethanol drinking in a two-bottle choice paradigm under an intermittent access schedule. This effect of prenatal ethanol exposure was associated with an increased expression of MCH and density of MCH(+) neurons in LH of preadolescent offspring. Whereas CCL2(+) cells at this age were low in density and unaffected by ethanol, CCR2(+) cells were dense in LH and increased by prenatal ethanol, with a large percentage (83-87%) identified as neurons and found to colocalize MCH. Prenatal ethanol also stimulated the genesis of CCR2(+) and MCH(+) neurons in the embryo, which co-labeled the proliferation marker, BrdU. Ethanol also increased the genesis and density of neurons that co-expressed CCR2 and MCH in LH, with triple-labeled CCR2(+)/MCH(+)/BrdU(+) neurons that were absent in control rats accounting for 35% of newly generated neurons in ethanol-exposed rats. With both the chemokine and MCH systems believed to promote ethanol consumption, this greater density of CCR2(+)/MCH(+) neurons in the LH of preadolescent rats suggests that these systems function together in promoting alcohol drinking during adolescence.
Collapse
Affiliation(s)
- G-Q Chang
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY 10065, USA
| | - O Karatayev
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY 10065, USA
| | - S F Leibowitz
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
10
|
The melanin-concentrating hormone receptors: neuronal and non-neuronal functions. INTERNATIONAL JOURNAL OF OBESITY SUPPLEMENTS 2014; 4:S31-6. [PMID: 27152164 DOI: 10.1038/ijosup.2014.9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Melanin-concentrating hormone (MCH) is a cyclic peptide highly conserved in vertebrates and was originally identified as a skin-paling factor in Teleosts. In fishes, MCH also participates in the regulation of the stress-response and feeding behaviour. Mammalian MCH is a hypothalamic neuropeptide that displays multiple functions, mostly controlling feeding behaviour and energy homeostasis. Transgenic mouse models and pharmacological studies have shown the importance of the MCH system as a potential target in the treatment of appetite disorders and obesity as well as anxiety and psychiatric diseases. Two G-protein-coupled receptors (GPCRs) binding MCH have been characterized so far. The first, named MCH-R1 and also called SLC1, was identified through reverse pharmacology strategies by several groups as a cognate receptor of MCH. This receptor is expressed at high levels in many brain areas of rodents and primates and is also expressed in peripheral organs, albeit at a lower rate. A second receptor, designated MCH-R2, exhibited 38% identity to MCH-R1 and was identified by sequence analysis of the human genome. Interestingly, although MCH-R2 orthologues were also found in fishes, dogs, ferrets and non-human primates, this MCH receptor gene appeared either lacking or non-functional in rodents and lagomorphs. Both receptors are class I GPCRs, whose main roles are to mediate the actions of peptides and neurotransmitters in the central nervous system. However, examples of action of MCH on neuronal and non-neuronal cells are emerging that illustrate novel MCH functions. In particular, the functionality of endogenously expressed MCH-R1 has been explored in human neuroblastoma cells, SK-N-SH and SH-SY5Y cells, and in non-neuronal cell types such as the ependymocytes. Indeed, we have identified mitogen-activated protein kinase (MAPK)-dependent or calcium-dependent signalling cascades that ultimately contributed to neurite outgrowth in neuroblastoma cells or to modulation of ciliary beating in ependymal cells. The putative role of MCH on cellular shaping and plasticity on one side and volume transmission on the other must be now considered.
Collapse
|
11
|
Ziogas DC, Karagiannis AKA, Geiger BM, Gras-Miralles B, Najarian R, Reizes O, Fitzpatrick LR, Kokkotou E. Inflammation-induced functional connectivity of melanin-concentrating hormone and IL-10. Peptides 2014; 55:58-64. [PMID: 24556508 PMCID: PMC4004662 DOI: 10.1016/j.peptides.2014.02.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 02/10/2014] [Accepted: 02/10/2014] [Indexed: 12/15/2022]
Abstract
Melanin-concentrating hormone (MCH) was identified in mammals as a hypothalamic neuropeptide regulating appetite and energy balance. However, similarly to most of the brain peptides, MCH is also produced in the gastrointestinal system and can act locally as an immunomodulator. We have previously reported high expression of MCH and its receptor MCHR1 in the affected mucosa of patients with inflammatory bowel disease. Furthermore, MCH deficiency in mice attenuated experimental colitis, pointing to MCH as a mediator of intestinal inflammation. In the present study, in order to gain further insights into the underlying mechanisms of such effects of MCH, we treated mice with established experimental colitis due to IL-10 deficiency with a MCHR1 antagonist (DABA-822). While treatment with the same drug was successful in attenuating TNBS-induced colitis in previous studies, it offered no benefit to the IL-10 knockout mouse model, suggesting that perhaps IL-10 is a downstream target of MCH. Indeed, in experiments focusing on monocytes, we found that treatment with MCH inhibited LPS-mediated IL-10 upregulation. Conversely, in the same cells, exogenous IL-10 prevented LPS-induced MCHR1 expression. Taken together, these findings indicate a functional cross-talk between MCH and IL-10 which prevents resolution of inflammation.
Collapse
Affiliation(s)
- Dimitrios C Ziogas
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States
| | - Apostolos K A Karagiannis
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States
| | - Brenda M Geiger
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States
| | - Beatriz Gras-Miralles
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States
| | - Robert Najarian
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States
| | - Ofer Reizes
- Cleveland Clinic Foundation Lerner Research Institute, Cleveland, OH 44195, United States
| | | | - Efi Kokkotou
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States.
| |
Collapse
|
12
|
Yao Y, Su J, Zhang F, Lei Z. Effects of central and peripheral administration of neuropeptide s on the level of serum proinflammatory cytokines in pigs. Neuroimmunomodulation 2014; 21:45-51. [PMID: 24216974 DOI: 10.1159/000355977] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 09/23/2013] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVES The recently discovered neuropeptide S (NPS) and its cognate receptor represent a novel system of neuromodulation and are involved in many physiological and pathological processes. NPS has been implicated in the regulation of proinflammatory cytokine secretion in the pulmonary alveolar macrophages (PAMs) of pigs in vitro. In this study, we tested the hypothesis whether either central or peripheral injection of NPS would stimulate the secretion of the proinflammatory cytokines in pigs. METHODS In experiment 1, pigs were fitted with an intracerebroventricular cannula and indwelling jugular catheters, and were then randomly assigned to receive 10 or 30 nmol NPS in artificial cerebrospinal fluid. In experiment 2, pigs were fitted with indwelling jugular catheters, and randomly received 15 or 30 nmol NPS in saline. Serial blood samples were collected every 10 min for 1 h before and for 2 h after injections, and serum concentrations of IL-1β, IL-6 and TNF-α were determined. RESULTS Serum concentrations of these cytokines were increased in pigs that received central and peripheral injection of NPS, and the elevated secretion of these cytokines was in a time- and concentration-dependent manner. CONCLUSION The level of serum proinflammatory cytokines could be activated by both central and peripheral administration of NPS in a dose- and time-dependent manner in the pig. The present data support the concept that NPS may be considered as a potent modulator for the immune system and may play an important role in the inflammation and immune system of pigs.
Collapse
Affiliation(s)
- Yuan Yao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing,P.R. China
| | | | | | | |
Collapse
|
13
|
Geiger BM, Gras-Miralles B, Ziogas DC, Karagiannis AKA, Zhen A, Fraenkel P, Kokkotou E. Intestinal upregulation of melanin-concentrating hormone in TNBS-induced enterocolitis in adult zebrafish. PLoS One 2013; 8:e83194. [PMID: 24376661 PMCID: PMC3869761 DOI: 10.1371/journal.pone.0083194] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 11/11/2013] [Indexed: 12/22/2022] Open
Abstract
Background Melanin-concentrating hormone (MCH), an evolutionarily conserved appetite-regulating neuropeptide, has been recently implicated in the pathogenesis of inflammatory bowel disease (IBD). Expression of MCH is upregulated in inflamed intestinal mucosa in humans with colitis and MCH-deficient mice treated with trinitrobenzene-sulfonic acid (TNBS) develop an attenuated form of colitis compared to wild type animals. Zebrafish have emerged as a new animal model of IBD, although the majority of the reported studies concern zebrafish larvae. Regulation MCH expression in the adult zebrafish intestine remains unknown. Methods In the present study we induced enterocolitis in adult zebrafish by intrarectal administration of TNBS. Follow-up included survival analysis, histological assessment of changes in intestinal architecture, and assessment of intestinal infiltration by myeloperoxidase positive cells and cytokine transcript levels. Results Treatment with TNBS dose-dependently reduced fish survival. This response required the presence of an intact microbiome, since fish pre-treated with vancomycin developed less severe enterocolitis. At 6 hours post-challenge, we detected a significant influx of myeloperoxidase positive cells in the intestine and upregulation of both proinflammatory and anti-inflammatory cytokines. Most importantly, and in analogy to human IBD and TNBS-induced mouse experimental colitis, we found increased intestinal expression of MCH and its receptor in TNBS-treated zebrafish. Conclusions Taken together these findings not only establish a model of chemically-induced experimental enterocolitis in adult zebrafish, but point to effects of MCH in intestinal inflammation that are conserved across species.
Collapse
Affiliation(s)
- Brenda M Geiger
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Beatriz Gras-Miralles
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Dimitrios C Ziogas
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Apostolos K A Karagiannis
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Aileen Zhen
- Hematology/Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Paula Fraenkel
- Hematology/Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Efi Kokkotou
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
14
|
Ziogas DC, Gras-Miralles B, Mustafa S, Geiger BM, Najarian RM, Nagel JM, Flier SN, Popov Y, Tseng YH, Kokkotou E. Anti-melanin-concentrating hormone treatment attenuates chronic experimental colitis and fibrosis. Am J Physiol Gastrointest Liver Physiol 2013; 304:G876-84. [PMID: 23538494 PMCID: PMC3652072 DOI: 10.1152/ajpgi.00305.2012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Fibrosis represents a major complication of several chronic diseases, including inflammatory bowel disease (IBD). Treatment of IBD remains a clinical challenge despite several recent therapeutic advances. Melanin-concentrating hormone (MCH) is a hypothalamic neuropeptide shown to regulate appetite and energy balance. However, accumulating evidence suggests that MCH has additional biological effects, including modulation of inflammation. In the present study, we examined the efficacy of an MCH-blocking antibody in treating established, dextran sodium sulfate-induced experimental colitis. Histological and molecular analysis of mouse tissues revealed that mice receiving anti-MCH had accelerated mucosal restitution and lower colonic expression of several proinflammatory cytokines, as well as fibrogenic genes, including COL1A1. In parallel, they spared collagen deposits seen in the untreated mice, suggesting attenuated fibrosis. These findings raised the possibility of perhaps direct effects of MCH on myofibroblasts. Indeed, in biopsies from patients with IBD, we demonstrate expression of the MCH receptor MCHR1 in α-smooth muscle actin(+) subepithelial cells. CCD-18Co cells, a primary human colonic myofibroblast cell line, were also positive for MCHR1. In these cells, MCH acted as a profibrotic modulator by potentiating the effects of IGF-1 and TGF-β on proliferation and collagen production. Thus, by virtue of combined anti-inflammatory and anti-fibrotic effects, blocking MCH might represent a compelling approach for treating IBD.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yury Popov
- 1Beth Israel Deaconess Medical Center and
| | - Yu-Hua Tseng
- 2Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts
| | | |
Collapse
|
15
|
Increased susceptibility of melanin-concentrating hormone-deficient mice to infection with Salmonella enterica serovar Typhimurium. Infect Immun 2012; 81:166-72. [PMID: 23115043 DOI: 10.1128/iai.00572-12] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Melanin-concentrating hormone (MCH) was initially identified in mammals as a hypothalamic neuropeptide regulating appetite and energy balance. However, the wide distribution of MCH receptors in peripheral tissues suggests additional functions for MCH which remain largely unknown. We have previously reported that mice lacking MCH develop attenuated intestinal inflammation when exposed to Clostridium difficile toxin A. To further characterize the role of MCH in host defense mechanisms against intestinal pathogens, Salmonella enterocolitis (using Salmonella enterica serovar Typhimurium) was induced in MCH-deficient mice and their wild-type littermates. In the absence of MCH, infected mice had increased mortality associated with higher bacterial loads in blood, liver, and spleen. Moreover, the knockout mice developed more-severe intestinal inflammation, based on epithelial damage, immune cell infiltrates, and local and systemic cytokine levels. Paradoxically, these enhanced inflammatory responses in the MCH knockout mice were associated with disproportionally lower levels of macrophages infiltrating the intestine. Hence, we investigated potential direct effects of MCH on monocyte/macrophage functions critical for defense against intestinal pathogens. Using RAW 264.7 mouse monocytic cells, which express endogenous MCH receptor, we found that treatment with MCH enhanced the phagocytic capacity of these cells. Taken together, these findings reveal a previously unappreciated role for MCH in host-bacterial interactions.
Collapse
|
16
|
Nagel JM, Geiger BM, Karagiannis AKA, Gras-Miralles B, Horst D, Najarian RM, Ziogas DC, Chen X, Kokkotou E. Reduced intestinal tumorigenesis in APCmin mice lacking melanin-concentrating hormone. PLoS One 2012; 7:e41914. [PMID: 22848656 PMCID: PMC3407051 DOI: 10.1371/journal.pone.0041914] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Accepted: 06/27/2012] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Melanin-concentrating hormone (MCH) is an evolutionary conserved hypothalamic neuropeptide that in mammals primarily regulates appetite and energy balance. We have recently identified a novel role for MCH in intestinal inflammation by demonstrating attenuated experimental colitis in MCH deficient mice or wild type mice treated with an anti-MCH antibody. Therefore, targeting MCH has been proposed for the treatment of inflammatory bowel disease. Given the link between chronic intestinal inflammation and colorectal cancer, in the present study we sought to investigate whether blocking MCH might have effects on intestinal tumorigenesis that are independent of inflammation. METHODOLOGY Tumor development was evaluated in MCH-deficient mice crossed to the APCmin mice which develop spontaneously intestinal adenomas. A different cohort of MCH-/- and MCH+/+ mice in the APCmin background was treated with dextran sodium sulphate (DSS) to induce inflammation-dependent colorectal tumors. In Caco2 human colorectal adenocarcinoma cells, the role of MCH on cell survival, proliferation and apoptosis was investigated. RESULTS APCmin mice lacking MCH developed fewer, smaller and less dysplastic tumors in the intestine and colon which at the molecular level are characterized by attenuated activation of the wnt/beta-catenin signaling pathway and increased apoptotic indices. Form a mechanistic point of view, MCH increased the survival of colonic adenocarcinoma Caco2 cells via inhibiting apoptosis, consistent with the mouse studies. CONCLUSION In addition to modulating inflammation, MCH was found to promote intestinal tumorigenesis at least in part by inhibiting epithelial cell apoptosis. Thereby, blocking MCH as a therapeutic approach is expected to decrease the risk for colorectal cancer.
Collapse
Affiliation(s)
- Jutta M. Nagel
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Brenda M. Geiger
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Apostolos K. A. Karagiannis
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Beatriz Gras-Miralles
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - David Horst
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Robert M. Najarian
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Dimitrios C. Ziogas
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - XinHua Chen
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Efi Kokkotou
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
17
|
Gao XB. Plasticity in neurons synthesizing wake/arousal promoting hormone hypocretin/orexin. VITAMINS AND HORMONES 2012; 89:35-59. [PMID: 22640607 DOI: 10.1016/b978-0-12-394623-2.00003-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The hypothalamus is a critical brain structure regulating physiological functions essential to the survival of individuals and species. One of the striking characteristics of this brain region is the abundance of nerve cells (neurons) expressing a great numbers of neurotransmitters and neuromodulators, among which are hormones released into the blood stream through brain neuroendocrinological routes. The neurons in the lateral hypothalamus take part in intra- and extrahypothalamic circuits controlling basic physiological functions essential for the well being of animal bodies (such as cardiovascular function, respiratory function, immune responses, etc.), animal behaviors required for the maintenance of the survival of individuals (food foraging, flight, fight, etc.) and species (reproductive function), and higher brain functions (learning and memory, mental state, etc.). Hypocretin (also called orexin) comprises of two neuropeptides exclusively synthesized by neurons in the perifornical/lateral hypothalamus. Although hypocretin/orexin was initially found to enhance food intake, it is now clear that the functions mediated by hypocretin/orexin are well beyond what were originally proposed. Specifically, hypocretin/orexin is a crucial promoter of wakefulness; deficiency in the hypocretin/orexin system leads to diseases and disorders such as narcolepsy. It is clear that neurons synthesizing hypocretin/orexin are consistently under regulation originating from various parts of the brain and that the status of activity in hypocretin/orexin neurons is closely related with the nutritional and behavioral state of animals. Therefore, the demand to make adaptive changes in hypocretin/orexin neurons to accommodate the changes in the external environment and behavioral state of animals is expected. The latest developments in the studies of plasticity in hypocretin/orexin neurons under the challenges from environmental and behavioral factors have dramatically shaped the understanding of the roles of hypocretin/orexin neurons in the maintenance of the survival of animals. More importantly, the studies of plasticity in hypocretin/orexin neurons as the consequence of physiological, behavioral, and environmental challenges may shed new insight on the understanding and treatment of sleep disorders (such as insomnia).
Collapse
Affiliation(s)
- Xiao-Bing Gao
- Section of Comparative Medicine, Program in Integrative Cell Signaling and Neurobiology of Metabolism, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
18
|
Torterolo P, Lagos P, Monti JM. Melanin-concentrating hormone: a new sleep factor? Front Neurol 2011; 2:14. [PMID: 21516258 PMCID: PMC3080035 DOI: 10.3389/fneur.2011.00014] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 03/02/2011] [Indexed: 12/18/2022] Open
Abstract
Neurons containing the neuropeptide melanin-concentrating hormone (MCH) are mainly located in the lateral hypothalamus and the incerto-hypothalamic area, and have widespread projections throughout the brain. While the biological functions of this neuropeptide are exerted in humans through two metabotropic receptors, the MCHR1 and MCHR2, only the MCHR1 is present in rodents. Recently, it has been shown that the MCHergic system is involved in the control of sleep. We can summarize the experimental findings as follows: (1) The areas related to the control of sleep and wakefulness have a high density of MCHergic fibers and receptors. (2) MCHergic neurons are active during sleep, especially during rapid eye movement (REM) sleep. (3) MCH knockout mice have less REM sleep, notably under conditions of negative energy balance. Animals with genetically inactivated MCHR1 also exhibit altered vigilance state architecture and sleep homeostasis. (4) Systemically administered MCHR1 antagonists reduce sleep. (5) Intraventricular microinjection of MCH increases both slow wave sleep (SWS) and REM sleep; however, the increment in REM sleep is more pronounced. (6) Microinjection of MCH into the dorsal raphe nucleus increases REM sleep time. REM seep is inhibited by immunoneutralization of MCH within this nucleus. (7) Microinjection of MCH in the nucleus pontis oralis of the cat enhances REM sleep time and reduces REM sleep latency. All these data strongly suggest that MCH has a potent role in the promotion of sleep. Although both SWS and REM sleep are facilitated by MCH, REM sleep seems to be more sensitive to MCH modulation.
Collapse
Affiliation(s)
- Pablo Torterolo
- Department of Physiology, School of Medicine, University of the Republic Montevideo, Uruguay
| | | | | |
Collapse
|